1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Decl subclasses. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/Decl.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTLambda.h" 17 #include "clang/AST/ASTMutationListener.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/PrettyPrinter.h" 25 #include "clang/AST/Stmt.h" 26 #include "clang/AST/TypeLoc.h" 27 #include "clang/Basic/Builtins.h" 28 #include "clang/Basic/IdentifierTable.h" 29 #include "clang/Basic/Module.h" 30 #include "clang/Basic/Specifiers.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Frontend/FrontendDiagnostic.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include <algorithm> 35 36 using namespace clang; 37 38 Decl *clang::getPrimaryMergedDecl(Decl *D) { 39 return D->getASTContext().getPrimaryMergedDecl(D); 40 } 41 42 // Defined here so that it can be inlined into its direct callers. 43 bool Decl::isOutOfLine() const { 44 return !getLexicalDeclContext()->Equals(getDeclContext()); 45 } 46 47 //===----------------------------------------------------------------------===// 48 // NamedDecl Implementation 49 //===----------------------------------------------------------------------===// 50 51 // Visibility rules aren't rigorously externally specified, but here 52 // are the basic principles behind what we implement: 53 // 54 // 1. An explicit visibility attribute is generally a direct expression 55 // of the user's intent and should be honored. Only the innermost 56 // visibility attribute applies. If no visibility attribute applies, 57 // global visibility settings are considered. 58 // 59 // 2. There is one caveat to the above: on or in a template pattern, 60 // an explicit visibility attribute is just a default rule, and 61 // visibility can be decreased by the visibility of template 62 // arguments. But this, too, has an exception: an attribute on an 63 // explicit specialization or instantiation causes all the visibility 64 // restrictions of the template arguments to be ignored. 65 // 66 // 3. A variable that does not otherwise have explicit visibility can 67 // be restricted by the visibility of its type. 68 // 69 // 4. A visibility restriction is explicit if it comes from an 70 // attribute (or something like it), not a global visibility setting. 71 // When emitting a reference to an external symbol, visibility 72 // restrictions are ignored unless they are explicit. 73 // 74 // 5. When computing the visibility of a non-type, including a 75 // non-type member of a class, only non-type visibility restrictions 76 // are considered: the 'visibility' attribute, global value-visibility 77 // settings, and a few special cases like __private_extern. 78 // 79 // 6. When computing the visibility of a type, including a type member 80 // of a class, only type visibility restrictions are considered: 81 // the 'type_visibility' attribute and global type-visibility settings. 82 // However, a 'visibility' attribute counts as a 'type_visibility' 83 // attribute on any declaration that only has the former. 84 // 85 // The visibility of a "secondary" entity, like a template argument, 86 // is computed using the kind of that entity, not the kind of the 87 // primary entity for which we are computing visibility. For example, 88 // the visibility of a specialization of either of these templates: 89 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); 90 // template <class T, bool (&compare)(T, X)> class matcher; 91 // is restricted according to the type visibility of the argument 'T', 92 // the type visibility of 'bool(&)(T,X)', and the value visibility of 93 // the argument function 'compare'. That 'has_match' is a value 94 // and 'matcher' is a type only matters when looking for attributes 95 // and settings from the immediate context. 96 97 const unsigned IgnoreExplicitVisibilityBit = 2; 98 const unsigned IgnoreAllVisibilityBit = 4; 99 100 /// Kinds of LV computation. The linkage side of the computation is 101 /// always the same, but different things can change how visibility is 102 /// computed. 103 enum LVComputationKind { 104 /// Do an LV computation for, ultimately, a type. 105 /// Visibility may be restricted by type visibility settings and 106 /// the visibility of template arguments. 107 LVForType = NamedDecl::VisibilityForType, 108 109 /// Do an LV computation for, ultimately, a non-type declaration. 110 /// Visibility may be restricted by value visibility settings and 111 /// the visibility of template arguments. 112 LVForValue = NamedDecl::VisibilityForValue, 113 114 /// Do an LV computation for, ultimately, a type that already has 115 /// some sort of explicit visibility. Visibility may only be 116 /// restricted by the visibility of template arguments. 117 LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit), 118 119 /// Do an LV computation for, ultimately, a non-type declaration 120 /// that already has some sort of explicit visibility. Visibility 121 /// may only be restricted by the visibility of template arguments. 122 LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit), 123 124 /// Do an LV computation when we only care about the linkage. 125 LVForLinkageOnly = 126 LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit 127 }; 128 129 /// Does this computation kind permit us to consider additional 130 /// visibility settings from attributes and the like? 131 static bool hasExplicitVisibilityAlready(LVComputationKind computation) { 132 return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0); 133 } 134 135 /// Given an LVComputationKind, return one of the same type/value sort 136 /// that records that it already has explicit visibility. 137 static LVComputationKind 138 withExplicitVisibilityAlready(LVComputationKind oldKind) { 139 LVComputationKind newKind = 140 static_cast<LVComputationKind>(unsigned(oldKind) | 141 IgnoreExplicitVisibilityBit); 142 assert(oldKind != LVForType || newKind == LVForExplicitType); 143 assert(oldKind != LVForValue || newKind == LVForExplicitValue); 144 assert(oldKind != LVForExplicitType || newKind == LVForExplicitType); 145 assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue); 146 return newKind; 147 } 148 149 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D, 150 LVComputationKind kind) { 151 assert(!hasExplicitVisibilityAlready(kind) && 152 "asking for explicit visibility when we shouldn't be"); 153 return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind); 154 } 155 156 /// Is the given declaration a "type" or a "value" for the purposes of 157 /// visibility computation? 158 static bool usesTypeVisibility(const NamedDecl *D) { 159 return isa<TypeDecl>(D) || 160 isa<ClassTemplateDecl>(D) || 161 isa<ObjCInterfaceDecl>(D); 162 } 163 164 /// Does the given declaration have member specialization information, 165 /// and if so, is it an explicit specialization? 166 template <class T> static typename 167 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type 168 isExplicitMemberSpecialization(const T *D) { 169 if (const MemberSpecializationInfo *member = 170 D->getMemberSpecializationInfo()) { 171 return member->isExplicitSpecialization(); 172 } 173 return false; 174 } 175 176 /// For templates, this question is easier: a member template can't be 177 /// explicitly instantiated, so there's a single bit indicating whether 178 /// or not this is an explicit member specialization. 179 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { 180 return D->isMemberSpecialization(); 181 } 182 183 /// Given a visibility attribute, return the explicit visibility 184 /// associated with it. 185 template <class T> 186 static Visibility getVisibilityFromAttr(const T *attr) { 187 switch (attr->getVisibility()) { 188 case T::Default: 189 return DefaultVisibility; 190 case T::Hidden: 191 return HiddenVisibility; 192 case T::Protected: 193 return ProtectedVisibility; 194 } 195 llvm_unreachable("bad visibility kind"); 196 } 197 198 /// Return the explicit visibility of the given declaration. 199 static Optional<Visibility> getVisibilityOf(const NamedDecl *D, 200 NamedDecl::ExplicitVisibilityKind kind) { 201 // If we're ultimately computing the visibility of a type, look for 202 // a 'type_visibility' attribute before looking for 'visibility'. 203 if (kind == NamedDecl::VisibilityForType) { 204 if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) { 205 return getVisibilityFromAttr(A); 206 } 207 } 208 209 // If this declaration has an explicit visibility attribute, use it. 210 if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) { 211 return getVisibilityFromAttr(A); 212 } 213 214 // If we're on Mac OS X, an 'availability' for Mac OS X attribute 215 // implies visibility(default). 216 if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) { 217 for (const auto *A : D->specific_attrs<AvailabilityAttr>()) 218 if (A->getPlatform()->getName().equals("macosx")) 219 return DefaultVisibility; 220 } 221 222 return None; 223 } 224 225 static LinkageInfo 226 getLVForType(const Type &T, LVComputationKind computation) { 227 if (computation == LVForLinkageOnly) 228 return LinkageInfo(T.getLinkage(), DefaultVisibility, true); 229 return T.getLinkageAndVisibility(); 230 } 231 232 /// \brief Get the most restrictive linkage for the types in the given 233 /// template parameter list. For visibility purposes, template 234 /// parameters are part of the signature of a template. 235 static LinkageInfo 236 getLVForTemplateParameterList(const TemplateParameterList *Params, 237 LVComputationKind computation) { 238 LinkageInfo LV; 239 for (const NamedDecl *P : *Params) { 240 // Template type parameters are the most common and never 241 // contribute to visibility, pack or not. 242 if (isa<TemplateTypeParmDecl>(P)) 243 continue; 244 245 // Non-type template parameters can be restricted by the value type, e.g. 246 // template <enum X> class A { ... }; 247 // We have to be careful here, though, because we can be dealing with 248 // dependent types. 249 if (const NonTypeTemplateParmDecl *NTTP = 250 dyn_cast<NonTypeTemplateParmDecl>(P)) { 251 // Handle the non-pack case first. 252 if (!NTTP->isExpandedParameterPack()) { 253 if (!NTTP->getType()->isDependentType()) { 254 LV.merge(getLVForType(*NTTP->getType(), computation)); 255 } 256 continue; 257 } 258 259 // Look at all the types in an expanded pack. 260 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { 261 QualType type = NTTP->getExpansionType(i); 262 if (!type->isDependentType()) 263 LV.merge(type->getLinkageAndVisibility()); 264 } 265 continue; 266 } 267 268 // Template template parameters can be restricted by their 269 // template parameters, recursively. 