1 //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // A intra-procedural analysis for thread safety (e.g. deadlocks and race 11 // conditions), based off of an annotation system. 12 // 13 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html 14 // for more information. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/StmtCXX.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 24 #include "clang/Analysis/Analyses/ThreadSafety.h" 25 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 26 #include "clang/Analysis/Analyses/ThreadSafetyLogical.h" 27 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 28 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 29 #include "clang/Analysis/AnalysisContext.h" 30 #include "clang/Analysis/CFG.h" 31 #include "clang/Analysis/CFGStmtMap.h" 32 #include "clang/Basic/OperatorKinds.h" 33 #include "clang/Basic/SourceLocation.h" 34 #include "clang/Basic/SourceManager.h" 35 #include "llvm/ADT/BitVector.h" 36 #include "llvm/ADT/FoldingSet.h" 37 #include "llvm/ADT/ImmutableMap.h" 38 #include "llvm/ADT/PostOrderIterator.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/ADT/StringRef.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <algorithm> 43 #include <ostream> 44 #include <sstream> 45 #include <utility> 46 #include <vector> 47 48 49 namespace clang { 50 namespace threadSafety { 51 52 // Key method definition 53 ThreadSafetyHandler::~ThreadSafetyHandler() {} 54 55 class TILPrinter : 56 public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {}; 57 58 59 /// Issue a warning about an invalid lock expression 60 static void warnInvalidLock(ThreadSafetyHandler &Handler, 61 const Expr *MutexExp, const NamedDecl *D, 62 const Expr *DeclExp, StringRef Kind) { 63 SourceLocation Loc; 64 if (DeclExp) 65 Loc = DeclExp->getExprLoc(); 66 67 // FIXME: add a note about the attribute location in MutexExp or D 68 if (Loc.isValid()) 69 Handler.handleInvalidLockExp(Kind, Loc); 70 } 71 72 73 /// \brief A set of CapabilityInfo objects, which are compiled from the 74 /// requires attributes on a function. 75 class CapExprSet : public SmallVector<CapabilityExpr, 4> { 76 public: 77 /// \brief Push M onto list, but discard duplicates. 78 void push_back_nodup(const CapabilityExpr &CapE) { 79 iterator It = std::find_if(begin(), end(), 80 [=](const CapabilityExpr &CapE2) { 81 return CapE.equals(CapE2); 82 }); 83 if (It == end()) 84 push_back(CapE); 85 } 86 }; 87 88 class FactManager; 89 class FactSet; 90 91 /// \brief This is a helper class that stores a fact that is known at a 92 /// particular point in program execution. Currently, a fact is a capability, 93 /// along with additional information, such as where it was acquired, whether 94 /// it is exclusive or shared, etc. 95 /// 96 /// FIXME: this analysis does not currently support either re-entrant 97 /// locking or lock "upgrading" and "downgrading" between exclusive and 98 /// shared. 99 class FactEntry : public CapabilityExpr { 100 private: 101 LockKind LKind; ///< exclusive or shared 102 SourceLocation AcquireLoc; ///< where it was acquired. 103 bool Asserted; ///< true if the lock was asserted 104 105 public: 106 FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 107 bool Asrt) 108 : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt) {} 109 110 virtual ~FactEntry() {} 111 112 LockKind kind() const { return LKind; } 113 SourceLocation loc() const { return AcquireLoc; } 114 bool asserted() const { return Asserted; } 115 116 virtual void 117 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 118 SourceLocation JoinLoc, LockErrorKind LEK, 119 ThreadSafetyHandler &Handler) const = 0; 120 virtual void handleUnlock(FactSet &FSet, FactManager &FactMan, 121 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 122 bool FullyRemove, ThreadSafetyHandler &Handler, 123 StringRef DiagKind) const = 0; 124 125 // Return true if LKind >= LK, where exclusive > shared 126 bool isAtLeast(LockKind LK) { 127 return (LKind == LK_Exclusive) || (LK == LK_Shared); 128 } 129 }; 130 131 132 typedef unsigned short FactID; 133 134 /// \brief FactManager manages the memory for all facts that are created during 135 /// the analysis of a single routine. 136 class FactManager { 137 private: 138 std::vector<std::unique_ptr<FactEntry>> Facts; 139 140 public: 141 FactID newFact(std::unique_ptr<FactEntry> Entry) { 142 Facts.push_back(std::move(Entry)); 143 return static_cast<unsigned short>(Facts.size() - 1); 144 } 145 146 const FactEntry &operator[](FactID F) const { return *Facts[F]; } 147 FactEntry &operator[](FactID F) { return *Facts[F]; } 148 }; 149 150 151 /// \brief A FactSet is the set of facts that are known to be true at a 152 /// particular program point. FactSets must be small, because they are 153 /// frequently copied, and are thus implemented as a set of indices into a 154 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2 155 /// locks, so we can get away with doing a linear search for lookup. Note 156 /// that a hashtable or map is inappropriate in this case, because lookups 157 /// may involve partial pattern matches, rather than exact matches. 158 class FactSet { 159 private: 160 typedef SmallVector<FactID, 4> FactVec; 161 162 FactVec FactIDs; 163 164 public: 165 typedef FactVec::iterator iterator; 166 typedef FactVec::const_iterator const_iterator; 167 168 iterator begin() { return FactIDs.begin(); } 169 const_iterator begin() const { return FactIDs.begin(); } 170 171 iterator end() { return FactIDs.end(); } 172 const_iterator end() const { return FactIDs.end(); } 173 174 bool isEmpty() const { return FactIDs.size() == 0; } 175 176 // Return true if the set contains only negative facts 177 bool isEmpty(FactManager &FactMan) const { 178 for (FactID FID : *this) { 179 if (!FactMan[FID].negative()) 180 return false; 181 } 182 return true; 183 } 184 185 void addLockByID(FactID ID) { FactIDs.push_back(ID); } 186 187 FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) { 188 FactID F = FM.newFact(std::move(Entry)); 189 FactIDs.push_back(F); 190 return F; 191 } 192 193 bool removeLock(FactManager& FM, const CapabilityExpr &CapE) { 194 unsigned n = FactIDs.size(); 195 if (n == 0) 196 return false; 197 198 for (unsigned i = 0; i < n-1; ++i) { 199 if (FM[FactIDs[i]].matches(CapE)) { 200 FactIDs[i] = FactIDs[n-1]; 201 FactIDs.pop_back(); 202 return true; 203 } 204 } 205 if (FM[FactIDs[n-1]].matches(CapE)) { 206 FactIDs.pop_back(); 207 return true; 208 } 209 return false; 210 } 211 212 iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) { 213 return std::find_if(begin(), end(), [&](FactID ID) { 214 return FM[ID].matches(CapE); 215 }); 216 } 217 218 FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const { 219 auto I = std::find_if(begin(), end(), [&](FactID ID) { 220 return FM[ID].matches(CapE); 221 }); 222 return I != end() ? &FM[*I] : nullptr; 223 } 224 225 FactEntry *findLockUniv(FactManager &FM, const CapabilityExpr &CapE) const { 226 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 227 return FM[ID].matchesUniv(CapE); 228 }); 229 return I != end() ? &FM[*I] : nullptr; 230 } 231 232 FactEntry *findPartialMatch(FactManager &FM, 233 const CapabilityExpr &CapE) const { 234 auto I = std::find_if(begin(), end(), [&](FactID ID) { 235 return FM[ID].partiallyMatches(CapE); 236 }); 237 return I != end() ? &FM[*I] : nullptr; 238 } 239 }; 240 241 242 typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext; 243 class LocalVariableMap; 244 245 /// A side (entry or exit) of a CFG node. 246 enum CFGBlockSide { CBS_Entry, CBS_Exit }; 247 248 /// CFGBlockInfo is a struct which contains all the information that is 249 /// maintained for each block in the CFG. See LocalVariableMap for more 250 /// information about the contexts. 251 struct CFGBlockInfo { 252 FactSet EntrySet; // Lockset held at entry to block 253 FactSet ExitSet; // Lockset held at exit from block 254 LocalVarContext EntryContext; // Context held at entry to block 255 LocalVarContext ExitContext; // Context held at exit from block 256 SourceLocation EntryLoc; // Location of first statement in block 257 SourceLocation ExitLoc; // Location of last statement in block. 258 unsigned EntryIndex; // Used to replay contexts later 259 bool Reachable; // Is this block reachable? 260 261 const FactSet &getSet(CFGBlockSide Side) const { 262 return Side == CBS_Entry ? EntrySet : ExitSet; 263 } 264 SourceLocation getLocation(CFGBlockSide Side) const { 265 return Side == CBS_Entry ? EntryLoc : ExitLoc; 266 } 267 268 private: 269 CFGBlockInfo(LocalVarContext EmptyCtx) 270 : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false) 271 { } 272 273 public: 274 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); 275 }; 276 277 278 279 // A LocalVariableMap maintains a map from local variables to their currently 280 // valid definitions. It provides SSA-like functionality when traversing the 281 // CFG. Like SSA, each definition or assignment to a variable is assigned a 282 // unique name (an integer), which acts as the SSA name for that definition. 283 // The total set of names is shared among all CFG basic blocks. 284 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs 285 // with their SSA-names. Instead, we compute a Context for each point in the 286 // code, which maps local variables to the appropriate SSA-name. This map 287 // changes with each assignment. 288 // 289 // The map is computed in a single pass over the CFG. Subsequent analyses can 290 // then query the map to find the appropriate Context for a statement, and use 291 // that Context to look up the definitions of variables. 