1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Expr class and subclasses. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/DeclObjC.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/EvaluatedExprVisitor.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/ExprCXX.h" 23 #include "clang/AST/Mangle.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/Builtins.h" 27 #include "clang/Basic/CharInfo.h" 28 #include "clang/Basic/SourceManager.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/Lex/Lexer.h" 31 #include "clang/Lex/LiteralSupport.h" 32 #include "clang/Sema/SemaDiagnostic.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> 36 #include <cstring> 37 using namespace clang; 38 39 const CXXRecordDecl *Expr::getBestDynamicClassType() const { 40 const Expr *E = ignoreParenBaseCasts(); 41 42 QualType DerivedType = E->getType(); 43 if (const PointerType *PTy = DerivedType->getAs<PointerType>()) 44 DerivedType = PTy->getPointeeType(); 45 46 if (DerivedType->isDependentType()) 47 return nullptr; 48 49 const RecordType *Ty = DerivedType->castAs<RecordType>(); 50 Decl *D = Ty->getDecl(); 51 return cast<CXXRecordDecl>(D); 52 } 53 54 const Expr *Expr::skipRValueSubobjectAdjustments( 55 SmallVectorImpl<const Expr *> &CommaLHSs, 56 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { 57 const Expr *E = this; 58 while (true) { 59 E = E->IgnoreParens(); 60 61 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 62 if ((CE->getCastKind() == CK_DerivedToBase || 63 CE->getCastKind() == CK_UncheckedDerivedToBase) && 64 E->getType()->isRecordType()) { 65 E = CE->getSubExpr(); 66 CXXRecordDecl *Derived 67 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 68 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 69 continue; 70 } 71 72 if (CE->getCastKind() == CK_NoOp) { 73 E = CE->getSubExpr(); 74 continue; 75 } 76 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 77 if (!ME->isArrow()) { 78 assert(ME->getBase()->getType()->isRecordType()); 79 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 80 if (!Field->isBitField() && !Field->getType()->isReferenceType()) { 81 E = ME->getBase(); 82 Adjustments.push_back(SubobjectAdjustment(Field)); 83 continue; 84 } 85 } 86 } 87 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 88 if (BO->isPtrMemOp()) { 89 assert(BO->getRHS()->isRValue()); 90 E = BO->getLHS(); 91 const MemberPointerType *MPT = 92 BO->getRHS()->getType()->getAs<MemberPointerType>(); 93 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); 94 continue; 95 } else if (BO->getOpcode() == BO_Comma) { 96 CommaLHSs.push_back(BO->getLHS()); 97 E = BO->getRHS(); 98 continue; 99 } 100 } 101 102 // Nothing changed. 103 break; 104 } 105 return E; 106 } 107 108 /// isKnownToHaveBooleanValue - Return true if this is an integer expression 109 /// that is known to return 0 or 1. This happens for _Bool/bool expressions 110 /// but also int expressions which are produced by things like comparisons in 111 /// C. 112 bool Expr::isKnownToHaveBooleanValue() const { 113 const Expr *E = IgnoreParens(); 114 115 // If this value has _Bool type, it is obvious 0/1. 116 if (E->getType()->isBooleanType()) return true; 117 // If this is a non-scalar-integer type, we don't care enough to try. 118 if (!E->getType()->isIntegralOrEnumerationType()) return false; 119 120 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 121 switch (UO->getOpcode()) { 122 case UO_Plus: 123 return UO->getSubExpr()->isKnownToHaveBooleanValue(); 124 case UO_LNot: 125 return true; 126 default: 127 return false; 128 } 129 } 130 131 // Only look through implicit casts. If the user writes 132 // '(int) (a && b)' treat it as an arbitrary int. 133 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) 134 return CE->getSubExpr()->isKnownToHaveBooleanValue(); 135 136 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 137 switch (BO->getOpcode()) { 138 default: return false; 139 case BO_LT: // Relational operators. 140 case BO_GT: 141 case BO_LE: 142 case BO_GE: 143 case BO_EQ: // Equality operators. 144 case BO_NE: 145 case BO_LAnd: // AND operator. 146 case BO_LOr: // Logical OR operator. 147 return true; 148 149 case BO_And: // Bitwise AND operator. 150 case BO_Xor: // Bitwise XOR operator. 151 case BO_Or: // Bitwise OR operator. 152 // Handle things like (x==2)|(y==12). 153 return BO->getLHS()->isKnownToHaveBooleanValue() && 154 BO->getRHS()->isKnownToHaveBooleanValue(); 155 156 case BO_Comma: 157 case BO_Assign: 158 return BO->getRHS()->isKnownToHaveBooleanValue(); 159 } 160 } 161 162 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 163 return CO->getTrueExpr()->isKnownToHaveBooleanValue() && 164 CO->getFalseExpr()->isKnownToHaveBooleanValue(); 165 166 return false; 167 } 168 169 // Amusing macro metaprogramming hack: check whether a class provides 170 // a more specific implementation of getExprLoc(). 171 // 172 // See also Stmt.cpp:{getLocStart(),getLocEnd()}. 173 namespace { 174 /// This implementation is used when a class provides a custom 175 /// implementation of getExprLoc. 176 template <class E, class T> 177 SourceLocation getExprLocImpl(const Expr *expr, 178 SourceLocation (T::*v)() const) { 179 return static_cast<const E*>(expr)->getExprLoc(); 180 } 181 182 /// This implementation is used when a class doesn't provide 183 /// a custom implementation of getExprLoc. Overload resolution 184 /// should pick it over the implementation above because it's 185 /// more specialized according to function template partial ordering. 186 template <class E> 187 SourceLocation getExprLocImpl(const Expr *expr, 188 SourceLocation (Expr::*v)() const) { 189 return static_cast<const E*>(expr)->getLocStart(); 190 } 191 } 192 193 SourceLocation Expr::getExprLoc() const { 194 switch (getStmtClass()) { 195 case Stmt::NoStmtClass: llvm_unreachable("statement without class"); 196 #define ABSTRACT_STMT(type) 197 #define STMT(type, base) \ 198 case Stmt::type##Class: break; 199 #define EXPR(type, base) \ 200 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); 201 #include "clang/AST/StmtNodes.inc" 202 } 203 llvm_unreachable("unknown expression kind"); 204 } 205 206 //===----------------------------------------------------------------------===// 207 // Primary Expressions. 208 //===----------------------------------------------------------------------===// 209 210 /// \brief Compute the type-, value-, and instantiation-dependence of a 211 /// declaration reference 212 /// based on the declaration being referenced. 213 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D, 214 QualType T, bool &TypeDependent, 215 bool &ValueDependent, 216 bool &InstantiationDependent) { 217 TypeDependent = false; 218 ValueDependent = false; 219 InstantiationDependent = false; 220 221 // (TD) C++ [temp.dep.expr]p3: 222 // An id-expression is type-dependent if it contains: 223 // 224 // and 225 // 226 // (VD) C++ [temp.dep.constexpr]p2: 227 // An identifier is value-dependent if it is: 228 229 // (TD) - an identifier that was declared with dependent type 230 // (VD) - a name declared with a dependent type, 231 if (T->isDependentType()) { 232 TypeDependent = true; 233 ValueDependent = true; 234 InstantiationDependent = true; 235 return; 236 } else if (T->isInstantiationDependentType()) { 237 InstantiationDependent = true; 238 } 239 240 // (TD) - a conversion-function-id that specifies a dependent type 241 if (D->getDeclName().getNameKind() 242 == DeclarationName::CXXConversionFunctionName) { 243 QualType T = D->getDeclName().getCXXNameType(); 244 if (T->isDependentType()) { 245 TypeDependent = true; 246 ValueDependent = true; 247 InstantiationDependent = true; 248 return; 249 } 250 251 if (T->isInstantiationDependentType()) 252 InstantiationDependent = true; 253 } 254 255 // (VD) - the name of a non-type template parameter, 256 if (isa<NonTypeTemplateParmDecl>(D)) { 257 ValueDependent = true; 258 InstantiationDependent = true; 259 return; 260 } 261 262 // (VD) - a constant with integral or enumeration type and is 263 // initialized with an expression that is value-dependent. 264 // (VD) - a constant with literal type and is initialized with an 265 // expression that is value-dependent [C++11]. 266 // (VD) - FIXME: Missing from the standard: 267 // - an entity with reference type and is initialized with an 268 // expression that is value-dependent [C++11] 269 if (VarDecl *Var = dyn_cast<VarDecl>(D)) { 270 if ((Ctx.getLangOpts().CPlusPlus11 ? 271 Var->getType()->isLiteralType(Ctx) : 272 Var->getType()->isIntegralOrEnumerationType()) && 273 (Var->getType().isConstQualified() || 274 Var->getType()->isReferenceType())) { 275 if (const Expr *Init = Var->getAnyInitializer()) 276 if (Init->isValueDependent()) { 277 ValueDependent = true; 278 InstantiationDependent = true; 279 } 280 } 281 282 // (VD) - FIXME: Missing from the standard: 283 // - a member function or a static data member of the current 284 // instantiation 285 if (Var->isStaticDataMember() && 286 Var->getDeclContext()->isDependentContext()) { 287 ValueDependent = true; 288 InstantiationDependent = true; 289 TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo(); 290 if (TInfo->getType()->isIncompleteArrayType()) 291 TypeDependent = true; 292 } 293 294 return; 295 } 296 297 // (VD) - FIXME: Missing from the standard: 298 // - a member function or a static data member of the current 299 // instantiation 300 if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) { 301 ValueDependent = true; 302 InstantiationDependent = true; 303 } 304 } 305 306 void DeclRefExpr::computeDependence(const ASTContext &Ctx) { 307 bool TypeDependent = false; 308 bool ValueDependent = false; 309 bool InstantiationDependent = false; 310 computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent, 311 ValueDependent, InstantiationDependent); 312 313 ExprBits.TypeDependent |= TypeDependent; 314 ExprBits.ValueDependent |= ValueDependent; 315 ExprBits.InstantiationDependent |= InstantiationDependent; 316 317 // Is the declaration a parameter pack? 318 if (getDecl()->isParameterPack()) 319 ExprBits.ContainsUnexpandedParameterPack = true; 320 } 321 322 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, 323 NestedNameSpecifierLoc QualifierLoc, 324 SourceLocation TemplateKWLoc, 325 ValueDecl *D, bool RefersToEnclosingVariableOrCapture, 326 const DeclarationNameInfo &NameInfo, 327 NamedDecl *FoundD, 328 const TemplateArgumentListInfo *TemplateArgs, 329 QualType T, ExprValueKind VK) 330 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), 331 D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) { 332 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; 333 if (QualifierLoc) { 334 getInternalQualifierLoc() = QualifierLoc; 335 auto *NNS = QualifierLoc.getNestedNameSpecifier(); 336 if (NNS->isInstantiationDependent()) 337 ExprBits.InstantiationDependent = true; 338 if (NNS->containsUnexpandedParameterPack()) 339 ExprBits.ContainsUnexpandedParameterPack = true; 340 } 341 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; 342 if (FoundD) 343 getInternalFoundDecl() = FoundD; 344 DeclRefExprBits.HasTemplateKWAndArgsInfo 345 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; 346 DeclRefExprBits.RefersToEnclosingVariableOrCapture = 347 RefersToEnclosingVariableOrCapture; 348 if (TemplateArgs) { 349 bool Dependent = false; 350 bool InstantiationDependent = false; 351 bool ContainsUnexpandedParameterPack = false; 352 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs, 353 Dependent, 354 InstantiationDependent, 355 ContainsUnexpandedParameterPack); 356 assert(!Dependent && "built a DeclRefExpr with dependent template args"); 357 ExprBits.InstantiationDependent |= InstantiationDependent; 358 ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; 359 } else if (TemplateKWLoc.isValid()) { 360 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc); 361 } 362 DeclRefExprBits.HadMultipleCandidates = 0; 363 364 computeDependence(Ctx); 365 } 366 367 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 368 NestedNameSpecifierLoc QualifierLoc, 369 SourceLocation TemplateKWLoc, 370 ValueDecl *D, 371 bool RefersToEnclosingVariableOrCapture, 372 SourceLocation NameLoc, 373 QualType T, 374 ExprValueKind VK, 375 NamedDecl *FoundD, 376 const TemplateArgumentListInfo *TemplateArgs) { 377 return Create(Context, QualifierLoc, TemplateKWLoc, D, 378 RefersToEnclosingVariableOrCapture, 379 DeclarationNameInfo(D->getDeclName(), NameLoc), 380 T, VK, FoundD, TemplateArgs); 381 } 382 383 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, 384 NestedNameSpecifierLoc QualifierLoc, 385 SourceLocation TemplateKWLoc, 386 ValueDecl *D, 387 bool RefersToEnclosingVariableOrCapture, 388 const DeclarationNameInfo &NameInfo, 389 QualType T, 390 ExprValueKind VK, 391 NamedDecl *FoundD, 392 const TemplateArgumentListInfo *TemplateArgs) { 393 // Filter out cases where the found Decl is the same as the value refenenced. 394 if (D == FoundD) 395 FoundD = nullptr; 396 397 std::size_t Size = sizeof(DeclRefExpr); 398 if (QualifierLoc) 399 Size += sizeof(NestedNameSpecifierLoc); 400 if (FoundD) 401 Size += sizeof(NamedDecl *); 402 if (TemplateArgs) 403 Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size()); 404 else if (TemplateKWLoc.isValid()) 405 Size += ASTTemplateKWAndArgsInfo::sizeFor(0); 406 407 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); 408 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, 409 RefersToEnclosingVariableOrCapture, 410 NameInfo, FoundD, TemplateArgs, T, VK); 411 } 412 413 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, 414 bool HasQualifier, 415 bool HasFoundDecl, 416 bool HasTemplateKWAndArgsInfo, 417 unsigned NumTemplateArgs) { 418 std::size_t Size = sizeof(DeclRefExpr); 419 if (HasQualifier) 420 Size += sizeof(NestedNameSpecifierLoc); 421 if (HasFoundDecl) 422 Size += sizeof(NamedDecl *); 423 if (HasTemplateKWAndArgsInfo) 424 Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs); 425 426 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>()); 427 return new (Mem) DeclRefExpr(EmptyShell()); 428 } 429 430 SourceLocation DeclRefExpr::getLocStart() const { 431 if (hasQualifier()) 432 return getQualifierLoc().getBeginLoc(); 433 return getNameInfo().getLocStart(); 434 } 435 SourceLocation DeclRefExpr::getLocEnd() const { 436 if (hasExplicitTemplateArgs()) 437 return getRAngleLoc(); 438 return getNameInfo().getLocEnd(); 439 } 440 441 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT, 442 StringLiteral *SL) 443 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary, 444 FNTy->isDependentType(), FNTy->isDependentType(), 445 FNTy->isInstantiationDependentType(), 446 /*ContainsUnexpandedParameterPack=*/false), 447 Loc(L), Type(IT), FnName(SL) {} 448 449 StringLiteral *PredefinedExpr::getFunctionName() { 450 return cast_or_null<StringLiteral>(FnName); 451 } 452 453 StringRef PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT) { 454 switch (IT) { 455 case Func: 456 return "__func__"; 457 case Function: 458 return "__FUNCTION__"; 459 case FuncDName: 460 return "__FUNCDNAME__"; 461 case LFunction: 462 return "L__FUNCTION__"; 463 case PrettyFunction: 464 return "__PRETTY_FUNCTION__"; 465 case FuncSig: 466 return "__FUNCSIG__"; 467 case PrettyFunctionNoVirtual: 468 break; 469 } 470 llvm_unreachable("Unknown ident type for PredefinedExpr"); 471 } 472 473 // FIXME: Maybe this should use DeclPrinter with a special "print predefined 474 // expr" policy instead. 475 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) { 476 ASTContext &Context = CurrentDecl->getASTContext(); 477 478 if (IT == PredefinedExpr::FuncDName) { 479 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { 480 std::unique_ptr<MangleContext> MC; 481 MC.reset(Context.createMangleContext()); 482 483 if (MC->shouldMangleDeclName(ND)) { 484 SmallString<256> Buffer; 485 llvm::raw_svector_ostream Out(Buffer); 486 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) 487 MC->mangleCXXCtor(CD, Ctor_Base, Out); 488 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) 489 MC->mangleCXXDtor(DD, Dtor_Base, Out); 490 else 491 MC->mangleName(ND, Out); 492 493 Out.flush(); 494 if (!Buffer.empty() && Buffer.front() == '\01') 495 return Buffer.substr(1); 496 return Buffer.str(); 497 } else 498 return ND->getIdentifier()->getName(); 499 } 500 return ""; 501 } 502 if (auto *BD = dyn_cast<BlockDecl>(CurrentDecl)) { 503 std::unique_ptr<MangleContext> MC; 504 MC.reset(Context.createMangleContext()); 505 SmallString<256> Buffer; 506 llvm::raw_svector_ostream Out(Buffer); 507 auto DC = CurrentDecl->getDeclContext(); 508 if (DC->isFileContext()) 509 MC->mangleGlobalBlock(BD, /*ID*/ nullptr, Out); 510 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 511 MC->mangleCtorBlock(CD, /*CT*/ Ctor_Complete, BD, Out); 512 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 513 MC->mangleDtorBlock(DD, /*DT*/ Dtor_Complete, BD, Out); 514 else 515 MC->mangleBlock(DC, BD, Out); 516 return Out.str(); 517 } 518 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { 519 if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig) 520 return FD->getNameAsString(); 521 522 SmallString<256> Name; 523 llvm::raw_svector_ostream Out(Name); 524 525 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 526 if (MD->isVirtual() && IT != PrettyFunctionNoVirtual) 527 Out << "virtual "; 528 if (MD->isStatic()) 529 Out << "static "; 530 } 531 532 PrintingPolicy Policy(Context.getLangOpts()); 533 std::string Proto; 534 llvm::raw_string_ostream POut(Proto); 535 536 const FunctionDecl *Decl = FD; 537 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) 538 Decl = Pattern; 539 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); 540 const FunctionProtoType *FT = nullptr; 541 if (FD->hasWrittenPrototype()) 542 FT = dyn_cast<FunctionProtoType>(AFT); 543 544 if (IT == FuncSig) { 545 switch (FT->getCallConv()) { 546 case CC_C: POut << "__cdecl "; break; 547 case CC_X86StdCall: POut << "__stdcall "; break; 548 case CC_X86FastCall: POut << "__fastcall "; break; 549 case CC_X86ThisCall: POut << "__thiscall "; break; 550 case CC_X86VectorCall: POut << "__vectorcall "; break; 551 // Only bother printing the conventions that MSVC knows about. 