270 const TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(P); 271 272 // Handle the non-pack case first. 273 if (!TTP->isExpandedParameterPack()) { 274 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), 275 computation)); 276 continue; 277 } 278 279 // Look at all expansions in an expanded pack. 280 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); 281 i != n; ++i) { 282 LV.merge(getLVForTemplateParameterList( 283 TTP->getExpansionTemplateParameters(i), computation)); 284 } 285 } 286 287 return LV; 288 } 289 290 /// getLVForDecl - Get the linkage and visibility for the given declaration. 291 static LinkageInfo getLVForDecl(const NamedDecl *D, 292 LVComputationKind computation); 293 294 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { 295 const Decl *Ret = nullptr; 296 const DeclContext *DC = D->getDeclContext(); 297 while (DC->getDeclKind() != Decl::TranslationUnit) { 298 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) 299 Ret = cast<Decl>(DC); 300 DC = DC->getParent(); 301 } 302 return Ret; 303 } 304 305 /// \brief Get the most restrictive linkage for the types and 306 /// declarations in the given template argument list. 307 /// 308 /// Note that we don't take an LVComputationKind because we always 309 /// want to honor the visibility of template arguments in the same way. 310 static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args, 311 LVComputationKind computation) { 312 LinkageInfo LV; 313 314 for (const TemplateArgument &Arg : Args) { 315 switch (Arg.getKind()) { 316 case TemplateArgument::Null: 317 case TemplateArgument::Integral: 318 case TemplateArgument::Expression: 319 continue; 320 321 case TemplateArgument::Type: 322 LV.merge(getLVForType(*Arg.getAsType(), computation)); 323 continue; 324 325 case TemplateArgument::Declaration: 326 if (NamedDecl *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) { 327 assert(!usesTypeVisibility(ND)); 328 LV.merge(getLVForDecl(ND, computation)); 329 } 330 continue; 331 332 case TemplateArgument::NullPtr: 333 LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility()); 334 continue; 335 336 case TemplateArgument::Template: 337 case TemplateArgument::TemplateExpansion: 338 if (TemplateDecl *Template = 339 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) 340 LV.merge(getLVForDecl(Template, computation)); 341 continue; 342 343 case TemplateArgument::Pack: 344 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); 345 continue; 346 } 347 llvm_unreachable("bad template argument kind"); 348 } 349 350 return LV; 351 } 352 353 static LinkageInfo 354 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, 355 LVComputationKind computation) { 356 return getLVForTemplateArgumentList(TArgs.asArray(), computation); 357 } 358 359 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, 360 const FunctionTemplateSpecializationInfo *specInfo) { 361 // Include visibility from the template parameters and arguments 362 // only if this is not an explicit instantiation or specialization 363 // with direct explicit visibility. (Implicit instantiations won't 364 // have a direct attribute.) 365 if (!specInfo->isExplicitInstantiationOrSpecialization()) 366 return true; 367 368 return !fn->hasAttr<VisibilityAttr>(); 369 } 370 371 /// Merge in template-related linkage and visibility for the given 372 /// function template specialization. 373 /// 374 /// We don't need a computation kind here because we can assume 375 /// LVForValue. 376 /// 377 /// \param[out] LV the computation to use for the parent 378 static void 379 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn, 380 const FunctionTemplateSpecializationInfo *specInfo, 381 LVComputationKind computation) { 382 bool considerVisibility = 383 shouldConsiderTemplateVisibility(fn, specInfo); 384 385 // Merge information from the template parameters. 386 FunctionTemplateDecl *temp = specInfo->getTemplate(); 387 LinkageInfo tempLV = 388 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 389 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 390 391 // Merge information from the template arguments. 392 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; 393 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 394 LV.mergeMaybeWithVisibility(argsLV, considerVisibility); 395 } 396 397 /// Does the given declaration have a direct visibility attribute 398 /// that would match the given rules? 399 static bool hasDirectVisibilityAttribute(const NamedDecl *D, 400 LVComputationKind computation) { 401 switch (computation) { 402 case LVForType: 403 case LVForExplicitType: 404 if (D->hasAttr<TypeVisibilityAttr>()) 405 return true; 406 // fallthrough 407 case LVForValue: 408 case LVForExplicitValue: 409 if (D->hasAttr<VisibilityAttr>()) 410 return true; 411 return false; 412 case LVForLinkageOnly: 413 return false; 414 } 415 llvm_unreachable("bad visibility computation kind"); 416 } 417 418 /// Should we consider visibility associated with the template 419 /// arguments and parameters of the given class template specialization? 420 static bool shouldConsiderTemplateVisibility( 421 const ClassTemplateSpecializationDecl *spec, 422 LVComputationKind computation) { 423 // Include visibility from the template parameters and arguments 424 // only if this is not an explicit instantiation or specialization 425 // with direct explicit visibility (and note that implicit 426 // instantiations won't have a direct attribute). 427 // 428 // Furthermore, we want to ignore template parameters and arguments 429 // for an explicit specialization when computing the visibility of a 430 // member thereof with explicit visibility. 431 // 432 // This is a bit complex; let's unpack it. 433 // 434 // An explicit class specialization is an independent, top-level 435 // declaration. As such, if it or any of its members has an 436 // explicit visibility attribute, that must directly express the 437 // user's intent, and we should honor it. The same logic applies to 438 // an explicit instantiation of a member of such a thing. 439 440 // Fast path: if this is not an explicit instantiation or 441 // specialization, we always want to consider template-related 442 // visibility restrictions. 443 if (!spec->isExplicitInstantiationOrSpecialization()) 444 return true; 445 446 // This is the 'member thereof' check. 447 if (spec->isExplicitSpecialization() && 448 hasExplicitVisibilityAlready(computation)) 449 return false; 450 451 return !hasDirectVisibilityAttribute(spec, computation); 452 } 453 454 /// Merge in template-related linkage and visibility for the given 455 /// class template specialization. 456 static void mergeTemplateLV(LinkageInfo &LV, 457 const ClassTemplateSpecializationDecl *spec, 458 LVComputationKind computation) { 459 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 460 461 // Merge information from the template parameters, but ignore 462 // visibility if we're only considering template arguments. 463 464 ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 465 LinkageInfo tempLV = 466 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 467 LV.mergeMaybeWithVisibility(tempLV, 468 considerVisibility && !hasExplicitVisibilityAlready(computation)); 469 470 // Merge information from the template arguments. We ignore 471 // template-argument visibility if we've got an explicit 472 // instantiation with a visibility attribute. 473 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 474 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 475 if (considerVisibility) 476 LV.mergeVisibility(argsLV); 477 LV.mergeExternalVisibility(argsLV); 478 } 479 480 /// Should we consider visibility associated with the template 481 /// arguments and parameters of the given variable template 482 /// specialization? As usual, follow class template specialization 483 /// logic up to initialization. 484 static bool shouldConsiderTemplateVisibility( 485 const VarTemplateSpecializationDecl *spec, 486 LVComputationKind computation) { 487 // Include visibility from the template parameters and arguments 488 // only if this is not an explicit instantiation or specialization 489 // with direct explicit visibility (and note that implicit 490 // instantiations won't have a direct attribute). 491 if (!spec->isExplicitInstantiationOrSpecialization()) 492 return true; 493 494 // An explicit variable specialization is an independent, top-level 495 // declaration. As such, if it has an explicit visibility attribute, 496 // that must directly express the user's intent, and we should honor 497 // it. 498 if (spec->isExplicitSpecialization() && 499 hasExplicitVisibilityAlready(computation)) 500 return false; 501 502 return !hasDirectVisibilityAttribute(spec, computation); 503 } 504 505 /// Merge in template-related linkage and visibility for the given 506 /// variable template specialization. As usual, follow class template 507 /// specialization logic up to initialization. 508 static void mergeTemplateLV(LinkageInfo &LV, 509 const VarTemplateSpecializationDecl *spec, 510 LVComputationKind computation) { 511 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 512 513 // Merge information from the template parameters, but ignore 514 // visibility if we're only considering template arguments. 515 516 VarTemplateDecl *temp = spec->getSpecializedTemplate(); 517 LinkageInfo tempLV = 518 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 519 LV.mergeMaybeWithVisibility(tempLV, 520 considerVisibility && !hasExplicitVisibilityAlready(computation)); 521 522 // Merge information from the template arguments. We ignore 523 // template-argument visibility if we've got an explicit 524 // instantiation with a visibility attribute. 525 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 526 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 527 if (considerVisibility) 528 LV.mergeVisibility(argsLV); 529 LV.mergeExternalVisibility(argsLV); 530 } 531 532 static bool useInlineVisibilityHidden(const NamedDecl *D) { 533 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. 