292 class LocalVariableMap { 293 public: 294 typedef LocalVarContext Context; 295 296 /// A VarDefinition consists of an expression, representing the value of the 297 /// variable, along with the context in which that expression should be 298 /// interpreted. A reference VarDefinition does not itself contain this 299 /// information, but instead contains a pointer to a previous VarDefinition. 300 struct VarDefinition { 301 public: 302 friend class LocalVariableMap; 303 304 const NamedDecl *Dec; // The original declaration for this variable. 305 const Expr *Exp; // The expression for this variable, OR 306 unsigned Ref; // Reference to another VarDefinition 307 Context Ctx; // The map with which Exp should be interpreted. 308 309 bool isReference() { return !Exp; } 310 311 private: 312 // Create ordinary variable definition 313 VarDefinition(const NamedDecl *D, const Expr *E, Context C) 314 : Dec(D), Exp(E), Ref(0), Ctx(C) 315 { } 316 317 // Create reference to previous definition 318 VarDefinition(const NamedDecl *D, unsigned R, Context C) 319 : Dec(D), Exp(nullptr), Ref(R), Ctx(C) 320 { } 321 }; 322 323 private: 324 Context::Factory ContextFactory; 325 std::vector<VarDefinition> VarDefinitions; 326 std::vector<unsigned> CtxIndices; 327 std::vector<std::pair<Stmt*, Context> > SavedContexts; 328 329 public: 330 LocalVariableMap() { 331 // index 0 is a placeholder for undefined variables (aka phi-nodes). 332 VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext())); 333 } 334 335 /// Look up a definition, within the given context. 336 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { 337 const unsigned *i = Ctx.lookup(D); 338 if (!i) 339 return nullptr; 340 assert(*i < VarDefinitions.size()); 341 return &VarDefinitions[*i]; 342 } 343 344 /// Look up the definition for D within the given context. Returns 345 /// NULL if the expression is not statically known. If successful, also 346 /// modifies Ctx to hold the context of the return Expr. 347 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { 348 const unsigned *P = Ctx.lookup(D); 349 if (!P) 350 return nullptr; 351 352 unsigned i = *P; 353 while (i > 0) { 354 if (VarDefinitions[i].Exp) { 355 Ctx = VarDefinitions[i].Ctx; 356 return VarDefinitions[i].Exp; 357 } 358 i = VarDefinitions[i].Ref; 359 } 360 return nullptr; 361 } 362 363 Context getEmptyContext() { return ContextFactory.getEmptyMap(); } 364 365 /// Return the next context after processing S. This function is used by 366 /// clients of the class to get the appropriate context when traversing the 367 /// CFG. It must be called for every assignment or DeclStmt. 368 Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) { 369 if (SavedContexts[CtxIndex+1].first == S) { 370 CtxIndex++; 371 Context Result = SavedContexts[CtxIndex].second; 372 return Result; 373 } 374 return C; 375 } 376 377 void dumpVarDefinitionName(unsigned i) { 378 if (i == 0) { 379 llvm::errs() << "Undefined"; 380 return; 381 } 382 const NamedDecl *Dec = VarDefinitions[i].Dec; 383 if (!Dec) { 384 llvm::errs() << "<<NULL>>"; 385 return; 386 } 387 Dec->printName(llvm::errs()); 388 llvm::errs() << "." << i << " " << ((const void*) Dec); 389 } 390 391 /// Dumps an ASCII representation of the variable map to llvm::errs() 392 void dump() { 393 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { 394 const Expr *Exp = VarDefinitions[i].Exp; 395 unsigned Ref = VarDefinitions[i].Ref; 396 397 dumpVarDefinitionName(i); 398 llvm::errs() << " = "; 399 if (Exp) Exp->dump(); 400 else { 401 dumpVarDefinitionName(Ref); 402 llvm::errs() << "\n"; 403 } 404 } 405 } 406 407 /// Dumps an ASCII representation of a Context to llvm::errs() 408 void dumpContext(Context C) { 409 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { 410 const NamedDecl *D = I.getKey(); 411 D->printName(llvm::errs()); 412 const unsigned *i = C.lookup(D); 413 llvm::errs() << " -> "; 414 dumpVarDefinitionName(*i); 415 llvm::errs() << "\n"; 416 } 417 } 418 419 /// Builds the variable map. 420 void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph, 421 std::vector<CFGBlockInfo> &BlockInfo); 422 423 protected: 424 // Get the current context index 425 unsigned getContextIndex() { return SavedContexts.size()-1; } 426 427 // Save the current context for later replay 428 void saveContext(Stmt *S, Context C) { 429 SavedContexts.push_back(std::make_pair(S,C)); 430 } 431 432 // Adds a new definition to the given context, and returns a new context. 433 // This method should be called when declaring a new variable. 434 Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) { 435 assert(!Ctx.contains(D)); 436 unsigned newID = VarDefinitions.size(); 437 Context NewCtx = ContextFactory.add(Ctx, D, newID); 438 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 439 return NewCtx; 440 } 441 442 // Add a new reference to an existing definition. 443 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { 444 unsigned newID = VarDefinitions.size(); 445 Context NewCtx = ContextFactory.add(Ctx, D, newID); 446 VarDefinitions.push_back(VarDefinition(D, i, Ctx)); 447 return NewCtx; 448 } 449 450 // Updates a definition only if that definition is already in the map. 451 // This method should be called when assigning to an existing variable. 452 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { 453 if (Ctx.contains(D)) { 454 unsigned newID = VarDefinitions.size(); 455 Context NewCtx = ContextFactory.remove(Ctx, D); 456 NewCtx = ContextFactory.add(NewCtx, D, newID); 457 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 458 return NewCtx; 459 } 460 return Ctx; 461 } 462 463 // Removes a definition from the context, but keeps the variable name 464 // as a valid variable. The index 0 is a placeholder for cleared definitions. 465 Context clearDefinition(const NamedDecl *D, Context Ctx) { 466 Context NewCtx = Ctx; 467 if (NewCtx.contains(D)) { 468 NewCtx = ContextFactory.remove(NewCtx, D); 469 NewCtx = ContextFactory.add(NewCtx, D, 0); 470 } 471 return NewCtx; 472 } 473 474 // Remove a definition entirely frmo the context. 475 Context removeDefinition(const NamedDecl *D, Context Ctx) { 476 Context NewCtx = Ctx; 477 if (NewCtx.contains(D)) { 478 NewCtx = ContextFactory.remove(NewCtx, D); 479 } 480 return NewCtx; 481 } 482 483 Context intersectContexts(Context C1, Context C2); 484 Context createReferenceContext(Context C); 485 void intersectBackEdge(Context C1, Context C2); 486 487 friend class VarMapBuilder; 488 }; 489 490 491 // This has to be defined after LocalVariableMap. 492 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { 493 return CFGBlockInfo(M.getEmptyContext()); 494 } 495 496 497 /// Visitor which builds a LocalVariableMap 498 class VarMapBuilder : public StmtVisitor<VarMapBuilder> { 499 public: 500 LocalVariableMap* VMap; 501 LocalVariableMap::Context Ctx; 502 503 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) 504 : VMap(VM), Ctx(C) {} 505 506 void VisitDeclStmt(DeclStmt *S); 507 void VisitBinaryOperator(BinaryOperator *BO); 508 }; 509 510 511 // Add new local variables to the variable map 512 void VarMapBuilder::VisitDeclStmt(DeclStmt *S) { 513 bool modifiedCtx = false; 514 DeclGroupRef DGrp = S->getDeclGroup(); 515 for (const auto *D : DGrp) { 516 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) { 517 const Expr *E = VD->getInit(); 518 519 // Add local variables with trivial type to the variable map 520 QualType T = VD->getType(); 521 if (T.isTrivialType(VD->getASTContext())) { 522 Ctx = VMap->addDefinition(VD, E, Ctx); 523 modifiedCtx = true; 524 } 525 } 526 } 527 if (modifiedCtx) 528 VMap->saveContext(S, Ctx); 529 } 530 531 // Update local variable definitions in variable map 532 void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) { 533 if (!BO->isAssignmentOp()) 534 return; 535 536 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); 537 538 // Update the variable map and current context. 539 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { 540 ValueDecl *VDec = DRE->getDecl(); 541 if (Ctx.lookup(VDec)) { 542 if (BO->getOpcode() == BO_Assign) 543 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); 544 else 545 // FIXME -- handle compound assignment operators 546 Ctx = VMap->clearDefinition(VDec, Ctx); 547 VMap->saveContext(BO, Ctx); 548 } 549 } 550 } 551 552 553 // Computes the intersection of two contexts. The intersection is the 554 // set of variables which have the same definition in both contexts; 555 // variables with different definitions are discarded. 556 LocalVariableMap::Context 557 LocalVariableMap::intersectContexts(Context C1, Context C2) { 558 Context Result = C1; 559 for (const auto &P : C1) { 560 const NamedDecl *Dec = P.first; 561 const unsigned *i2 = C2.lookup(Dec); 562 if (!i2) // variable doesn't exist on second path 563 Result = removeDefinition(Dec, Result); 564 else if (*i2 != P.second) // variable exists, but has different definition 565 Result = clearDefinition(Dec, Result); 566 } 567 return Result; 568 } 569 570 // For every variable in C, create a new variable that refers to the 571 // definition in C. Return a new context that contains these new variables. 572 // (We use this for a naive implementation of SSA on loop back-edges.) 573 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { 574 Context Result = getEmptyContext(); 575 for (const auto &P : C) 576 Result = addReference(P.first, P.second, Result); 577 return Result; 578 } 579 580 // This routine also takes the intersection of C1 and C2, but it does so by 581 // altering the VarDefinitions. C1 must be the result of an earlier call to 582 // createReferenceContext. 