1 //==- UninitializedValues.cpp - Find Uninitialized Values -------*- C++ --*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements uninitialized values analysis for source-level CFGs. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/Attr.h" 16 #include "clang/AST/Decl.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 19 #include "clang/Analysis/Analyses/UninitializedValues.h" 20 #include "clang/Analysis/AnalysisContext.h" 21 #include "clang/Analysis/CFG.h" 22 #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/Optional.h" 25 #include "llvm/ADT/PackedVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/Support/SaveAndRestore.h" 29 #include <utility> 30 31 using namespace clang; 32 33 #define DEBUG_LOGGING 0 34 35 static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) { 36 if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() && 37 !vd->isExceptionVariable() && !vd->isInitCapture() && 38 vd->getDeclContext() == dc) { 39 QualType ty = vd->getType(); 40 return ty->isScalarType() || ty->isVectorType(); 41 } 42 return false; 43 } 44 45 //------------------------------------------------------------------------====// 46 // DeclToIndex: a mapping from Decls we track to value indices. 47 //====------------------------------------------------------------------------// 48 49 namespace { 50 class DeclToIndex { 51 llvm::DenseMap<const VarDecl *, unsigned> map; 52 public: 53 DeclToIndex() {} 54 55 /// Compute the actual mapping from declarations to bits. 56 void computeMap(const DeclContext &dc); 57 58 /// Return the number of declarations in the map. 59 unsigned size() const { return map.size(); } 60 61 /// Returns the bit vector index for a given declaration. 62 Optional<unsigned> getValueIndex(const VarDecl *d) const; 63 }; 64 } 65 66 void DeclToIndex::computeMap(const DeclContext &dc) { 67 unsigned count = 0; 68 DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()), 69 E(dc.decls_end()); 70 for ( ; I != E; ++I) { 71 const VarDecl *vd = *I; 72 if (isTrackedVar(vd, &dc)) 73 map[vd] = count++; 74 } 75 } 76 77 Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const { 78 llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d); 79 if (I == map.end()) 80 return None; 81 return I->second; 82 } 83 84 //------------------------------------------------------------------------====// 85 // CFGBlockValues: dataflow values for CFG blocks. 86 //====------------------------------------------------------------------------// 87 88 // These values are defined in such a way that a merge can be done using 89 // a bitwise OR. 90 enum Value { Unknown = 0x0, /* 00 */ 91 Initialized = 0x1, /* 01 */ 92 Uninitialized = 0x2, /* 10 */ 93 MayUninitialized = 0x3 /* 11 */ }; 94 95 static bool isUninitialized(const Value v) { 96 return v >= Uninitialized; 97 } 98 static bool isAlwaysUninit(const Value v) { 99 return v == Uninitialized; 100 } 101 102 namespace { 103 104 typedef llvm::PackedVector<Value, 2, llvm::SmallBitVector> ValueVector; 105 106 class CFGBlockValues { 107 const CFG &cfg; 108 SmallVector<ValueVector, 8> vals; 109 ValueVector scratch; 110 DeclToIndex declToIndex; 111 public: 112 CFGBlockValues(const CFG &cfg); 113 114 unsigned getNumEntries() const { return declToIndex.size(); } 115 116 void computeSetOfDeclarations(const DeclContext &dc); 117 ValueVector &getValueVector(const CFGBlock *block) { 118 return vals[block->getBlockID()]; 119 } 120 121 void setAllScratchValues(Value V); 122 void mergeIntoScratch(ValueVector const &source, bool isFirst); 123 bool updateValueVectorWithScratch(const CFGBlock *block); 124 125 bool hasNoDeclarations() const { 126 return declToIndex.size() == 0; 127 } 128 129 void