534 const LangOptions &Opts = D->getASTContext().getLangOpts(); 535 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) 536 return false; 537 538 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); 539 if (!FD) 540 return false; 541 542 TemplateSpecializationKind TSK = TSK_Undeclared; 543 if (FunctionTemplateSpecializationInfo *spec 544 = FD->getTemplateSpecializationInfo()) { 545 TSK = spec->getTemplateSpecializationKind(); 546 } else if (MemberSpecializationInfo *MSI = 547 FD->getMemberSpecializationInfo()) { 548 TSK = MSI->getTemplateSpecializationKind(); 549 } 550 551 const FunctionDecl *Def = nullptr; 552 // InlineVisibilityHidden only applies to definitions, and 553 // isInlined() only gives meaningful answers on definitions 554 // anyway. 555 return TSK != TSK_ExplicitInstantiationDeclaration && 556 TSK != TSK_ExplicitInstantiationDefinition && 557 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); 558 } 559 560 template <typename T> static bool isFirstInExternCContext(T *D) { 561 const T *First = D->getFirstDecl(); 562 return First->isInExternCContext(); 563 } 564 565 static bool isSingleLineLanguageLinkage(const Decl &D) { 566 if (const LinkageSpecDecl *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) 567 if (!SD->hasBraces()) 568 return true; 569 return false; 570 } 571 572 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D, 573 LVComputationKind computation) { 574 assert(D->getDeclContext()->getRedeclContext()->isFileContext() && 575 "Not a name having namespace scope"); 576 ASTContext &Context = D->getASTContext(); 577 578 // C++ [basic.link]p3: 579 // A name having namespace scope (3.3.6) has internal linkage if it 580 // is the name of 581 // - an object, reference, function or function template that is 582 // explicitly declared static; or, 583 // (This bullet corresponds to C99 6.2.2p3.) 584 if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 585 // Explicitly declared static. 586 if (Var->getStorageClass() == SC_Static) 587 return LinkageInfo::internal(); 588 589 // - a non-volatile object or reference that is explicitly declared const 590 // or constexpr and neither explicitly declared extern nor previously 591 // declared to have external linkage; or (there is no equivalent in C99) 592 if (Context.getLangOpts().CPlusPlus && 593 Var->getType().isConstQualified() && 594 !Var->getType().isVolatileQualified()) { 595 const VarDecl *PrevVar = Var->getPreviousDecl(); 596 if (PrevVar) 597 return getLVForDecl(PrevVar, computation); 598 599 if (Var->getStorageClass() != SC_Extern && 600 Var->getStorageClass() != SC_PrivateExtern && 601 !isSingleLineLanguageLinkage(*Var)) 602 return LinkageInfo::internal(); 603 } 604 605 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; 606 PrevVar = PrevVar->getPreviousDecl()) { 607 if (PrevVar->getStorageClass() == SC_PrivateExtern && 608 Var->getStorageClass() == SC_None) 609 return PrevVar->getLinkageAndVisibility(); 610 // Explicitly declared static. 611 if (PrevVar->getStorageClass() == SC_Static) 612 return LinkageInfo::internal(); 613 } 614 } else if (const FunctionDecl *Function = D->getAsFunction()) { 615 // C++ [temp]p4: 616 // A non-member function template can have internal linkage; any 617 // other template name shall have external linkage. 618 619 // Explicitly declared static. 620 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 621 return LinkageInfo(InternalLinkage, DefaultVisibility, false); 622 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) { 623 // - a data member of an anonymous union. 624 const VarDecl *VD = IFD->getVarDecl(); 625 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!"); 626 return getLVForNamespaceScopeDecl(VD, computation); 627 } 628 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"); 629 630 if (D->isInAnonymousNamespace()) { 631 const VarDecl *Var = dyn_cast<VarDecl>(D); 632 const FunctionDecl *Func = dyn_cast<FunctionDecl>(D); 633 if ((!Var || !isFirstInExternCContext(Var)) && 634 (!Func || !isFirstInExternCContext(Func))) 635 return LinkageInfo::uniqueExternal(); 636 } 637 638 // Set up the defaults. 639 640 // C99 6.2.2p5: 641 // If the declaration of an identifier for an object has file 642 // scope and no storage-class specifier, its linkage is 643 // external. 644 LinkageInfo LV; 645 646 if (!hasExplicitVisibilityAlready(computation)) { 647 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) { 648 LV.mergeVisibility(*Vis, true); 649 } else { 650 // If we're declared in a namespace with a visibility attribute, 651 // use that namespace's visibility, and it still counts as explicit. 652 for (const DeclContext *DC = D->getDeclContext(); 653 !isa<TranslationUnitDecl>(DC); 654 DC = DC->getParent()) { 655 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC); 656 if (!ND) continue; 657 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) { 658 LV.mergeVisibility(*Vis, true); 659 break; 660 } 661 } 662 } 663 664 // Add in global settings if the above didn't give us direct visibility. 665 if (!LV.isVisibilityExplicit()) { 666 // Use global type/value visibility as appropriate. 667 Visibility globalVisibility; 668 if (computation == LVForValue) { 669 globalVisibility = Context.getLangOpts().getValueVisibilityMode(); 670 } else { 671 assert(computation == LVForType); 672 globalVisibility = Context.getLangOpts().getTypeVisibilityMode(); 673 } 674 LV.mergeVisibility(globalVisibility, /*explicit*/ false); 675 676 // If we're paying attention to global visibility, apply 677 // -finline-visibility-hidden if this is an inline method. 678 if (useInlineVisibilityHidden(D)) 679 LV.mergeVisibility(HiddenVisibility, true); 680 } 681 } 682 683 // C++ [basic.link]p4: 684 685 // A name having namespace scope has external linkage if it is the 686 // name of 687 // 688 // - an object or reference, unless it has internal linkage; or 689 if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 690 // GCC applies the following optimization to variables and static 691 // data members, but not to functions: 692 // 693 // Modify the variable's LV by the LV of its type unless this is 694 // C or extern "C". This follows from [basic.link]p9: 695 // A type without linkage shall not be used as the type of a 696 // variable or function with external linkage unless 697 // - the entity has C language linkage, or 698 // - the entity is declared within an unnamed namespace, or 699 // - the entity is not used or is defined in the same 700 // translation unit. 701 // and [basic.link]p10: 702 // ...the types specified by all declarations referring to a 703 // given variable or function shall be identical... 704 // C does not have an equivalent rule. 705 // 706 // Ignore this if we've got an explicit attribute; the user 707 // probably knows what they're doing. 708 // 709 // Note that we don't want to make the variable non-external 710 // because of this, but unique-external linkage suits us. 711 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) { 712 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); 713 if (TypeLV.getLinkage() != ExternalLinkage) 714 return LinkageInfo::uniqueExternal(); 715 if (!LV.isVisibilityExplicit()) 716 LV.mergeVisibility(TypeLV); 717 } 718 719 if (Var->getStorageClass() == SC_PrivateExtern) 720 LV.mergeVisibility(HiddenVisibility, true); 721 722 // Note that Sema::MergeVarDecl already takes care of implementing 723 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have 724 // to do it here. 725 726 // As per function and class template specializations (below), 727 // consider LV for the template and template arguments. We're at file 728 // scope, so we do not need to worry about nested specializations. 729 if (const VarTemplateSpecializationDecl *spec 730 = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 731 mergeTemplateLV(LV, spec, computation); 732 } 733 734 // - a function, unless it has internal linkage; or 735 } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 736 // In theory, we can modify the function's LV by the LV of its 737 // type unless it has C linkage (see comment above about variables 738 // for justification). In practice, GCC doesn't do this, so it's 739 // just too painful to make work. 740 741 if (Function->getStorageClass() == SC_PrivateExtern) 742 LV.mergeVisibility(HiddenVisibility, true); 743 744 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 745 // merging storage classes and visibility attributes, so we don't have to 746 // look at previous decls in here. 747 748 // In C++, then if the type of the function uses a type with 749 // unique-external linkage, it's not legally usable from outside 750 // this translation unit. However, we should use the C linkage 751 // rules instead for extern "C" declarations. 752 if (Context.getLangOpts().CPlusPlus && 753 !Function->isInExternCContext()) { 754 // Only look at the type-as-written. If this function has an auto-deduced 755 // return type, we can't compute the linkage of that type because it could 756 // require looking at the linkage of this function, and we don't need this 757 // for correctness because the type is not part of the function's 758 // signature. 759 // FIXME: This is a hack. We should be able to solve this circularity and 760 // the one in getLVForClassMember for Functions some other way. 761 QualType TypeAsWritten = Function->getType(); 762 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) 763 TypeAsWritten = TSI->getType(); 764 if (TypeAsWritten->getLinkage() == UniqueExternalLinkage) 765 return LinkageInfo::uniqueExternal(); 766 } 767 768 // Consider LV from the template and the template arguments. 769 // We're at file scope, so we do not need to worry about nested 770 // specializations. 771 if (FunctionTemplateSpecializationInfo *specInfo 772 = Function->getTemplateSpecializationInfo()) { 773 mergeTemplateLV(LV, Function, specInfo, computation); 774 } 775 776 // - a named class (Clause 9), or an unnamed class defined in a 777 // typedef declaration in which the class has the typedef name 778 // for linkage purposes (7.1.3); or 779 // - a named enumeration (7.2), or an unnamed enumeration 780 // defined in a typedef declaration in which the enumeration 781 // has the typedef name for linkage purposes (7.1.3); or 782 } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) { 783 // Unnamed tags have no linkage. 784 if (!Tag->hasNameForLinkage()) 785 return LinkageInfo::none(); 786 787 // If this is a class template specialization, consider the 788 // linkage of the template and template arguments. We're at file 789 // scope, so we do not need to worry about nested specializations. 