583 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { 584 for (const auto &P : C1) { 585 unsigned i1 = P.second; 586 VarDefinition *VDef = &VarDefinitions[i1]; 587 assert(VDef->isReference()); 588 589 const unsigned *i2 = C2.lookup(P.first); 590 if (!i2 || (*i2 != i1)) 591 VDef->Ref = 0; // Mark this variable as undefined 592 } 593 } 594 595 596 // Traverse the CFG in topological order, so all predecessors of a block 597 // (excluding back-edges) are visited before the block itself. At 598 // each point in the code, we calculate a Context, which holds the set of 599 // variable definitions which are visible at that point in execution. 600 // Visible variables are mapped to their definitions using an array that 601 // contains all definitions. 602 // 603 // At join points in the CFG, the set is computed as the intersection of 604 // the incoming sets along each edge, E.g. 605 // 606 // { Context | VarDefinitions } 607 // int x = 0; { x -> x1 | x1 = 0 } 608 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 609 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } 610 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } 611 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } 612 // 613 // This is essentially a simpler and more naive version of the standard SSA 614 // algorithm. Those definitions that remain in the intersection are from blocks 615 // that strictly dominate the current block. We do not bother to insert proper 616 // phi nodes, because they are not used in our analysis; instead, wherever 617 // a phi node would be required, we simply remove that definition from the 618 // context (E.g. x above). 619 // 620 // The initial traversal does not capture back-edges, so those need to be 621 // handled on a separate pass. Whenever the first pass encounters an 622 // incoming back edge, it duplicates the context, creating new definitions 623 // that refer back to the originals. (These correspond to places where SSA 624 // might have to insert a phi node.) On the second pass, these definitions are 625 // set to NULL if the variable has changed on the back-edge (i.e. a phi 626 // node was actually required.) E.g. 627 // 628 // { Context | VarDefinitions } 629 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 630 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } 631 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } 632 // ... { y -> y1 | x3 = 2, x2 = 1, ... } 633 // 634 void LocalVariableMap::traverseCFG(CFG *CFGraph, 635 const PostOrderCFGView *SortedGraph, 636 std::vector<CFGBlockInfo> &BlockInfo) { 637 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 638 639 CtxIndices.resize(CFGraph->getNumBlockIDs()); 640 641 for (const auto *CurrBlock : *SortedGraph) { 642 int CurrBlockID = CurrBlock->getBlockID(); 643 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 644 645 VisitedBlocks.insert(CurrBlock); 646 647 // Calculate the entry context for the current block 648 bool HasBackEdges = false; 649 bool CtxInit = true; 650 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 651 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 652 // if *PI -> CurrBlock is a back edge, so skip it 653 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) { 654 HasBackEdges = true; 655 continue; 656 } 657 658 int PrevBlockID = (*PI)->getBlockID(); 659 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 660 661 if (CtxInit) { 662 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; 663 CtxInit = false; 664 } 665 else { 666 CurrBlockInfo->EntryContext = 667 intersectContexts(CurrBlockInfo->EntryContext, 668 PrevBlockInfo->ExitContext); 669 } 670 } 671 672 // Duplicate the context if we have back-edges, so we can call 673 // intersectBackEdges later. 674 if (HasBackEdges) 675 CurrBlockInfo->EntryContext = 676 createReferenceContext(CurrBlockInfo->EntryContext); 677 678 // Create a starting context index for the current block 679 saveContext(nullptr, CurrBlockInfo->EntryContext); 680 CurrBlockInfo->EntryIndex = getContextIndex(); 681 682 // Visit all the statements in the basic block. 683 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); 684 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 685 BE = CurrBlock->end(); BI != BE; ++BI) { 686 switch (BI->getKind()) { 687 case CFGElement::Statement: { 688 CFGStmt CS = BI->castAs<CFGStmt>(); 689 VMapBuilder.Visit(const_cast<Stmt*>(CS.getStmt())); 690 break; 691 } 692 default: 693 break; 694 } 695 } 696 CurrBlockInfo->ExitContext = VMapBuilder.Ctx; 697 698 // Mark variables on back edges as "unknown" if they've been changed. 699 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 700 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 701 // if CurrBlock -> *SI is *not* a back edge 702 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 703 continue; 704 705 CFGBlock *FirstLoopBlock = *SI; 706 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; 707 Context LoopEnd = CurrBlockInfo->ExitContext; 708 intersectBackEdge(LoopBegin, LoopEnd); 709 } 710 } 711 712 // Put an extra entry at the end of the indexed context array 713 unsigned exitID = CFGraph->getExit().getBlockID(); 714 saveContext(nullptr, BlockInfo[exitID].ExitContext); 715 } 716 717 /// Find the appropriate source locations to use when producing diagnostics for 718 /// each block in the CFG. 719 static void findBlockLocations(CFG *CFGraph, 720 const PostOrderCFGView *SortedGraph, 721 std::vector<CFGBlockInfo> &BlockInfo) { 722 for (const auto *CurrBlock : *SortedGraph) { 723 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; 724 725 // Find the source location of the last statement in the block, if the 726 // block is not empty. 727 if (const Stmt *S = CurrBlock->getTerminator()) { 728 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart(); 729 } else { 730 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), 731 BE = CurrBlock->rend(); BI != BE; ++BI) { 732 // FIXME: Handle other CFGElement kinds. 733 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 734 CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart(); 735 break; 736 } 737 } 738 } 739 740 if (!CurrBlockInfo->ExitLoc.isInvalid()) { 741 // This block contains at least one statement. Find the source location 742 // of the first statement in the block. 743 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 744 BE = CurrBlock->end(); BI != BE; ++BI) { 745 // FIXME: Handle other CFGElement kinds. 746 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 747 CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart(); 748 break; 749 } 750 } 751 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && 752 CurrBlock != &CFGraph->getExit()) { 753 // The block is empty, and has a single predecessor. Use its exit 754 // location. 755 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 756 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; 757 } 758 } 759 } 760 761 class LockableFactEntry : public FactEntry { 762 private: 763 bool Managed; ///< managed by ScopedLockable object 764 765 public: 766 LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 767 bool Mng = false, bool Asrt = false) 768 : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {} 769 770 void 771 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 772 SourceLocation JoinLoc, LockErrorKind LEK, 773 ThreadSafetyHandler &Handler) const override { 774 if (!Managed && !asserted() && !negative() && !isUniversal()) { 775 Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc, 776 LEK); 777 } 778 } 779 780 void handleUnlock(FactSet &FSet, FactManager &FactMan, 781 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 782 bool FullyRemove, ThreadSafetyHandler &Handler, 783 StringRef DiagKind) const override { 784 FSet.removeLock(FactMan, Cp); 785 if (!Cp.negative()) { 786 FSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( 787 !Cp, LK_Exclusive, UnlockLoc)); 788 } 789 } 790 }; 791 792 class ScopedLockableFactEntry : public FactEntry { 793 private: 794 SmallVector<const til::SExpr *, 4> UnderlyingMutexes; 795 796 public: 797 ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc, 798 const CapExprSet &Excl, const CapExprSet &Shrd) 799 : FactEntry(CE, LK_Exclusive, Loc, false) { 800 for (const auto &M : Excl) 801 UnderlyingMutexes.push_back(M.sexpr()); 802 for (const auto &M : Shrd) 803 UnderlyingMutexes.push_back(M.sexpr()); 804 } 805 806 void 807 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 808 SourceLocation JoinLoc, LockErrorKind LEK, 809 ThreadSafetyHandler &Handler) const override { 810 for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) { 811 if (FSet.findLock(FactMan, CapabilityExpr(UnderlyingMutex, false))) { 812 // If this scoped lock manages another mutex, and if the underlying 813 // mutex is still held, then warn about the underlying mutex. 814 Handler.handleMutexHeldEndOfScope( 815 "mutex", sx::toString(UnderlyingMutex), loc(), JoinLoc, LEK); 816 } 817 } 818 } 819 820 void handleUnlock(FactSet &FSet, FactManager &FactMan, 821 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 822 bool FullyRemove, ThreadSafetyHandler &Handler, 823 StringRef DiagKind) const override { 824 assert(!Cp.negative() && "Managing object cannot be negative."); 825 for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) { 826 CapabilityExpr UnderCp(UnderlyingMutex, false); 827 auto UnderEntry = llvm::make_unique<LockableFactEntry>( 828 !UnderCp, LK_Exclusive, UnlockLoc); 829 830 if (FullyRemove) { 831 // We're destroying the managing object. 