resetScratch(); 130 131 ValueVector::reference operator[](const VarDecl *vd); 132 133 Value getValue(const CFGBlock *block, const CFGBlock *dstBlock, 134 const VarDecl *vd) { 135 const Optional<unsigned> &idx = declToIndex.getValueIndex(vd); 136 assert(idx.hasValue()); 137 return getValueVector(block)[idx.getValue()]; 138 } 139 }; 140 } // end anonymous namespace 141 142 CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {} 143 144 void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) { 145 declToIndex.computeMap(dc); 146 unsigned decls = declToIndex.size(); 147 scratch.resize(decls); 148 unsigned n = cfg.getNumBlockIDs(); 149 if (!n) 150 return; 151 vals.resize(n); 152 for (unsigned i = 0; i < n; ++i) 153 vals[i].resize(decls); 154 } 155 156 #if DEBUG_LOGGING 157 static void printVector(const CFGBlock *block, ValueVector &bv, 158 unsigned num) { 159 llvm::errs() << block->getBlockID() << " :"; 160 for (unsigned i = 0; i < bv.size(); ++i) { 161 llvm::errs() << ' ' << bv[i]; 162 } 163 llvm::errs() << " : " << num << '\n'; 164 } 165 #endif 166 167 void CFGBlockValues::setAllScratchValues(Value V) { 168 for (unsigned I = 0, E = scratch.size(); I != E; ++I) 169 scratch[I] = V; 170 } 171 172 void CFGBlockValues::mergeIntoScratch(ValueVector const &source, 173 bool isFirst) { 174 if (isFirst) 175 scratch = source; 176 else 177 scratch |= source; 178 } 179 180 bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) { 181 ValueVector &dst = getValueVector(block); 182 bool changed = (dst != scratch); 183 if (changed) 184 dst = scratch; 185 #if DEBUG_LOGGING 186 printVector(block, scratch, 0); 187 #endif 188 return changed; 189 } 190 191 void CFGBlockValues::resetScratch() { 192 scratch.reset(); 193 } 194 195 ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) { 196 const Optional<unsigned> &idx = declToIndex.getValueIndex(vd); 197 assert(idx.hasValue()); 198 return scratch[idx.getValue()]; 199 } 200 201 //------------------------------------------------------------------------====// 202 // Worklist: worklist for dataflow analysis. 203 //====------------------------------------------------------------------------// 204 205 namespace { 206 class DataflowWorklist { 207 PostOrderCFGView::iterator PO_I, PO_E; 208 SmallVector<const CFGBlock *, 20> worklist; 209 llvm::BitVector enqueuedBlocks; 210 public: 211 DataflowWorklist(const CFG &cfg, PostOrderCFGView &view) 212 : PO_I(view.begin()), PO_E(view.end()), 213 enqueuedBlocks(cfg.getNumBlockIDs(), true) { 214 // Treat the first block as already analyzed. 215 if (PO_I != PO_E) { 216 assert(*PO_I == &cfg.getEntry()); 217 enqueuedBlocks[(*PO_I)->getBlockID()] = false; 218 ++PO_I; 219 } 220 } 221 222 void enqueueSuccessors(const CFGBlock *block); 223 const CFGBlock *dequeue(); 224 }; 225 } 226 227 void DataflowWorklist::enqueueSuccessors(const clang::CFGBlock *block) { 228 for (CFGBlock::const_succ_iterator I = block->succ_begin(), 229 E = block->succ_end(); I != E; ++I) { 230 const CFGBlock *Successor = *I; 231 if (!Successor || enqueuedBlocks[Successor->getBlockID()]) 232 continue; 233 worklist.push_back(Successor); 234 enqueuedBlocks[Successor->getBlockID()] = true; 235 } 236 } 237 238 const CFGBlock *DataflowWorklist::dequeue() { 239 const CFGBlock *B = nullptr; 240 241 // First dequeue from the worklist. This can represent 242 // updates along backedges that we want propagated as quickly as possible. 243 if (!worklist.empty()) 244 B = worklist.pop_back_val(); 245 246 // Next dequeue from the initial reverse post order. This is the 247 // theoretical ideal in the presence of no back edges. 