790 if (const ClassTemplateSpecializationDecl *spec 791 = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { 792 mergeTemplateLV(LV, spec, computation); 793 } 794 795 // - an enumerator belonging to an enumeration with external linkage; 796 } else if (isa<EnumConstantDecl>(D)) { 797 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), 798 computation); 799 if (!isExternalFormalLinkage(EnumLV.getLinkage())) 800 return LinkageInfo::none(); 801 LV.merge(EnumLV); 802 803 // - a template, unless it is a function template that has 804 // internal linkage (Clause 14); 805 } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) { 806 bool considerVisibility = !hasExplicitVisibilityAlready(computation); 807 LinkageInfo tempLV = 808 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 809 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 810 811 // - a namespace (7.3), unless it is declared within an unnamed 812 // namespace. 813 } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) { 814 return LV; 815 816 // By extension, we assign external linkage to Objective-C 817 // interfaces. 818 } else if (isa<ObjCInterfaceDecl>(D)) { 819 // fallout 820 821 // Everything not covered here has no linkage. 822 } else { 823 // FIXME: A typedef declaration has linkage if it gives a type a name for 824 // linkage purposes. 825 return LinkageInfo::none(); 826 } 827 828 // If we ended up with non-external linkage, visibility should 829 // always be default. 830 if (LV.getLinkage() != ExternalLinkage) 831 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); 832 833 return LV; 834 } 835 836 static LinkageInfo getLVForClassMember(const NamedDecl *D, 837 LVComputationKind computation) { 838 // Only certain class members have linkage. Note that fields don't 839 // really have linkage, but it's convenient to say they do for the 840 // purposes of calculating linkage of pointer-to-data-member 841 // template arguments. 842 // 843 // Templates also don't officially have linkage, but since we ignore 844 // the C++ standard and look at template arguments when determining 845 // linkage and visibility of a template specialization, we might hit 846 // a template template argument that way. If we do, we need to 847 // consider its linkage. 848 if (!(isa<CXXMethodDecl>(D) || 849 isa<VarDecl>(D) || 850 isa<FieldDecl>(D) || 851 isa<IndirectFieldDecl>(D) || 852 isa<TagDecl>(D) || 853 isa<TemplateDecl>(D))) 854 return LinkageInfo::none(); 855 856 LinkageInfo LV; 857 858 // If we have an explicit visibility attribute, merge that in. 859 if (!hasExplicitVisibilityAlready(computation)) { 860 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) 861 LV.mergeVisibility(*Vis, true); 862 // If we're paying attention to global visibility, apply 863 // -finline-visibility-hidden if this is an inline method. 864 // 865 // Note that we do this before merging information about 866 // the class visibility. 867 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) 868 LV.mergeVisibility(HiddenVisibility, true); 869 } 870 871 // If this class member has an explicit visibility attribute, the only 872 // thing that can change its visibility is the template arguments, so 873 // only look for them when processing the class. 874 LVComputationKind classComputation = computation; 875 if (LV.isVisibilityExplicit()) 876 classComputation = withExplicitVisibilityAlready(computation); 877 878 LinkageInfo classLV = 879 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); 880 // If the class already has unique-external linkage, we can't improve. 881 if (classLV.getLinkage() == UniqueExternalLinkage) 882 return LinkageInfo::uniqueExternal(); 883 884 if (!isExternallyVisible(classLV.getLinkage())) 885 return LinkageInfo::none(); 886 887 888 // Otherwise, don't merge in classLV yet, because in certain cases 889 // we need to completely ignore the visibility from it. 890 891 // Specifically, if this decl exists and has an explicit attribute. 892 const NamedDecl *explicitSpecSuppressor = nullptr; 893 894 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 895 // If the type of the function uses a type with unique-external 896 // linkage, it's not legally usable from outside this translation unit. 897 // But only look at the type-as-written. If this function has an auto-deduced 898 // return type, we can't compute the linkage of that type because it could 899 // require looking at the linkage of this function, and we don't need this 900 // for correctness because the type is not part of the function's 901 // signature. 902 // FIXME: This is a hack. We should be able to solve this circularity and the 903 // one in getLVForNamespaceScopeDecl for Functions some other way. 904 { 905 QualType TypeAsWritten = MD->getType(); 906 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 907 TypeAsWritten = TSI->getType(); 908 if (TypeAsWritten->getLinkage() == UniqueExternalLinkage) 909 return LinkageInfo::uniqueExternal(); 910 } 911 // If this is a method template specialization, use the linkage for 912 // the template parameters and arguments. 913 if (FunctionTemplateSpecializationInfo *spec 914 = MD->getTemplateSpecializationInfo()) { 915 mergeTemplateLV(LV, MD, spec, computation); 916 if (spec->isExplicitSpecialization()) { 917 explicitSpecSuppressor = MD; 918 } else if (isExplicitMemberSpecialization(spec->getTemplate())) { 919 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); 920 } 921 } else if (isExplicitMemberSpecialization(MD)) { 922 explicitSpecSuppressor = MD; 923 } 924 925 } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { 926 if (const ClassTemplateSpecializationDecl *spec 927 = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 928 mergeTemplateLV(LV, spec, computation); 929 if (spec->isExplicitSpecialization()) { 930 explicitSpecSuppressor = spec; 931 } else { 932 const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 933 if (isExplicitMemberSpecialization(temp)) { 934 explicitSpecSuppressor = temp->getTemplatedDecl(); 935 } 936 } 937 } else if (isExplicitMemberSpecialization(RD)) { 938 explicitSpecSuppressor = RD; 939 } 940 941 // Static data members. 942 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 943 if (const VarTemplateSpecializationDecl *spec 944 = dyn_cast<VarTemplateSpecializationDecl>(VD)) 945 mergeTemplateLV(LV, spec, computation); 946 947 // Modify the variable's linkage by its type, but ignore the 948 // type's visibility unless it's a definition. 949 LinkageInfo typeLV = getLVForType(*VD->getType(), computation); 950 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) 951 LV.mergeVisibility(typeLV); 952 LV.mergeExternalVisibility(typeLV); 953 954 if (isExplicitMemberSpecialization(VD)) { 955 explicitSpecSuppressor = VD; 956 } 957 958 // Template members. 959 } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) { 960 bool considerVisibility = 961 (!LV.isVisibilityExplicit() && 962 !classLV.isVisibilityExplicit() && 963 !hasExplicitVisibilityAlready(computation)); 964 LinkageInfo tempLV = 965 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 966 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 967 968 if (const RedeclarableTemplateDecl *redeclTemp = 969 dyn_cast<RedeclarableTemplateDecl>(temp)) { 970 if (isExplicitMemberSpecialization(redeclTemp)) { 971 explicitSpecSuppressor = temp->getTemplatedDecl(); 972 } 973 } 974 } 975 976 // We should never be looking for an attribute directly on a template. 977 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); 978 979 // If this member is an explicit member specialization, and it has 980 // an explicit attribute, ignore visibility from the parent. 981 bool considerClassVisibility = true; 982 if (explicitSpecSuppressor && 983 // optimization: hasDVA() is true only with explicit visibility. 984 LV.isVisibilityExplicit() && 985 classLV.getVisibility() != DefaultVisibility && 986 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { 987 considerClassVisibility = false; 988 } 989 990 // Finally, merge in information from the class. 991 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); 992 return LV; 993 } 994 995 void NamedDecl::anchor() { } 996 997 static LinkageInfo computeLVForDecl(const NamedDecl *D, 998 LVComputationKind computation); 999 1000 bool NamedDecl::isLinkageValid() const { 1001 if (!hasCachedLinkage()) 1002 return true; 1003 1004 return computeLVForDecl(this, LVForLinkageOnly).getLinkage() == 1005 getCachedLinkage(); 1006 } 1007 1008 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const { 1009 StringRef name = getName(); 1010 if (name.empty()) return SFF_None; 1011 1012 if (name.front() == 'C') 1013 if (name == "CFStringCreateWithFormat" || 1014 name == "CFStringCreateWithFormatAndArguments" || 1015 name == "CFStringAppendFormat" || 1016 name == "CFStringAppendFormatAndArguments") 1017 return SFF_CFString; 1018 return SFF_None; 1019 } 1020 1021 Linkage NamedDecl::getLinkageInternal() const { 1022 // We don't care about visibility here, so ask for the cheapest 1023 // possible visibility analysis. 1024 return getLVForDecl(this, LVForLinkageOnly).getLinkage(); 1025 } 1026 1027 LinkageInfo NamedDecl::getLinkageAndVisibility() const { 1028 LVComputationKind computation = 1029 (usesTypeVisibility(this) ? LVForType : LVForValue); 1030 return getLVForDecl(this, computation); 1031 } 1032 1033 static Optional<Visibility> 1034 getExplicitVisibilityAux(const NamedDecl *ND, 1035 NamedDecl::ExplicitVisibilityKind kind, 1036 bool IsMostRecent) { 1037 assert(!IsMostRecent || ND == ND->getMostRecentDecl()); 1038 1039 // Check the declaration itself first. 1040 if (Optional<Visibility> V = getVisibilityOf(ND, kind)) 1041 return V; 1042 1043 // If this is a member class of a specialization of a class template 1044 // and the corresponding decl has explicit visibility, use that. 1045 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND)) { 1046 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); 1047 if (InstantiatedFrom) 1048 return getVisibilityOf(InstantiatedFrom, kind); 1049 } 1050 1051 // If there wasn't explicit visibility there, and this is a 1052 // specialization of a class template, check for visibility 1053 // on the pattern. 1054 if (const ClassTemplateSpecializationDecl *spec 1055 = dyn_cast<ClassTemplateSpecializationDecl>(ND)) 1056 return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(), 1057 kind); 1058 1059 // Use the most recent declaration. 