832 // Remove the underlying mutex if it exists; but don't warn. 833 if (FSet.findLock(FactMan, UnderCp)) { 834 FSet.removeLock(FactMan, UnderCp); 835 FSet.addLock(FactMan, std::move(UnderEntry)); 836 } 837 } else { 838 // We're releasing the underlying mutex, but not destroying the 839 // managing object. Warn on dual release. 840 if (!FSet.findLock(FactMan, UnderCp)) { 841 Handler.handleUnmatchedUnlock(DiagKind, UnderCp.toString(), 842 UnlockLoc); 843 } 844 FSet.removeLock(FactMan, UnderCp); 845 FSet.addLock(FactMan, std::move(UnderEntry)); 846 } 847 } 848 if (FullyRemove) 849 FSet.removeLock(FactMan, Cp); 850 } 851 }; 852 853 /// \brief Class which implements the core thread safety analysis routines. 854 class ThreadSafetyAnalyzer { 855 friend class BuildLockset; 856 857 llvm::BumpPtrAllocator Bpa; 858 threadSafety::til::MemRegionRef Arena; 859 threadSafety::SExprBuilder SxBuilder; 860 861 ThreadSafetyHandler &Handler; 862 const CXXMethodDecl *CurrentMethod; 863 LocalVariableMap LocalVarMap; 864 FactManager FactMan; 865 std::vector<CFGBlockInfo> BlockInfo; 866 867 public: 868 ThreadSafetyAnalyzer(ThreadSafetyHandler &H) 869 : Arena(&Bpa), SxBuilder(Arena), Handler(H) {} 870 871 bool inCurrentScope(const CapabilityExpr &CapE); 872 873 void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry, 874 StringRef DiagKind, bool ReqAttr = false); 875 void removeLock(FactSet &FSet, const CapabilityExpr &CapE, 876 SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind, 877 StringRef DiagKind); 878 879 template <typename AttrType> 880 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp, 881 const NamedDecl *D, VarDecl *SelfDecl = nullptr); 882 883 template <class AttrType> 884 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp, 885 const NamedDecl *D, 886 const CFGBlock *PredBlock, const CFGBlock *CurrBlock, 887 Expr *BrE, bool Neg); 888 889 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, 890 bool &Negate); 891 892 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, 893 const CFGBlock* PredBlock, 894 const CFGBlock *CurrBlock); 895 896 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, 897 SourceLocation JoinLoc, 898 LockErrorKind LEK1, LockErrorKind LEK2, 899 bool Modify=true); 900 901 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, 902 SourceLocation JoinLoc, LockErrorKind LEK1, 903 bool Modify=true) { 904 intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify); 905 } 906 907 void runAnalysis(AnalysisDeclContext &AC); 908 }; 909 910 /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs. 911 static const ValueDecl *getValueDecl(const Expr *Exp) { 912 if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp)) 913 return getValueDecl(CE->getSubExpr()); 914 915 if (const auto *DR = dyn_cast<DeclRefExpr>(Exp)) 916 return DR->getDecl(); 917 918 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) 919 return ME->getMemberDecl(); 920 921 return nullptr; 922 } 923 924 template <typename Ty> 925 class has_arg_iterator_range { 926 typedef char yes[1]; 927 typedef char no[2]; 928 929 template <typename Inner> 930 static yes& test(Inner *I, decltype(I->args()) * = nullptr); 931 932 template <typename> 933 static no& test(...); 934 935 public: 936 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); 937 }; 938 939 static StringRef ClassifyDiagnostic(const CapabilityAttr *A) { 940 return A->getName(); 941 } 942 943 static StringRef ClassifyDiagnostic(QualType VDT) { 944 // We need to look at the declaration of the type of the value to determine 945 // which it is. The type should either be a record or a typedef, or a pointer 946 // or reference thereof. 947 if (const auto *RT = VDT->getAs<RecordType>()) { 948 if (const auto *RD = RT->getDecl()) 949 if (const auto *CA = RD->getAttr<CapabilityAttr>()) 950 return ClassifyDiagnostic(CA); 951 } else if (const auto *TT = VDT->getAs<TypedefType>()) { 952 if (const auto *TD = TT->getDecl()) 953 if (const auto *CA = TD->getAttr<CapabilityAttr>()) 954 return ClassifyDiagnostic(CA); 955 } else if (VDT->isPointerType() || VDT->isReferenceType()) 956 return ClassifyDiagnostic(VDT->getPointeeType()); 957 958 return "mutex"; 959 } 960 961 static StringRef ClassifyDiagnostic(const ValueDecl *VD) { 962 assert(VD && "No ValueDecl passed"); 963 964 // The ValueDecl is the declaration of a mutex or role (hopefully). 965 return ClassifyDiagnostic(VD->getType()); 966 } 967 968 template <typename AttrTy> 969 static typename std::enable_if<!has_arg_iterator_range<AttrTy>::value, 970 StringRef>::type 971 ClassifyDiagnostic(const AttrTy *A) { 972 if (const ValueDecl *VD = getValueDecl(A->getArg())) 973 return ClassifyDiagnostic(VD); 974 return "mutex"; 975 } 976 977 template <typename AttrTy> 978 static typename std::enable_if<has_arg_iterator_range<AttrTy>::value, 979 StringRef>::type 980 ClassifyDiagnostic(const AttrTy *A) { 981 for (const auto *Arg : A->args()) { 982 if (const ValueDecl *VD = getValueDecl(Arg)) 983 return ClassifyDiagnostic(VD); 984 } 985 return "mutex"; 986 } 987 988 989 inline bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) { 990 if (!CurrentMethod) 991 return false; 992 if (auto *P = dyn_cast_or_null<til::Project>(CapE.sexpr())) { 993 auto *VD = P->clangDecl(); 994 if (VD) 995 return VD->getDeclContext() == CurrentMethod->getDeclContext(); 996 } 997 return false; 998 } 999 1000 1001 /// \brief Add a new lock to the lockset, warning if the lock is already there. 1002 /// \param ReqAttr -- true if this is part of an initial Requires attribute. 1003 void ThreadSafetyAnalyzer::addLock(FactSet &FSet, 1004 std::unique_ptr<FactEntry> Entry, 1005 StringRef DiagKind, bool ReqAttr) { 1006 if (Entry->shouldIgnore()) 1007 return; 1008 1009 if (!ReqAttr && !Entry->negative()) { 1010 // look for the negative capability, and remove it from the fact set. 1011 CapabilityExpr NegC = !*Entry; 1012 FactEntry *Nen = FSet.findLock(FactMan, NegC); 1013 if (Nen) { 1014 FSet.removeLock(FactMan, NegC); 1015 } 1016 else { 1017 if (inCurrentScope(*Entry) && !Entry->asserted()) 1018 Handler.handleNegativeNotHeld(DiagKind, Entry->toString(), 1019 NegC.toString(), Entry->loc()); 1020 } 1021 } 1022 1023 // FIXME: deal with acquired before/after annotations. 1024 // FIXME: Don't always warn when we have support for reentrant locks. 1025 if (FSet.findLock(FactMan, *Entry)) { 1026 if (!Entry->asserted()) 1027 Handler.handleDoubleLock(DiagKind, Entry->toString(), Entry->loc()); 1028 } else { 1029 FSet.addLock(FactMan, std::move(Entry)); 1030 } 1031 } 1032 1033 1034 /// \brief Remove a lock from the lockset, warning if the lock is not there. 1035 /// \param UnlockLoc The source location of the unlock (only used in error msg) 1036 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp, 1037 SourceLocation UnlockLoc, 1038 bool FullyRemove, LockKind ReceivedKind, 1039 StringRef DiagKind) { 1040 if (Cp.shouldIgnore()) 1041 return; 1042 1043 const FactEntry *LDat = FSet.findLock(FactMan, Cp); 1044 if (!LDat) { 1045 Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc); 1046 return; 1047 } 1048 1049 // Generic lock removal doesn't care about lock kind mismatches, but 1050 // otherwise diagnose when the lock kinds are mismatched. 1051 if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) { 1052 Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(), 1053 LDat->kind(), ReceivedKind, UnlockLoc); 1054 } 1055 1056 LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler, 1057 DiagKind); 1058 } 1059 1060 1061 /// \brief Extract the list of mutexIDs from the attribute on an expression, 1062 /// and push them onto Mtxs, discarding any duplicates. 1063 template <typename AttrType> 1064 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1065 Expr *Exp, const NamedDecl *D, 1066 VarDecl *SelfDecl) { 1067 if (Attr->args_size() == 0) { 1068 // The mutex held is the "this" object. 1069 CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl); 1070 if (Cp.isInvalid()) { 1071 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); 1072 return; 1073 } 1074 //else 1075 if (!Cp.shouldIgnore()) 1076 Mtxs.push_back_nodup(Cp); 1077 return; 1078 } 1079 1080 for (const auto *Arg : Attr->args()) { 1081 CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl); 1082 if (Cp.isInvalid()) { 1083 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); 1084 continue; 1085 } 1086 //else 1087 if (!Cp.shouldIgnore()) 1088 Mtxs.push_back_nodup(Cp); 1089 } 1090 } 1091 1092 1093 /// \brief Extract the list of mutexIDs from a trylock attribute. If the 1094 /// trylock applies to the given edge, then push them onto Mtxs, discarding 1095 /// any duplicates. 1096 template <class AttrType> 1097 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1098 Expr *Exp, const NamedDecl *D, 1099 const CFGBlock *PredBlock, 1100 const CFGBlock *CurrBlock, 1101 Expr *BrE, bool Neg) { 1102 // Find out which branch has the lock 1103 bool branch = false; 1104 if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) 1105 branch = BLE->getValue(); 1106 else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) 1107 branch = ILE->getValue().getBoolValue(); 1108 1109 int branchnum = branch ? 0 : 1; 1110 if (Neg) 1111 branchnum = !branchnum; 1112 1113 // If we've taken the trylock branch, then add the lock 1114 int i = 0; 1115 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), 1116 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { 1117 if (*SI == CurrBlock && i == branchnum) 1118 getMutexIDs(Mtxs, Attr, Exp, D); 1119 } 1120 } 1121 1122 1123 bool getStaticBooleanValue(Expr* E, bool& TCond) { 1124 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) { 1125 TCond = false; 1126 return true; 1127 } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) { 1128 TCond = BLE->getValue(); 1129 return true; 1130 } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) { 1131 TCond = ILE->getValue().getBoolValue(); 1132 return true; 1133 } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) { 1134 return getStaticBooleanValue(CE->getSubExpr(), TCond); 1135 } 1136 return false; 1137 } 1138 1139 1140 // If Cond can be traced back to a function call, return the call expression. 