248 else if (PO_I != PO_E) { 249 B = *PO_I; 250 ++PO_I; 251 } 252 else { 253 return nullptr; 254 } 255 256 assert(enqueuedBlocks[B->getBlockID()] == true); 257 enqueuedBlocks[B->getBlockID()] = false; 258 return B; 259 } 260 261 //------------------------------------------------------------------------====// 262 // Classification of DeclRefExprs as use or initialization. 263 //====------------------------------------------------------------------------// 264 265 namespace { 266 class FindVarResult { 267 const VarDecl *vd; 268 const DeclRefExpr *dr; 269 public: 270 FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {} 271 272 const DeclRefExpr *getDeclRefExpr() const { return dr; } 273 const VarDecl *getDecl() const { return vd; } 274 }; 275 276 static const Expr *stripCasts(ASTContext &C, const Expr *Ex) { 277 while (Ex) { 278 Ex = Ex->IgnoreParenNoopCasts(C); 279 if (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) { 280 if (CE->getCastKind() == CK_LValueBitCast) { 281 Ex = CE->getSubExpr(); 282 continue; 283 } 284 } 285 break; 286 } 287 return Ex; 288 } 289 290 /// If E is an expression comprising a reference to a single variable, find that 291 /// variable. 292 static FindVarResult findVar(const Expr *E, const DeclContext *DC) { 293 if (const DeclRefExpr *DRE = 294 dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E))) 295 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 296 if (isTrackedVar(VD, DC)) 297 return FindVarResult(VD, DRE); 298 return FindVarResult(nullptr, nullptr); 299 } 300 301 /// \brief Classify each DeclRefExpr as an initialization or a use. Any 302 /// DeclRefExpr which isn't explicitly classified will be assumed to have 303 /// escaped the analysis and will be treated as an initialization. 304 class ClassifyRefs : public StmtVisitor<ClassifyRefs> { 305 public: 306 enum Class { 307 Init, 308 Use, 309 SelfInit, 310 Ignore 311 }; 312 313 private: 314 const DeclContext *DC; 315 llvm::DenseMap<const DeclRefExpr*, Class> Classification; 316 317 bool isTrackedVar(const VarDecl *VD) const { 318 return ::isTrackedVar(VD, DC); 319 } 320 321 void classify(const Expr *E, Class C); 322 323 public: 324 ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {} 325 326 void VisitDeclStmt(DeclStmt *DS); 327 void VisitUnaryOperator(UnaryOperator *UO); 328 void VisitBinaryOperator(BinaryOperator *BO); 329 void VisitCallExpr(CallExpr *CE); 330 void VisitCastExpr(CastExpr *CE); 331 332 void operator()(Stmt *S) { Visit(S); } 333 334 Class get(const DeclRefExpr *DRE) const { 335 llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I 336 = Classification.find(DRE); 337 if (I != Classification.end()) 338 return I->second; 339 340 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 341 if (!VD || !isTrackedVar(VD)) 342 return Ignore; 343 344 return Init; 345 } 346 }; 347 } 348 349 static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) { 350 if (Expr *Init = VD->getInit()) { 351 const DeclRefExpr *DRE 352 = dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init)); 353 if (DRE && DRE->getDecl() == VD) 354 return DRE; 355 } 356 return nullptr; 357 } 358 359 void ClassifyRefs::classify(const Expr *E, Class C) { 360 // The result of a ?: could also be an lvalue. 