1060 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) { 1061 const NamedDecl *MostRecent = ND->getMostRecentDecl(); 1062 if (MostRecent != ND) 1063 return getExplicitVisibilityAux(MostRecent, kind, true); 1064 } 1065 1066 if (const VarDecl *Var = dyn_cast<VarDecl>(ND)) { 1067 if (Var->isStaticDataMember()) { 1068 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); 1069 if (InstantiatedFrom) 1070 return getVisibilityOf(InstantiatedFrom, kind); 1071 } 1072 1073 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var)) 1074 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), 1075 kind); 1076 1077 return None; 1078 } 1079 // Also handle function template specializations. 1080 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) { 1081 // If the function is a specialization of a template with an 1082 // explicit visibility attribute, use that. 1083 if (FunctionTemplateSpecializationInfo *templateInfo 1084 = fn->getTemplateSpecializationInfo()) 1085 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), 1086 kind); 1087 1088 // If the function is a member of a specialization of a class template 1089 // and the corresponding decl has explicit visibility, use that. 1090 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); 1091 if (InstantiatedFrom) 1092 return getVisibilityOf(InstantiatedFrom, kind); 1093 1094 return None; 1095 } 1096 1097 // The visibility of a template is stored in the templated decl. 1098 if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(ND)) 1099 return getVisibilityOf(TD->getTemplatedDecl(), kind); 1100 1101 return None; 1102 } 1103 1104 Optional<Visibility> 1105 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { 1106 return getExplicitVisibilityAux(this, kind, false); 1107 } 1108 1109 static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl, 1110 LVComputationKind computation) { 1111 // This lambda has its linkage/visibility determined by its owner. 1112 if (ContextDecl) { 1113 if (isa<ParmVarDecl>(ContextDecl)) 1114 DC = ContextDecl->getDeclContext()->getRedeclContext(); 1115 else 1116 return getLVForDecl(cast<NamedDecl>(ContextDecl), computation); 1117 } 1118 1119 if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC)) 1120 return getLVForDecl(ND, computation); 1121 1122 return LinkageInfo::external(); 1123 } 1124 1125 static LinkageInfo getLVForLocalDecl(const NamedDecl *D, 1126 LVComputationKind computation) { 1127 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 1128 if (Function->isInAnonymousNamespace() && 1129 !Function->isInExternCContext()) 1130 return LinkageInfo::uniqueExternal(); 1131 1132 // This is a "void f();" which got merged with a file static. 1133 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 1134 return LinkageInfo::internal(); 1135 1136 LinkageInfo LV; 1137 if (!hasExplicitVisibilityAlready(computation)) { 1138 if (Optional<Visibility> Vis = 1139 getExplicitVisibility(Function, computation)) 1140 LV.mergeVisibility(*Vis, true); 1141 } 1142 1143 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 1144 // merging storage classes and visibility attributes, so we don't have to 1145 // look at previous decls in here. 1146 1147 return LV; 1148 } 1149 1150 if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 1151 if (Var->hasExternalStorage()) { 1152 if (Var->isInAnonymousNamespace() && !Var->isInExternCContext()) 1153 return LinkageInfo::uniqueExternal(); 1154 1155 LinkageInfo LV; 1156 if (Var->getStorageClass() == SC_PrivateExtern) 1157 LV.mergeVisibility(HiddenVisibility, true); 1158 else if (!hasExplicitVisibilityAlready(computation)) { 1159 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation)) 1160 LV.mergeVisibility(*Vis, true); 1161 } 1162 1163 if (const VarDecl *Prev = Var->getPreviousDecl()) { 1164 LinkageInfo PrevLV = getLVForDecl(Prev, computation); 1165 if (PrevLV.getLinkage()) 1166 LV.setLinkage(PrevLV.getLinkage()); 1167 LV.mergeVisibility(PrevLV); 1168 } 1169 1170 return LV; 1171 } 1172 1173 if (!Var->isStaticLocal()) 1174 return LinkageInfo::none(); 1175 } 1176 1177 ASTContext &Context = D->getASTContext(); 1178 if (!Context.getLangOpts().CPlusPlus) 1179 return LinkageInfo::none(); 1180 1181 const Decl *OuterD = getOutermostFuncOrBlockContext(D); 1182 if (!OuterD) 1183 return LinkageInfo::none(); 1184 1185 LinkageInfo LV; 1186 if (const BlockDecl *BD = dyn_cast<BlockDecl>(OuterD)) { 1187 if (!BD->getBlockManglingNumber()) 1188 return LinkageInfo::none(); 1189 1190 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), 1191 BD->getBlockManglingContextDecl(), computation); 1192 } else { 1193 const FunctionDecl *FD = cast<FunctionDecl>(OuterD); 1194 if (!FD->isInlined() && 1195 !isTemplateInstantiation(FD->getTemplateSpecializationKind())) 1196 return LinkageInfo::none(); 1197 1198 LV = getLVForDecl(FD, computation); 1199 } 1200 if (!isExternallyVisible(LV.getLinkage())) 1201 return LinkageInfo::none(); 1202 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), 1203 LV.isVisibilityExplicit()); 1204 } 1205 1206 static inline const CXXRecordDecl* 1207 getOutermostEnclosingLambda(const CXXRecordDecl *Record) { 1208 const CXXRecordDecl *Ret = Record; 1209 while (Record && Record->isLambda()) { 1210 Ret = Record; 1211 if (!Record->getParent()) break; 1212 // Get the Containing Class of this Lambda Class 1213 Record = dyn_cast_or_null<CXXRecordDecl>( 1214 Record->getParent()->getParent()); 1215 } 1216 return Ret; 1217 } 1218 1219 static LinkageInfo computeLVForDecl(const NamedDecl *D, 1220 LVComputationKind computation) { 1221 // Objective-C: treat all Objective-C declarations as having external 1222 // linkage. 1223 switch (D->getKind()) { 1224 default: 1225 break; 1226 case Decl::ParmVar: 1227 return LinkageInfo::none(); 1228 case Decl::TemplateTemplateParm: // count these as external 1229 case Decl::NonTypeTemplateParm: 1230 case Decl::ObjCAtDefsField: 1231 case Decl::ObjCCategory: 1232 case Decl::ObjCCategoryImpl: 1233 case Decl::ObjCCompatibleAlias: 1234 case Decl::ObjCImplementation: 1235 case Decl::ObjCMethod: 1236 case Decl::ObjCProperty: 1237 case Decl::ObjCPropertyImpl: 1238 case Decl::ObjCProtocol: 1239 return LinkageInfo::external(); 1240 1241 case Decl::CXXRecord: { 1242 const CXXRecordDecl *Record = cast<CXXRecordDecl>(D); 1243 if (Record->isLambda()) { 1244 if (!Record->getLambdaManglingNumber()) { 1245 // This lambda has no mangling number, so it's internal. 1246 return LinkageInfo::internal(); 1247 } 1248 1249 // This lambda has its linkage/visibility determined: 1250 // - either by the outermost lambda if that lambda has no mangling 1251 // number. 1252 // - or by the parent of the outer most lambda 1253 // This prevents infinite recursion in settings such as nested lambdas 1254 // used in NSDMI's, for e.g. 1255 // struct L { 1256 // int t{}; 1257 // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t); 1258 // }; 1259 const CXXRecordDecl *OuterMostLambda = 1260 getOutermostEnclosingLambda(Record); 1261 if (!OuterMostLambda->getLambdaManglingNumber()) 1262 return LinkageInfo::internal(); 1263 1264 return getLVForClosure( 1265 OuterMostLambda->getDeclContext()->getRedeclContext(), 1266 OuterMostLambda->getLambdaContextDecl(), computation); 1267 } 1268 1269 break; 1270 } 1271 } 1272 1273 // Handle linkage for namespace-scope names. 1274 if (D->getDeclContext()->getRedeclContext()->isFileContext()) 1275 return getLVForNamespaceScopeDecl(D, computation); 1276 1277 // C++ [basic.link]p5: 1278 // In addition, a member function, static data member, a named 1279 // class or enumeration of class scope, or an unnamed class or 1280 // enumeration defined in a class-scope typedef declaration such 1281 // that the class or enumeration has the typedef name for linkage 1282 // purposes (7.1.3), has external linkage if the name of the class 1283 // has external linkage. 1284 if (D->getDeclContext()->isRecord()) 1285 return getLVForClassMember(D, computation); 1286 1287 // C++ [basic.link]p6: 1288 // The name of a function declared in block scope and the name of 1289 // an object declared by a block scope extern declaration have 1290 // linkage. If there is a visible declaration of an entity with 1291 // linkage having the same name and type, ignoring entities 1292 // declared outside the innermost enclosing namespace scope, the 1293 // block scope declaration declares that same entity and receives 1294 // the linkage of the previous declaration. If there is more than 1295 // one such matching entity, the program is ill-formed. Otherwise, 1296 // if no matching entity is found, the block scope entity receives 1297 // external linkage. 1298 if (D->getDeclContext()->isFunctionOrMethod()) 1299 return getLVForLocalDecl(D, computation); 1300 1301 // C++ [basic.link]p6: 1302 // Names not covered by these rules have no linkage. 1303 return LinkageInfo::none(); 1304 } 1305 1306 namespace clang { 1307 class LinkageComputer { 1308 public: 1309 static LinkageInfo getLVForDecl(const NamedDecl *D, 1310 LVComputationKind computation) { 1311 if (computation == LVForLinkageOnly && D->hasCachedLinkage()) 1312 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); 1313 1314 LinkageInfo LV = computeLVForDecl(D, computation); 1315 if (D->hasCachedLinkage()) 1316 assert(D->getCachedLinkage() == LV.getLinkage()); 1317 1318 D->setCachedLinkage(LV.getLinkage()); 1319 1320 #ifndef NDEBUG 1321 // In C (because of gnu inline) and in c++ with microsoft extensions an 1322 // static can follow an extern, so we can have two decls with different 1323 // linkages. 1324 const LangOptions &Opts = D->getASTContext().getLangOpts(); 1325 if (!Opts.CPlusPlus || Opts.MicrosoftExt) 1326 return LV; 1327 1328 // We have just computed the linkage for this decl. By induction we know 1329 // that all other computed linkages match, check that the one we just 1330 // computed also does. 1331 NamedDecl *Old = nullptr; 1332 for (auto I : D->redecls()) { 1333 NamedDecl *T = cast<NamedDecl>(I); 1334 if (T == D) 1335 continue; 1336 if (!T->isInvalidDecl() && T->hasCachedLinkage()) { 1337 Old = T; 1338 break; 1339 } 1340 } 1341 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); 1342 #endif 1343 1344 return LV; 1345 } 1346 }; 1347 } 1348 1349 static LinkageInfo getLVForDecl(const NamedDecl *D, 1350 LVComputationKind computation) { 1351 return clang::LinkageComputer::getLVForDecl(D, computation); 1352 } 1353 1354 std::string NamedDecl::getQualifiedNameAsString() const { 1355 std::string QualName; 1356 llvm::raw_string_ostream OS(QualName); 1357 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1358 return OS.str(); 1359 } 1360 1361 void NamedDecl::printQualifiedName(raw_ostream &OS) const { 1362 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1363 } 1364 1365 void NamedDecl::printQualifiedName(raw_ostream &OS, 1366 const PrintingPolicy &P) const { 1367 const DeclContext *Ctx = getDeclContext(); 1368 1369 if (Ctx->isFunctionOrMethod()) { 1370 printName(OS); 1371 return; 1372 } 1373 1374 typedef SmallVector<const DeclContext *, 8> ContextsTy; 1375 ContextsTy Contexts; 1376 1377 // Collect contexts. 