1141 // The negate variable should be called with false, and will be set to true 1142 // if the function call is negated, e.g. if (!mu.tryLock(...)) 1143 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, 1144 LocalVarContext C, 1145 bool &Negate) { 1146 if (!Cond) 1147 return nullptr; 1148 1149 if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) { 1150 return CallExp; 1151 } 1152 else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) { 1153 return getTrylockCallExpr(PE->getSubExpr(), C, Negate); 1154 } 1155 else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) { 1156 return getTrylockCallExpr(CE->getSubExpr(), C, Negate); 1157 } 1158 else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) { 1159 return getTrylockCallExpr(EWC->getSubExpr(), C, Negate); 1160 } 1161 else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) { 1162 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); 1163 return getTrylockCallExpr(E, C, Negate); 1164 } 1165 else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) { 1166 if (UOP->getOpcode() == UO_LNot) { 1167 Negate = !Negate; 1168 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); 1169 } 1170 return nullptr; 1171 } 1172 else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) { 1173 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { 1174 if (BOP->getOpcode() == BO_NE) 1175 Negate = !Negate; 1176 1177 bool TCond = false; 1178 if (getStaticBooleanValue(BOP->getRHS(), TCond)) { 1179 if (!TCond) Negate = !Negate; 1180 return getTrylockCallExpr(BOP->getLHS(), C, Negate); 1181 } 1182 TCond = false; 1183 if (getStaticBooleanValue(BOP->getLHS(), TCond)) { 1184 if (!TCond) Negate = !Negate; 1185 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1186 } 1187 return nullptr; 1188 } 1189 if (BOP->getOpcode() == BO_LAnd) { 1190 // LHS must have been evaluated in a different block. 1191 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1192 } 1193 if (BOP->getOpcode() == BO_LOr) { 1194 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1195 } 1196 return nullptr; 1197 } 1198 return nullptr; 1199 } 1200 1201 1202 /// \brief Find the lockset that holds on the edge between PredBlock 1203 /// and CurrBlock. The edge set is the exit set of PredBlock (passed 1204 /// as the ExitSet parameter) plus any trylocks, which are conditionally held. 1205 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, 1206 const FactSet &ExitSet, 1207 const CFGBlock *PredBlock, 1208 const CFGBlock *CurrBlock) { 1209 Result = ExitSet; 1210 1211 const Stmt *Cond = PredBlock->getTerminatorCondition(); 1212 if (!Cond) 1213 return; 1214 1215 bool Negate = false; 1216 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; 1217 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; 1218 StringRef CapDiagKind = "mutex"; 1219 1220 CallExpr *Exp = 1221 const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate)); 1222 if (!Exp) 1223 return; 1224 1225 NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 1226 if(!FunDecl || !FunDecl->hasAttrs()) 1227 return; 1228 1229 CapExprSet ExclusiveLocksToAdd; 1230 CapExprSet SharedLocksToAdd; 1231 1232 // If the condition is a call to a Trylock function, then grab the attributes 1233 for (auto *Attr : FunDecl->getAttrs()) { 1234 switch (Attr->getKind()) { 1235 case attr::ExclusiveTrylockFunction: { 1236 ExclusiveTrylockFunctionAttr *A = 1237 cast<ExclusiveTrylockFunctionAttr>(Attr); 1238 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, 1239 PredBlock, CurrBlock, A->getSuccessValue(), Negate); 1240 CapDiagKind = ClassifyDiagnostic(A); 1241 break; 1242 } 1243 case attr::SharedTrylockFunction: { 1244 SharedTrylockFunctionAttr *A = 1245 cast<SharedTrylockFunctionAttr>(Attr); 1246 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, 1247 PredBlock, CurrBlock, A->getSuccessValue(), Negate); 1248 CapDiagKind = ClassifyDiagnostic(A); 1249 break; 1250 } 1251 default: 1252 break; 1253 } 1254 } 1255 1256 // Add and remove locks. 1257 SourceLocation Loc = Exp->getExprLoc(); 1258 for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd) 1259 addLock(Result, llvm::make_unique<LockableFactEntry>(ExclusiveLockToAdd, 1260 LK_Exclusive, Loc), 1261 CapDiagKind); 1262 for (const auto &SharedLockToAdd : SharedLocksToAdd) 1263 addLock(Result, llvm::make_unique<LockableFactEntry>(SharedLockToAdd, 1264 LK_Shared, Loc), 1265 CapDiagKind); 1266 } 1267 1268 /// \brief We use this class to visit different types of expressions in 1269 /// CFGBlocks, and build up the lockset. 1270 /// An expression may cause us to add or remove locks from the lockset, or else 1271 /// output error messages related to missing locks. 1272 /// FIXME: In future, we may be able to not inherit from a visitor. 1273 class BuildLockset : public StmtVisitor<BuildLockset> { 1274 friend class ThreadSafetyAnalyzer; 1275 1276 ThreadSafetyAnalyzer *Analyzer; 1277 FactSet FSet; 1278 LocalVariableMap::Context LVarCtx; 1279 unsigned CtxIndex; 1280 1281 // helper functions 1282 void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK, 1283 Expr *MutexExp, ProtectedOperationKind POK, 1284 StringRef DiagKind, SourceLocation Loc); 1285 void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp, 1286 StringRef DiagKind); 1287 1288 void checkAccess(const Expr *Exp, AccessKind AK, 1289 ProtectedOperationKind POK = POK_VarAccess); 1290 void checkPtAccess(const Expr *Exp, AccessKind AK, 1291 ProtectedOperationKind POK = POK_VarAccess); 1292 1293 void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr); 1294 1295 public: 1296 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info) 1297 : StmtVisitor<BuildLockset>(), 1298 Analyzer(Anlzr), 1299 FSet(Info.EntrySet), 1300 LVarCtx(Info.EntryContext), 1301 CtxIndex(Info.EntryIndex) 1302 {} 1303 1304 void VisitUnaryOperator(UnaryOperator *UO); 1305 void VisitBinaryOperator(BinaryOperator *BO); 1306 void VisitCastExpr(CastExpr *CE); 1307 void VisitCallExpr(CallExpr *Exp); 1308 void VisitCXXConstructExpr(CXXConstructExpr *Exp); 1309 void VisitDeclStmt(DeclStmt *S); 1310 }; 1311 1312 1313 /// \brief Warn if the LSet does not contain a lock sufficient to protect access 1314 /// of at least the passed in AccessKind. 1315 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, 1316 AccessKind AK, Expr *MutexExp, 1317 ProtectedOperationKind POK, 1318 StringRef DiagKind, SourceLocation Loc) { 1319 LockKind LK = getLockKindFromAccessKind(AK); 1320 1321 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); 1322 if (Cp.isInvalid()) { 1323 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); 1324 return; 1325 } else if (Cp.shouldIgnore()) { 1326 return; 1327 } 1328 1329 if (Cp.negative()) { 1330 // Negative capabilities act like locks excluded 1331 FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp); 1332 if (LDat) { 1333 Analyzer->Handler.handleFunExcludesLock( 1334 DiagKind, D->getNameAsString(), (!Cp).toString(), Loc); 1335 return; 1336 } 1337 1338 // If this does not refer to a negative capability in the same class, 1339 // then stop here. 1340 if (!Analyzer->inCurrentScope(Cp)) 1341 return; 1342 1343 // Otherwise the negative requirement must be propagated to the caller. 1344 LDat = FSet.findLock(Analyzer->FactMan, Cp); 1345 if (!LDat) { 1346 Analyzer->Handler.handleMutexNotHeld("", D, POK, Cp.toString(), 1347 LK_Shared, Loc); 1348 } 1349 return; 1350 } 1351 1352 FactEntry* LDat = FSet.findLockUniv(Analyzer->FactMan, Cp); 1353 bool NoError = true; 1354 if (!LDat) { 1355 // No exact match found. Look for a partial match. 1356 LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp); 1357 if (LDat) { 1358 // Warn that there's no precise match. 1359 std::string PartMatchStr = LDat->toString(); 1360 StringRef PartMatchName(PartMatchStr); 1361 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1362 LK, Loc, &PartMatchName); 1363 } else { 1364 // Warn that there's no match at all. 1365 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1366 LK, Loc); 1367 } 1368 NoError = false; 1369 } 1370 // Make sure the mutex we found is the right kind. 1371 if (NoError && LDat && !LDat->isAtLeast(LK)) { 1372 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1373 LK, Loc); 1374 } 1375 } 1376 1377 /// \brief Warn if the LSet contains the given lock. 1378 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, 1379 Expr *MutexExp, StringRef DiagKind) { 1380 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); 1381 if (Cp.isInvalid()) { 1382 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); 1383 return; 1384 } else if (Cp.shouldIgnore()) { 1385 return; 1386 } 1387 1388 FactEntry* LDat = FSet.findLock(Analyzer->FactMan, Cp); 1389 if (LDat) { 1390 Analyzer->Handler.handleFunExcludesLock( 1391 DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc()); 1392 } 1393 } 1394 1395 /// \brief Checks guarded_by and pt_guarded_by attributes. 1396 /// Whenever we identify an access (read or write) to a DeclRefExpr that is 1397 /// marked with guarded_by, we must ensure the appropriate mutexes are held. 1398 /// Similarly, we check if the access is to an expression that dereferences 1399 /// a pointer marked with pt_guarded_by. 1400 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK, 1401 ProtectedOperationKind POK) { 1402 Exp = Exp->IgnoreParenCasts(); 1403 1404 SourceLocation Loc = Exp->getExprLoc(); 1405 1406 // Local variables of reference type cannot be re-assigned; 1407 // map them to their initializer. 