361 E = E->IgnoreParens(); 362 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 363 classify(CO->getTrueExpr(), C); 364 classify(CO->getFalseExpr(), C); 365 return; 366 } 367 368 if (const BinaryConditionalOperator *BCO = 369 dyn_cast<BinaryConditionalOperator>(E)) { 370 classify(BCO->getFalseExpr(), C); 371 return; 372 } 373 374 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 375 classify(OVE->getSourceExpr(), C); 376 return; 377 } 378 379 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 380 if (BO->getOpcode() == BO_Comma) 381 classify(BO->getRHS(), C); 382 return; 383 } 384 385 FindVarResult Var = findVar(E, DC); 386 if (const DeclRefExpr *DRE = Var.getDeclRefExpr()) 387 Classification[DRE] = std::max(Classification[DRE], C); 388 } 389 390 void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) { 391 for (auto *DI : DS->decls()) { 392 VarDecl *VD = dyn_cast<VarDecl>(DI); 393 if (VD && isTrackedVar(VD)) 394 if (const DeclRefExpr *DRE = getSelfInitExpr(VD)) 395 Classification[DRE] = SelfInit; 396 } 397 } 398 399 void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) { 400 // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this 401 // is not a compound-assignment, we will treat it as initializing the variable 402 // when TransferFunctions visits it. A compound-assignment does not affect 403 // whether a variable is uninitialized, and there's no point counting it as a 404 // use. 405 if (BO->isCompoundAssignmentOp()) 406 classify(BO->getLHS(), Use); 407 else if (BO->getOpcode() == BO_Assign) 408 classify(BO->getLHS(), Ignore); 409 } 410 411 void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) { 412 // Increment and decrement are uses despite there being no lvalue-to-rvalue 413 // conversion. 414 if (UO->isIncrementDecrementOp()) 415 classify(UO->getSubExpr(), Use); 416 } 417 418 void ClassifyRefs::VisitCallExpr(CallExpr *CE) { 419 // Classify arguments to std::move as used. 420 if (CE->getNumArgs() == 1) { 421 if (FunctionDecl *FD = CE->getDirectCallee()) { 422 if (FD->isInStdNamespace() && FD->getIdentifier() && 423 FD->getIdentifier()->isStr("move")) { 424 classify(CE->getArg(0), Use); 425 return; 426 } 427 } 428 } 429 430 // If a value is passed by const reference to a function, we should not assume 431 // that it is initialized by the call, and we conservatively do not assume 432 // that it is used. 433 for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end(); 434 I != E; ++I) 435 if ((*I)->getType().isConstQualified() && (*I)->isGLValue()) 436 classify(*I, Ignore); 437 } 438 439 void ClassifyRefs::VisitCastExpr(CastExpr *CE) { 440 if (CE->getCastKind() == CK_LValueToRValue) 441 classify(CE->getSubExpr(), Use); 442 else if (CStyleCastExpr *CSE = dyn_cast<CStyleCastExpr>(CE)) { 443 if (CSE->getType()->isVoidType()) { 444 // Squelch any detected load of an uninitialized value if 445 // we cast it to void. 446 // e.g. (void) x; 447 classify(CSE->getSubExpr(), Ignore); 448 } 449 } 450 } 451 452 //------------------------------------------------------------------------====// 453 // Transfer function for uninitialized values analysis. 454 //====------------------------------------------------------------------------// 455 456 namespace { 457 class TransferFunctions : public StmtVisitor<TransferFunctions> { 458 CFGBlockValues &vals; 459 const CFG &cfg; 460 const CFGBlock *block; 461 AnalysisDeclContext ∾ 462 const ClassifyRefs &classification; 463 ObjCNoReturn objCNoRet; 464 UninitVariablesHandler &handler; 465 466 public: 467 TransferFunctions(CFGBlockValues &vals, const CFG &cfg, 468 const CFGBlock *block, AnalysisDeclContext &ac, 469 const ClassifyRefs &classification, 470 UninitVariablesHandler &handler) 471 : vals(vals), cfg(cfg), block(block), ac(ac), 472 classification(classification), objCNoRet(ac.getASTContext()), 473 handler(handler) {} 474 475 void reportUse(const Expr *ex, const VarDecl *vd); 476 477 void VisitBinaryOperator(BinaryOperator *bo); 478 void VisitBlockExpr(BlockExpr *be); 479 void VisitCallExpr(CallExpr *ce); 480 void VisitDeclRefExpr(DeclRefExpr *dr); 481 void VisitDeclStmt(DeclStmt *ds); 482 void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS); 483 void