1378 while (Ctx && isa<NamedDecl>(Ctx)) { 1379 Contexts.push_back(Ctx); 1380 Ctx = Ctx->getParent(); 1381 } 1382 1383 for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend(); 1384 I != E; ++I) { 1385 if (const ClassTemplateSpecializationDecl *Spec 1386 = dyn_cast<ClassTemplateSpecializationDecl>(*I)) { 1387 OS << Spec->getName(); 1388 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 1389 TemplateSpecializationType::PrintTemplateArgumentList(OS, 1390 TemplateArgs.data(), 1391 TemplateArgs.size(), 1392 P); 1393 } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) { 1394 if (P.SuppressUnwrittenScope && 1395 (ND->isAnonymousNamespace() || ND->isInline())) 1396 continue; 1397 if (ND->isAnonymousNamespace()) 1398 OS << "(anonymous namespace)"; 1399 else 1400 OS << *ND; 1401 } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) { 1402 if (!RD->getIdentifier()) 1403 OS << "(anonymous " << RD->getKindName() << ')'; 1404 else 1405 OS << *RD; 1406 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 1407 const FunctionProtoType *FT = nullptr; 1408 if (FD->hasWrittenPrototype()) 1409 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); 1410 1411 OS << *FD << '('; 1412 if (FT) { 1413 unsigned NumParams = FD->getNumParams(); 1414 for (unsigned i = 0; i < NumParams; ++i) { 1415 if (i) 1416 OS << ", "; 1417 OS << FD->getParamDecl(i)->getType().stream(P); 1418 } 1419 1420 if (FT->isVariadic()) { 1421 if (NumParams > 0) 1422 OS << ", "; 1423 OS << "..."; 1424 } 1425 } 1426 OS << ')'; 1427 } else { 1428 OS << *cast<NamedDecl>(*I); 1429 } 1430 OS << "::"; 1431 } 1432 1433 if (getDeclName()) 1434 OS << *this; 1435 else 1436 OS << "(anonymous)"; 1437 } 1438 1439 void NamedDecl::getNameForDiagnostic(raw_ostream &OS, 1440 const PrintingPolicy &Policy, 1441 bool Qualified) const { 1442 if (Qualified) 1443 printQualifiedName(OS, Policy); 1444 else 1445 printName(OS); 1446 } 1447 1448 bool NamedDecl::declarationReplaces(NamedDecl *OldD) const { 1449 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); 1450 1451 // UsingDirectiveDecl's are not really NamedDecl's, and all have same name. 1452 // We want to keep it, unless it nominates same namespace. 1453 if (getKind() == Decl::UsingDirective) { 1454 return cast<UsingDirectiveDecl>(this)->getNominatedNamespace() 1455 ->getOriginalNamespace() == 1456 cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace() 1457 ->getOriginalNamespace(); 1458 } 1459 1460 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this)) 1461 // For function declarations, we keep track of redeclarations. 1462 return FD->getPreviousDecl() == OldD; 1463 1464 // For function templates, the underlying function declarations are linked. 1465 if (const FunctionTemplateDecl *FunctionTemplate 1466 = dyn_cast<FunctionTemplateDecl>(this)) 1467 if (const FunctionTemplateDecl *OldFunctionTemplate 1468 = dyn_cast<FunctionTemplateDecl>(OldD)) 1469 return FunctionTemplate->getTemplatedDecl() 1470 ->declarationReplaces(OldFunctionTemplate->getTemplatedDecl()); 1471 1472 // For method declarations, we keep track of redeclarations. 1473 if (isa<ObjCMethodDecl>(this)) 1474 return false; 1475 1476 // FIXME: Is this correct if one of the decls comes from an inline namespace? 1477 if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD)) 1478 return true; 1479 1480 if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD)) 1481 return cast<UsingShadowDecl>(this)->getTargetDecl() == 1482 cast<UsingShadowDecl>(OldD)->getTargetDecl(); 1483 1484 if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) { 1485 ASTContext &Context = getASTContext(); 1486 return Context.getCanonicalNestedNameSpecifier( 1487 cast<UsingDecl>(this)->getQualifier()) == 1488 Context.getCanonicalNestedNameSpecifier( 1489 cast<UsingDecl>(OldD)->getQualifier()); 1490 } 1491 1492 if (isa<UnresolvedUsingValueDecl>(this) && 1493 isa<UnresolvedUsingValueDecl>(OldD)) { 1494 ASTContext &Context = getASTContext(); 1495 return Context.getCanonicalNestedNameSpecifier( 1496 cast<UnresolvedUsingValueDecl>(this)->getQualifier()) == 1497 Context.getCanonicalNestedNameSpecifier( 1498 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); 1499 } 1500 1501 // A typedef of an Objective-C class type can replace an Objective-C class 1502 // declaration or definition, and vice versa. 1503 // FIXME: Is this correct if one of the decls comes from an inline namespace? 1504 if ((isa<TypedefNameDecl>(this) && isa<ObjCInterfaceDecl>(OldD)) || 1505 (isa<ObjCInterfaceDecl>(this) && isa<TypedefNameDecl>(OldD))) 1506 return true; 1507 1508 // For non-function declarations, if the declarations are of the 1509 // same kind and have the same parent then this must be a redeclaration, 1510 // or semantic analysis would not have given us the new declaration. 1511 // Note that inline namespaces can give us two declarations with the same 1512 // name and kind in the same scope but different contexts. 1513 return this->getKind() == OldD->getKind() && 1514 this->getDeclContext()->getRedeclContext()->Equals( 1515 OldD->getDeclContext()->getRedeclContext()); 1516 } 1517 1518 bool NamedDecl::hasLinkage() const { 1519 return getFormalLinkage() != NoLinkage; 1520 } 1521 1522 NamedDecl *NamedDecl::getUnderlyingDeclImpl() { 1523 NamedDecl *ND = this; 1524 while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND)) 1525 ND = UD->getTargetDecl(); 1526 1527 if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) 1528 return AD->getClassInterface(); 1529 1530 return ND; 1531 } 1532 1533 bool NamedDecl::isCXXInstanceMember() const { 1534 if (!isCXXClassMember()) 1535 return false; 1536 1537 const NamedDecl *D = this; 1538 if (isa<UsingShadowDecl>(D)) 1539 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1540 1541 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) 1542 return true; 1543 if (const CXXMethodDecl *MD = 1544 dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction())) 1545 return MD->isInstance(); 1546 return false; 1547 } 1548 1549 //===----------------------------------------------------------------------===// 1550 // DeclaratorDecl Implementation 1551 //===----------------------------------------------------------------------===// 1552 1553 template <typename DeclT> 1554 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { 1555 if (decl->getNumTemplateParameterLists() > 0) 1556 return decl->getTemplateParameterList(0)->getTemplateLoc(); 1557 else 1558 return decl->getInnerLocStart(); 1559 } 1560 1561 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { 1562 TypeSourceInfo *TSI = getTypeSourceInfo(); 1563 if (TSI) return TSI->getTypeLoc().getBeginLoc(); 1564 return SourceLocation(); 1565 } 1566 1567 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 1568 if (QualifierLoc) { 1569 // Make sure the extended decl info is allocated. 1570 if (!hasExtInfo()) { 1571 // Save (non-extended) type source info pointer. 1572 TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1573 // Allocate external info struct. 1574 DeclInfo = new (getASTContext()) ExtInfo; 1575 // Restore savedTInfo into (extended) decl info. 1576 getExtInfo()->TInfo = savedTInfo; 1577 } 1578 // Set qualifier info. 1579 getExtInfo()->QualifierLoc = QualifierLoc; 1580 } else { 1581 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 1582 if (hasExtInfo()) { 1583 if (getExtInfo()->NumTemplParamLists == 0) { 1584 // Save type source info pointer. 1585 TypeSourceInfo *savedTInfo = getExtInfo()->TInfo; 1586 // Deallocate the extended decl info. 1587 getASTContext().Deallocate(getExtInfo()); 1588 // Restore savedTInfo into (non-extended) decl info. 1589 DeclInfo = savedTInfo; 1590 } 1591 else 1592 getExtInfo()->QualifierLoc = QualifierLoc; 1593 } 1594 } 1595 } 1596 1597 void 1598 DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context, 1599 unsigned NumTPLists, 1600 TemplateParameterList **TPLists) { 1601 assert(NumTPLists > 0); 1602 // Make sure the extended decl info is allocated. 1603 if (!hasExtInfo()) { 1604 // Save (non-extended) type source info pointer. 1605 TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1606 // Allocate external info struct. 1607 DeclInfo = new (getASTContext()) ExtInfo; 1608 // Restore savedTInfo into (extended) decl info. 1609 getExtInfo()->TInfo = savedTInfo; 1610 } 1611 // Set the template parameter lists info. 1612 getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists); 1613 } 1614 1615 SourceLocation DeclaratorDecl::getOuterLocStart() const { 1616 return getTemplateOrInnerLocStart(this); 1617 } 1618 1619 namespace { 1620 1621 // Helper function: returns true if QT is or contains a type 1622 // having a postfix component. 1623 bool typeIsPostfix(clang::QualType QT) { 1624 while (true) { 1625 const Type* T = QT.getTypePtr(); 1626 switch (T->getTypeClass()) { 1627 default: 1628 return false; 1629 case Type::Pointer: 1630 QT = cast<PointerType>(T)->getPointeeType(); 1631 break; 1632 case Type::BlockPointer: 1633 QT = cast<BlockPointerType>(T)->getPointeeType(); 1634 break; 1635 case Type::MemberPointer: 1636 QT = cast<MemberPointerType>(T)->getPointeeType(); 1637 break; 1638 case Type::LValueReference: 1639 case Type::RValueReference: 1640 QT = cast<ReferenceType>(T)->getPointeeType(); 1641 break; 1642 case Type::PackExpansion: 1643 QT = cast<PackExpansionType>(T)->getPattern(); 1644 break; 1645 case Type::Paren: 1646 case Type::ConstantArray: 1647 case Type::DependentSizedArray: 1648 case Type::IncompleteArray: 1649 case Type::VariableArray: 1650 case Type::FunctionProto: 1651 case Type::FunctionNoProto: 1652 return true; 1653 } 1654 } 1655 } 1656 1657 } // namespace 1658 1659 SourceRange DeclaratorDecl::getSourceRange() const { 1660 SourceLocation RangeEnd = getLocation(); 1661 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 1662 // If the declaration has no name or the type extends past the name take the 1663 // end location of the type. 1664 if (!getDeclName() || typeIsPostfix(TInfo->getType())) 1665 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 1666 } 1667 return SourceRange(getOuterLocStart(), RangeEnd); 1668 } 1669 1670 void 1671 QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context, 1672 unsigned NumTPLists, 1673 TemplateParameterList **TPLists) { 1674 assert((NumTPLists == 0 || TPLists != nullptr) && 1675 "Empty array of template parameters with positive size!"); 1676 1677 // Free previous template parameters (if any). 