552 default: break; 553 } 554 } 555 556 FD->printQualifiedName(POut, Policy); 557 558 POut << "("; 559 if (FT) { 560 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { 561 if (i) POut << ", "; 562 POut << Decl->getParamDecl(i)->getType().stream(Policy); 563 } 564 565 if (FT->isVariadic()) { 566 if (FD->getNumParams()) POut << ", "; 567 POut << "..."; 568 } 569 } 570 POut << ")"; 571 572 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 573 const FunctionType *FT = MD->getType()->castAs<FunctionType>(); 574 if (FT->isConst()) 575 POut << " const"; 576 if (FT->isVolatile()) 577 POut << " volatile"; 578 RefQualifierKind Ref = MD->getRefQualifier(); 579 if (Ref == RQ_LValue) 580 POut << " &"; 581 else if (Ref == RQ_RValue) 582 POut << " &&"; 583 } 584 585 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; 586 SpecsTy Specs; 587 const DeclContext *Ctx = FD->getDeclContext(); 588 while (Ctx && isa<NamedDecl>(Ctx)) { 589 const ClassTemplateSpecializationDecl *Spec 590 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); 591 if (Spec && !Spec->isExplicitSpecialization()) 592 Specs.push_back(Spec); 593 Ctx = Ctx->getParent(); 594 } 595 596 std::string TemplateParams; 597 llvm::raw_string_ostream TOut(TemplateParams); 598 for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend(); 599 I != E; ++I) { 600 const TemplateParameterList *Params 601 = (*I)->getSpecializedTemplate()->getTemplateParameters(); 602 const TemplateArgumentList &Args = (*I)->getTemplateArgs(); 603 assert(Params->size() == Args.size()); 604 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { 605 StringRef Param = Params->getParam(i)->getName(); 606 if (Param.empty()) continue; 607 TOut << Param << " = "; 608 Args.get(i).print(Policy, TOut); 609 TOut << ", "; 610 } 611 } 612 613 FunctionTemplateSpecializationInfo *FSI 614 = FD->getTemplateSpecializationInfo(); 615 if (FSI && !FSI->isExplicitSpecialization()) { 616 const TemplateParameterList* Params 617 = FSI->getTemplate()->getTemplateParameters(); 618 const TemplateArgumentList* Args = FSI->TemplateArguments; 619 assert(Params->size() == Args->size()); 620 for (unsigned i = 0, e = Params->size(); i != e; ++i) { 621 StringRef Param = Params->getParam(i)->getName(); 622 if (Param.empty()) continue; 623 TOut << Param << " = "; 624 Args->get(i).print(Policy, TOut); 625 TOut << ", "; 626 } 627 } 628 629 TOut.flush(); 630 if (!TemplateParams.empty()) { 631 // remove the trailing comma and space 632 TemplateParams.resize(TemplateParams.size() - 2); 633 POut << " [" << TemplateParams << "]"; 634 } 635 636 POut.flush(); 637 638 // Print "auto" for all deduced return types. This includes C++1y return 639 // type deduction and lambdas. For trailing return types resolve the 640 // decltype expression. Otherwise print the real type when this is 641 // not a constructor or destructor. 642 if (isa<CXXMethodDecl>(FD) && 643 cast<CXXMethodDecl>(FD)->getParent()->isLambda()) 644 Proto = "auto " + Proto; 645 else if (FT && FT->getReturnType()->getAs<DecltypeType>()) 646 FT->getReturnType() 647 ->getAs<DecltypeType>() 648 ->getUnderlyingType() 649 .getAsStringInternal(Proto, Policy); 650 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) 651 AFT->getReturnType().getAsStringInternal(Proto, Policy); 652 653 Out << Proto; 654 655 Out.flush(); 656 return Name.str().str(); 657 } 658 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { 659 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) 660 // Skip to its enclosing function or method, but not its enclosing 661 // CapturedDecl. 662 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { 663 const Decl *D = Decl::castFromDeclContext(DC); 664 return ComputeName(IT, D); 665 } 666 llvm_unreachable("CapturedDecl not inside a function or method"); 667 } 668 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { 669 SmallString<256> Name; 670 llvm::raw_svector_ostream Out(Name); 671 Out << (MD->isInstanceMethod() ? '-' : '+'); 672 Out << '['; 673 674 // For incorrect code, there might not be an ObjCInterfaceDecl. Do 675 // a null check to avoid a crash. 676 if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) 677 Out << *ID; 678 679 if (const ObjCCategoryImplDecl *CID = 680 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) 681 Out << '(' << *CID << ')'; 682 683 Out << ' '; 684 MD->getSelector().print(Out); 685 Out << ']'; 686 687 Out.flush(); 688 return Name.str().str(); 689 } 690 if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) { 691 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. 692 return "top level"; 693 } 694 return ""; 695 } 696 697 void APNumericStorage::setIntValue(const ASTContext &C, 698 const llvm::APInt &Val) { 699 if (hasAllocation()) 700 C.Deallocate(pVal); 701 702 BitWidth = Val.getBitWidth(); 703 unsigned NumWords = Val.getNumWords(); 704 const uint64_t* Words = Val.getRawData(); 705 if (NumWords > 1) { 706 pVal = new (C) uint64_t[NumWords]; 707 std::copy(Words, Words + NumWords, pVal); 708 } else if (NumWords == 1) 709 VAL = Words[0]; 710 else 711 VAL = 0; 712 } 713 714 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, 715 QualType type, SourceLocation l) 716 : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false, 717 false, false), 718 Loc(l) { 719 assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); 720 assert(V.getBitWidth() == C.getIntWidth(type) && 721 "Integer type is not the correct size for constant."); 722 setValue(C, V); 723 } 724 725 IntegerLiteral * 726 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, 727 QualType type, SourceLocation l) { 728 return new (C) IntegerLiteral(C, V, type, l); 729 } 730 731 IntegerLiteral * 732 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { 733 return new (C) IntegerLiteral(Empty); 734 } 735 736 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, 737 bool isexact, QualType Type, SourceLocation L) 738 : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false, 739 false, false), Loc(L) { 740 setSemantics(V.getSemantics()); 741 FloatingLiteralBits.IsExact = isexact; 742 setValue(C, V); 743 } 744 745 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) 746 : Expr(FloatingLiteralClass, Empty) { 747 setRawSemantics(IEEEhalf); 748 FloatingLiteralBits.IsExact = false; 749 } 750 751 FloatingLiteral * 752 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, 753 bool isexact, QualType Type, SourceLocation L) { 754 return new (C) FloatingLiteral(C, V, isexact, Type, L); 755 } 756 757 FloatingLiteral * 758 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { 759 return new (C) FloatingLiteral(C, Empty); 760 } 761 762 const llvm::fltSemantics &FloatingLiteral::getSemantics() const { 763 switch(FloatingLiteralBits.Semantics) { 764 case IEEEhalf: 765 return llvm::APFloat::IEEEhalf; 766 case IEEEsingle: 767 return llvm::APFloat::IEEEsingle; 768 case IEEEdouble: 769 return llvm::APFloat::IEEEdouble; 770 case x87DoubleExtended: 771 return llvm::APFloat::x87DoubleExtended; 772 case IEEEquad: 773 return llvm::APFloat::IEEEquad; 774 case PPCDoubleDouble: 775 return llvm::APFloat::PPCDoubleDouble; 776 } 777 llvm_unreachable("Unrecognised floating semantics"); 778 } 779 780 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) { 781 if (&Sem == &llvm::APFloat::IEEEhalf) 782 FloatingLiteralBits.Semantics = IEEEhalf; 783 else if (&Sem == &llvm::APFloat::IEEEsingle) 784 FloatingLiteralBits.Semantics = IEEEsingle; 785 else if (&Sem == &llvm::APFloat::IEEEdouble) 786 FloatingLiteralBits.Semantics = IEEEdouble; 787 else if (&Sem == &llvm::APFloat::x87DoubleExtended) 788 FloatingLiteralBits.Semantics = x87DoubleExtended; 789 else if (&Sem == &llvm::APFloat::IEEEquad) 790 FloatingLiteralBits.Semantics = IEEEquad; 791 else if (&Sem == &llvm::APFloat::PPCDoubleDouble) 792 FloatingLiteralBits.Semantics = PPCDoubleDouble; 793 else 794 llvm_unreachable("Unknown floating semantics"); 795 } 796 797 /// getValueAsApproximateDouble - This returns the value as an inaccurate 798 /// double. Note that this may cause loss of precision, but is useful for 799 /// debugging dumps, etc. 800 double FloatingLiteral::getValueAsApproximateDouble() const { 801 llvm::APFloat V = getValue(); 802 bool ignored; 803 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven, 804 &ignored); 805 return V.convertToDouble(); 806 } 807 808 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) { 809 int CharByteWidth = 0; 810 switch(k) { 811 case Ascii: 812 case UTF8: 813 CharByteWidth = target.getCharWidth(); 814 break; 815 case Wide: 816 CharByteWidth = target.getWCharWidth(); 817 break; 818 case UTF16: 819 CharByteWidth = target.getChar16Width(); 820 break; 821 case UTF32: 822 CharByteWidth = target.getChar32Width(); 823 break; 824 } 825 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 826 CharByteWidth /= 8; 827 assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4) 828 && "character byte widths supported are 1, 2, and 4 only"); 829 return CharByteWidth; 830 } 831 832 StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str, 833 StringKind Kind, bool Pascal, QualType Ty, 834 const SourceLocation *Loc, 835 unsigned NumStrs) { 836 assert(C.getAsConstantArrayType(Ty) && 837 "StringLiteral must be of constant array type!"); 838 839 // Allocate enough space for the StringLiteral plus an array of locations for 840 // any concatenated string tokens. 841 void *Mem = C.Allocate(sizeof(StringLiteral)+ 842 sizeof(SourceLocation)*(NumStrs-1), 843 llvm::alignOf<StringLiteral>()); 844 StringLiteral *SL = new (Mem) StringLiteral(Ty); 845 846 // OPTIMIZE: could allocate this appended to the StringLiteral. 847 SL->setString(C,Str,Kind,Pascal); 848 849 SL->TokLocs[0] = Loc[0]; 850 SL->NumConcatenated = NumStrs; 851 852 if (NumStrs != 1) 853 memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1)); 854 return SL; 855 } 856 857 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C, 858 unsigned NumStrs) { 859 void *Mem = C.Allocate(sizeof(StringLiteral)+ 860 sizeof(SourceLocation)*(NumStrs-1), 861 llvm::alignOf<StringLiteral>()); 862 StringLiteral *SL = new (Mem) StringLiteral(QualType()); 863 SL->CharByteWidth = 0; 864 SL->Length = 0; 865 SL->NumConcatenated = NumStrs; 866 return SL; 867 } 868 869 void StringLiteral::outputString(raw_ostream &OS) const { 870 switch (getKind()) { 871 case Ascii: break; // no prefix. 872 case Wide: OS << 'L'; break; 873 case UTF8: OS << "u8"; break; 874 case UTF16: OS << 'u'; break; 875 case UTF32: OS << 'U'; break; 876 } 877 OS << '"'; 878 static const char Hex[] = "0123456789ABCDEF"; 879 880 unsigned LastSlashX = getLength(); 881 for (unsigned I = 0, N = getLength(); I != N; ++I) { 882 switch (uint32_t Char = getCodeUnit(I)) { 883 default: 884 // FIXME: Convert UTF-8 back to codepoints before rendering. 885 886 // Convert UTF-16 surrogate pairs back to codepoints before rendering. 887 // Leave invalid surrogates alone; we'll use \x for those. 888 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && 889 Char <= 0xdbff) { 890 uint32_t Trail = getCodeUnit(I + 1); 891 if (Trail >= 0xdc00 && Trail <= 0xdfff) { 892 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); 893 ++I; 894 } 895 } 896 897 if (Char > 0xff) { 898 // If this is a wide string, output characters over 0xff using \x 899 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a 900 // codepoint: use \x escapes for invalid codepoints. 901 if (getKind() == Wide || 902 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { 903 // FIXME: Is this the best way to print wchar_t? 904 OS << "\\x"; 905 int Shift = 28; 906 while ((Char >> Shift) == 0) 907 Shift -= 4; 908 for (/**/; Shift >= 0; Shift -= 4) 909 OS << Hex[(Char >> Shift) & 15]; 910 LastSlashX = I; 911 break; 912 } 913 914 if (Char > 0xffff) 915 OS << "\\U00" 916 << Hex[(Char >> 20) & 15] 917 << Hex[(Char >> 16) & 15]; 918 else 919 OS << "\\u"; 920 OS << Hex[(Char >> 12) & 15] 921 << Hex[(Char >> 8) & 15] 922 << Hex[(Char >> 4) & 15] 923 << Hex[(Char >> 0) & 15]; 924 break; 925 } 926 927 // If we used \x... for the previous character, and this character is a 928 // hexadecimal digit, prevent it being slurped as part of the \x. 929 if (LastSlashX + 1 == I) { 930 switch (Char) { 931 case '0': case '1': case '2': case '3': case '4': 932 case '5': case '6': case '7': case '8': case '9': 933 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': 934 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': 935 OS << "\"\""; 936 } 937 } 938 939 assert(Char <= 0xff && 940 "Characters above 0xff should already have been handled."); 941 942 if (isPrintable(Char)) 943 OS << (char)Char; 944 else // Output anything hard as an octal escape. 945 OS << '\\' 946 << (char)('0' + ((Char >> 6) & 7)) 947 << (char)('0' + ((Char >> 3) & 7)) 948 << (char)('0' + ((Char >> 0) & 7)); 949 break; 950 // Handle some common non-printable cases to make dumps prettier. 951 case '\\': OS << "\\\\"; break; 952 case '"': OS << "\\\""; break; 953 case '\n': OS << "\\n"; break; 954 case '\t': OS << "\\t"; break; 955 case '\a': OS << "\\a"; break; 956 case '\b': OS << "\\b"; break; 957 } 958 } 959 OS << '"'; 960 } 961 962 void StringLiteral::setString(const ASTContext &C, StringRef Str, 963 StringKind Kind, bool IsPascal) { 964 //FIXME: we assume that the string data comes from a target that uses the same 965 // code unit size and endianess for the type of string. 966 this->Kind = Kind; 967 this->IsPascal = IsPascal; 968 969 CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind); 970 assert((Str.size()%CharByteWidth == 0) 971 && "size of data must be multiple of CharByteWidth"); 972 Length = Str.size()/CharByteWidth; 973 974 switch(CharByteWidth) { 975 case 1: { 976 char *AStrData = new (C) char[Length]; 977 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); 978 StrData.asChar = AStrData; 979 break; 980 } 981 case 2: { 982 uint16_t *AStrData = new (C) uint16_t[Length]; 983 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); 984 StrData.asUInt16 = AStrData; 985 break; 986 } 987 case 4: { 988 uint32_t *AStrData = new (C) uint32_t[Length]; 989 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData)); 990 StrData.asUInt32 = AStrData; 991 break; 992 } 993 default: 994 assert(false && "unsupported CharByteWidth"); 995 } 996 } 997 998 /// getLocationOfByte - Return a source location that points to the specified 999 /// byte of this string literal. 1000 /// 1001 /// Strings are amazingly complex. They can be formed from multiple tokens and 1002 /// can have escape sequences in them in addition to the usual trigraph and 1003 /// escaped newline business. This routine handles this complexity. 1004 /// 1005 SourceLocation StringLiteral:: 1006 getLocationOfByte(unsigned ByteNo, const SourceManager &SM, 1007 const LangOptions &Features, const TargetInfo &Target) const { 1008 assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) && 1009 "Only narrow string literals are currently supported"); 1010 1011 // Loop over all of the tokens in this string until we find the one that 1012 // contains the byte we're looking for. 1013 unsigned TokNo = 0; 1014 while (1) { 1015 assert(TokNo < getNumConcatenated() && "Invalid byte number!"); 1016 SourceLocation StrTokLoc = getStrTokenLoc(TokNo); 1017 1018 // Get the spelling of the string so that we can get the data that makes up 1019 // the string literal, not the identifier for the macro it is potentially 1020 // expanded through. 1021 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); 1022 1023 // Re-lex the token to get its length and original spelling. 1024 std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc); 1025 bool Invalid = false; 1026 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1027 if (Invalid) 1028 return StrTokSpellingLoc; 1029 1030 const char *StrData = Buffer.data()+LocInfo.second; 1031 1032 // Create a lexer starting at the beginning of this token. 1033 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, 1034 Buffer.begin(), StrData, Buffer.end()); 1035 Token TheTok; 1036 TheLexer.LexFromRawLexer(TheTok); 1037 1038 // Use the StringLiteralParser to compute the length of the string in bytes. 1039 StringLiteralParser SLP(TheTok, SM, Features, Target); 1040 unsigned TokNumBytes = SLP.GetStringLength(); 1041 1042 // If the byte is in this token, return the location of the byte. 1043 if (ByteNo < TokNumBytes || 1044 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { 1045 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 1046 1047 // Now that we know the offset of the token in the spelling, use the 1048 // preprocessor to get the offset in the original source. 1049 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); 1050 } 1051 1052 // Move to the next string token. 1053 ++TokNo; 1054 ByteNo -= TokNumBytes; 1055 } 1056 } 1057 1058 1059 1060 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1061 /// corresponds to, e.g. "sizeof" or "[pre]++". 1062 StringRef UnaryOperator::getOpcodeStr(Opcode Op) { 1063 switch (Op) { 1064 case UO_PostInc: return "++"; 1065 case UO_PostDec: return "--"; 1066 case UO_PreInc: return "++"; 1067 case UO_PreDec: return "--"; 1068 case UO_AddrOf: return "&"; 1069 case UO_Deref: return "*"; 1070 case UO_Plus: return "+"; 1071 case UO_Minus: return "-"; 1072 case UO_Not: return "~"; 1073 case UO_LNot: return "!"; 1074 case UO_Real: return "__real"; 1075 case UO_Imag: return "__imag"; 1076 case UO_Extension: return "__extension__"; 1077 } 1078 llvm_unreachable("Unknown unary operator"); 1079 } 1080 1081 UnaryOperatorKind 1082 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { 1083 switch (OO) { 1084 default: llvm_unreachable("No unary operator for overloaded function"); 1085 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; 1086 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; 1087 case OO_Amp: return UO_AddrOf; 1088 case OO_Star: return UO_Deref; 1089 case OO_Plus: return UO_Plus; 1090 case OO_Minus: return UO_Minus; 1091 case OO_Tilde: return UO_Not; 1092 case OO_Exclaim: return UO_LNot; 1093 } 1094 } 1095 1096 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { 1097 switch (Opc) { 1098 case UO_PostInc: case UO_PreInc: return OO_PlusPlus; 1099 case UO_PostDec: case UO_PreDec: return OO_MinusMinus; 1100 case UO_AddrOf: return OO_Amp; 1101 case UO_Deref: return OO_Star; 1102 case UO_Plus: return OO_Plus; 1103 case UO_Minus: return OO_Minus; 1104 case UO_Not: return OO_Tilde; 1105 case UO_LNot: return OO_Exclaim; 1106 default: return OO_None; 1107 } 1108 } 1109 1110 1111 //===----------------------------------------------------------------------===// 1112 // Postfix Operators. 