1408 while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) { 1409 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl()); 1410 if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) { 1411 if (const auto *E = VD->getInit()) { 1412 Exp = E; 1413 continue; 1414 } 1415 } 1416 break; 1417 } 1418 1419 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) { 1420 // For dereferences 1421 if (UO->getOpcode() == clang::UO_Deref) 1422 checkPtAccess(UO->getSubExpr(), AK, POK); 1423 return; 1424 } 1425 1426 if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(Exp)) { 1427 checkPtAccess(AE->getLHS(), AK, POK); 1428 return; 1429 } 1430 1431 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) { 1432 if (ME->isArrow()) 1433 checkPtAccess(ME->getBase(), AK, POK); 1434 else 1435 checkAccess(ME->getBase(), AK, POK); 1436 } 1437 1438 const ValueDecl *D = getValueDecl(Exp); 1439 if (!D || !D->hasAttrs()) 1440 return; 1441 1442 if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) { 1443 Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc); 1444 } 1445 1446 for (const auto *I : D->specific_attrs<GuardedByAttr>()) 1447 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK, 1448 ClassifyDiagnostic(I), Loc); 1449 } 1450 1451 1452 /// \brief Checks pt_guarded_by and pt_guarded_var attributes. 1453 /// POK is the same operationKind that was passed to checkAccess. 1454 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK, 1455 ProtectedOperationKind POK) { 1456 while (true) { 1457 if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) { 1458 Exp = PE->getSubExpr(); 1459 continue; 1460 } 1461 if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) { 1462 if (CE->getCastKind() == CK_ArrayToPointerDecay) { 1463 // If it's an actual array, and not a pointer, then it's elements 1464 // are protected by GUARDED_BY, not PT_GUARDED_BY; 1465 checkAccess(CE->getSubExpr(), AK, POK); 1466 return; 1467 } 1468 Exp = CE->getSubExpr(); 1469 continue; 1470 } 1471 break; 1472 } 1473 1474 // Pass by reference warnings are under a different flag. 1475 ProtectedOperationKind PtPOK = POK_VarDereference; 1476 if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef; 1477 1478 const ValueDecl *D = getValueDecl(Exp); 1479 if (!D || !D->hasAttrs()) 1480 return; 1481 1482 if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) 1483 Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK, 1484 Exp->getExprLoc()); 1485 1486 for (auto const *I : D->specific_attrs<PtGuardedByAttr>()) 1487 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK, 1488 ClassifyDiagnostic(I), Exp->getExprLoc()); 1489 } 1490 1491 /// \brief Process a function call, method call, constructor call, 1492 /// or destructor call. This involves looking at the attributes on the 1493 /// corresponding function/method/constructor/destructor, issuing warnings, 1494 /// and updating the locksets accordingly. 1495 /// 1496 /// FIXME: For classes annotated with one of the guarded annotations, we need 1497 /// to treat const method calls as reads and non-const method calls as writes, 1498 /// and check that the appropriate locks are held. Non-const method calls with 1499 /// the same signature as const method calls can be also treated as reads. 1500 /// 1501 void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) { 1502 SourceLocation Loc = Exp->getExprLoc(); 1503 const AttrVec &ArgAttrs = D->getAttrs(); 1504 CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd; 1505 CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove; 1506 StringRef CapDiagKind = "mutex"; 1507 1508 for(unsigned i = 0; i < ArgAttrs.size(); ++i) { 1509 Attr *At = const_cast<Attr*>(ArgAttrs[i]); 1510 switch (At->getKind()) { 1511 // When we encounter a lock function, we need to add the lock to our 1512 // lockset. 1513 case attr::AcquireCapability: { 1514 auto *A = cast<AcquireCapabilityAttr>(At); 1515 Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd 1516 : ExclusiveLocksToAdd, 1517 A, Exp, D, VD); 1518 1519 CapDiagKind = ClassifyDiagnostic(A); 1520 break; 1521 } 1522 1523 // An assert will add a lock to the lockset, but will not generate 1524 // a warning if it is already there, and will not generate a warning 1525 // if it is not removed. 1526 case attr::AssertExclusiveLock: { 1527 AssertExclusiveLockAttr *A = cast<AssertExclusiveLockAttr>(At); 1528 1529 CapExprSet AssertLocks; 1530 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1531 for (const auto &AssertLock : AssertLocks) 1532 Analyzer->addLock(FSet, 1533 llvm::make_unique<LockableFactEntry>( 1534 AssertLock, LK_Exclusive, Loc, false, true), 1535 ClassifyDiagnostic(A)); 1536 break; 1537 } 1538 case attr::AssertSharedLock: { 1539 AssertSharedLockAttr *A = cast<AssertSharedLockAttr>(At); 1540 1541 CapExprSet AssertLocks; 1542 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1543 for (const auto &AssertLock : AssertLocks) 1544 Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>( 1545 AssertLock, LK_Shared, Loc, false, true), 1546 ClassifyDiagnostic(A)); 1547 break; 1548 } 1549 1550 // When we encounter an unlock function, we need to remove unlocked 1551 // mutexes from the lockset, and flag a warning if they are not there. 1552 case attr::ReleaseCapability: { 1553 auto *A = cast<ReleaseCapabilityAttr>(At); 1554 if (A->isGeneric()) 1555 Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD); 1556 else if (A->isShared()) 1557 Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD); 1558 else 1559 Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD); 1560 1561 CapDiagKind = ClassifyDiagnostic(A); 1562 break; 1563 } 1564 1565 case attr::RequiresCapability: { 1566 RequiresCapabilityAttr *A = cast<RequiresCapabilityAttr>(At); 1567 for (auto *Arg : A->args()) 1568 warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg, 1569 POK_FunctionCall, ClassifyDiagnostic(A), 1570 Exp->getExprLoc()); 1571 break; 1572 } 1573 1574 case attr::LocksExcluded: { 1575 LocksExcludedAttr *A = cast<LocksExcludedAttr>(At); 1576 for (auto *Arg : A->args()) 1577 warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A)); 1578 break; 1579 } 1580 1581 // Ignore attributes unrelated to thread-safety 1582 default: 1583 break; 1584 } 1585 } 1586 1587 // Figure out if we're calling the constructor of scoped lockable class 1588 bool isScopedVar = false; 1589 if (VD) { 1590 if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) { 1591 const CXXRecordDecl* PD = CD->getParent(); 1592 if (PD && PD->hasAttr<ScopedLockableAttr>()) 1593 isScopedVar = true; 1594 } 1595 } 1596 1597 // Add locks. 1598 for (const auto &M : ExclusiveLocksToAdd) 1599 Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>( 1600 M, LK_Exclusive, Loc, isScopedVar), 1601 CapDiagKind); 1602 for (const auto &M : SharedLocksToAdd) 1603 Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>( 1604 M, LK_Shared, Loc, isScopedVar), 1605 CapDiagKind); 1606 1607 if (isScopedVar) { 1608 // Add the managing object as a dummy mutex, mapped to the underlying mutex. 1609 SourceLocation MLoc = VD->getLocation(); 1610 DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation()); 1611 // FIXME: does this store a pointer to DRE? 1612 CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr); 1613 1614 CapExprSet UnderlyingMutexes(ExclusiveLocksToAdd); 1615 std::copy(SharedLocksToAdd.begin(), SharedLocksToAdd.end(), 1616 std::back_inserter(UnderlyingMutexes)); 1617 Analyzer->addLock(FSet, 1618 llvm::make_unique<ScopedLockableFactEntry>( 1619 Scp, MLoc, ExclusiveLocksToAdd, SharedLocksToAdd), 1620 CapDiagKind); 1621 } 1622 1623 // Remove locks. 1624 // FIXME -- should only fully remove if the attribute refers to 'this'. 1625 bool Dtor = isa<CXXDestructorDecl>(D); 1626 for (const auto &M : ExclusiveLocksToRemove) 1627 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind); 1628 for (const auto &M : SharedLocksToRemove) 1629 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind); 1630 for (const auto &M : GenericLocksToRemove) 1631 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind); 1632 } 1633 1634 1635 /// \brief For unary operations which read and write a variable, we need to 1636 /// check whether we hold any required mutexes. Reads are checked in 1637 /// VisitCastExpr. 1638 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) { 1639 switch (UO->getOpcode()) { 1640 case clang::UO_PostDec: 1641 case clang::UO_PostInc: 1642 case clang::UO_PreDec: 1643 case clang::UO_PreInc: { 1644 checkAccess(UO->getSubExpr(), AK_Written); 1645 break; 1646 } 1647 default: 1648 break; 1649 } 1650 } 1651 1652 /// For binary operations which assign to a variable (writes), we need to check 1653 /// whether we hold any required mutexes. 1654 /// FIXME: Deal with non-primitive types. 1655 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) { 1656 if (!BO->isAssignmentOp()) 1657 return; 1658 1659 // adjust the context 1660 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); 1661 1662 checkAccess(BO->getLHS(), AK_Written); 1663 } 1664 1665 1666 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and 1667 /// need to ensure we hold any required mutexes. 1668 /// FIXME: Deal with non-primitive types. 