1678 if (NumTemplParamLists > 0) { 1679 Context.Deallocate(TemplParamLists); 1680 TemplParamLists = nullptr; 1681 NumTemplParamLists = 0; 1682 } 1683 // Set info on matched template parameter lists (if any). 1684 if (NumTPLists > 0) { 1685 TemplParamLists = new (Context) TemplateParameterList*[NumTPLists]; 1686 NumTemplParamLists = NumTPLists; 1687 for (unsigned i = NumTPLists; i-- > 0; ) 1688 TemplParamLists[i] = TPLists[i]; 1689 } 1690 } 1691 1692 //===----------------------------------------------------------------------===// 1693 // VarDecl Implementation 1694 //===----------------------------------------------------------------------===// 1695 1696 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { 1697 switch (SC) { 1698 case SC_None: break; 1699 case SC_Auto: return "auto"; 1700 case SC_Extern: return "extern"; 1701 case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>"; 1702 case SC_PrivateExtern: return "__private_extern__"; 1703 case SC_Register: return "register"; 1704 case SC_Static: return "static"; 1705 } 1706 1707 llvm_unreachable("Invalid storage class"); 1708 } 1709 1710 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, 1711 SourceLocation StartLoc, SourceLocation IdLoc, 1712 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 1713 StorageClass SC) 1714 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), 1715 redeclarable_base(C), Init() { 1716 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), 1717 "VarDeclBitfields too large!"); 1718 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), 1719 "ParmVarDeclBitfields too large!"); 1720 AllBits = 0; 1721 VarDeclBits.SClass = SC; 1722 // Everything else is implicitly initialized to false. 1723 } 1724 1725 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, 1726 SourceLocation StartL, SourceLocation IdL, 1727 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 1728 StorageClass S) { 1729 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); 1730 } 1731 1732 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 1733 return new (C, ID) 1734 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, 1735 QualType(), nullptr, SC_None); 1736 } 1737 1738 void VarDecl::setStorageClass(StorageClass SC) { 1739 assert(isLegalForVariable(SC)); 1740 VarDeclBits.SClass = SC; 1741 } 1742 1743 VarDecl::TLSKind VarDecl::getTLSKind() const { 1744 switch (VarDeclBits.TSCSpec) { 1745 case TSCS_unspecified: 1746 if (hasAttr<ThreadAttr>()) 1747 return TLS_Static; 1748 return TLS_None; 1749 case TSCS___thread: // Fall through. 1750 case TSCS__Thread_local: 1751 return TLS_Static; 1752 case TSCS_thread_local: 1753 return TLS_Dynamic; 1754 } 1755 llvm_unreachable("Unknown thread storage class specifier!"); 1756 } 1757 1758 SourceRange VarDecl::getSourceRange() const { 1759 if (const Expr *Init = getInit()) { 1760 SourceLocation InitEnd = Init->getLocEnd(); 1761 // If Init is implicit, ignore its source range and fallback on 1762 // DeclaratorDecl::getSourceRange() to handle postfix elements. 1763 if (InitEnd.isValid() && InitEnd != getLocation()) 1764 return SourceRange(getOuterLocStart(), InitEnd); 1765 } 1766 return DeclaratorDecl::getSourceRange(); 1767 } 1768 1769 template<typename T> 1770 static LanguageLinkage getDeclLanguageLinkage(const T &D) { 1771 // C++ [dcl.link]p1: All function types, function names with external linkage, 1772 // and variable names with external linkage have a language linkage. 1773 if (!D.hasExternalFormalLinkage()) 1774 return NoLanguageLinkage; 1775 1776 // Language linkage is a C++ concept, but saying that everything else in C has 1777 // C language linkage fits the implementation nicely. 1778 ASTContext &Context = D.getASTContext(); 1779 if (!Context.getLangOpts().CPlusPlus) 1780 return CLanguageLinkage; 1781 1782 // C++ [dcl.link]p4: A C language linkage is ignored in determining the 1783 // language linkage of the names of class members and the function type of 1784 // class member functions. 1785 const DeclContext *DC = D.getDeclContext(); 1786 if (DC->isRecord()) 1787 return CXXLanguageLinkage; 1788 1789 // If the first decl is in an extern "C" context, any other redeclaration 1790 // will have C language linkage. If the first one is not in an extern "C" 1791 // context, we would have reported an error for any other decl being in one. 1792 if (isFirstInExternCContext(&D)) 1793 return CLanguageLinkage; 1794 return CXXLanguageLinkage; 1795 } 1796 1797 template<typename T> 1798 static bool isDeclExternC(const T &D) { 1799 // Since the context is ignored for class members, they can only have C++ 1800 // language linkage or no language linkage. 1801 const DeclContext *DC = D.getDeclContext(); 1802 if (DC->isRecord()) { 1803 assert(D.getASTContext().getLangOpts().CPlusPlus); 1804 return false; 1805 } 1806 1807 return D.getLanguageLinkage() == CLanguageLinkage; 1808 } 1809 1810 LanguageLinkage VarDecl::getLanguageLinkage() const { 1811 return getDeclLanguageLinkage(*this); 1812 } 1813 1814 bool VarDecl::isExternC() const { 1815 return isDeclExternC(*this); 1816 } 1817 1818 bool VarDecl::isInExternCContext() const { 1819 return getLexicalDeclContext()->isExternCContext(); 1820 } 1821 1822 bool VarDecl::isInExternCXXContext() const { 1823 return getLexicalDeclContext()->isExternCXXContext(); 1824 } 1825 1826 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } 1827 1828 VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition( 1829 ASTContext &C) const 1830 { 1831 // C++ [basic.def]p2: 1832 // A declaration is a definition unless [...] it contains the 'extern' 1833 // specifier or a linkage-specification and neither an initializer [...], 1834 // it declares a static data member in a class declaration [...]. 1835 // C++1y [temp.expl.spec]p15: 1836 // An explicit specialization of a static data member or an explicit 1837 // specialization of a static data member template is a definition if the 1838 // declaration includes an initializer; otherwise, it is a declaration. 1839 // 1840 // FIXME: How do you declare (but not define) a partial specialization of 1841 // a static data member template outside the containing class? 1842 if (isStaticDataMember()) { 1843 if (isOutOfLine() && 1844 (hasInit() || 1845 // If the first declaration is out-of-line, this may be an 1846 // instantiation of an out-of-line partial specialization of a variable 1847 // template for which we have not yet instantiated the initializer. 1848 (getFirstDecl()->isOutOfLine() 1849 ? getTemplateSpecializationKind() == TSK_Undeclared 1850 : getTemplateSpecializationKind() != 1851 TSK_ExplicitSpecialization) || 1852 isa<VarTemplatePartialSpecializationDecl>(this))) 1853 return Definition; 1854 else 1855 return DeclarationOnly; 1856 } 1857 // C99 6.7p5: 1858 // A definition of an identifier is a declaration for that identifier that 1859 // [...] causes storage to be reserved for that object. 1860 // Note: that applies for all non-file-scope objects. 1861 // C99 6.9.2p1: 1862 // If the declaration of an identifier for an object has file scope and an 1863 // initializer, the declaration is an external definition for the identifier 1864 if (hasInit()) 1865 return Definition; 1866 1867 if (hasAttr<AliasAttr>()) 1868 return Definition; 1869 1870 // A variable template specialization (other than a static data member 1871 // template or an explicit specialization) is a declaration until we 1872 // instantiate its initializer. 1873 if (isa<VarTemplateSpecializationDecl>(this) && 1874 getTemplateSpecializationKind() != TSK_ExplicitSpecialization) 1875 return DeclarationOnly; 1876 1877 if (hasExternalStorage()) 1878 return DeclarationOnly; 1879 1880 // [dcl.link] p7: 1881 // A declaration directly contained in a linkage-specification is treated 1882 // as if it contains the extern specifier for the purpose of determining 1883 // the linkage of the declared name and whether it is a definition. 1884 if (isSingleLineLanguageLinkage(*this)) 1885 return DeclarationOnly; 1886 1887 // C99 6.9.2p2: 1888 // A declaration of an object that has file scope without an initializer, 1889 // and without a storage class specifier or the scs 'static', constitutes 1890 // a tentative definition. 1891 // No such thing in C++. 1892 if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) 1893 return TentativeDefinition; 1894 1895 // What's left is (in C, block-scope) declarations without initializers or 1896 // external storage. These are definitions. 1897 return Definition; 1898 } 1899 1900 VarDecl *VarDecl::getActingDefinition() { 1901 DefinitionKind Kind = isThisDeclarationADefinition(); 1902 if (Kind != TentativeDefinition) 1903 return nullptr; 1904 1905 VarDecl *LastTentative = nullptr; 1906 VarDecl *First = getFirstDecl(); 1907 for (auto I : First->redecls()) { 1908 Kind = I->isThisDeclarationADefinition(); 1909 if (Kind == Definition) 1910 return nullptr; 1911 else if (Kind == TentativeDefinition) 1912 LastTentative = I; 1913 } 1914 return LastTentative; 1915 } 1916 1917 VarDecl *VarDecl::getDefinition(ASTContext &C) { 1918 VarDecl *First = getFirstDecl(); 1919 for (auto I : First->redecls()) { 1920 if (I->isThisDeclarationADefinition(C) == Definition) 1921 return I; 1922 } 1923 return nullptr; 1924 } 1925 1926 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { 1927 DefinitionKind Kind = DeclarationOnly; 1928 1929 const VarDecl *First = getFirstDecl(); 1930 for (auto I : First->redecls()) { 1931 Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); 1932 if (Kind == Definition) 1933 break; 1934 } 1935 1936 return Kind; 1937 } 1938 1939 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { 1940 for (auto I : redecls()) { 1941 if (auto Expr = I->getInit()) { 1942 D = I; 1943 return Expr; 1944 } 1945 } 1946 return nullptr; 1947 } 1948 1949 bool VarDecl::isOutOfLine() const { 1950 if (Decl::isOutOfLine()) 1951 return true; 1952 1953 if (!isStaticDataMember()) 1954 return false; 1955 1956 // If this static data member was instantiated from a static data member of 1957 // a class template, check whether that static data member was defined 1958 // out-of-line. 1959 if (VarDecl *VD = getInstantiatedFromStaticDataMember()) 1960 return VD->isOutOfLine(); 1961 1962 return false; 1963 } 1964 1965 VarDecl *VarDecl::getOutOfLineDefinition() { 1966 if (!isStaticDataMember()) 1967 return nullptr; 1968 1969 for (auto RD : redecls()) { 1970 if (RD->getLexicalDeclContext()->isFileContext()) 1971 return RD; 1972 } 1973 1974 return nullptr; 1975 } 1976 1977 void VarDecl::setInit(Expr *I) { 1978 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) { 1979 Eval->~EvaluatedStmt(); 1980 getASTContext().Deallocate(Eval); 1981 } 1982 1983 Init = I; 1984 } 1985 1986 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const { 1987 const LangOptions &Lang = C.getLangOpts(); 1988 1989 if (!Lang.CPlusPlus) 1990 return false; 1991 1992 // In C++11, any variable of reference type can be used in a constant 1993 // expression if it is initialized by a constant expression. 