1113 //===----------------------------------------------------------------------===// 1114 1115 CallExpr::CallExpr(const ASTContext& C, StmtClass SC, Expr *fn, 1116 unsigned NumPreArgs, ArrayRef<Expr*> args, QualType t, 1117 ExprValueKind VK, SourceLocation rparenloc) 1118 : Expr(SC, t, VK, OK_Ordinary, 1119 fn->isTypeDependent(), 1120 fn->isValueDependent(), 1121 fn->isInstantiationDependent(), 1122 fn->containsUnexpandedParameterPack()), 1123 NumArgs(args.size()) { 1124 1125 SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs]; 1126 SubExprs[FN] = fn; 1127 for (unsigned i = 0; i != args.size(); ++i) { 1128 if (args[i]->isTypeDependent()) 1129 ExprBits.TypeDependent = true; 1130 if (args[i]->isValueDependent()) 1131 ExprBits.ValueDependent = true; 1132 if (args[i]->isInstantiationDependent()) 1133 ExprBits.InstantiationDependent = true; 1134 if (args[i]->containsUnexpandedParameterPack()) 1135 ExprBits.ContainsUnexpandedParameterPack = true; 1136 1137 SubExprs[i+PREARGS_START+NumPreArgs] = args[i]; 1138 } 1139 1140 CallExprBits.NumPreArgs = NumPreArgs; 1141 RParenLoc = rparenloc; 1142 } 1143 1144 CallExpr::CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args, 1145 QualType t, ExprValueKind VK, SourceLocation rparenloc) 1146 : Expr(CallExprClass, t, VK, OK_Ordinary, 1147 fn->isTypeDependent(), 1148 fn->isValueDependent(), 1149 fn->isInstantiationDependent(), 1150 fn->containsUnexpandedParameterPack()), 1151 NumArgs(args.size()) { 1152 1153 SubExprs = new (C) Stmt*[args.size()+PREARGS_START]; 1154 SubExprs[FN] = fn; 1155 for (unsigned i = 0; i != args.size(); ++i) { 1156 if (args[i]->isTypeDependent()) 1157 ExprBits.TypeDependent = true; 1158 if (args[i]->isValueDependent()) 1159 ExprBits.ValueDependent = true; 1160 if (args[i]->isInstantiationDependent()) 1161 ExprBits.InstantiationDependent = true; 1162 if (args[i]->containsUnexpandedParameterPack()) 1163 ExprBits.ContainsUnexpandedParameterPack = true; 1164 1165 SubExprs[i+PREARGS_START] = args[i]; 1166 } 1167 1168 CallExprBits.NumPreArgs = 0; 1169 RParenLoc = rparenloc; 1170 } 1171 1172 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty) 1173 : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) { 1174 // FIXME: Why do we allocate this? 1175 SubExprs = new (C) Stmt*[PREARGS_START]; 1176 CallExprBits.NumPreArgs = 0; 1177 } 1178 1179 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs, 1180 EmptyShell Empty) 1181 : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) { 1182 // FIXME: Why do we allocate this? 1183 SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs]; 1184 CallExprBits.NumPreArgs = NumPreArgs; 1185 } 1186 1187 Decl *CallExpr::getCalleeDecl() { 1188 Expr *CEE = getCallee()->IgnoreParenImpCasts(); 1189 1190 while (SubstNonTypeTemplateParmExpr *NTTP 1191 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { 1192 CEE = NTTP->getReplacement()->IgnoreParenCasts(); 1193 } 1194 1195 // If we're calling a dereference, look at the pointer instead. 1196 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { 1197 if (BO->isPtrMemOp()) 1198 CEE = BO->getRHS()->IgnoreParenCasts(); 1199 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { 1200 if (UO->getOpcode() == UO_Deref) 1201 CEE = UO->getSubExpr()->IgnoreParenCasts(); 1202 } 1203 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) 1204 return DRE->getDecl(); 1205 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) 1206 return ME->getMemberDecl(); 1207 1208 return nullptr; 1209 } 1210 1211 FunctionDecl *CallExpr::getDirectCallee() { 1212 return dyn_cast_or_null<FunctionDecl>(getCalleeDecl()); 1213 } 1214 1215 /// setNumArgs - This changes the number of arguments present in this call. 1216 /// Any orphaned expressions are deleted by this, and any new operands are set 1217 /// to null. 1218 void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) { 1219 // No change, just return. 1220 if (NumArgs == getNumArgs()) return; 1221 1222 // If shrinking # arguments, just delete the extras and forgot them. 1223 if (NumArgs < getNumArgs()) { 1224 this->NumArgs = NumArgs; 1225 return; 1226 } 1227 1228 // Otherwise, we are growing the # arguments. New an bigger argument array. 1229 unsigned NumPreArgs = getNumPreArgs(); 1230 Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs]; 1231 // Copy over args. 1232 for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i) 1233 NewSubExprs[i] = SubExprs[i]; 1234 // Null out new args. 1235 for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs; 1236 i != NumArgs+PREARGS_START+NumPreArgs; ++i) 1237 NewSubExprs[i] = nullptr; 1238 1239 if (SubExprs) C.Deallocate(SubExprs); 1240 SubExprs = NewSubExprs; 1241 this->NumArgs = NumArgs; 1242 } 1243 1244 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If 1245 /// not, return 0. 1246 unsigned CallExpr::getBuiltinCallee() const { 1247 // All simple function calls (e.g. func()) are implicitly cast to pointer to 1248 // function. As a result, we try and obtain the DeclRefExpr from the 1249 // ImplicitCastExpr. 1250 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); 1251 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). 1252 return 0; 1253 1254 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); 1255 if (!DRE) 1256 return 0; 1257 1258 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); 1259 if (!FDecl) 1260 return 0; 1261 1262 if (!FDecl->getIdentifier()) 1263 return 0; 1264 1265 return FDecl->getBuiltinID(); 1266 } 1267 1268 bool CallExpr::isUnevaluatedBuiltinCall(ASTContext &Ctx) const { 1269 if (unsigned BI = getBuiltinCallee()) 1270 return Ctx.BuiltinInfo.isUnevaluated(BI); 1271 return false; 1272 } 1273 1274 QualType CallExpr::getCallReturnType() const { 1275 QualType CalleeType = getCallee()->getType(); 1276 if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>()) 1277 CalleeType = FnTypePtr->getPointeeType(); 1278 else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>()) 1279 CalleeType = BPT->getPointeeType(); 1280 else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) 1281 // This should never be overloaded and so should never return null. 1282 CalleeType = Expr::findBoundMemberType(getCallee()); 1283 1284 const FunctionType *FnType = CalleeType->castAs<FunctionType>(); 1285 return FnType->getReturnType(); 1286 } 1287 1288 SourceLocation CallExpr::getLocStart() const { 1289 if (isa<CXXOperatorCallExpr>(this)) 1290 return cast<CXXOperatorCallExpr>(this)->getLocStart(); 1291 1292 SourceLocation begin = getCallee()->getLocStart(); 1293 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) 1294 begin = getArg(0)->getLocStart(); 1295 return begin; 1296 } 1297 SourceLocation CallExpr::getLocEnd() const { 1298 if (isa<CXXOperatorCallExpr>(this)) 1299 return cast<CXXOperatorCallExpr>(this)->getLocEnd(); 1300 1301 SourceLocation end = getRParenLoc(); 1302 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) 1303 end = getArg(getNumArgs() - 1)->getLocEnd(); 1304 return end; 1305 } 1306 1307 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, 1308 SourceLocation OperatorLoc, 1309 TypeSourceInfo *tsi, 1310 ArrayRef<OffsetOfNode> comps, 1311 ArrayRef<Expr*> exprs, 1312 SourceLocation RParenLoc) { 1313 void *Mem = C.Allocate(sizeof(OffsetOfExpr) + 1314 sizeof(OffsetOfNode) * comps.size() + 1315 sizeof(Expr*) * exprs.size()); 1316 1317 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, 1318 RParenLoc); 1319 } 1320 1321 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, 1322 unsigned numComps, unsigned numExprs) { 1323 void *Mem = C.Allocate(sizeof(OffsetOfExpr) + 1324 sizeof(OffsetOfNode) * numComps + 1325 sizeof(Expr*) * numExprs); 1326 return new (Mem) OffsetOfExpr(numComps, numExprs); 1327 } 1328 1329 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, 1330 SourceLocation OperatorLoc, TypeSourceInfo *tsi, 1331 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs, 1332 SourceLocation RParenLoc) 1333 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary, 1334 /*TypeDependent=*/false, 1335 /*ValueDependent=*/tsi->getType()->isDependentType(), 1336 tsi->getType()->isInstantiationDependentType(), 1337 tsi->getType()->containsUnexpandedParameterPack()), 1338 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 1339 NumComps(comps.size()), NumExprs(exprs.size()) 1340 { 1341 for (unsigned i = 0; i != comps.size(); ++i) { 1342 setComponent(i, comps[i]); 1343 } 1344 1345 for (unsigned i = 0; i != exprs.size(); ++i) { 1346 if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent()) 1347 ExprBits.ValueDependent = true; 1348 if (exprs[i]->containsUnexpandedParameterPack()) 1349 ExprBits.ContainsUnexpandedParameterPack = true; 1350 1351 setIndexExpr(i, exprs[i]); 1352 } 1353 } 1354 1355 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const { 1356 assert(getKind() == Field || getKind() == Identifier); 1357 if (getKind() == Field) 1358 return getField()->getIdentifier(); 1359 1360 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); 1361 } 1362 1363 MemberExpr *MemberExpr::Create(const ASTContext &C, Expr *base, bool isarrow, 1364 NestedNameSpecifierLoc QualifierLoc, 1365 SourceLocation TemplateKWLoc, 1366 ValueDecl *memberdecl, 1367 DeclAccessPair founddecl, 1368 DeclarationNameInfo nameinfo, 1369 const TemplateArgumentListInfo *targs, 1370 QualType ty, 1371 ExprValueKind vk, 1372 ExprObjectKind ok) { 1373 std::size_t Size = sizeof(MemberExpr); 1374 1375 bool hasQualOrFound = (QualifierLoc || 1376 founddecl.getDecl() != memberdecl || 1377 founddecl.getAccess() != memberdecl->getAccess()); 1378 if (hasQualOrFound) 1379 Size += sizeof(MemberNameQualifier); 1380 1381 if (targs) 1382 Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size()); 1383 else if (TemplateKWLoc.isValid()) 1384 Size += ASTTemplateKWAndArgsInfo::sizeFor(0); 1385 1386 void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>()); 1387 MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo, 1388 ty, vk, ok); 1389 1390 if (hasQualOrFound) { 1391 // FIXME: Wrong. We should be looking at the member declaration we found. 1392 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) { 1393 E->setValueDependent(true); 1394 E->setTypeDependent(true); 1395 E->setInstantiationDependent(true); 1396 } 1397 else if (QualifierLoc && 1398 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 1399 E->setInstantiationDependent(true); 1400 1401 E->HasQualifierOrFoundDecl = true; 1402 1403 MemberNameQualifier *NQ = E->getMemberQualifier(); 1404 NQ->QualifierLoc = QualifierLoc; 1405 NQ->FoundDecl = founddecl; 1406 } 1407 1408 E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid()); 1409 1410 if (targs) { 1411 bool Dependent = false; 1412 bool InstantiationDependent = false; 1413 bool ContainsUnexpandedParameterPack = false; 1414 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs, 1415 Dependent, 1416 InstantiationDependent, 1417 ContainsUnexpandedParameterPack); 1418 if (InstantiationDependent) 1419 E->setInstantiationDependent(true); 1420 } else if (TemplateKWLoc.isValid()) { 1421 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc); 1422 } 1423 1424 return E; 1425 } 1426 1427 SourceLocation MemberExpr::getLocStart() const { 1428 if (isImplicitAccess()) { 1429 if (hasQualifier()) 1430 return getQualifierLoc().getBeginLoc(); 1431 return MemberLoc; 1432 } 1433 1434 // FIXME: We don't want this to happen. Rather, we should be able to 1435 // detect all kinds of implicit accesses more cleanly. 1436 SourceLocation BaseStartLoc = getBase()->getLocStart(); 1437 if (BaseStartLoc.isValid()) 1438 return BaseStartLoc; 1439 return MemberLoc; 1440 } 1441 SourceLocation MemberExpr::getLocEnd() const { 1442 SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); 1443 if (hasExplicitTemplateArgs()) 1444 EndLoc = getRAngleLoc(); 1445 else if (EndLoc.isInvalid()) 1446 EndLoc = getBase()->getLocEnd(); 1447 return EndLoc; 1448 } 1449 1450 bool CastExpr::CastConsistency() const { 1451 switch (getCastKind()) { 1452 case CK_DerivedToBase: 1453 case CK_UncheckedDerivedToBase: 1454 case CK_DerivedToBaseMemberPointer: 1455 case CK_BaseToDerived: 1456 case CK_BaseToDerivedMemberPointer: 1457 assert(!path_empty() && "Cast kind should have a base path!"); 1458 break; 1459 1460 case CK_CPointerToObjCPointerCast: 1461 assert(getType()->isObjCObjectPointerType()); 1462 assert(getSubExpr()->getType()->isPointerType()); 1463 goto CheckNoBasePath; 1464 1465 case CK_BlockPointerToObjCPointerCast: 1466 assert(getType()->isObjCObjectPointerType()); 1467 assert(getSubExpr()->getType()->isBlockPointerType()); 1468 goto CheckNoBasePath; 1469 1470 case CK_ReinterpretMemberPointer: 1471 assert(getType()->isMemberPointerType()); 1472 assert(getSubExpr()->getType()->isMemberPointerType()); 1473 goto CheckNoBasePath; 1474 1475 case CK_BitCast: 1476 // Arbitrary casts to C pointer types count as bitcasts. 1477 // Otherwise, we should only have block and ObjC pointer casts 1478 // here if they stay within the type kind. 1479 if (!getType()->isPointerType()) { 1480 assert(getType()->isObjCObjectPointerType() == 1481 getSubExpr()->getType()->isObjCObjectPointerType()); 1482 assert(getType()->isBlockPointerType() == 1483 getSubExpr()->getType()->isBlockPointerType()); 1484 } 1485 goto CheckNoBasePath; 1486 1487 case CK_AnyPointerToBlockPointerCast: 1488 assert(getType()->isBlockPointerType()); 1489 assert(getSubExpr()->getType()->isAnyPointerType() && 1490 !getSubExpr()->getType()->isBlockPointerType()); 1491 goto CheckNoBasePath; 1492 1493 case CK_CopyAndAutoreleaseBlockObject: 1494 assert(getType()->isBlockPointerType()); 1495 assert(getSubExpr()->getType()->isBlockPointerType()); 1496 goto CheckNoBasePath; 1497 1498 case CK_FunctionToPointerDecay: 1499 assert(getType()->isPointerType()); 1500 assert(getSubExpr()->getType()->isFunctionType()); 1501 goto CheckNoBasePath; 1502 1503 case CK_AddressSpaceConversion: 1504 assert(getType()->isPointerType()); 1505 assert(getSubExpr()->getType()->isPointerType()); 1506 assert(getType()->getPointeeType().getAddressSpace() != 1507 getSubExpr()->getType()->getPointeeType().getAddressSpace()); 1508 // These should not have an inheritance path. 1509 case CK_Dynamic: 1510 case CK_ToUnion: 1511 case CK_ArrayToPointerDecay: 1512 case CK_NullToMemberPointer: 1513 case CK_NullToPointer: 1514 case CK_ConstructorConversion: 1515 case CK_IntegralToPointer: 1516 case CK_PointerToIntegral: 1517 case CK_ToVoid: 1518 case CK_VectorSplat: 1519 case CK_IntegralCast: 1520 case CK_IntegralToFloating: 1521 case CK_FloatingToIntegral: 1522 case CK_FloatingCast: 1523 case CK_ObjCObjectLValueCast: 1524 case CK_FloatingRealToComplex: 1525 case CK_FloatingComplexToReal: 1526 case CK_FloatingComplexCast: 1527 case CK_FloatingComplexToIntegralComplex: 1528 case CK_IntegralRealToComplex: 1529 case CK_IntegralComplexToReal: 1530 case CK_IntegralComplexCast: 1531 case CK_IntegralComplexToFloatingComplex: 1532 case CK_ARCProduceObject: 1533 case CK_ARCConsumeObject: 1534 case CK_ARCReclaimReturnedObject: 1535 case CK_ARCExtendBlockObject: 1536 case CK_ZeroToOCLEvent: 1537 assert(!getType()->isBooleanType() && "unheralded conversion to bool"); 1538 goto CheckNoBasePath; 1539 1540 case CK_Dependent: 1541 case CK_LValueToRValue: 1542 case CK_NoOp: 1543 case CK_AtomicToNonAtomic: 1544 case CK_NonAtomicToAtomic: 1545 case CK_PointerToBoolean: 1546 case CK_IntegralToBoolean: 1547 case CK_FloatingToBoolean: 1548 case CK_MemberPointerToBoolean: 1549 case CK_FloatingComplexToBoolean: 1550 case CK_IntegralComplexToBoolean: 1551 case CK_LValueBitCast: // -> bool& 1552 case CK_UserDefinedConversion: // operator bool() 1553 case CK_BuiltinFnToFnPtr: 1554 CheckNoBasePath: 1555 assert(path_empty() && "Cast kind should not have a base path!"); 1556 break; 1557 } 1558 return true; 1559 } 1560 1561 const char *CastExpr::getCastKindName() const { 1562 switch (getCastKind()) { 1563 case CK_Dependent: 1564 return "Dependent"; 1565 case CK_BitCast: 1566 return "BitCast"; 1567 case CK_LValueBitCast: 1568 return "LValueBitCast"; 1569 case CK_LValueToRValue: 1570 return "LValueToRValue"; 1571 case CK_NoOp: 1572 return "NoOp"; 1573 case CK_BaseToDerived: 1574 return "BaseToDerived"; 1575 case CK_DerivedToBase: 1576 return "DerivedToBase"; 1577 case CK_UncheckedDerivedToBase: 1578 return "UncheckedDerivedToBase"; 1579 case CK_Dynamic: 1580 return "Dynamic"; 1581 case CK_ToUnion: 1582 return "ToUnion"; 1583 case CK_ArrayToPointerDecay: 1584 return "ArrayToPointerDecay"; 1585 case CK_FunctionToPointerDecay: 1586 return "FunctionToPointerDecay"; 1587 case CK_NullToMemberPointer: 1588 return "NullToMemberPointer"; 1589 case CK_NullToPointer: 1590 return "NullToPointer"; 1591 case CK_BaseToDerivedMemberPointer: 1592 return "BaseToDerivedMemberPointer"; 1593 case CK_DerivedToBaseMemberPointer: 1594 return "DerivedToBaseMemberPointer"; 1595 case CK_ReinterpretMemberPointer: 1596 return "ReinterpretMemberPointer"; 1597 case CK_UserDefinedConversion: 1598 return "UserDefinedConversion"; 1599 case CK_ConstructorConversion: 1600 return "ConstructorConversion"; 1601 case CK_IntegralToPointer: 1602 return "IntegralToPointer"; 1603 case CK_PointerToIntegral: 1604 return "PointerToIntegral"; 1605 case CK_PointerToBoolean: 1606 return "PointerToBoolean"; 1607 case CK_ToVoid: 1608 return "ToVoid"; 1609 case CK_VectorSplat: 1610 return "VectorSplat"; 1611 case CK_IntegralCast: 1612 return "IntegralCast"; 1613 case CK_IntegralToBoolean: 1614 return "IntegralToBoolean"; 1615 case CK_IntegralToFloating: 1616 return "IntegralToFloating"; 1617 case CK_FloatingToIntegral: 1618 return "FloatingToIntegral"; 1619 case CK_FloatingCast: 1620 return "FloatingCast"; 1621 case CK_FloatingToBoolean: 1622 return "FloatingToBoolean"; 1623 case CK_MemberPointerToBoolean: 1624 return "MemberPointerToBoolean"; 1625 case CK_CPointerToObjCPointerCast: 1626 return "CPointerToObjCPointerCast"; 1627 case CK_BlockPointerToObjCPointerCast: 1628 return "BlockPointerToObjCPointerCast"; 1629 case CK_AnyPointerToBlockPointerCast: 1630 return "AnyPointerToBlockPointerCast"; 1631 case CK_ObjCObjectLValueCast: 1632 return "ObjCObjectLValueCast"; 1633 case CK_FloatingRealToComplex: 1634 return "FloatingRealToComplex"; 1635 case CK_FloatingComplexToReal: 1636 return "FloatingComplexToReal"; 1637 case CK_FloatingComplexToBoolean: 1638 return "FloatingComplexToBoolean"; 1639 case CK_FloatingComplexCast: 1640 return "FloatingComplexCast"; 1641 case CK_FloatingComplexToIntegralComplex: 1642 return "FloatingComplexToIntegralComplex"; 1643 case CK_IntegralRealToComplex: 1644 return "IntegralRealToComplex"; 1645 case CK_IntegralComplexToReal: 1646 return "IntegralComplexToReal"; 1647 case CK_IntegralComplexToBoolean: 1648 return "IntegralComplexToBoolean"; 1649 case CK_IntegralComplexCast: 1650 return "IntegralComplexCast"; 1651 case CK_IntegralComplexToFloatingComplex: 1652 return "IntegralComplexToFloatingComplex"; 1653 case CK_ARCConsumeObject: 1654 return "ARCConsumeObject"; 1655 case CK_ARCProduceObject: 1656 return "ARCProduceObject"; 1657 case CK_ARCReclaimReturnedObject: 1658 return "ARCReclaimReturnedObject"; 1659 case CK_ARCExtendBlockObject: 1660 return "ARCExtendBlockObject"; 1661 case CK_AtomicToNonAtomic: 1662 return "AtomicToNonAtomic"; 1663 case CK_NonAtomicToAtomic: 1664 return "NonAtomicToAtomic"; 1665 case CK_CopyAndAutoreleaseBlockObject: 1666 return "CopyAndAutoreleaseBlockObject"; 1667 case CK_BuiltinFnToFnPtr: 1668 return "BuiltinFnToFnPtr"; 1669 case CK_ZeroToOCLEvent: 1670 return "ZeroToOCLEvent"; 1671 case CK_AddressSpaceConversion: 1672 return "AddressSpaceConversion"; 1673 } 1674 1675 llvm_unreachable("Unhandled cast kind!"); 1676 } 1677 1678 Expr *CastExpr::getSubExprAsWritten() { 1679 Expr *SubExpr = nullptr; 1680 CastExpr *E = this; 1681 do { 1682 SubExpr = E->getSubExpr(); 1683 1684 // Skip through reference binding to temporary. 