1669 void BuildLockset::VisitCastExpr(CastExpr *CE) { 1670 if (CE->getCastKind() != CK_LValueToRValue) 1671 return; 1672 checkAccess(CE->getSubExpr(), AK_Read); 1673 } 1674 1675 1676 void BuildLockset::VisitCallExpr(CallExpr *Exp) { 1677 bool ExamineArgs = true; 1678 bool OperatorFun = false; 1679 1680 if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) { 1681 MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee()); 1682 // ME can be null when calling a method pointer 1683 CXXMethodDecl *MD = CE->getMethodDecl(); 1684 1685 if (ME && MD) { 1686 if (ME->isArrow()) { 1687 if (MD->isConst()) { 1688 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 1689 } else { // FIXME -- should be AK_Written 1690 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 1691 } 1692 } else { 1693 if (MD->isConst()) 1694 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 1695 else // FIXME -- should be AK_Written 1696 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 1697 } 1698 } 1699 } else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) { 1700 OperatorFun = true; 1701 1702 auto OEop = OE->getOperator(); 1703 switch (OEop) { 1704 case OO_Equal: { 1705 ExamineArgs = false; 1706 const Expr *Target = OE->getArg(0); 1707 const Expr *Source = OE->getArg(1); 1708 checkAccess(Target, AK_Written); 1709 checkAccess(Source, AK_Read); 1710 break; 1711 } 1712 case OO_Star: 1713 case OO_Arrow: 1714 case OO_Subscript: { 1715 const Expr *Obj = OE->getArg(0); 1716 checkAccess(Obj, AK_Read); 1717 if (!(OEop == OO_Star && OE->getNumArgs() > 1)) { 1718 // Grrr. operator* can be multiplication... 1719 checkPtAccess(Obj, AK_Read); 1720 } 1721 break; 1722 } 1723 default: { 1724 // TODO: get rid of this, and rely on pass-by-ref instead. 1725 const Expr *Obj = OE->getArg(0); 1726 checkAccess(Obj, AK_Read); 1727 break; 1728 } 1729 } 1730 } 1731 1732 1733 if (ExamineArgs) { 1734 if (FunctionDecl *FD = Exp->getDirectCallee()) { 1735 unsigned Fn = FD->getNumParams(); 1736 unsigned Cn = Exp->getNumArgs(); 1737 unsigned Skip = 0; 1738 1739 unsigned i = 0; 1740 if (OperatorFun) { 1741 if (isa<CXXMethodDecl>(FD)) { 1742 // First arg in operator call is implicit self argument, 1743 // and doesn't appear in the FunctionDecl. 1744 Skip = 1; 1745 Cn--; 1746 } else { 1747 // Ignore the first argument of operators; it's been checked above. 1748 i = 1; 1749 } 1750 } 1751 // Ignore default arguments 1752 unsigned n = (Fn < Cn) ? Fn : Cn; 1753 1754 for (; i < n; ++i) { 1755 ParmVarDecl* Pvd = FD->getParamDecl(i); 1756 Expr* Arg = Exp->getArg(i+Skip); 1757 QualType Qt = Pvd->getType(); 1758 if (Qt->isReferenceType()) 1759 checkAccess(Arg, AK_Read, POK_PassByRef); 1760 } 1761 } 1762 } 1763 1764 NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 1765 if(!D || !D->hasAttrs()) 1766 return; 1767 handleCall(Exp, D); 1768 } 1769 1770 void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) { 1771 const CXXConstructorDecl *D = Exp->getConstructor(); 1772 if (D && D->isCopyConstructor()) { 1773 const Expr* Source = Exp->getArg(0); 1774 checkAccess(Source, AK_Read); 1775 } 1776 // FIXME -- only handles constructors in DeclStmt below. 1777 } 1778 1779 void BuildLockset::VisitDeclStmt(DeclStmt *S) { 1780 // adjust the context 1781 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); 1782 1783 for (auto *D : S->getDeclGroup()) { 1784 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) { 1785 Expr *E = VD->getInit(); 1786 // handle constructors that involve temporaries 1787 if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E)) 1788 E = EWC->getSubExpr(); 1789 1790 if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) { 1791 NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor()); 1792 if (!CtorD || !CtorD->hasAttrs()) 1793 return; 1794 handleCall(CE, CtorD, VD); 1795 } 1796 } 1797 } 1798 } 1799 1800 1801 1802 /// \brief Compute the intersection of two locksets and issue warnings for any 1803 /// locks in the symmetric difference. 1804 /// 1805 /// This function is used at a merge point in the CFG when comparing the lockset 1806 /// of each branch being merged. For example, given the following sequence: 1807 /// A; if () then B; else C; D; we need to check that the lockset after B and C 1808 /// are the same. In the event of a difference, we use the intersection of these 1809 /// two locksets at the start of D. 1810 /// 1811 /// \param FSet1 The first lockset. 1812 /// \param FSet2 The second lockset. 1813 /// \param JoinLoc The location of the join point for error reporting 1814 /// \param LEK1 The error message to report if a mutex is missing from LSet1 1815 /// \param LEK2 The error message to report if a mutex is missing from Lset2 1816 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1, 1817 const FactSet &FSet2, 1818 SourceLocation JoinLoc, 1819 LockErrorKind LEK1, 1820 LockErrorKind LEK2, 1821 bool Modify) { 1822 FactSet FSet1Orig = FSet1; 1823 1824 // Find locks in FSet2 that conflict or are not in FSet1, and warn. 1825 for (const auto &Fact : FSet2) { 1826 const FactEntry *LDat1 = nullptr; 1827 const FactEntry *LDat2 = &FactMan[Fact]; 1828 FactSet::iterator Iter1 = FSet1.findLockIter(FactMan, *LDat2); 1829 if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1]; 1830 1831 if (LDat1) { 1832 if (LDat1->kind() != LDat2->kind()) { 1833 Handler.handleExclusiveAndShared("mutex", LDat2->toString(), 1834 LDat2->loc(), LDat1->loc()); 1835 if (Modify && LDat1->kind() != LK_Exclusive) { 1836 // Take the exclusive lock, which is the one in FSet2. 1837 *Iter1 = Fact; 1838 } 1839 } 1840 else if (Modify && LDat1->asserted() && !LDat2->asserted()) { 1841 // The non-asserted lock in FSet2 is the one we want to track. 1842 *Iter1 = Fact; 1843 } 1844 } else { 1845 LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1, 1846 Handler); 1847 } 1848 } 1849 1850 // Find locks in FSet1 that are not in FSet2, and remove them. 1851 for (const auto &Fact : FSet1Orig) { 1852 const FactEntry *LDat1 = &FactMan[Fact]; 1853 const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1); 1854 1855 if (!LDat2) { 1856 LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2, 1857 Handler); 1858 if (Modify) 1859 FSet1.removeLock(FactMan, *LDat1); 1860 } 1861 } 1862 } 1863 1864 1865 // Return true if block B never continues to its successors. 1866 inline bool neverReturns(const CFGBlock* B) { 1867 if (B->hasNoReturnElement()) 1868 return true; 1869 if (B->empty()) 1870 return false; 1871 1872 CFGElement Last = B->back(); 1873 if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) { 1874 if (isa<CXXThrowExpr>(S->getStmt())) 1875 return true; 1876 } 1877 return false; 1878 } 1879 1880 1881 /// \brief Check a function's CFG for thread-safety violations. 1882 /// 1883 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 1884 /// at the end of each block, and issue warnings for thread safety violations. 1885 /// Each block in the CFG is traversed exactly once. 1886 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { 1887 // TODO: this whole function needs be rewritten as a visitor for CFGWalker. 1888 // For now, we just use the walker to set things up. 1889 threadSafety::CFGWalker walker; 1890 if (!walker.init(AC)) 1891 return; 1892 1893 // AC.dumpCFG(true); 1894 // threadSafety::printSCFG(walker); 1895 1896 CFG *CFGraph = walker.getGraph(); 1897 const NamedDecl *D = walker.getDecl(); 1898 const FunctionDecl *CurrentFunction = dyn_cast<FunctionDecl>(D); 1899 CurrentMethod = dyn_cast<CXXMethodDecl>(D); 1900 1901 if (D->hasAttr<NoThreadSafetyAnalysisAttr>()) 1902 return; 1903 1904 // FIXME: Do something a bit more intelligent inside constructor and 1905 // destructor code. Constructors and destructors must assume unique access 1906 // to 'this', so checks on member variable access is disabled, but we should 1907 // still enable checks on other objects. 1908 if (isa<CXXConstructorDecl>(D)) 1909 return; // Don't check inside constructors. 1910 if (isa<CXXDestructorDecl>(D)) 1911 return; // Don't check inside destructors. 1912 1913 Handler.enterFunction(CurrentFunction); 1914 1915 BlockInfo.resize(CFGraph->getNumBlockIDs(), 1916 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); 1917 1918 // We need to explore the CFG via a "topological" ordering. 1919 // That way, we will be guaranteed to have information about required 1920 // predecessor locksets when exploring a new block. 1921 const PostOrderCFGView *SortedGraph = walker.getSortedGraph(); 1922 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 1923 1924 // Mark entry block as reachable 1925 BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true; 1926 1927 // Compute SSA names for local variables 1928 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); 1929 1930 // Fill in source locations for all CFGBlocks. 1931 findBlockLocations(CFGraph, SortedGraph, BlockInfo); 1932 1933 CapExprSet ExclusiveLocksAcquired; 1934 CapExprSet SharedLocksAcquired; 1935 CapExprSet LocksReleased; 1936 1937 // Add locks from exclusive_locks_required and shared_locks_required 1938 // to initial lockset. Also turn off checking for lock and unlock functions. 1939 // FIXME: is there a more intelligent way to check lock/unlock functions? 1940 if (!SortedGraph->empty() && D->hasAttrs()) { 1941 const CFGBlock *FirstBlock = *SortedGraph->begin(); 1942 FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; 1943 const AttrVec &ArgAttrs = D->getAttrs(); 1944 1945 CapExprSet ExclusiveLocksToAdd; 1946 CapExprSet SharedLocksToAdd; 1947 StringRef CapDiagKind = "mutex"; 1948 1949 SourceLocation Loc = D->getLocation(); 1950 for (const auto *Attr : ArgAttrs) { 1951 Loc = Attr->getLocation(); 1952 if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) { 1953 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 1954 nullptr, D); 1955 CapDiagKind = ClassifyDiagnostic(A); 1956 } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) { 1957 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation. 