VisitObjCMessageExpr(ObjCMessageExpr *ME); 484 485 bool isTrackedVar(const VarDecl *vd) { 486 return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl())); 487 } 488 489 FindVarResult findVar(const Expr *ex) { 490 return ::findVar(ex, cast<DeclContext>(ac.getDecl())); 491 } 492 493 UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) { 494 UninitUse Use(ex, isAlwaysUninit(v)); 495 496 assert(isUninitialized(v)); 497 if (Use.getKind() == UninitUse::Always) 498 return Use; 499 500 // If an edge which leads unconditionally to this use did not initialize 501 // the variable, we can say something stronger than 'may be uninitialized': 502 // we can say 'either it's used uninitialized or you have dead code'. 503 // 504 // We track the number of successors of a node which have been visited, and 505 // visit a node once we have visited all of its successors. Only edges where 506 // the variable might still be uninitialized are followed. Since a variable 507 // can't transfer from being initialized to being uninitialized, this will 508 // trace out the subgraph which inevitably leads to the use and does not 509 // initialize the variable. We do not want to skip past loops, since their 510 // non-termination might be correlated with the initialization condition. 511 // 512 // For example: 513 // 514 // void f(bool a, bool b) { 515 // block1: int n; 516 // if (a) { 517 // block2: if (b) 518 // block3: n = 1; 519 // block4: } else if (b) { 520 // block5: while (!a) { 521 // block6: do_work(&a); 522 // n = 2; 523 // } 524 // } 525 // block7: if (a) 526 // block8: g(); 527 // block9: return n; 528 // } 529 // 530 // Starting from the maybe-uninitialized use in block 9: 531 // * Block 7 is not visited because we have only visited one of its two 532 // successors. 533 // * Block 8 is visited because we've visited its only successor. 534 // From block 8: 535 // * Block 7 is visited because we've now visited both of its successors. 536 // From block 7: 537 // * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all 538 // of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively). 539 // * Block 3 is not visited because it initializes 'n'. 540 // Now the algorithm terminates, having visited blocks 7 and 8, and having 541 // found the frontier is blocks 2, 4, and 5. 542 // 543 // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2 544 // and 4), so we report that any time either of those edges is taken (in 545 // each case when 'b == false'), 'n' is used uninitialized. 546 SmallVector<const CFGBlock*, 32> Queue; 547 SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0); 548 Queue.push_back(block); 549 // Specify that we've already visited all successors of the starting block. 550 // This has the dual purpose of ensuring we never add it to the queue, and 551 // of marking it as not being a candidate element of the frontier. 552 SuccsVisited[block->getBlockID()] = block->succ_size(); 553 while (!Queue.empty()) { 554 const CFGBlock *B = Queue.pop_back_val(); 555 556 // If the use is always reached from the entry block, make a note of that. 557 if (B == &cfg.getEntry()) 558 Use.setUninitAfterCall(); 559 560 for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end(); 561 I != E; ++I) { 562 const CFGBlock *Pred = *I; 563 if (!Pred) 564 continue; 565 566 Value AtPredExit = vals.getValue(Pred, B, vd); 567 if (AtPredExit == Initialized) 568 // This block initializes the variable. 