1685 if (MaterializeTemporaryExpr *Materialize 1686 = dyn_cast<MaterializeTemporaryExpr>(SubExpr)) 1687 SubExpr = Materialize->GetTemporaryExpr(); 1688 1689 // Skip any temporary bindings; they're implicit. 1690 if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) 1691 SubExpr = Binder->getSubExpr(); 1692 1693 // Conversions by constructor and conversion functions have a 1694 // subexpression describing the call; strip it off. 1695 if (E->getCastKind() == CK_ConstructorConversion) 1696 SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0); 1697 else if (E->getCastKind() == CK_UserDefinedConversion) 1698 SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument(); 1699 1700 // If the subexpression we're left with is an implicit cast, look 1701 // through that, too. 1702 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); 1703 1704 return SubExpr; 1705 } 1706 1707 CXXBaseSpecifier **CastExpr::path_buffer() { 1708 switch (getStmtClass()) { 1709 #define ABSTRACT_STMT(x) 1710 #define CASTEXPR(Type, Base) \ 1711 case Stmt::Type##Class: \ 1712 return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1); 1713 #define STMT(Type, Base) 1714 #include "clang/AST/StmtNodes.inc" 1715 default: 1716 llvm_unreachable("non-cast expressions not possible here"); 1717 } 1718 } 1719 1720 void CastExpr::setCastPath(const CXXCastPath &Path) { 1721 assert(Path.size() == path_size()); 1722 memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*)); 1723 } 1724 1725 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, 1726 CastKind Kind, Expr *Operand, 1727 const CXXCastPath *BasePath, 1728 ExprValueKind VK) { 1729 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1730 void *Buffer = 1731 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1732 ImplicitCastExpr *E = 1733 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK); 1734 if (PathSize) E->setCastPath(*BasePath); 1735 return E; 1736 } 1737 1738 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, 1739 unsigned PathSize) { 1740 void *Buffer = 1741 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1742 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize); 1743 } 1744 1745 1746 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, 1747 ExprValueKind VK, CastKind K, Expr *Op, 1748 const CXXCastPath *BasePath, 1749 TypeSourceInfo *WrittenTy, 1750 SourceLocation L, SourceLocation R) { 1751 unsigned PathSize = (BasePath ? BasePath->size() : 0); 1752 void *Buffer = 1753 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1754 CStyleCastExpr *E = 1755 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R); 1756 if (PathSize) E->setCastPath(*BasePath); 1757 return E; 1758 } 1759 1760 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, 1761 unsigned PathSize) { 1762 void *Buffer = 1763 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*)); 1764 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize); 1765 } 1766 1767 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it 1768 /// corresponds to, e.g. "<<=". 1769 StringRef BinaryOperator::getOpcodeStr(Opcode Op) { 1770 switch (Op) { 1771 case BO_PtrMemD: return ".*"; 1772 case BO_PtrMemI: return "->*"; 1773 case BO_Mul: return "*"; 1774 case BO_Div: return "/"; 1775 case BO_Rem: return "%"; 1776 case BO_Add: return "+"; 1777 case BO_Sub: return "-"; 1778 case BO_Shl: return "<<"; 1779 case BO_Shr: return ">>"; 1780 case BO_LT: return "<"; 1781 case BO_GT: return ">"; 1782 case BO_LE: return "<="; 1783 case BO_GE: return ">="; 1784 case BO_EQ: return "=="; 1785 case BO_NE: return "!="; 1786 case BO_And: return "&"; 1787 case BO_Xor: return "^"; 1788 case BO_Or: return "|"; 1789 case BO_LAnd: return "&&"; 1790 case BO_LOr: return "||"; 1791 case BO_Assign: return "="; 1792 case BO_MulAssign: return "*="; 1793 case BO_DivAssign: return "/="; 1794 case BO_RemAssign: return "%="; 1795 case BO_AddAssign: return "+="; 1796 case BO_SubAssign: return "-="; 1797 case BO_ShlAssign: return "<<="; 1798 case BO_ShrAssign: return ">>="; 1799 case BO_AndAssign: return "&="; 1800 case BO_XorAssign: return "^="; 1801 case BO_OrAssign: return "|="; 1802 case BO_Comma: return ","; 1803 } 1804 1805 llvm_unreachable("Invalid OpCode!"); 1806 } 1807 1808 BinaryOperatorKind 1809 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { 1810 switch (OO) { 1811 default: llvm_unreachable("Not an overloadable binary operator"); 1812 case OO_Plus: return BO_Add; 1813 case OO_Minus: return BO_Sub; 1814 case OO_Star: return BO_Mul; 1815 case OO_Slash: return BO_Div; 1816 case OO_Percent: return BO_Rem; 1817 case OO_Caret: return BO_Xor; 1818 case OO_Amp: return BO_And; 1819 case OO_Pipe: return BO_Or; 1820 case OO_Equal: return BO_Assign; 1821 case OO_Less: return BO_LT; 1822 case OO_Greater: return BO_GT; 1823 case OO_PlusEqual: return BO_AddAssign; 1824 case OO_MinusEqual: return BO_SubAssign; 1825 case OO_StarEqual: return BO_MulAssign; 1826 case OO_SlashEqual: return BO_DivAssign; 1827 case OO_PercentEqual: return BO_RemAssign; 1828 case OO_CaretEqual: return BO_XorAssign; 1829 case OO_AmpEqual: return BO_AndAssign; 1830 case OO_PipeEqual: return BO_OrAssign; 1831 case OO_LessLess: return BO_Shl; 1832 case OO_GreaterGreater: return BO_Shr; 1833 case OO_LessLessEqual: return BO_ShlAssign; 1834 case OO_GreaterGreaterEqual: return BO_ShrAssign; 1835 case OO_EqualEqual: return BO_EQ; 1836 case OO_ExclaimEqual: return BO_NE; 1837 case OO_LessEqual: return BO_LE; 1838 case OO_GreaterEqual: return BO_GE; 1839 case OO_AmpAmp: return BO_LAnd; 1840 case OO_PipePipe: return BO_LOr; 1841 case OO_Comma: return BO_Comma; 1842 case OO_ArrowStar: return BO_PtrMemI; 1843 } 1844 } 1845 1846 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { 1847 static const OverloadedOperatorKind OverOps[] = { 1848 /* .* Cannot be overloaded */OO_None, OO_ArrowStar, 1849 OO_Star, OO_Slash, OO_Percent, 1850 OO_Plus, OO_Minus, 1851 OO_LessLess, OO_GreaterGreater, 1852 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, 1853 OO_EqualEqual, OO_ExclaimEqual, 1854 OO_Amp, 1855 OO_Caret, 1856 OO_Pipe, 1857 OO_AmpAmp, 1858 OO_PipePipe, 1859 OO_Equal, OO_StarEqual, 1860 OO_SlashEqual, OO_PercentEqual, 1861 OO_PlusEqual, OO_MinusEqual, 1862 OO_LessLessEqual, OO_GreaterGreaterEqual, 1863 OO_AmpEqual, OO_CaretEqual, 1864 OO_PipeEqual, 1865 OO_Comma 1866 }; 1867 return OverOps[Opc]; 1868 } 1869 1870 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, 1871 ArrayRef<Expr*> initExprs, SourceLocation rbraceloc) 1872 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, 1873 false, false), 1874 InitExprs(C, initExprs.size()), 1875 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true) 1876 { 1877 sawArrayRangeDesignator(false); 1878 for (unsigned I = 0; I != initExprs.size(); ++I) { 1879 if (initExprs[I]->isTypeDependent()) 1880 ExprBits.TypeDependent = true; 1881 if (initExprs[I]->isValueDependent()) 1882 ExprBits.ValueDependent = true; 1883 if (initExprs[I]->isInstantiationDependent()) 1884 ExprBits.InstantiationDependent = true; 1885 if (initExprs[I]->containsUnexpandedParameterPack()) 1886 ExprBits.ContainsUnexpandedParameterPack = true; 1887 } 1888 1889 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); 1890 } 1891 1892 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { 1893 if (NumInits > InitExprs.size()) 1894 InitExprs.reserve(C, NumInits); 1895 } 1896 1897 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { 1898 InitExprs.resize(C, NumInits, nullptr); 1899 } 1900 1901 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { 1902 if (Init >= InitExprs.size()) { 1903 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); 1904 setInit(Init, expr); 1905 return nullptr; 1906 } 1907 1908 Expr *Result = cast_or_null<Expr>(InitExprs[Init]); 1909 setInit(Init, expr); 1910 return Result; 1911 } 1912 1913 void InitListExpr::setArrayFiller(Expr *filler) { 1914 assert(!hasArrayFiller() && "Filler already set!"); 1915 ArrayFillerOrUnionFieldInit = filler; 1916 // Fill out any "holes" in the array due to designated initializers. 1917 Expr **inits = getInits(); 1918 for (unsigned i = 0, e = getNumInits(); i != e; ++i) 1919 if (inits[i] == nullptr) 1920 inits[i] = filler; 1921 } 1922 1923 bool InitListExpr::isStringLiteralInit() const { 1924 if (getNumInits() != 1) 1925 return false; 1926 const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); 1927 if (!AT || !AT->getElementType()->isIntegerType()) 1928 return false; 1929 // It is possible for getInit() to return null. 1930 const Expr *Init = getInit(0); 1931 if (!Init) 1932 return false; 1933 Init = Init->IgnoreParens(); 1934 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); 1935 } 1936 1937 SourceLocation InitListExpr::getLocStart() const { 1938 if (InitListExpr *SyntacticForm = getSyntacticForm()) 1939 return SyntacticForm->getLocStart(); 1940 SourceLocation Beg = LBraceLoc; 1941 if (Beg.isInvalid()) { 1942 // Find the first non-null initializer. 1943 for (InitExprsTy::const_iterator I = InitExprs.begin(), 1944 E = InitExprs.end(); 1945 I != E; ++I) { 1946 if (Stmt *S = *I) { 1947 Beg = S->getLocStart(); 1948 break; 1949 } 1950 } 1951 } 1952 return Beg; 1953 } 1954 1955 SourceLocation InitListExpr::getLocEnd() const { 1956 if (InitListExpr *SyntacticForm = getSyntacticForm()) 1957 return SyntacticForm->getLocEnd(); 1958 SourceLocation End = RBraceLoc; 1959 if (End.isInvalid()) { 1960 // Find the first non-null initializer from the end. 1961 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), 1962 E = InitExprs.rend(); 1963 I != E; ++I) { 1964 if (Stmt *S = *I) { 1965 End = S->getLocEnd(); 1966 break; 1967 } 1968 } 1969 } 1970 return End; 1971 } 1972 1973 /// getFunctionType - Return the underlying function type for this block. 1974 /// 1975 const FunctionProtoType *BlockExpr::getFunctionType() const { 1976 // The block pointer is never sugared, but the function type might be. 1977 return cast<BlockPointerType>(getType()) 1978 ->getPointeeType()->castAs<FunctionProtoType>(); 1979 } 1980 1981 SourceLocation BlockExpr::getCaretLocation() const { 1982 return TheBlock->getCaretLocation(); 1983 } 1984 const Stmt *BlockExpr::getBody() const { 1985 return TheBlock->getBody(); 1986 } 1987 Stmt *BlockExpr::getBody() { 1988 return TheBlock->getBody(); 1989 } 1990 1991 1992 //===----------------------------------------------------------------------===// 1993 // Generic Expression Routines 1994 //===----------------------------------------------------------------------===// 1995 1996 /// isUnusedResultAWarning - Return true if this immediate expression should 1997 /// be warned about if the result is unused. If so, fill in Loc and Ranges 1998 /// with location to warn on and the source range[s] to report with the 1999 /// warning. 2000 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 2001 SourceRange &R1, SourceRange &R2, 2002 ASTContext &Ctx) const { 2003 // Don't warn if the expr is type dependent. The type could end up 2004 // instantiating to void. 2005 if (isTypeDependent()) 2006 return false; 2007 2008 switch (getStmtClass()) { 2009 default: 2010 if (getType()->isVoidType()) 2011 return false; 2012 WarnE = this; 2013 Loc = getExprLoc(); 2014 R1 = getSourceRange(); 2015 return true; 2016 case ParenExprClass: 2017 return cast<ParenExpr>(this)->getSubExpr()-> 2018 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2019 case GenericSelectionExprClass: 2020 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 2021 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2022 case ChooseExprClass: 2023 return cast<ChooseExpr>(this)->getChosenSubExpr()-> 2024 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2025 case UnaryOperatorClass: { 2026 const UnaryOperator *UO = cast<UnaryOperator>(this); 2027 2028 switch (UO->getOpcode()) { 2029 case UO_Plus: 2030 case UO_Minus: 2031 case UO_AddrOf: 2032 case UO_Not: 2033 case UO_LNot: 2034 case UO_Deref: 2035 break; 2036 case UO_PostInc: 2037 case UO_PostDec: 2038 case UO_PreInc: 2039 case UO_PreDec: // ++/-- 2040 return false; // Not a warning. 2041 case UO_Real: 2042 case UO_Imag: 2043 // accessing a piece of a volatile complex is a side-effect. 2044 if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) 2045 .isVolatileQualified()) 2046 return false; 2047 break; 2048 case UO_Extension: 2049 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2050 } 2051 WarnE = this; 2052 Loc = UO->getOperatorLoc(); 2053 R1 = UO->getSubExpr()->getSourceRange(); 2054 return true; 2055 } 2056 case BinaryOperatorClass: { 2057 const BinaryOperator *BO = cast<BinaryOperator>(this); 2058 switch (BO->getOpcode()) { 2059 default: 2060 break; 2061 // Consider the RHS of comma for side effects. LHS was checked by 2062 // Sema::CheckCommaOperands. 2063 case BO_Comma: 2064 // ((foo = <blah>), 0) is an idiom for hiding the result (and 2065 // lvalue-ness) of an assignment written in a macro. 2066 if (IntegerLiteral *IE = 2067 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) 2068 if (IE->getValue() == 0) 2069 return false; 2070 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2071 // Consider '||', '&&' to have side effects if the LHS or RHS does. 2072 case BO_LAnd: 2073 case BO_LOr: 2074 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || 2075 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 2076 return false; 2077 break; 2078 } 2079 if (BO->isAssignmentOp()) 2080 return false; 2081 WarnE = this; 2082 Loc = BO->getOperatorLoc(); 2083 R1 = BO->getLHS()->getSourceRange(); 2084 R2 = BO->getRHS()->getSourceRange(); 2085 return true; 2086 } 2087 case CompoundAssignOperatorClass: 2088 case VAArgExprClass: 2089 case AtomicExprClass: 2090 return false; 2091 2092 case ConditionalOperatorClass: { 2093 // If only one of the LHS or RHS is a warning, the operator might 2094 // be being used for control flow. Only warn if both the LHS and 2095 // RHS are warnings. 2096 const ConditionalOperator *Exp = cast<ConditionalOperator>(this); 2097 if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) 2098 return false; 2099 if (!Exp->getLHS()) 2100 return true; 2101 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2102 } 2103 2104 case MemberExprClass: 2105 WarnE = this; 2106 Loc = cast<MemberExpr>(this)->getMemberLoc(); 2107 R1 = SourceRange(Loc, Loc); 2108 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); 2109 return true; 2110 2111 case ArraySubscriptExprClass: 2112 WarnE = this; 2113 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); 2114 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); 2115 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); 2116 return true; 2117 2118 case CXXOperatorCallExprClass: { 2119 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator 2120 // overloads as there is no reasonable way to define these such that they 2121 // have non-trivial, desirable side-effects. See the -Wunused-comparison 2122 // warning: operators == and != are commonly typo'ed, and so warning on them 2123 // provides additional value as well. If this list is updated, 2124 // DiagnoseUnusedComparison should be as well. 2125 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); 2126 switch (Op->getOperator()) { 2127 default: 2128 break; 2129 case OO_EqualEqual: 2130 case OO_ExclaimEqual: 2131 case OO_Less: 2132 case OO_Greater: 2133 case OO_GreaterEqual: 2134 case OO_LessEqual: 2135 if (Op->getCallReturnType()->isReferenceType() || 2136 Op->getCallReturnType()->isVoidType()) 2137 break; 2138 WarnE = this; 2139 Loc = Op->getOperatorLoc(); 2140 R1 = Op->getSourceRange(); 2141 return true; 2142 } 2143 2144 // Fallthrough for generic call handling. 2145 } 2146 case CallExprClass: 2147 case CXXMemberCallExprClass: 2148 case UserDefinedLiteralClass: { 2149 // If this is a direct call, get the callee. 