1958 // We must ignore such methods. 1959 if (A->args_size() == 0) 1960 return; 1961 // FIXME -- deal with exclusive vs. shared unlock functions? 1962 getMutexIDs(ExclusiveLocksToAdd, A, nullptr, D); 1963 getMutexIDs(LocksReleased, A, nullptr, D); 1964 CapDiagKind = ClassifyDiagnostic(A); 1965 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) { 1966 if (A->args_size() == 0) 1967 return; 1968 getMutexIDs(A->isShared() ? SharedLocksAcquired 1969 : ExclusiveLocksAcquired, 1970 A, nullptr, D); 1971 CapDiagKind = ClassifyDiagnostic(A); 1972 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) { 1973 // Don't try to check trylock functions for now 1974 return; 1975 } else if (isa<SharedTrylockFunctionAttr>(Attr)) { 1976 // Don't try to check trylock functions for now 1977 return; 1978 } 1979 } 1980 1981 // FIXME -- Loc can be wrong here. 1982 for (const auto &Mu : ExclusiveLocksToAdd) 1983 addLock(InitialLockset, 1984 llvm::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc), 1985 CapDiagKind, true); 1986 for (const auto &Mu : SharedLocksToAdd) 1987 addLock(InitialLockset, 1988 llvm::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc), 1989 CapDiagKind, true); 1990 } 1991 1992 for (const auto *CurrBlock : *SortedGraph) { 1993 int CurrBlockID = CurrBlock->getBlockID(); 1994 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 1995 1996 // Use the default initial lockset in case there are no predecessors. 1997 VisitedBlocks.insert(CurrBlock); 1998 1999 // Iterate through the predecessor blocks and warn if the lockset for all 2000 // predecessors is not the same. We take the entry lockset of the current 2001 // block to be the intersection of all previous locksets. 2002 // FIXME: By keeping the intersection, we may output more errors in future 2003 // for a lock which is not in the intersection, but was in the union. We 2004 // may want to also keep the union in future. As an example, let's say 2005 // the intersection contains Mutex L, and the union contains L and M. 2006 // Later we unlock M. At this point, we would output an error because we 2007 // never locked M; although the real error is probably that we forgot to 2008 // lock M on all code paths. Conversely, let's say that later we lock M. 2009 // In this case, we should compare against the intersection instead of the 2010 // union because the real error is probably that we forgot to unlock M on 2011 // all code paths. 2012 bool LocksetInitialized = false; 2013 SmallVector<CFGBlock *, 8> SpecialBlocks; 2014 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 2015 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 2016 2017 // if *PI -> CurrBlock is a back edge 2018 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) 2019 continue; 2020 2021 int PrevBlockID = (*PI)->getBlockID(); 2022 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 2023 2024 // Ignore edges from blocks that can't return. 2025 if (neverReturns(*PI) || !PrevBlockInfo->Reachable) 2026 continue; 2027 2028 // Okay, we can reach this block from the entry. 2029 CurrBlockInfo->Reachable = true; 2030 2031 // If the previous block ended in a 'continue' or 'break' statement, then 2032 // a difference in locksets is probably due to a bug in that block, rather 2033 // than in some other predecessor. In that case, keep the other 2034 // predecessor's lockset. 2035 if (const Stmt *Terminator = (*PI)->getTerminator()) { 2036 if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) { 2037 SpecialBlocks.push_back(*PI); 2038 continue; 2039 } 2040 } 2041 2042 FactSet PrevLockset; 2043 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); 2044 2045 if (!LocksetInitialized) { 2046 CurrBlockInfo->EntrySet = PrevLockset; 2047 LocksetInitialized = true; 2048 } else { 2049 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, 2050 CurrBlockInfo->EntryLoc, 2051 LEK_LockedSomePredecessors); 2052 } 2053 } 2054 2055 // Skip rest of block if it's not reachable. 2056 if (!CurrBlockInfo->Reachable) 2057 continue; 2058 2059 // Process continue and break blocks. Assume that the lockset for the 2060 // resulting block is unaffected by any discrepancies in them. 2061 for (const auto *PrevBlock : SpecialBlocks) { 2062 int PrevBlockID = PrevBlock->getBlockID(); 2063 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 2064 2065 if (!LocksetInitialized) { 2066 CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet; 2067 LocksetInitialized = true; 2068 } else { 2069 // Determine whether this edge is a loop terminator for diagnostic 2070 // purposes. FIXME: A 'break' statement might be a loop terminator, but 2071 // it might also be part of a switch. Also, a subsequent destructor 2072 // might add to the lockset, in which case the real issue might be a 2073 // double lock on the other path. 2074 const Stmt *Terminator = PrevBlock->getTerminator(); 2075 bool IsLoop = Terminator && isa<ContinueStmt>(Terminator); 2076 2077 FactSet PrevLockset; 2078 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, 2079 PrevBlock, CurrBlock); 2080 2081 // Do not update EntrySet. 2082 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, 2083 PrevBlockInfo->ExitLoc, 2084 IsLoop ? LEK_LockedSomeLoopIterations 2085 : LEK_LockedSomePredecessors, 2086 false); 2087 } 2088 } 2089 2090 BuildLockset LocksetBuilder(this, *CurrBlockInfo); 2091 2092 // Visit all the statements in the basic block. 2093 for (CFGBlock::const_iterator BI = CurrBlock->begin(), 2094 BE = CurrBlock->end(); BI != BE; ++BI) { 2095 switch (BI->getKind()) { 2096 case CFGElement::Statement: { 2097 CFGStmt CS = BI->castAs<CFGStmt>(); 2098 LocksetBuilder.Visit(const_cast<Stmt*>(CS.getStmt())); 2099 break; 2100 } 2101 // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now. 2102 case CFGElement::AutomaticObjectDtor: { 2103 CFGAutomaticObjDtor AD = BI->castAs<CFGAutomaticObjDtor>(); 2104 CXXDestructorDecl *DD = const_cast<CXXDestructorDecl *>( 2105 AD.getDestructorDecl(AC.getASTContext())); 2106 if (!DD->hasAttrs()) 2107 break; 2108 2109 // Create a dummy expression, 2110 VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl()); 2111 DeclRefExpr DRE(VD, false, VD->getType().getNonReferenceType(), 2112 VK_LValue, AD.getTriggerStmt()->getLocEnd()); 2113 LocksetBuilder.handleCall(&DRE, DD); 2114 break; 2115 } 2116 default: 2117 break; 2118 } 2119 } 2120 CurrBlockInfo->ExitSet = LocksetBuilder.FSet; 2121 2122 // For every back edge from CurrBlock (the end of the loop) to another block 2123 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to 2124 // the one held at the beginning of FirstLoopBlock. We can look up the 2125 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. 2126 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 2127 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 2128 2129 // if CurrBlock -> *SI is *not* a back edge 2130 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 2131 continue; 2132 2133 CFGBlock *FirstLoopBlock = *SI; 2134 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; 2135 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; 2136 intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet, 2137 PreLoop->EntryLoc, 2138 LEK_LockedSomeLoopIterations, 2139 false); 2140 } 2141 } 2142 2143 CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()]; 2144 CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()]; 2145 2146 // Skip the final check if the exit block is unreachable. 2147 if (!Final->Reachable) 2148 return; 2149 2150 // By default, we expect all locks held on entry to be held on exit. 2151 FactSet ExpectedExitSet = Initial->EntrySet; 2152 2153 // Adjust the expected exit set by adding or removing locks, as declared 2154 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then 2155 // issue the appropriate warning. 2156 // FIXME: the location here is not quite right. 2157 for (const auto &Lock : ExclusiveLocksAcquired) 2158 ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( 2159 Lock, LK_Exclusive, D->getLocation())); 2160 for (const auto &Lock : SharedLocksAcquired) 2161 ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( 2162 Lock, LK_Shared, D->getLocation())); 2163 for (const auto &Lock : LocksReleased) 2164 ExpectedExitSet.removeLock(FactMan, Lock); 2165 2166 // FIXME: Should we call this function for all blocks which exit the function? 2167 intersectAndWarn(ExpectedExitSet, Final->ExitSet, 2168 Final->ExitLoc, 2169 LEK_LockedAtEndOfFunction, 2170 LEK_NotLockedAtEndOfFunction, 2171 false); 2172 2173 Handler.leaveFunction(CurrentFunction); 2174 } 2175 2176 2177 /// \brief Check a function's CFG for thread-safety violations. 2178 /// 2179 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2180 /// at the end of each block, and issue warnings for thread safety violations. 2181 /// Each block in the CFG is traversed exactly once. 2182 void runThreadSafetyAnalysis(AnalysisDeclContext &AC, 2183 ThreadSafetyHandler &Handler) { 2184 ThreadSafetyAnalyzer Analyzer(Handler); 2185 Analyzer.runAnalysis(AC); 2186 } 2187 2188 /// \brief Helper function that returns a LockKind required for the given level 2189 /// of access. 2190 LockKind getLockKindFromAccessKind(AccessKind AK) { 2191 switch (AK) { 2192 case AK_Read : 2193 return LK_Shared; 2194 case AK_Written : 2195 return LK_Exclusive; 2196 } 2197 llvm_unreachable("Unknown AccessKind"); 2198 } 2199 2200 }} // end namespace clang::threadSafety 2201