569 continue; 570 if (AtPredExit == MayUninitialized && 571 vals.getValue(B, nullptr, vd) == Uninitialized) { 572 // This block declares the variable (uninitialized), and is reachable 573 // from a block that initializes the variable. We can't guarantee to 574 // give an earlier location for the diagnostic (and it appears that 575 // this code is intended to be reachable) so give a diagnostic here 576 // and go no further down this path. 577 Use.setUninitAfterDecl(); 578 continue; 579 } 580 581 unsigned &SV = SuccsVisited[Pred->getBlockID()]; 582 if (!SV) { 583 // When visiting the first successor of a block, mark all NULL 584 // successors as having been visited. 585 for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(), 586 SE = Pred->succ_end(); 587 SI != SE; ++SI) 588 if (!*SI) 589 ++SV; 590 } 591 592 if (++SV == Pred->succ_size()) 593 // All paths from this block lead to the use and don't initialize the 594 // variable. 595 Queue.push_back(Pred); 596 } 597 } 598 599 // Scan the frontier, looking for blocks where the variable was 600 // uninitialized. 601 for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) { 602 const CFGBlock *Block = *BI; 603 unsigned BlockID = Block->getBlockID(); 604 const Stmt *Term = Block->getTerminator(); 605 if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() && 606 Term) { 607 // This block inevitably leads to the use. If we have an edge from here 608 // to a post-dominator block, and the variable is uninitialized on that 609 // edge, we have found a bug. 610 for (CFGBlock::const_succ_iterator I = Block->succ_begin(), 611 E = Block->succ_end(); I != E; ++I) { 612 const CFGBlock *Succ = *I; 613 if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() && 614 vals.getValue(Block, Succ, vd) == Uninitialized) { 615 // Switch cases are a special case: report the label to the caller 616 // as the 'terminator', not the switch statement itself. Suppress 617 // situations where no label matched: we can't be sure that's 618 // possible. 619 if (isa<SwitchStmt>(Term)) { 620 const Stmt *Label = Succ->getLabel(); 621 if (!Label || !isa<SwitchCase>(Label)) 622 // Might not be possible. 623 continue; 624 UninitUse::Branch Branch; 625 Branch.Terminator = Label; 626 Branch.Output = 0; // Ignored. 627 Use.addUninitBranch(Branch); 628 } else { 629 UninitUse::Branch Branch; 630 Branch.Terminator = Term; 631 Branch.Output = I - Block->succ_begin(); 632 Use.addUninitBranch(Branch); 633 } 634 } 635 } 636 } 637 } 638 639 return Use; 640 } 641 }; 642 } 643 644 void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) { 645 Value v = vals[vd]; 646 if (isUninitialized(v)) 647 handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v)); 648 } 649 650 void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) { 651 // This represents an initialization of the 'element' value. 652 if (DeclStmt *DS = dyn_cast<DeclStmt>(FS->getElement())) { 653 const VarDecl *VD = cast<VarDecl>(DS->getSingleDecl()); 654 if (isTrackedVar(VD)) 655 vals[VD] = Initialized; 656 } 657 } 658 659 void TransferFunctions::VisitBlockExpr(BlockExpr *be) { 660 const BlockDecl *bd = be->getBlockDecl(); 661 for (const auto &I : bd->captures()) { 662 const VarDecl *vd = I.getVariable(); 663 if (!isTrackedVar(vd)) 664 continue; 665 if (I.isByRef()) { 666 vals[vd] = Initialized; 667 continue; 668 } 669 reportUse(be, vd); 670 } 671 } 672 673 void TransferFunctions::VisitCallExpr(CallExpr *ce) { 674 if (Decl *Callee = ce->getCalleeDecl()) { 675 if (Callee->hasAttr<ReturnsTwiceAttr>()) { 676 // After a call to a function like setjmp or vfork, any variable which is 677 // initialized anywhere within this function may now be initialized. For 678 // now, just assume such a call initializes all variables. FIXME: Only 679 // mark variables as initialized if they have an initializer which is 680 // reachable from here. 681 vals.setAllScratchValues(Initialized); 682 } 683 else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) { 684 // Functions labeled like "analyzer_noreturn" are often used to denote 685 // "panic" functions that in special debug situations can still return, 686 // but for the most part should not be treated as returning. This is a 687 // useful annotation borrowed from the static analyzer that is useful for 688 // suppressing branch-specific false positives when we call one of these 689 // functions but keep pretending the path continues (when in reality the 690 // user doesn't care). 