2150 const CallExpr *CE = cast<CallExpr>(this); 2151 if (const Decl *FD = CE->getCalleeDecl()) { 2152 // If the callee has attribute pure, const, or warn_unused_result, warn 2153 // about it. void foo() { strlen("bar"); } should warn. 2154 // 2155 // Note: If new cases are added here, DiagnoseUnusedExprResult should be 2156 // updated to match for QoI. 2157 if (FD->hasAttr<WarnUnusedResultAttr>() || 2158 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { 2159 WarnE = this; 2160 Loc = CE->getCallee()->getLocStart(); 2161 R1 = CE->getCallee()->getSourceRange(); 2162 2163 if (unsigned NumArgs = CE->getNumArgs()) 2164 R2 = SourceRange(CE->getArg(0)->getLocStart(), 2165 CE->getArg(NumArgs-1)->getLocEnd()); 2166 return true; 2167 } 2168 } 2169 return false; 2170 } 2171 2172 // If we don't know precisely what we're looking at, let's not warn. 2173 case UnresolvedLookupExprClass: 2174 case CXXUnresolvedConstructExprClass: 2175 return false; 2176 2177 case CXXTemporaryObjectExprClass: 2178 case CXXConstructExprClass: { 2179 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { 2180 if (Type->hasAttr<WarnUnusedAttr>()) { 2181 WarnE = this; 2182 Loc = getLocStart(); 2183 R1 = getSourceRange(); 2184 return true; 2185 } 2186 } 2187 return false; 2188 } 2189 2190 case ObjCMessageExprClass: { 2191 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); 2192 if (Ctx.getLangOpts().ObjCAutoRefCount && 2193 ME->isInstanceMessage() && 2194 !ME->getType()->isVoidType() && 2195 ME->getMethodFamily() == OMF_init) { 2196 WarnE = this; 2197 Loc = getExprLoc(); 2198 R1 = ME->getSourceRange(); 2199 return true; 2200 } 2201 2202 if (const ObjCMethodDecl *MD = ME->getMethodDecl()) 2203 if (MD->hasAttr<WarnUnusedResultAttr>() || 2204 (MD->isPropertyAccessor() && !MD->getReturnType()->isVoidType() && 2205 !ME->getReceiverType()->isObjCIdType())) { 2206 WarnE = this; 2207 Loc = getExprLoc(); 2208 return true; 2209 } 2210 2211 return false; 2212 } 2213 2214 case ObjCPropertyRefExprClass: 2215 WarnE = this; 2216 Loc = getExprLoc(); 2217 R1 = getSourceRange(); 2218 return true; 2219 2220 case PseudoObjectExprClass: { 2221 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 2222 2223 // Only complain about things that have the form of a getter. 2224 if (isa<UnaryOperator>(PO->getSyntacticForm()) || 2225 isa<BinaryOperator>(PO->getSyntacticForm())) 2226 return false; 2227 2228 WarnE = this; 2229 Loc = getExprLoc(); 2230 R1 = getSourceRange(); 2231 return true; 2232 } 2233 2234 case StmtExprClass: { 2235 // Statement exprs don't logically have side effects themselves, but are 2236 // sometimes used in macros in ways that give them a type that is unused. 2237 // For example ({ blah; foo(); }) will end up with a type if foo has a type. 2238 // however, if the result of the stmt expr is dead, we don't want to emit a 2239 // warning. 2240 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); 2241 if (!CS->body_empty()) { 2242 if (const Expr *E = dyn_cast<Expr>(CS->body_back())) 2243 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2244 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) 2245 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) 2246 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2247 } 2248 2249 if (getType()->isVoidType()) 2250 return false; 2251 WarnE = this; 2252 Loc = cast<StmtExpr>(this)->getLParenLoc(); 2253 R1 = getSourceRange(); 2254 return true; 2255 } 2256 case CXXFunctionalCastExprClass: 2257 case CStyleCastExprClass: { 2258 // Ignore an explicit cast to void unless the operand is a non-trivial 2259 // volatile lvalue. 2260 const CastExpr *CE = cast<CastExpr>(this); 2261 if (CE->getCastKind() == CK_ToVoid) { 2262 if (CE->getSubExpr()->isGLValue() && 2263 CE->getSubExpr()->getType().isVolatileQualified()) { 2264 const DeclRefExpr *DRE = 2265 dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens()); 2266 if (!(DRE && isa<VarDecl>(DRE->getDecl()) && 2267 cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) { 2268 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, 2269 R1, R2, Ctx); 2270 } 2271 } 2272 return false; 2273 } 2274 2275 // If this is a cast to a constructor conversion, check the operand. 2276 // Otherwise, the result of the cast is unused. 2277 if (CE->getCastKind() == CK_ConstructorConversion) 2278 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2279 2280 WarnE = this; 2281 if (const CXXFunctionalCastExpr *CXXCE = 2282 dyn_cast<CXXFunctionalCastExpr>(this)) { 2283 Loc = CXXCE->getLocStart(); 2284 R1 = CXXCE->getSubExpr()->getSourceRange(); 2285 } else { 2286 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); 2287 Loc = CStyleCE->getLParenLoc(); 2288 R1 = CStyleCE->getSubExpr()->getSourceRange(); 2289 } 2290 return true; 2291 } 2292 case ImplicitCastExprClass: { 2293 const CastExpr *ICE = cast<ImplicitCastExpr>(this); 2294 2295 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. 2296 if (ICE->getCastKind() == CK_LValueToRValue && 2297 ICE->getSubExpr()->getType().isVolatileQualified()) 2298 return false; 2299 2300 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); 2301 } 2302 case CXXDefaultArgExprClass: 2303 return (cast<CXXDefaultArgExpr>(this) 2304 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2305 case CXXDefaultInitExprClass: 2306 return (cast<CXXDefaultInitExpr>(this) 2307 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2308 2309 case CXXNewExprClass: 2310 // FIXME: In theory, there might be new expressions that don't have side 2311 // effects (e.g. a placement new with an uninitialized POD). 2312 case CXXDeleteExprClass: 2313 return false; 2314 case CXXBindTemporaryExprClass: 2315 return (cast<CXXBindTemporaryExpr>(this) 2316 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2317 case ExprWithCleanupsClass: 2318 return (cast<ExprWithCleanups>(this) 2319 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); 2320 } 2321 } 2322 2323 /// isOBJCGCCandidate - Check if an expression is objc gc'able. 2324 /// returns true, if it is; false otherwise. 2325 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { 2326 const Expr *E = IgnoreParens(); 2327 switch (E->getStmtClass()) { 2328 default: 2329 return false; 2330 case ObjCIvarRefExprClass: 2331 return true; 2332 case Expr::UnaryOperatorClass: 2333 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2334 case ImplicitCastExprClass: 2335 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2336 case MaterializeTemporaryExprClass: 2337 return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr() 2338 ->isOBJCGCCandidate(Ctx); 2339 case CStyleCastExprClass: 2340 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); 2341 case DeclRefExprClass: { 2342 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 2343 2344 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2345 if (VD->hasGlobalStorage()) 2346 return true; 2347 QualType T = VD->getType(); 2348 // dereferencing to a pointer is always a gc'able candidate, 2349 // unless it is __weak. 2350 return T->isPointerType() && 2351 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); 2352 } 2353 return false; 2354 } 2355 case MemberExprClass: { 2356 const MemberExpr *M = cast<MemberExpr>(E); 2357 return M->getBase()->isOBJCGCCandidate(Ctx); 2358 } 2359 case ArraySubscriptExprClass: 2360 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); 2361 } 2362 } 2363 2364 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { 2365 if (isTypeDependent()) 2366 return false; 2367 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; 2368 } 2369 2370 QualType Expr::findBoundMemberType(const Expr *expr) { 2371 assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); 2372 2373 // Bound member expressions are always one of these possibilities: 2374 // x->m x.m x->*y x.*y 2375 // (possibly parenthesized) 2376 2377 expr = expr->IgnoreParens(); 2378 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { 2379 assert(isa<CXXMethodDecl>(mem->getMemberDecl())); 2380 return mem->getMemberDecl()->getType(); 2381 } 2382 2383 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { 2384 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() 2385 ->getPointeeType(); 2386 assert(type->isFunctionType()); 2387 return type; 2388 } 2389 2390 assert(isa<UnresolvedMemberExpr>(expr)); 2391 return QualType(); 2392 } 2393 2394 Expr* Expr::IgnoreParens() { 2395 Expr* E = this; 2396 while (true) { 2397 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) { 2398 E = P->getSubExpr(); 2399 continue; 2400 } 2401 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) { 2402 if (P->getOpcode() == UO_Extension) { 2403 E = P->getSubExpr(); 2404 continue; 2405 } 2406 } 2407 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) { 2408 if (!P->isResultDependent()) { 2409 E = P->getResultExpr(); 2410 continue; 2411 } 2412 } 2413 if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) { 2414 if (!P->isConditionDependent()) { 2415 E = P->getChosenSubExpr(); 2416 continue; 2417 } 2418 } 2419 return E; 2420 } 2421 } 2422 2423 /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr 2424 /// or CastExprs or ImplicitCastExprs, returning their operand. 2425 Expr *Expr::IgnoreParenCasts() { 2426 Expr *E = this; 2427 while (true) { 2428 E = E->IgnoreParens(); 2429 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2430 E = P->getSubExpr(); 2431 continue; 2432 } 2433 if (MaterializeTemporaryExpr *Materialize 2434 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2435 E = Materialize->GetTemporaryExpr(); 2436 continue; 2437 } 2438 if (SubstNonTypeTemplateParmExpr *NTTP 2439 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2440 E = NTTP->getReplacement(); 2441 continue; 2442 } 2443 return E; 2444 } 2445 } 2446 2447 Expr *Expr::IgnoreCasts() { 2448 Expr *E = this; 2449 while (true) { 2450 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2451 E = P->getSubExpr(); 2452 continue; 2453 } 2454 if (MaterializeTemporaryExpr *Materialize 2455 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2456 E = Materialize->GetTemporaryExpr(); 2457 continue; 2458 } 2459 if (SubstNonTypeTemplateParmExpr *NTTP 2460 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2461 E = NTTP->getReplacement(); 2462 continue; 2463 } 2464 return E; 2465 } 2466 } 2467 2468 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue 2469 /// casts. This is intended purely as a temporary workaround for code 2470 /// that hasn't yet been rewritten to do the right thing about those 2471 /// casts, and may disappear along with the last internal use. 2472 Expr *Expr::IgnoreParenLValueCasts() { 2473 Expr *E = this; 2474 while (true) { 2475 E = E->IgnoreParens(); 2476 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2477 if (P->getCastKind() == CK_LValueToRValue) { 2478 E = P->getSubExpr(); 2479 continue; 2480 } 2481 } else if (MaterializeTemporaryExpr *Materialize 2482 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2483 E = Materialize->GetTemporaryExpr(); 2484 continue; 2485 } else if (SubstNonTypeTemplateParmExpr *NTTP 2486 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2487 E = NTTP->getReplacement(); 2488 continue; 2489 } 2490 break; 2491 } 2492 return E; 2493 } 2494 2495 Expr *Expr::ignoreParenBaseCasts() { 2496 Expr *E = this; 2497 while (true) { 2498 E = E->IgnoreParens(); 2499 if (CastExpr *CE = dyn_cast<CastExpr>(E)) { 2500 if (CE->getCastKind() == CK_DerivedToBase || 2501 CE->getCastKind() == CK_UncheckedDerivedToBase || 2502 CE->getCastKind() == CK_NoOp) { 2503 E = CE->getSubExpr(); 2504 continue; 2505 } 2506 } 2507 2508 return E; 2509 } 2510 } 2511 2512 Expr *Expr::IgnoreParenImpCasts() { 2513 Expr *E = this; 2514 while (true) { 2515 E = E->IgnoreParens(); 2516 if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) { 2517 E = P->getSubExpr(); 2518 continue; 2519 } 2520 if (MaterializeTemporaryExpr *Materialize 2521 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2522 E = Materialize->GetTemporaryExpr(); 2523 continue; 2524 } 2525 if (SubstNonTypeTemplateParmExpr *NTTP 2526 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2527 E = NTTP->getReplacement(); 2528 continue; 2529 } 2530 return E; 2531 } 2532 } 2533 2534 Expr *Expr::IgnoreConversionOperator() { 2535 if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) { 2536 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) 2537 return MCE->getImplicitObjectArgument(); 2538 } 2539 return this; 2540 } 2541 2542 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the 2543 /// value (including ptr->int casts of the same size). Strip off any 2544 /// ParenExpr or CastExprs, returning their operand. 2545 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) { 2546 Expr *E = this; 2547 while (true) { 2548 E = E->IgnoreParens(); 2549 2550 if (CastExpr *P = dyn_cast<CastExpr>(E)) { 2551 // We ignore integer <-> casts that are of the same width, ptr<->ptr and 2552 // ptr<->int casts of the same width. We also ignore all identity casts. 2553 Expr *SE = P->getSubExpr(); 2554 2555 if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) { 2556 E = SE; 2557 continue; 2558 } 2559 2560 if ((E->getType()->isPointerType() || 2561 E->getType()->isIntegralType(Ctx)) && 2562 (SE->getType()->isPointerType() || 2563 SE->getType()->isIntegralType(Ctx)) && 2564 Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) { 2565 E = SE; 2566 continue; 2567 } 2568 } 2569 2570 if (SubstNonTypeTemplateParmExpr *NTTP 2571 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 2572 E = NTTP->getReplacement(); 2573 continue; 2574 } 2575 2576 return E; 2577 } 2578 } 2579 2580 bool Expr::isDefaultArgument() const { 2581 const Expr *E = this; 2582 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 2583 E = M->GetTemporaryExpr(); 2584 2585 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 2586 E = ICE->getSubExprAsWritten(); 2587 2588 return isa<CXXDefaultArgExpr>(E); 2589 } 2590 2591 /// \brief Skip over any no-op casts and any temporary-binding 2592 /// expressions. 2593 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { 2594 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) 2595 E = M->GetTemporaryExpr(); 2596 2597 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2598 if (ICE->getCastKind() == CK_NoOp) 2599 E = ICE->getSubExpr(); 2600 else 2601 break; 2602 } 2603 2604 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) 2605 E = BE->getSubExpr(); 2606 2607 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2608 if (ICE->getCastKind() == CK_NoOp) 2609 E = ICE->getSubExpr(); 2610 else 2611 break; 2612 } 2613 2614 return E->IgnoreParens(); 2615 } 2616 2617 /// isTemporaryObject - Determines if this expression produces a 2618 /// temporary of the given class type. 2619 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { 2620 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) 2621 return false; 2622 2623 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); 2624 2625 // Temporaries are by definition pr-values of class type. 2626 if (!E->Classify(C).isPRValue()) { 2627 // In this context, property reference is a message call and is pr-value. 2628 if (!isa<ObjCPropertyRefExpr>(E)) 2629 return false; 2630 } 2631 2632 // Black-list a few cases which yield pr-values of class type that don't 2633 // refer to temporaries of that type: 2634 2635 // - implicit derived-to-base conversions 2636 if (isa<ImplicitCastExpr>(E)) { 2637 switch (cast<ImplicitCastExpr>(E)->getCastKind()) { 2638 case CK_DerivedToBase: 2639 case CK_UncheckedDerivedToBase: 2640 return false; 2641 default: 2642 break; 2643 } 2644 } 2645 2646 // - member expressions (all) 2647 if (isa<MemberExpr>(E)) 2648 return false; 2649 2650 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) 2651 if (BO->isPtrMemOp()) 2652 return false; 2653 2654 // - opaque values (all) 2655 if (isa<OpaqueValueExpr>(E)) 2656 return false; 2657 2658 return true; 2659 } 2660 2661 bool Expr::isImplicitCXXThis() const { 2662 const Expr *E = this; 2663 2664 // Strip away parentheses and casts we don't care about. 2665 while (true) { 2666 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { 2667 E = Paren->getSubExpr(); 2668 continue; 2669 } 2670 2671 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 2672 if (ICE->getCastKind() == CK_NoOp || 2673 ICE->getCastKind() == CK_LValueToRValue || 2674 ICE->getCastKind() == CK_DerivedToBase || 2675 ICE->getCastKind() == CK_UncheckedDerivedToBase) { 2676 E = ICE->getSubExpr(); 2677 continue; 2678 } 2679 } 2680 2681 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { 2682 if (UnOp->getOpcode() == UO_Extension) { 2683 E = UnOp->getSubExpr(); 2684 continue; 2685 } 2686 } 2687 2688 if (const MaterializeTemporaryExpr *M 2689 = dyn_cast<MaterializeTemporaryExpr>(E)) { 2690 E = M->GetTemporaryExpr(); 2691 continue; 2692 } 2693 2694 break; 2695 } 2696 2697 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) 2698 return This->isImplicit(); 2699 2700 return false; 2701 } 2702 2703 /// hasAnyTypeDependentArguments - Determines if any of the expressions 2704 /// in Exprs is type-dependent. 2705 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { 2706 for (unsigned I = 0; I < Exprs.size(); ++I) 2707 if (Exprs[I]->isTypeDependent()) 2708 return true; 2709 2710 return false; 2711 } 2712 2713 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, 2714 const Expr **Culprit) const { 2715 // This function is attempting whether an expression is an initializer 2716 // which can be evaluated at compile-time. It very closely parallels 2717 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it 2718 // will lead to unexpected results. Like ConstExprEmitter, it falls back 2719 // to isEvaluatable most of the time. 2720 // 2721 // If we ever capture reference-binding directly in the AST, we can 2722 // kill the second parameter. 2723 2724 if (IsForRef) { 2725 EvalResult Result; 2726 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) 2727 return true; 2728 if (Culprit) 2729 *Culprit = this; 2730 return false; 2731 } 2732 2733 switch (getStmtClass()) { 2734 default: break; 2735 case StringLiteralClass: 2736 case ObjCEncodeExprClass: 2737 return true; 2738 case CXXTemporaryObjectExprClass: 2739 case CXXConstructExprClass: { 2740 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 2741 2742 if (CE->getConstructor()->isTrivial() && 2743 CE->getConstructor()->getParent()->hasTrivialDestructor()) { 2744 // Trivial default constructor 2745 if (!CE->getNumArgs()) return true; 2746 2747 // Trivial copy constructor 2748 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 2749 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); 2750 } 2751 2752 break; 2753 } 2754 case CompoundLiteralExprClass: { 2755 // This handles gcc's extension that allows global initializers like 2756 // "struct x {int x;} x = (struct x) {};". 2757 // FIXME: This accepts other cases it shouldn't! 2758 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); 2759 return Exp->isConstantInitializer(Ctx, false, Culprit); 2760 } 2761 case InitListExprClass: { 2762 const InitListExpr *ILE = cast<InitListExpr>(this); 2763 if (ILE->getType()->isArrayType()) { 2764 unsigned numInits = ILE->getNumInits(); 2765 for (unsigned i = 0; i < numInits; i++) { 2766 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) 2767 return false; 2768 } 2769 return true; 2770 } 2771 2772 if (ILE->getType()->isRecordType()) { 2773 unsigned ElementNo = 0; 2774 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); 2775 for (const auto *Field : RD->fields()) { 2776 // If this is a union, skip all the fields that aren't being initialized. 2777 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) 2778 continue; 2779 2780 // Don't emit anonymous bitfields, they just affect layout. 2781 if (Field->isUnnamedBitfield()) 2782 continue; 2783 2784 if (ElementNo < ILE->getNumInits()) { 2785 const Expr *Elt = ILE->getInit(ElementNo++); 2786 if (Field->isBitField()) { 2787 // Bitfields have to evaluate to an integer. 2788 llvm::APSInt ResultTmp; 2789 if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) { 2790 if (Culprit) 2791 *Culprit = Elt; 2792 return false; 2793 } 2794 } else { 2795 bool RefType = Field->getType()->isReferenceType(); 2796 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) 2797 return false; 2798 } 2799 } 2800 } 2801 return true; 2802 } 2803 2804 break; 2805 } 2806 case ImplicitValueInitExprClass: 2807 return true; 2808 case ParenExprClass: 2809 return cast<ParenExpr>(this)->getSubExpr() 2810 ->isConstantInitializer(Ctx, IsForRef, Culprit); 2811 case GenericSelectionExprClass: 2812 return cast<GenericSelectionExpr>(this)->getResultExpr() 2813 ->isConstantInitializer(Ctx, IsForRef, Culprit); 2814 case ChooseExprClass: 2815 if (cast<ChooseExpr>(this)->isConditionDependent()) { 2816 if (Culprit) 2817 *Culprit = this; 2818 return false; 2819 } 2820 return cast<ChooseExpr>(this)->getChosenSubExpr() 2821 ->isConstantInitializer(Ctx, IsForRef, Culprit); 2822 case UnaryOperatorClass: { 2823 const UnaryOperator* Exp = cast<UnaryOperator>(this); 2824 if (Exp->getOpcode() == UO_Extension) 2825 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 2826 break; 2827 } 2828 case CXXFunctionalCastExprClass: 2829 case CXXStaticCastExprClass: 2830 case ImplicitCastExprClass: 2831 case CStyleCastExprClass: 2832 case ObjCBridgedCastExprClass: 2833 case CXXDynamicCastExprClass: 2834 case CXXReinterpretCastExprClass: 2835 case CXXConstCastExprClass: { 2836 const CastExpr *CE = cast<CastExpr>(this); 2837 2838 // Handle misc casts we want to ignore. 2839 if (CE->getCastKind() == CK_NoOp || 2840 CE->getCastKind() == CK_LValueToRValue || 2841 CE->getCastKind() == CK_ToUnion || 2842 CE->getCastKind() == CK_ConstructorConversion || 2843 CE->getCastKind() == CK_NonAtomicToAtomic || 2844 CE->getCastKind() == CK_AtomicToNonAtomic) 2845 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); 2846 2847 break; 2848 } 2849 case MaterializeTemporaryExprClass: 2850 return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr() 2851 ->isConstantInitializer(Ctx, false, Culprit); 2852 2853 case SubstNonTypeTemplateParmExprClass: 2854 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() 2855 ->isConstantInitializer(Ctx, false, Culprit); 2856 case CXXDefaultArgExprClass: 2857 return cast<CXXDefaultArgExpr>(this)->getExpr() 2858 ->isConstantInitializer(Ctx, false, Culprit); 2859 case CXXDefaultInitExprClass: 2860 return cast<CXXDefaultInitExpr>(this)->getExpr() 2861 ->isConstantInitializer(Ctx, false, Culprit); 2862 } 2863 if (isEvaluatable(Ctx)) 2864 return true; 2865 if (Culprit) 2866 *Culprit = this; 2867 return false; 2868 } 2869 2870 bool Expr::HasSideEffects(const ASTContext &Ctx, 2871 bool IncludePossibleEffects) const { 2872 // In circumstances where we care about definite side effects instead of 2873 // potential side effects, we want to ignore expressions that are part of a 2874 // macro expansion as a potential side effect. 2875 if (!IncludePossibleEffects && getExprLoc().isMacroID()) 2876 return false; 2877 2878 if (isInstantiationDependent()) 2879 return IncludePossibleEffects; 2880 2881 switch (getStmtClass()) { 2882 case NoStmtClass: 2883 #define ABSTRACT_STMT(Type) 2884 #define STMT(Type, Base) case Type##Class: 2885 #define EXPR(Type, Base) 2886 #include "clang/AST/StmtNodes.inc" 2887 llvm_unreachable("unexpected Expr kind"); 2888 2889 case DependentScopeDeclRefExprClass: 2890 case CXXUnresolvedConstructExprClass: 2891 case CXXDependentScopeMemberExprClass: 2892 case UnresolvedLookupExprClass: 2893 case UnresolvedMemberExprClass: 2894 case PackExpansionExprClass: 2895 case SubstNonTypeTemplateParmPackExprClass: 2896 case FunctionParmPackExprClass: 2897 case TypoExprClass: 2898 case CXXFoldExprClass: 2899 llvm_unreachable("shouldn't see dependent / unresolved nodes here"); 2900 2901 case DeclRefExprClass: 2902 case ObjCIvarRefExprClass: 2903 case PredefinedExprClass: 2904 case IntegerLiteralClass: 2905 case FloatingLiteralClass: 2906 case ImaginaryLiteralClass: 2907 case StringLiteralClass: 2908 case CharacterLiteralClass: 2909 case OffsetOfExprClass: 2910 case ImplicitValueInitExprClass: 2911 case UnaryExprOrTypeTraitExprClass: 2912 case AddrLabelExprClass: 2913 case GNUNullExprClass: 2914 case CXXBoolLiteralExprClass: 2915 case CXXNullPtrLiteralExprClass: 2916 case CXXThisExprClass: 2917 case CXXScalarValueInitExprClass: 2918 case TypeTraitExprClass: 2919 case ArrayTypeTraitExprClass: 2920 case ExpressionTraitExprClass: 2921 case CXXNoexceptExprClass: 2922 case SizeOfPackExprClass: 2923 case ObjCStringLiteralClass: 2924 case ObjCEncodeExprClass: 2925 case ObjCBoolLiteralExprClass: 2926 case CXXUuidofExprClass: 2927 case OpaqueValueExprClass: 2928 // These never have a side-effect. 2929 return false; 2930 2931 case CallExprClass: 2932 case CXXOperatorCallExprClass: 2933 case CXXMemberCallExprClass: 2934 case CUDAKernelCallExprClass: 2935 case BlockExprClass: 2936 case CXXBindTemporaryExprClass: 2937 case UserDefinedLiteralClass: 2938 // We don't know a call definitely has side effects, but we can check the 2939 // call's operands. 2940 if (!IncludePossibleEffects) 2941 break; 2942 return true; 2943 2944 case MSPropertyRefExprClass: 2945 case CompoundAssignOperatorClass: 2946 case VAArgExprClass: 2947 case AtomicExprClass: 2948 case StmtExprClass: 2949 case CXXThrowExprClass: 2950 case CXXNewExprClass: 2951 case CXXDeleteExprClass: 2952 case ExprWithCleanupsClass: 2953 // These always have a side-effect. 2954 return true; 2955 2956 case ParenExprClass: 2957 case ArraySubscriptExprClass: 2958 case MemberExprClass: 2959 case ConditionalOperatorClass: 2960 case BinaryConditionalOperatorClass: 2961 case CompoundLiteralExprClass: 2962 case ExtVectorElementExprClass: 2963 case DesignatedInitExprClass: 2964 case ParenListExprClass: 2965 case CXXPseudoDestructorExprClass: 2966 case CXXStdInitializerListExprClass: 2967 case SubstNonTypeTemplateParmExprClass: 2968 case MaterializeTemporaryExprClass: 2969 case ShuffleVectorExprClass: 2970 case ConvertVectorExprClass: 2971 case AsTypeExprClass: 2972 // These have a side-effect if any subexpression does. 2973 break; 2974 2975 case UnaryOperatorClass: 2976 if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) 2977 return true; 2978 break; 2979 2980 case BinaryOperatorClass: 2981 if (cast<BinaryOperator>(this)->isAssignmentOp()) 2982 return true; 2983 break; 2984 2985 case InitListExprClass: 2986 // FIXME: The children for an InitListExpr doesn't include the array filler. 2987 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) 2988 if (E->HasSideEffects(Ctx, IncludePossibleEffects)) 2989 return true; 2990 break; 2991 2992 case GenericSelectionExprClass: 2993 return cast<GenericSelectionExpr>(this)->getResultExpr()-> 2994 HasSideEffects(Ctx, IncludePossibleEffects); 2995 2996 case ChooseExprClass: 2997 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( 2998 Ctx, IncludePossibleEffects); 2999 3000 case CXXDefaultArgExprClass: 3001 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( 3002 Ctx, IncludePossibleEffects); 3003 3004 case CXXDefaultInitExprClass: { 3005 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); 3006 if (const Expr *E = FD->getInClassInitializer()) 3007 return E->HasSideEffects(Ctx, IncludePossibleEffects); 3008 // If we've not yet parsed the initializer, assume it has side-effects. 3009 return true; 3010 } 3011 3012 case CXXDynamicCastExprClass: { 3013 // A dynamic_cast expression has side-effects if it can throw. 3014 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); 3015 if (DCE->getTypeAsWritten()->isReferenceType() && 3016 DCE->getCastKind() == CK_Dynamic) 3017 return true; 3018 } // Fall through. 3019 case ImplicitCastExprClass: 3020 case CStyleCastExprClass: 3021 case CXXStaticCastExprClass: 3022 case CXXReinterpretCastExprClass: 3023 case CXXConstCastExprClass: 3024 case CXXFunctionalCastExprClass: { 3025 // While volatile reads are side-effecting in both C and C++, we treat them 3026 // as having possible (not definite) side-effects. This allows idiomatic 3027 // code to behave without warning, such as sizeof(*v) for a volatile- 3028 // qualified pointer. 3029 if (!IncludePossibleEffects) 3030 break; 3031 3032 const CastExpr *CE = cast<CastExpr>(this); 3033 if (CE->getCastKind() == CK_LValueToRValue && 3034 CE->getSubExpr()->getType().isVolatileQualified()) 3035 return true; 3036 break; 3037 } 3038 3039 case CXXTypeidExprClass: 3040 // typeid might throw if its subexpression is potentially-evaluated, so has 3041 // side-effects in that case whether or not its subexpression does. 3042 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated(); 3043 3044 case CXXConstructExprClass: 3045 case CXXTemporaryObjectExprClass: { 3046 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); 3047 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) 3048 return true; 3049 // A trivial constructor does not add any side-effects of its own. Just look 3050 // at its arguments. 3051 break; 3052 } 3053 3054 case LambdaExprClass: { 3055 const LambdaExpr *LE = cast<LambdaExpr>(this); 3056 for (LambdaExpr::capture_iterator I = LE->capture_begin(), 3057 E = LE->capture_end(); I != E; ++I) 3058 if (I->getCaptureKind() == LCK_ByCopy) 3059 // FIXME: Only has a side-effect if the variable is volatile or if 3060 // the copy would invoke a non-trivial copy constructor. 3061 return true; 3062 return false; 3063 } 3064 3065 case PseudoObjectExprClass: { 3066 // Only look for side-effects in the semantic form, and look past 3067 // OpaqueValueExpr bindings in that form. 3068 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); 3069 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), 3070 E = PO->semantics_end(); 3071 I != E; ++I) { 3072 const Expr *Subexpr = *I; 3073 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) 3074 Subexpr = OVE->getSourceExpr(); 3075 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) 3076 return true; 3077 } 3078 return false; 3079 } 3080 3081 case ObjCBoxedExprClass: 3082 case ObjCArrayLiteralClass: 3083 case ObjCDictionaryLiteralClass: 3084 case ObjCSelectorExprClass: 3085 case ObjCProtocolExprClass: 3086 case ObjCIsaExprClass: 3087 case ObjCIndirectCopyRestoreExprClass: 3088 case ObjCSubscriptRefExprClass: 3089 case ObjCBridgedCastExprClass: 3090 case ObjCMessageExprClass: 3091 case ObjCPropertyRefExprClass: 3092 // FIXME: Classify these cases better. 3093 if (IncludePossibleEffects) 3094 return true; 3095 break; 3096 } 3097 3098 // Recurse to children. 3099 for (const_child_range SubStmts = children(); SubStmts; ++SubStmts) 3100 if (const Stmt *S = *SubStmts) 3101 if (cast<Expr>(S)->HasSideEffects(Ctx, IncludePossibleEffects)) 3102 return true; 3103 3104 return false; 3105 } 3106 3107 namespace { 3108 /// \brief Look for a call to a non-trivial function within an expression. 3109 class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder> 3110 { 3111 typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited; 3112 3113 bool NonTrivial; 3114 3115 public: 3116 explicit NonTrivialCallFinder(ASTContext &Context) 3117 : Inherited(Context), NonTrivial(false) { } 3118 3119 bool hasNonTrivialCall() const { return NonTrivial; } 3120 3121 void VisitCallExpr(CallExpr *E) { 3122 if (CXXMethodDecl *Method 3123 = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) { 3124 if (Method->isTrivial()) { 3125 // Recurse to children of the call. 3126 Inherited::VisitStmt(E); 3127 return; 3128 } 3129 } 3130 3131 NonTrivial = true; 3132 } 3133 3134 void VisitCXXConstructExpr(CXXConstructExpr *E) { 3135 if (E->getConstructor()->isTrivial()) { 3136 // Recurse to children of the call. 3137 Inherited::VisitStmt(E); 3138 return; 3139 } 3140 3141 NonTrivial = true; 3142 } 3143 3144 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3145 if (E->getTemporary()->getDestructor()->isTrivial()) { 3146 Inherited::VisitStmt(E); 3147 return; 3148 } 3149 3150 NonTrivial = true; 3151 } 3152 }; 3153 } 3154 3155 bool Expr::hasNonTrivialCall(ASTContext &Ctx) { 3156 NonTrivialCallFinder Finder(Ctx); 3157 Finder.Visit(this); 3158 return Finder.hasNonTrivialCall(); 3159 } 3160 3161 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 3162 /// pointer constant or not, as well as the specific kind of constant detected. 3163 /// Null pointer constants can be integer constant expressions with the 3164 /// value zero, casts of zero to void*, nullptr (C++0X), or __null 3165 /// (a GNU extension). 3166 Expr::NullPointerConstantKind 3167 Expr::isNullPointerConstant(ASTContext &Ctx, 3168 NullPointerConstantValueDependence NPC) const { 3169 if (isValueDependent() && 3170 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { 3171 switch (NPC) { 3172 case NPC_NeverValueDependent: 3173 llvm_unreachable("Unexpected value dependent expression!"); 3174 case NPC_ValueDependentIsNull: 3175 if (isTypeDependent() || getType()->isIntegralType(Ctx)) 3176 return NPCK_ZeroExpression; 3177 else 3178 return NPCK_NotNull; 3179 3180 case NPC_ValueDependentIsNotNull: 3181 return NPCK_NotNull; 3182 } 3183 } 3184 3185 // Strip off a cast to void*, if it exists. Except in C++. 3186 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { 3187 if (!Ctx.getLangOpts().CPlusPlus) { 3188 // Check that it is a cast to void*. 3189 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { 3190 QualType Pointee = PT->getPointeeType(); 3191 if (!Pointee.hasQualifiers() && 3192 Pointee->isVoidType() && // to void* 3193 CE->getSubExpr()->getType()->isIntegerType()) // from int. 3194 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3195 } 3196 } 3197 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { 3198 // Ignore the ImplicitCastExpr type entirely. 3199 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3200 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { 3201 // Accept ((void*)0) as a null pointer constant, as many other 3202 // implementations do. 3203 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); 3204 } else if (const GenericSelectionExpr *GE = 3205 dyn_cast<GenericSelectionExpr>(this)) { 3206 if (GE->isResultDependent()) 3207 return NPCK_NotNull; 3208 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); 3209 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { 3210 if (CE->isConditionDependent()) 3211 return NPCK_NotNull; 3212 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); 3213 } else if (const CXXDefaultArgExpr *DefaultArg 3214 = dyn_cast<CXXDefaultArgExpr>(this)) { 3215 // See through default argument expressions. 3216 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); 3217 } else if (const CXXDefaultInitExpr *DefaultInit 3218 = dyn_cast<CXXDefaultInitExpr>(this)) { 3219 // See through default initializer expressions. 3220 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); 3221 } else if (isa<GNUNullExpr>(this)) { 3222 // The GNU __null extension is always a null pointer constant. 3223 return NPCK_GNUNull; 3224 } else if (const MaterializeTemporaryExpr *M 3225 = dyn_cast<MaterializeTemporaryExpr>(this)) { 3226 return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC); 3227 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { 3228 if (const Expr *Source = OVE->getSourceExpr()) 3229 return Source->isNullPointerConstant(Ctx, NPC); 3230 } 3231 3232 // C++11 nullptr_t is always a null pointer constant. 3233 if (getType()->isNullPtrType()) 3234 return NPCK_CXX11_nullptr; 3235 3236 if (const RecordType *UT = getType()->getAsUnionType()) 3237 if (!Ctx.getLangOpts().CPlusPlus11 && 3238 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) 3239 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ 3240 const Expr *InitExpr = CLE->getInitializer(); 3241 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) 3242 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); 3243 } 3244 // This expression must be an integer type. 3245 if (!getType()->isIntegerType() || 3246 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) 3247 return NPCK_NotNull; 3248 3249 if (Ctx.getLangOpts().CPlusPlus11) { 3250 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with 3251 // value zero or a prvalue of type std::nullptr_t. 3252 // Microsoft mode permits C++98 rules reflecting MSVC behavior. 3253 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); 3254 if (Lit && !Lit->getValue()) 3255 return NPCK_ZeroLiteral; 3256 else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) 3257 return NPCK_NotNull; 3258 } else { 3259 // If we have an integer constant expression, we need to *evaluate* it and 3260 // test for the value 0. 