691 vals.setAllScratchValues(Unknown); 692 } 693 } 694 } 695 696 void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) { 697 switch (classification.get(dr)) { 698 case ClassifyRefs::Ignore: 699 break; 700 case ClassifyRefs::Use: 701 reportUse(dr, cast<VarDecl>(dr->getDecl())); 702 break; 703 case ClassifyRefs::Init: 704 vals[cast<VarDecl>(dr->getDecl())] = Initialized; 705 break; 706 case ClassifyRefs::SelfInit: 707 handler.handleSelfInit(cast<VarDecl>(dr->getDecl())); 708 break; 709 } 710 } 711 712 void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) { 713 if (BO->getOpcode() == BO_Assign) { 714 FindVarResult Var = findVar(BO->getLHS()); 715 if (const VarDecl *VD = Var.getDecl()) 716 vals[VD] = Initialized; 717 } 718 } 719 720 void TransferFunctions::VisitDeclStmt(DeclStmt *DS) { 721 for (auto *DI : DS->decls()) { 722 VarDecl *VD = dyn_cast<VarDecl>(DI); 723 if (VD && isTrackedVar(VD)) { 724 if (getSelfInitExpr(VD)) { 725 // If the initializer consists solely of a reference to itself, we 726 // explicitly mark the variable as uninitialized. This allows code 727 // like the following: 728 // 729 // int x = x; 730 // 731 // to deliberately leave a variable uninitialized. Different analysis 732 // clients can detect this pattern and adjust their reporting 733 // appropriately, but we need to continue to analyze subsequent uses 734 // of the variable. 735 vals[VD] = Uninitialized; 736 } else if (VD->getInit()) { 737 // Treat the new variable as initialized. 738 vals[VD] = Initialized; 739 } else { 740 // No initializer: the variable is now uninitialized. This matters 741 // for cases like: 742 // while (...) { 743 // int n; 744 // use(n); 745 // n = 0; 746 // } 747 // FIXME: Mark the variable as uninitialized whenever its scope is 748 // left, since its scope could be re-entered by a jump over the 749 // declaration. 750 vals[VD] = Uninitialized; 751 } 752 } 753 } 754 } 755 756 void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) { 757 // If the Objective-C message expression is an implicit no-return that 758 // is not modeled in the CFG, set the tracked dataflow values to Unknown. 759 if (objCNoRet.isImplicitNoReturn(ME)) { 760 vals.setAllScratchValues(Unknown); 761 } 762 } 763 764 //------------------------------------------------------------------------====// 765 // High-level "driver" logic for uninitialized values analysis. 766 //====------------------------------------------------------------------------// 767 768 static bool runOnBlock(const CFGBlock *block, const CFG &cfg, 769 AnalysisDeclContext &ac, CFGBlockValues &vals, 770 const ClassifyRefs &classification, 771 llvm::BitVector &wasAnalyzed, 772 UninitVariablesHandler &handler) { 773 wasAnalyzed[block->getBlockID()] = true; 774 vals.resetScratch(); 775 // Merge in values of predecessor blocks. 776 bool isFirst = true; 777 for (CFGBlock::const_pred_iterator I = block->pred_begin(), 778 E = block->pred_end(); I != E; ++I) { 779 const CFGBlock *pred = *I; 780 if (!pred) 781 continue; 782 if (wasAnalyzed[pred->getBlockID()]) { 783 vals.mergeIntoScratch(vals.getValueVector(pred), isFirst); 784 isFirst = false; 785 } 786 } 787 // Apply the transfer function. 