3261 if (!isIntegerConstantExpr(Ctx)) 3262 return NPCK_NotNull; 3263 } 3264 3265 if (EvaluateKnownConstInt(Ctx) != 0) 3266 return NPCK_NotNull; 3267 3268 if (isa<IntegerLiteral>(this)) 3269 return NPCK_ZeroLiteral; 3270 return NPCK_ZeroExpression; 3271 } 3272 3273 /// \brief If this expression is an l-value for an Objective C 3274 /// property, find the underlying property reference expression. 3275 const ObjCPropertyRefExpr *Expr::getObjCProperty() const { 3276 const Expr *E = this; 3277 while (true) { 3278 assert((E->getValueKind() == VK_LValue && 3279 E->getObjectKind() == OK_ObjCProperty) && 3280 "expression is not a property reference"); 3281 E = E->IgnoreParenCasts(); 3282 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 3283 if (BO->getOpcode() == BO_Comma) { 3284 E = BO->getRHS(); 3285 continue; 3286 } 3287 } 3288 3289 break; 3290 } 3291 3292 return cast<ObjCPropertyRefExpr>(E); 3293 } 3294 3295 bool Expr::isObjCSelfExpr() const { 3296 const Expr *E = IgnoreParenImpCasts(); 3297 3298 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 3299 if (!DRE) 3300 return false; 3301 3302 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); 3303 if (!Param) 3304 return false; 3305 3306 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); 3307 if (!M) 3308 return false; 3309 3310 return M->getSelfDecl() == Param; 3311 } 3312 3313 FieldDecl *Expr::getSourceBitField() { 3314 Expr *E = this->IgnoreParens(); 3315 3316 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3317 if (ICE->getCastKind() == CK_LValueToRValue || 3318 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp)) 3319 E = ICE->getSubExpr()->IgnoreParens(); 3320 else 3321 break; 3322 } 3323 3324 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) 3325 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) 3326 if (Field->isBitField()) 3327 return Field; 3328 3329 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) 3330 if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl())) 3331 if (Ivar->isBitField()) 3332 return Ivar; 3333 3334 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) 3335 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) 3336 if (Field->isBitField()) 3337 return Field; 3338 3339 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { 3340 if (BinOp->isAssignmentOp() && BinOp->getLHS()) 3341 return BinOp->getLHS()->getSourceBitField(); 3342 3343 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) 3344 return BinOp->getRHS()->getSourceBitField(); 3345 } 3346 3347 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) 3348 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) 3349 return UnOp->getSubExpr()->getSourceBitField(); 3350 3351 return nullptr; 3352 } 3353 3354 bool Expr::refersToVectorElement() const { 3355 const Expr *E = this->IgnoreParens(); 3356 3357 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 3358 if (ICE->getValueKind() != VK_RValue && 3359 ICE->getCastKind() == CK_NoOp) 3360 E = ICE->getSubExpr()->IgnoreParens(); 3361 else 3362 break; 3363 } 3364 3365 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) 3366 return ASE->getBase()->getType()->isVectorType(); 3367 3368 if (isa<ExtVectorElementExpr>(E)) 3369 return true; 3370 3371 return false; 3372 } 3373 3374 /// isArrow - Return true if the base expression is a pointer to vector, 3375 /// return false if the base expression is a vector. 3376 bool ExtVectorElementExpr::isArrow() const { 3377 return getBase()->getType()->isPointerType(); 3378 } 3379 3380 unsigned ExtVectorElementExpr::getNumElements() const { 3381 if (const VectorType *VT = getType()->getAs<VectorType>()) 3382 return VT->getNumElements(); 3383 return 1; 3384 } 3385 3386 /// containsDuplicateElements - Return true if any element access is repeated. 3387 bool ExtVectorElementExpr::containsDuplicateElements() const { 3388 // FIXME: Refactor this code to an accessor on the AST node which returns the 3389 // "type" of component access, and share with code below and in Sema. 3390 StringRef Comp = Accessor->getName(); 3391 3392 // Halving swizzles do not contain duplicate elements. 3393 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") 3394 return false; 3395 3396 // Advance past s-char prefix on hex swizzles. 3397 if (Comp[0] == 's' || Comp[0] == 'S') 3398 Comp = Comp.substr(1); 3399 3400 for (unsigned i = 0, e = Comp.size(); i != e; ++i) 3401 if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos) 3402 return true; 3403 3404 return false; 3405 } 3406 3407 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. 3408 void ExtVectorElementExpr::getEncodedElementAccess( 3409 SmallVectorImpl<unsigned> &Elts) const { 3410 StringRef Comp = Accessor->getName(); 3411 if (Comp[0] == 's' || Comp[0] == 'S') 3412 Comp = Comp.substr(1); 3413 3414 bool isHi = Comp == "hi"; 3415 bool isLo = Comp == "lo"; 3416 bool isEven = Comp == "even"; 3417 bool isOdd = Comp == "odd"; 3418 3419 for (unsigned i = 0, e = getNumElements(); i != e; ++i) { 3420 uint64_t Index; 3421 3422 if (isHi) 3423 Index = e + i; 3424 else if (isLo) 3425 Index = i; 3426 else if (isEven) 3427 Index = 2 * i; 3428 else if (isOdd) 3429 Index = 2 * i + 1; 3430 else 3431 Index = ExtVectorType::getAccessorIdx(Comp[i]); 3432 3433 Elts.push_back(Index); 3434 } 3435 } 3436 3437 ObjCMessageExpr::ObjCMessageExpr(QualType T, 3438 ExprValueKind VK, 3439 SourceLocation LBracLoc, 3440 SourceLocation SuperLoc, 3441 bool IsInstanceSuper, 3442 QualType SuperType, 3443 Selector Sel, 3444 ArrayRef<SourceLocation> SelLocs, 3445 SelectorLocationsKind SelLocsK, 3446 ObjCMethodDecl *Method, 3447 ArrayRef<Expr *> Args, 3448 SourceLocation RBracLoc, 3449 bool isImplicit) 3450 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, 3451 /*TypeDependent=*/false, /*ValueDependent=*/false, 3452 /*InstantiationDependent=*/false, 3453 /*ContainsUnexpandedParameterPack=*/false), 3454 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 3455 : Sel.getAsOpaquePtr())), 3456 Kind(IsInstanceSuper? SuperInstance : SuperClass), 3457 HasMethod(Method != nullptr), IsDelegateInitCall(false), 3458 IsImplicit(isImplicit), SuperLoc(SuperLoc), LBracLoc(LBracLoc), 3459 RBracLoc(RBracLoc) 3460 { 3461 initArgsAndSelLocs(Args, SelLocs, SelLocsK); 3462 setReceiverPointer(SuperType.getAsOpaquePtr()); 3463 } 3464 3465 ObjCMessageExpr::ObjCMessageExpr(QualType T, 3466 ExprValueKind VK, 3467 SourceLocation LBracLoc, 3468 TypeSourceInfo *Receiver, 3469 Selector Sel, 3470 ArrayRef<SourceLocation> SelLocs, 3471 SelectorLocationsKind SelLocsK, 3472 ObjCMethodDecl *Method, 3473 ArrayRef<Expr *> Args, 3474 SourceLocation RBracLoc, 3475 bool isImplicit) 3476 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(), 3477 T->isDependentType(), T->isInstantiationDependentType(), 3478 T->containsUnexpandedParameterPack()), 3479 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 3480 : Sel.getAsOpaquePtr())), 3481 Kind(Class), 3482 HasMethod(Method != nullptr), IsDelegateInitCall(false), 3483 IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc) 3484 { 3485 initArgsAndSelLocs(Args, SelLocs, SelLocsK); 3486 setReceiverPointer(Receiver); 3487 } 3488 3489 ObjCMessageExpr::ObjCMessageExpr(QualType T, 3490 ExprValueKind VK, 3491 SourceLocation LBracLoc, 3492 Expr *Receiver, 3493 Selector Sel, 3494 ArrayRef<SourceLocation> SelLocs, 3495 SelectorLocationsKind SelLocsK, 3496 ObjCMethodDecl *Method, 3497 ArrayRef<Expr *> Args, 3498 SourceLocation RBracLoc, 3499 bool isImplicit) 3500 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(), 3501 Receiver->isTypeDependent(), 3502 Receiver->isInstantiationDependent(), 3503 Receiver->containsUnexpandedParameterPack()), 3504 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method 3505 : Sel.getAsOpaquePtr())), 3506 Kind(Instance), 3507 HasMethod(Method != nullptr), IsDelegateInitCall(false), 3508 IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc) 3509 { 3510 initArgsAndSelLocs(Args, SelLocs, SelLocsK); 3511 setReceiverPointer(Receiver); 3512 } 3513 3514 void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args, 3515 ArrayRef<SourceLocation> SelLocs, 3516 SelectorLocationsKind SelLocsK) { 3517 setNumArgs(Args.size()); 3518 Expr **MyArgs = getArgs(); 3519 for (unsigned I = 0; I != Args.size(); ++I) { 3520 if (Args[I]->isTypeDependent()) 3521 ExprBits.TypeDependent = true; 3522 if (Args[I]->isValueDependent()) 3523 ExprBits.ValueDependent = true; 3524 if (Args[I]->isInstantiationDependent()) 3525 ExprBits.InstantiationDependent = true; 3526 if (Args[I]->containsUnexpandedParameterPack()) 3527 ExprBits.ContainsUnexpandedParameterPack = true; 3528 3529 MyArgs[I] = Args[I]; 3530 } 3531 3532 SelLocsKind = SelLocsK; 3533 if (!isImplicit()) { 3534 if (SelLocsK == SelLoc_NonStandard) 3535 std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs()); 3536 } 3537 } 3538 3539 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T, 3540 ExprValueKind VK, 3541 SourceLocation LBracLoc, 3542 SourceLocation SuperLoc, 3543 bool IsInstanceSuper, 3544 QualType SuperType, 3545 Selector Sel, 3546 ArrayRef<SourceLocation> SelLocs, 3547 ObjCMethodDecl *Method, 3548 ArrayRef<Expr *> Args, 3549 SourceLocation RBracLoc, 3550 bool isImplicit) { 3551 assert((!SelLocs.empty() || isImplicit) && 3552 "No selector locs for non-implicit message"); 3553 ObjCMessageExpr *Mem; 3554 SelectorLocationsKind SelLocsK = SelectorLocationsKind(); 3555 if (isImplicit) 3556 Mem = alloc(Context, Args.size(), 0); 3557 else 3558 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); 3559 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper, 3560 SuperType, Sel, SelLocs, SelLocsK, 3561 Method, Args, RBracLoc, isImplicit); 3562 } 3563 3564 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T, 3565 ExprValueKind VK, 3566 SourceLocation LBracLoc, 3567 TypeSourceInfo *Receiver, 3568 Selector Sel, 3569 ArrayRef<SourceLocation> SelLocs, 3570 ObjCMethodDecl *Method, 3571 ArrayRef<Expr *> Args, 3572 SourceLocation RBracLoc, 3573 bool isImplicit) { 3574 assert((!SelLocs.empty() || isImplicit) && 3575 "No selector locs for non-implicit message"); 3576 ObjCMessageExpr *Mem; 3577 SelectorLocationsKind SelLocsK = SelectorLocationsKind(); 3578 if (isImplicit) 3579 Mem = alloc(Context, Args.size(), 0); 3580 else 3581 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); 3582 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, 3583 SelLocs, SelLocsK, Method, Args, RBracLoc, 3584 isImplicit); 3585 } 3586 3587 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T, 3588 ExprValueKind VK, 3589 SourceLocation LBracLoc, 3590 Expr *Receiver, 3591 Selector Sel, 3592 ArrayRef<SourceLocation> SelLocs, 3593 ObjCMethodDecl *Method, 3594 ArrayRef<Expr *> Args, 3595 SourceLocation RBracLoc, 3596 bool isImplicit) { 3597 assert((!SelLocs.empty() || isImplicit) && 3598 "No selector locs for non-implicit message"); 3599 ObjCMessageExpr *Mem; 3600 SelectorLocationsKind SelLocsK = SelectorLocationsKind(); 3601 if (isImplicit) 3602 Mem = alloc(Context, Args.size(), 0); 3603 else 3604 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK); 3605 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, 3606 SelLocs, SelLocsK, Method, Args, RBracLoc, 3607 isImplicit); 3608 } 3609 3610 ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(const ASTContext &Context, 3611 unsigned NumArgs, 3612 unsigned NumStoredSelLocs) { 3613 ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs); 3614 return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs); 3615 } 3616 3617 ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C, 3618 ArrayRef<Expr *> Args, 3619 SourceLocation RBraceLoc, 3620 ArrayRef<SourceLocation> SelLocs, 3621 Selector Sel, 3622 SelectorLocationsKind &SelLocsK) { 3623 SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc); 3624 unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size() 3625 : 0; 3626 return alloc(C, Args.size(), NumStoredSelLocs); 3627 } 3628 3629 ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C, 3630 unsigned NumArgs, 3631 unsigned NumStoredSelLocs) { 3632 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + 3633 NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation); 3634 return (ObjCMessageExpr *)C.Allocate(Size, 3635 llvm::AlignOf<ObjCMessageExpr>::Alignment); 3636 } 3637 3638 void ObjCMessageExpr::getSelectorLocs( 3639 SmallVectorImpl<SourceLocation> &SelLocs) const { 3640 for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i) 3641 SelLocs.push_back(getSelectorLoc(i)); 3642 } 3643 3644 SourceRange ObjCMessageExpr::getReceiverRange() const { 3645 switch (getReceiverKind()) { 3646 case Instance: 3647 return getInstanceReceiver()->getSourceRange(); 3648 3649 case Class: 3650 return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange(); 3651 3652 case SuperInstance: 3653 case SuperClass: 3654 return getSuperLoc(); 3655 } 3656 3657 llvm_unreachable("Invalid ReceiverKind!"); 3658 } 3659 3660 Selector ObjCMessageExpr::getSelector() const { 3661 if (HasMethod) 3662 return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod) 3663 ->getSelector(); 3664 return Selector(SelectorOrMethod); 3665 } 3666 3667 QualType ObjCMessageExpr::getReceiverType() const { 3668 switch (getReceiverKind()) { 3669 case Instance: 3670 return getInstanceReceiver()->getType(); 3671 case Class: 3672 return getClassReceiver(); 3673 case SuperInstance: 3674 case SuperClass: 3675 return getSuperType(); 3676 } 3677 3678 llvm_unreachable("unexpected receiver kind"); 3679 } 3680 3681 ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const { 3682 QualType T = getReceiverType(); 3683 3684 if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>()) 3685 return Ptr->getInterfaceDecl(); 3686 3687 if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>()) 3688 return Ty->getInterface(); 3689 3690 return nullptr; 3691 } 3692 3693 StringRef ObjCBridgedCastExpr::getBridgeKindName() const { 3694 switch (getBridgeKind()) { 3695 case OBC_Bridge: 3696 return "__bridge"; 3697 case OBC_BridgeTransfer: 3698 return "__bridge_transfer"; 3699 case OBC_BridgeRetained: 3700 return "__bridge_retained"; 3701 } 3702 3703 llvm_unreachable("Invalid BridgeKind!"); 3704 } 3705 3706 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, 3707 QualType Type, SourceLocation BLoc, 3708 SourceLocation RP) 3709 : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary, 3710 Type->isDependentType(), Type->isDependentType(), 3711 Type->isInstantiationDependentType(), 3712 Type->containsUnexpandedParameterPack()), 3713 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) 3714 { 3715 SubExprs = new (C) Stmt*[args.size()]; 3716 for (unsigned i = 0; i != args.size(); i++) { 3717 if (args[i]->isTypeDependent()) 3718 ExprBits.TypeDependent = true; 3719 if (args[i]->isValueDependent()) 3720 ExprBits.ValueDependent = true; 3721 if (args[i]->isInstantiationDependent()) 3722 ExprBits.InstantiationDependent = true; 3723 if (args[i]->containsUnexpandedParameterPack()) 3724 ExprBits.ContainsUnexpandedParameterPack = true; 3725 3726 SubExprs[i] = args[i]; 3727 } 3728 } 3729 3730 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { 3731 if (SubExprs) C.Deallocate(SubExprs); 3732 3733 this->NumExprs = Exprs.size(); 3734 SubExprs = new (C) Stmt*[NumExprs]; 3735 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); 3736 } 3737 3738 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context, 3739 SourceLocation GenericLoc, Expr *ControllingExpr, 3740 ArrayRef<TypeSourceInfo*> AssocTypes, 3741 ArrayRef<Expr*> AssocExprs, 3742 SourceLocation DefaultLoc, 3743 SourceLocation RParenLoc, 3744 bool ContainsUnexpandedParameterPack, 3745 unsigned ResultIndex) 3746 : Expr(GenericSelectionExprClass, 3747 AssocExprs[ResultIndex]->getType(), 3748 AssocExprs[ResultIndex]->getValueKind(), 3749 AssocExprs[ResultIndex]->getObjectKind(), 3750 AssocExprs[ResultIndex]->isTypeDependent(), 3751 AssocExprs[ResultIndex]->isValueDependent(), 3752 AssocExprs[ResultIndex]->isInstantiationDependent(), 3753 ContainsUnexpandedParameterPack), 3754 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]), 3755 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]), 3756 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), 3757 GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 3758 SubExprs[CONTROLLING] = ControllingExpr; 3759 assert(AssocTypes.size() == AssocExprs.size()); 3760 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes); 3761 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR); 3762 } 3763 3764 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context, 3765 SourceLocation GenericLoc, Expr *ControllingExpr, 3766 ArrayRef<TypeSourceInfo*> AssocTypes, 3767 ArrayRef<Expr*> AssocExprs, 3768 SourceLocation DefaultLoc, 3769 SourceLocation RParenLoc, 3770 bool ContainsUnexpandedParameterPack) 3771 : Expr(GenericSelectionExprClass, 3772 Context.DependentTy, 3773 VK_RValue, 3774 OK_Ordinary, 3775 /*isTypeDependent=*/true, 3776 /*isValueDependent=*/true, 3777 /*isInstantiationDependent=*/true, 3778 ContainsUnexpandedParameterPack), 3779 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]), 3780 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]), 3781 NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc), 3782 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { 3783 SubExprs[CONTROLLING] = ControllingExpr; 3784 assert(AssocTypes.size() == AssocExprs.size()); 3785 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes); 3786 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR); 3787 } 3788 3789 //===----------------------------------------------------------------------===// 3790 // DesignatedInitExpr 3791 //===----------------------------------------------------------------------===// 3792 3793 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { 3794 assert(Kind == FieldDesignator && "Only valid on a field designator"); 3795 if (Field.NameOrField & 0x01) 3796 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); 3797 else 3798 return getField()->getIdentifier(); 3799 } 3800 3801 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, 3802 unsigned NumDesignators, 3803 const Designator *Designators, 3804 SourceLocation EqualOrColonLoc, 3805 bool GNUSyntax, 3806 ArrayRef<Expr*> IndexExprs, 3807 Expr *Init) 3808 : Expr(DesignatedInitExprClass, Ty, 3809 Init->getValueKind(), Init->getObjectKind(), 3810 Init->isTypeDependent(), Init->isValueDependent(), 3811 Init->isInstantiationDependent(), 3812 Init->containsUnexpandedParameterPack()), 3813 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), 3814 NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) { 3815 this->Designators = new (C) Designator[NumDesignators]; 3816 3817 // Record the initializer itself. 3818 child_range Child = children(); 3819 *Child++ = Init; 3820 3821 // Copy the designators and their subexpressions, computing 3822 // value-dependence along the way. 3823 unsigned IndexIdx = 0; 3824 for (unsigned I = 0; I != NumDesignators; ++I) { 3825 this->Designators[I] = Designators[I]; 3826 3827 if (this->Designators[I].isArrayDesignator()) { 3828 // Compute type- and value-dependence. 3829 Expr *Index = IndexExprs[IndexIdx]; 3830 if (Index->isTypeDependent() || Index->isValueDependent()) 3831 ExprBits.TypeDependent = ExprBits.ValueDependent = true; 3832 if (Index->isInstantiationDependent()) 3833 ExprBits.InstantiationDependent = true; 3834 // Propagate unexpanded parameter packs. 3835 if (Index->containsUnexpandedParameterPack()) 3836 ExprBits.ContainsUnexpandedParameterPack = true; 3837 3838 // Copy the index expressions into permanent storage. 3839 *Child++ = IndexExprs[IndexIdx++]; 3840 } else if (this->Designators[I].isArrayRangeDesignator()) { 3841 // Compute type- and value-dependence. 3842 Expr *Start = IndexExprs[IndexIdx]; 3843 Expr *End = IndexExprs[IndexIdx + 1]; 3844 if (Start->isTypeDependent() || Start->isValueDependent() || 3845 End->isTypeDependent() || End->isValueDependent()) { 3846 ExprBits.TypeDependent = ExprBits.ValueDependent = true; 3847 ExprBits.InstantiationDependent = true; 3848 } else if (Start->isInstantiationDependent() || 3849 End->isInstantiationDependent()) { 3850 ExprBits.InstantiationDependent = true; 3851 } 3852 3853 // Propagate unexpanded parameter packs. 3854 if (Start->containsUnexpandedParameterPack() || 3855 End->containsUnexpandedParameterPack()) 3856 ExprBits.ContainsUnexpandedParameterPack = true; 3857 3858 // Copy the start/end expressions into permanent storage. 3859 *Child++ = IndexExprs[IndexIdx++]; 3860 *Child++ = IndexExprs[IndexIdx++]; 3861 } 3862 } 3863 3864 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); 3865 } 3866 3867 DesignatedInitExpr * 3868 DesignatedInitExpr::Create(const ASTContext &C, Designator *Designators, 3869 unsigned NumDesignators, 3870 ArrayRef<Expr*> IndexExprs, 3871 SourceLocation ColonOrEqualLoc, 3872 bool UsesColonSyntax, Expr *Init) { 3873 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + 3874 sizeof(Stmt *) * (IndexExprs.size() + 1), 8); 3875 return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators, 3876 ColonOrEqualLoc, UsesColonSyntax, 3877 IndexExprs, Init); 3878 } 3879 3880 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, 3881 unsigned NumIndexExprs) { 3882 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) + 3883 sizeof(Stmt *) * (NumIndexExprs + 1), 8); 3884 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); 3885 } 3886 3887 void DesignatedInitExpr::setDesignators(const ASTContext &C, 3888 const Designator *Desigs, 3889 unsigned NumDesigs) { 3890 Designators = new (C) Designator[NumDesigs]; 3891 NumDesignators = NumDesigs; 3892 for (unsigned I = 0; I != NumDesigs; ++I) 3893 Designators[I] = Desigs[I]; 3894 } 3895 3896 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { 3897 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); 3898 if (size() == 1) 3899 return DIE->getDesignator(0)->getSourceRange(); 3900 return SourceRange(DIE->getDesignator(0)->getLocStart(), 3901 DIE->getDesignator(size()-1)->getLocEnd()); 3902 } 3903 3904 SourceLocation DesignatedInitExpr::getLocStart() const { 3905 SourceLocation StartLoc; 3906 Designator &First = 3907 *const_cast<DesignatedInitExpr*>(this)->designators_begin(); 3908 if (First.isFieldDesignator()) { 3909 if (GNUSyntax) 3910 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); 3911 else 3912 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); 3913 } else 3914 StartLoc = 3915 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); 3916 return StartLoc; 3917 } 3918 3919 SourceLocation DesignatedInitExpr::getLocEnd() const { 3920 return getInit()->getLocEnd(); 3921 } 3922 3923 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { 3924 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); 3925 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1); 3926 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); 3927 } 3928 3929 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { 3930 assert(D.Kind == Designator::ArrayRangeDesignator && 3931 "Requires array range designator"); 3932 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1); 3933 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1)); 3934 } 3935 3936 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { 3937 assert(D.Kind == Designator::ArrayRangeDesignator && 3938 "Requires array range designator"); 3939 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1); 3940 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2)); 3941 } 3942 3943 /// \brief Replaces the designator at index @p Idx with the series 3944 /// of designators in [First, Last). 3945 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, 3946 const Designator *First, 3947 const Designator *Last) { 3948 unsigned NumNewDesignators = Last - First; 3949 if (NumNewDesignators == 0) { 3950 std::copy_backward(Designators + Idx + 1, 3951 Designators + NumDesignators, 3952 Designators + Idx); 3953 --NumNewDesignators; 3954 return; 3955 } else if (NumNewDesignators == 1) { 3956 Designators[Idx] = *First; 3957 return; 3958 } 3959 3960 Designator *NewDesignators 3961 = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; 3962 std::copy(Designators, Designators + Idx, NewDesignators); 3963 std::copy(First, Last, NewDesignators + Idx); 3964 std::copy(Designators + Idx + 1, Designators + NumDesignators, 3965 NewDesignators + Idx + NumNewDesignators); 3966 Designators = NewDesignators; 3967 NumDesignators = NumDesignators - 1 + NumNewDesignators; 3968 } 3969 3970 ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc, 3971 ArrayRef<Expr*> exprs, 3972 SourceLocation rparenloc) 3973 : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, 3974 false, false, false, false), 3975 NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) { 3976 Exprs = new (C) Stmt*[exprs.size()]; 3977 for (unsigned i = 0; i != exprs.size(); ++i) { 3978 if (exprs[i]->isTypeDependent()) 3979 ExprBits.TypeDependent = true; 3980 if (exprs[i]->isValueDependent()) 3981 ExprBits.ValueDependent = true; 3982 if (exprs[i]->isInstantiationDependent()) 3983 ExprBits.InstantiationDependent = true; 3984 if (exprs[i]->containsUnexpandedParameterPack()) 3985 ExprBits.ContainsUnexpandedParameterPack = true; 3986 3987 Exprs[i] = exprs[i]; 3988 } 3989 } 3990 3991 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { 3992 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) 3993 e = ewc->getSubExpr(); 3994 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) 3995 e = m->GetTemporaryExpr(); 3996 e = cast<CXXConstructExpr>(e)->getArg(0); 3997 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) 3998 e = ice->getSubExpr(); 3999 return cast<OpaqueValueExpr>(e); 4000 } 4001 4002 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, 4003 EmptyShell sh, 4004 unsigned numSemanticExprs) { 4005 void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) + 4006 (1 + numSemanticExprs) * sizeof(Expr*), 4007 llvm::alignOf<PseudoObjectExpr>()); 4008 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); 4009 } 4010 4011 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) 4012 : Expr(PseudoObjectExprClass, shell) { 4013 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; 4014 } 4015 4016 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, 4017 ArrayRef<Expr*> semantics, 4018 unsigned resultIndex) { 4019 assert(syntax && "no syntactic expression!"); 4020 assert(semantics.size() && "no semantic expressions!"); 4021 4022 QualType type; 4023 ExprValueKind VK; 4024 if (resultIndex == NoResult) { 4025 type = C.VoidTy; 4026 VK = VK_RValue; 4027 } else { 4028 assert(resultIndex < semantics.size()); 4029 type = semantics[resultIndex]->getType(); 4030 VK = semantics[resultIndex]->getValueKind(); 4031 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); 4032 } 4033 4034 void *buffer = C.Allocate(sizeof(PseudoObjectExpr) + 4035 (1 + semantics.size()) * sizeof(Expr*), 4036 llvm::alignOf<PseudoObjectExpr>()); 4037 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, 4038 resultIndex); 4039 } 4040 4041 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, 4042 Expr *syntax, ArrayRef<Expr*> semantics, 4043 unsigned resultIndex) 4044 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary, 4045 /*filled in at end of ctor*/ false, false, false, false) { 4046 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; 4047 PseudoObjectExprBits.ResultIndex = resultIndex + 1; 4048 4049 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { 4050 Expr *E = (i == 0 ? syntax : semantics[i-1]); 4051 getSubExprsBuffer()[i] = E; 4052 4053 if (E->isTypeDependent()) 4054 ExprBits.TypeDependent = true; 4055 if (E->isValueDependent()) 4056 ExprBits.ValueDependent = true; 4057 if (E->isInstantiationDependent()) 4058 ExprBits.InstantiationDependent = true; 4059 if (E->containsUnexpandedParameterPack()) 4060 ExprBits.ContainsUnexpandedParameterPack = true; 4061 4062 if (isa<OpaqueValueExpr>(E)) 4063 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && 4064 "opaque-value semantic expressions for pseudo-object " 4065 "operations must have sources"); 4066 } 4067 } 4068 4069 //===----------------------------------------------------------------------===// 4070 // ExprIterator. 4071 //===----------------------------------------------------------------------===// 4072 4073 Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); } 4074 Expr* ExprIterator::operator*() const { return cast<Expr>(*I); } 4075 Expr* ExprIterator::operator->() const { return cast<Expr>(*I); } 4076 const Expr* ConstExprIterator::operator[](size_t idx) const { 4077 return cast<Expr>(I[idx]); 4078 } 4079 const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); } 4080 const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); } 4081 4082 //===----------------------------------------------------------------------===// 4083 // Child Iterators for iterating over subexpressions/substatements 4084 //===----------------------------------------------------------------------===// 4085 4086 // UnaryExprOrTypeTraitExpr 4087 Stmt::child_range UnaryExprOrTypeTraitExpr::children() { 4088 // If this is of a type and the type is a VLA type (and not a typedef), the 4089 // size expression of the VLA needs to be treated as an executable expression. 4090 // Why isn't this weirdness documented better in StmtIterator? 4091 if (isArgumentType()) { 4092 if (const VariableArrayType* T = dyn_cast<VariableArrayType>( 4093 getArgumentType().getTypePtr())) 4094 return child_range(child_iterator(T), child_iterator()); 4095 return child_range(); 4096 } 4097 return child_range(&Argument.Ex, &Argument.Ex + 1); 4098 } 4099 4100 // ObjCMessageExpr 4101 Stmt::child_range ObjCMessageExpr::children() { 4102 Stmt **begin; 4103 if (getReceiverKind() == Instance) 4104 begin = reinterpret_cast<Stmt **>(this + 1); 4105 else 4106 begin = reinterpret_cast<Stmt **>(getArgs()); 4107 return child_range(begin, 4108 reinterpret_cast<Stmt **>(getArgs() + getNumArgs())); 4109 } 4110 4111 ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements, 4112 QualType T, ObjCMethodDecl *Method, 4113 SourceRange SR) 4114 : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary, 4115 false, false, false, false), 4116 NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method) 4117 { 4118 Expr **SaveElements = getElements(); 4119 for (unsigned I = 0, N = Elements.size(); I != N; ++I) { 4120 if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent()) 4121 ExprBits.ValueDependent = true; 4122 if (Elements[I]->isInstantiationDependent()) 4123 ExprBits.InstantiationDependent = true; 4124 if (Elements[I]->containsUnexpandedParameterPack()) 4125 ExprBits.ContainsUnexpandedParameterPack = true; 4126 4127 SaveElements[I] = Elements[I]; 4128 } 4129 } 4130 4131 ObjCArrayLiteral *ObjCArrayLiteral::Create(const ASTContext &C, 4132 ArrayRef<Expr *> Elements, 4133 QualType T, ObjCMethodDecl * Method, 4134 SourceRange SR) { 4135 void *Mem = C.Allocate(sizeof(ObjCArrayLiteral) 4136 + Elements.size() * sizeof(Expr *)); 4137 return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR); 4138 } 4139 4140 ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(const ASTContext &C, 4141 unsigned NumElements) { 4142 4143 void *Mem = C.Allocate(sizeof(ObjCArrayLiteral) 4144 + NumElements * sizeof(Expr *)); 4145 return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements); 4146 } 4147 4148 ObjCDictionaryLiteral::ObjCDictionaryLiteral( 4149 ArrayRef<ObjCDictionaryElement> VK, 4150 bool HasPackExpansions, 4151 QualType T, ObjCMethodDecl *method, 4152 SourceRange SR) 4153 : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false, 4154 false, false), 4155 NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR), 4156 DictWithObjectsMethod(method) 4157 { 4158 KeyValuePair *KeyValues = getKeyValues(); 4159 ExpansionData *Expansions = getExpansionData(); 4160 for (unsigned I = 0; I < NumElements; I++) { 4161 if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() || 4162 VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent()) 4163 ExprBits.ValueDependent = true; 4164 if (VK[I].Key->isInstantiationDependent() || 4165 VK[I].Value->isInstantiationDependent()) 4166 ExprBits.InstantiationDependent = true; 4167 if (VK[I].EllipsisLoc.isInvalid() && 4168 (VK[I].Key->containsUnexpandedParameterPack() || 4169 VK[I].Value->containsUnexpandedParameterPack())) 4170 ExprBits.ContainsUnexpandedParameterPack = true; 4171 4172 KeyValues[I].Key = VK[I].Key; 4173 KeyValues[I].Value = VK[I].Value; 4174 if (Expansions) { 4175 Expansions[I].EllipsisLoc = VK[I].EllipsisLoc; 4176 if (VK[I].NumExpansions) 4177 Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1; 4178 else 4179 Expansions[I].NumExpansionsPlusOne = 0; 4180 } 4181 } 4182 } 4183 4184 ObjCDictionaryLiteral * 4185 ObjCDictionaryLiteral::Create(const ASTContext &C, 4186 ArrayRef<ObjCDictionaryElement> VK, 4187 bool HasPackExpansions, 4188 QualType T, ObjCMethodDecl *method, 4189 SourceRange SR) { 4190 unsigned ExpansionsSize = 0; 4191 if (HasPackExpansions) 4192 ExpansionsSize = sizeof(ExpansionData) * VK.size(); 4193 4194 void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) + 4195 sizeof(KeyValuePair) * VK.size() + ExpansionsSize); 4196 return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR); 4197 } 4198 4199 ObjCDictionaryLiteral * 4200 ObjCDictionaryLiteral::CreateEmpty(const ASTContext &C, unsigned NumElements, 4201 bool HasPackExpansions) { 4202 unsigned ExpansionsSize = 0; 4203 if (HasPackExpansions) 4204 ExpansionsSize = sizeof(ExpansionData) * NumElements; 4205 void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) + 4206 sizeof(KeyValuePair) * NumElements + ExpansionsSize); 4207 return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements, 4208 HasPackExpansions); 4209 } 4210 4211 ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(const ASTContext &C, 4212 Expr *base, 4213 Expr *key, QualType T, 4214 ObjCMethodDecl *getMethod, 4215 ObjCMethodDecl *setMethod, 4216 SourceLocation RB) { 4217 void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr)); 4218 return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue, 4219 OK_ObjCSubscript, 4220 getMethod, setMethod, RB); 4221 } 4222 4223 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, 4224 QualType t, AtomicOp op, SourceLocation RP) 4225 : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary, 4226 false, false, false, false), 4227 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) 4228 { 4229 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); 4230 for (unsigned i = 0; i != args.size(); i++) { 4231 if (args[i]->isTypeDependent()) 4232 ExprBits.TypeDependent = true; 4233 if (args[i]->isValueDependent()) 4234 ExprBits.ValueDependent = true; 4235 if (args[i]->isInstantiationDependent()) 4236 ExprBits.InstantiationDependent = true; 4237 if (args[i]->containsUnexpandedParameterPack()) 4238 ExprBits.ContainsUnexpandedParameterPack = true; 4239 4240 SubExprs[i] = args[i]; 4241 } 4242 } 4243 4244 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { 4245 switch (Op) { 4246 case AO__c11_atomic_init: 4247 case AO__c11_atomic_load: 4248 case AO__atomic_load_n: 4249 return 2; 4250 4251 case AO__c11_atomic_store: 4252 case AO__c11_atomic_exchange: 4253 case AO__atomic_load: 4254 case AO__atomic_store: 4255 case AO__atomic_store_n: 4256 case AO__atomic_exchange_n: 4257 case AO__c11_atomic_fetch_add: 4258 case AO__c11_atomic_fetch_sub: 4259 case AO__c11_atomic_fetch_and: 4260 case AO__c11_atomic_fetch_or: 4261 case AO__c11_atomic_fetch_xor: 4262 case AO__atomic_fetch_add: 4263 case AO__atomic_fetch_sub: 4264 case AO__atomic_fetch_and: 4265 case AO__atomic_fetch_or: 4266 case AO__atomic_fetch_xor: 4267 case AO__atomic_fetch_nand: 4268 case AO__atomic_add_fetch: 4269 case AO__atomic_sub_fetch: 4270 case AO__atomic_and_fetch: 4271 case AO__atomic_or_fetch: 4272 case AO__atomic_xor_fetch: 4273 case AO__atomic_nand_fetch: 4274 return 3; 4275 4276 case AO__atomic_exchange: 4277 return 4; 4278 4279 case AO__c11_atomic_compare_exchange_strong: 4280 case AO__c11_atomic_compare_exchange_weak: 4281 return 5; 4282 4283 case AO__atomic_compare_exchange: 4284 case AO__atomic_compare_exchange_n: 4285 return 6; 4286 } 4287 llvm_unreachable("unknown atomic op"); 4288 } 4289