788 TransferFunctions tf(vals, cfg, block, ac, classification, handler); 789 for (CFGBlock::const_iterator I = block->begin(), E = block->end(); 790 I != E; ++I) { 791 if (Optional<CFGStmt> cs = I->getAs<CFGStmt>()) 792 tf.Visit(const_cast<Stmt*>(cs->getStmt())); 793 } 794 return vals.updateValueVectorWithScratch(block); 795 } 796 797 /// PruneBlocksHandler is a special UninitVariablesHandler that is used 798 /// to detect when a CFGBlock has any *potential* use of an uninitialized 799 /// variable. It is mainly used to prune out work during the final 800 /// reporting pass. 801 namespace { 802 struct PruneBlocksHandler : public UninitVariablesHandler { 803 PruneBlocksHandler(unsigned numBlocks) 804 : hadUse(numBlocks, false), hadAnyUse(false), 805 currentBlock(0) {} 806 807 virtual ~PruneBlocksHandler() {} 808 809 /// Records if a CFGBlock had a potential use of an uninitialized variable. 810 llvm::BitVector hadUse; 811 812 /// Records if any CFGBlock had a potential use of an uninitialized variable. 813 bool hadAnyUse; 814 815 /// The current block to scribble use information. 816 unsigned currentBlock; 817 818 void handleUseOfUninitVariable(const VarDecl *vd, 819 const UninitUse &use) override { 820 hadUse[currentBlock] = true; 821 hadAnyUse = true; 822 } 823 824 /// Called when the uninitialized variable analysis detects the 825 /// idiom 'int x = x'. All other uses of 'x' within the initializer 826 /// are handled by handleUseOfUninitVariable. 827 void handleSelfInit(const VarDecl *vd) override { 828 hadUse[currentBlock] = true; 829 hadAnyUse = true; 830 } 831 }; 832 } 833 834 void clang::runUninitializedVariablesAnalysis( 835 const DeclContext &dc, 836 const CFG &cfg, 837 AnalysisDeclContext &ac, 838 UninitVariablesHandler &handler, 839 UninitVariablesAnalysisStats &stats) { 840 CFGBlockValues vals(cfg); 841 vals.computeSetOfDeclarations(dc); 842 if (vals.hasNoDeclarations()) 843 return; 844 845 stats.NumVariablesAnalyzed = vals.getNumEntries(); 846 847 // Precompute which expressions are uses and which are initializations. 848 ClassifyRefs classification(ac); 849 cfg.VisitBlockStmts(classification); 850 851 // Mark all variables uninitialized at the entry. 852 const CFGBlock &entry = cfg.getEntry(); 853 ValueVector &vec = vals.getValueVector(&entry); 854 const unsigned n = vals.getNumEntries(); 855 for (unsigned j = 0; j < n ; ++j) { 856 vec[j] = Uninitialized; 857 } 858 859 // Proceed with the workist. 860 DataflowWorklist worklist(cfg, *ac.getAnalysis<PostOrderCFGView>()); 861 llvm::BitVector previouslyVisited(cfg.getNumBlockIDs()); 862 worklist.enqueueSuccessors(&cfg.getEntry()); 863 llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false); 864 wasAnalyzed[cfg.getEntry().getBlockID()] = true; 865 PruneBlocksHandler PBH(cfg.getNumBlockIDs()); 866 867 while (const CFGBlock *block = worklist.dequeue()) { 868 PBH.currentBlock = block->getBlockID(); 869 870 // Did the block change? 871 bool changed = runOnBlock(block, cfg, ac, vals, 872 classification, wasAnalyzed, PBH); 873 ++stats.NumBlockVisits; 874 if (changed || !previouslyVisited[block->getBlockID()]) 875 worklist.enqueueSuccessors(block); 876 previouslyVisited[block->getBlockID()] = true; 877 } 878 879 if (!PBH.hadAnyUse) 880 return; 881 882 // Run through the blocks one more time, and report uninitialized variables. 883 for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) { 884 const CFGBlock *block = *BI; 885 if (PBH.hadUse[block->getBlockID()]) { 886 runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler); 887 ++stats.NumBlockVisits; 888 } 889 } 890 } 891 892 UninitVariablesHandler::~UninitVariablesHandler() {} 893