1994 if (Lang.CPlusPlus11 && getType()->isReferenceType()) 1995 return true; 1996 1997 // Only const objects can be used in constant expressions in C++. C++98 does 1998 // not require the variable to be non-volatile, but we consider this to be a 1999 // defect. 2000 if (!getType().isConstQualified() || getType().isVolatileQualified()) 2001 return false; 2002 2003 // In C++, const, non-volatile variables of integral or enumeration types 2004 // can be used in constant expressions. 2005 if (getType()->isIntegralOrEnumerationType()) 2006 return true; 2007 2008 // Additionally, in C++11, non-volatile constexpr variables can be used in 2009 // constant expressions. 2010 return Lang.CPlusPlus11 && isConstexpr(); 2011 } 2012 2013 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt 2014 /// form, which contains extra information on the evaluated value of the 2015 /// initializer. 2016 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { 2017 EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>(); 2018 if (!Eval) { 2019 Stmt *S = Init.get<Stmt *>(); 2020 // Note: EvaluatedStmt contains an APValue, which usually holds 2021 // resources not allocated from the ASTContext. We need to do some 2022 // work to avoid leaking those, but we do so in VarDecl::evaluateValue 2023 // where we can detect whether there's anything to clean up or not. 2024 Eval = new (getASTContext()) EvaluatedStmt; 2025 Eval->Value = S; 2026 Init = Eval; 2027 } 2028 return Eval; 2029 } 2030 2031 APValue *VarDecl::evaluateValue() const { 2032 SmallVector<PartialDiagnosticAt, 8> Notes; 2033 return evaluateValue(Notes); 2034 } 2035 2036 namespace { 2037 // Destroy an APValue that was allocated in an ASTContext. 2038 void DestroyAPValue(void* UntypedValue) { 2039 static_cast<APValue*>(UntypedValue)->~APValue(); 2040 } 2041 } // namespace 2042 2043 APValue *VarDecl::evaluateValue( 2044 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2045 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2046 2047 // We only produce notes indicating why an initializer is non-constant the 2048 // first time it is evaluated. FIXME: The notes won't always be emitted the 2049 // first time we try evaluation, so might not be produced at all. 2050 if (Eval->WasEvaluated) 2051 return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated; 2052 2053 const Expr *Init = cast<Expr>(Eval->Value); 2054 assert(!Init->isValueDependent()); 2055 2056 if (Eval->IsEvaluating) { 2057 // FIXME: Produce a diagnostic for self-initialization. 2058 Eval->CheckedICE = true; 2059 Eval->IsICE = false; 2060 return nullptr; 2061 } 2062 2063 Eval->IsEvaluating = true; 2064 2065 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(), 2066 this, Notes); 2067 2068 // Ensure the computed APValue is cleaned up later if evaluation succeeded, 2069 // or that it's empty (so that there's nothing to clean up) if evaluation 2070 // failed. 2071 if (!Result) 2072 Eval->Evaluated = APValue(); 2073 else if (Eval->Evaluated.needsCleanup()) 2074 getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated); 2075 2076 Eval->IsEvaluating = false; 2077 Eval->WasEvaluated = true; 2078 2079 // In C++11, we have determined whether the initializer was a constant 2080 // expression as a side-effect. 2081 if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) { 2082 Eval->CheckedICE = true; 2083 Eval->IsICE = Result && Notes.empty(); 2084 } 2085 2086 return Result ? &Eval->Evaluated : nullptr; 2087 } 2088 2089 bool VarDecl::checkInitIsICE() const { 2090 // Initializers of weak variables are never ICEs. 2091 if (isWeak()) 2092 return false; 2093 2094 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2095 if (Eval->CheckedICE) 2096 // We have already checked whether this subexpression is an 2097 // integral constant expression. 2098 return Eval->IsICE; 2099 2100 const Expr *Init = cast<Expr>(Eval->Value); 2101 assert(!Init->isValueDependent()); 2102 2103 // In C++11, evaluate the initializer to check whether it's a constant 2104 // expression. 2105 if (getASTContext().getLangOpts().CPlusPlus11) { 2106 SmallVector<PartialDiagnosticAt, 8> Notes; 2107 evaluateValue(Notes); 2108 return Eval->IsICE; 2109 } 2110 2111 // It's an ICE whether or not the definition we found is 2112 // out-of-line. See DR 721 and the discussion in Clang PR 2113 // 6206 for details. 2114 2115 if (Eval->CheckingICE) 2116 return false; 2117 Eval->CheckingICE = true; 2118 2119 Eval->IsICE = Init->isIntegerConstantExpr(getASTContext()); 2120 Eval->CheckingICE = false; 2121 Eval->CheckedICE = true; 2122 return Eval->IsICE; 2123 } 2124 2125 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { 2126 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2127 return cast<VarDecl>(MSI->getInstantiatedFrom()); 2128 2129 return nullptr; 2130 } 2131 2132 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { 2133 if (const VarTemplateSpecializationDecl *Spec = 2134 dyn_cast<VarTemplateSpecializationDecl>(this)) 2135 return Spec->getSpecializationKind(); 2136 2137 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2138 return MSI->getTemplateSpecializationKind(); 2139 2140 return TSK_Undeclared; 2141 } 2142 2143 SourceLocation VarDecl::getPointOfInstantiation() const { 2144 if (const VarTemplateSpecializationDecl *Spec = 2145 dyn_cast<VarTemplateSpecializationDecl>(this)) 2146 return Spec->getPointOfInstantiation(); 2147 2148 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2149 return MSI->getPointOfInstantiation(); 2150 2151 return SourceLocation(); 2152 } 2153 2154 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { 2155 return getASTContext().getTemplateOrSpecializationInfo(this) 2156 .dyn_cast<VarTemplateDecl *>(); 2157 } 2158 2159 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { 2160 getASTContext().setTemplateOrSpecializationInfo(this, Template); 2161 } 2162 2163 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { 2164 if (isStaticDataMember()) 2165 // FIXME: Remove ? 2166 // return getASTContext().getInstantiatedFromStaticDataMember(this); 2167 return getASTContext().getTemplateOrSpecializationInfo(this) 2168 .dyn_cast<MemberSpecializationInfo *>(); 2169 return nullptr; 2170 } 2171 2172 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 2173 SourceLocation PointOfInstantiation) { 2174 assert((isa<VarTemplateSpecializationDecl>(this) || 2175 getMemberSpecializationInfo()) && 2176 "not a variable or static data member template specialization"); 2177 2178 if (VarTemplateSpecializationDecl *Spec = 2179 dyn_cast<VarTemplateSpecializationDecl>(this)) { 2180 Spec->setSpecializationKind(TSK); 2181 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2182 Spec->getPointOfInstantiation().isInvalid()) 2183 Spec->setPointOfInstantiation(PointOfInstantiation); 2184 } 2185 2186 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { 2187 MSI->setTemplateSpecializationKind(TSK); 2188 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2189 MSI->getPointOfInstantiation().isInvalid()) 2190 MSI->setPointOfInstantiation(PointOfInstantiation); 2191 } 2192 } 2193 2194 void 2195 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, 2196 TemplateSpecializationKind TSK) { 2197 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && 2198 "Previous template or instantiation?"); 2199 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); 2200 } 2201 2202 //===----------------------------------------------------------------------===// 2203 // ParmVarDecl Implementation 2204 //===----------------------------------------------------------------------===// 2205 2206 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, 2207 SourceLocation StartLoc, 2208 SourceLocation IdLoc, IdentifierInfo *Id, 2209 QualType T, TypeSourceInfo *TInfo, 2210 StorageClass S, Expr *DefArg) { 2211 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, 2212 S, DefArg); 2213 } 2214 2215 QualType ParmVarDecl::getOriginalType() const { 2216 TypeSourceInfo *TSI = getTypeSourceInfo(); 2217 QualType T = TSI ? TSI->getType() : getType(); 2218 if (const DecayedType *DT = dyn_cast<DecayedType>(T)) 2219 return DT->getOriginalType(); 2220 return T; 2221 } 2222 2223 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2224 return new (C, ID) 2225 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), 2226 nullptr, QualType(), nullptr, SC_None, nullptr); 2227 } 2228 2229 SourceRange ParmVarDecl::getSourceRange() const { 2230 if (!hasInheritedDefaultArg()) { 2231 SourceRange ArgRange = getDefaultArgRange(); 2232 if (ArgRange.isValid()) 2233 return SourceRange(getOuterLocStart(), ArgRange.getEnd()); 2234 } 2235 2236 // DeclaratorDecl considers the range of postfix types as overlapping with the 2237 // declaration name, but this is not the case with parameters in ObjC methods. 2238 if (isa<ObjCMethodDecl>(getDeclContext())) 2239 return SourceRange(DeclaratorDecl::getLocStart(), getLocation()); 2240 2241 return DeclaratorDecl::getSourceRange(); 2242 } 2243 2244 Expr *ParmVarDecl::getDefaultArg() { 2245 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); 2246 assert(!hasUninstantiatedDefaultArg() && 2247 "Default argument is not yet instantiated!"); 2248 2249 Expr *Arg = getInit(); 2250 if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg)) 2251 return E->getSubExpr(); 2252 2253 return Arg; 2254 } 2255 2256 SourceRange ParmVarDecl::getDefaultArgRange() const { 2257 if (const Expr *E = getInit()) 2258 return E->getSourceRange(); 2259 2260 if (hasUninstantiatedDefaultArg()) 2261 return getUninstantiatedDefaultArg()->getSourceRange(); 2262 2263 return SourceRange(); 2264 } 2265 2266 bool ParmVarDecl::isParameterPack() const { 2267 return isa<PackExpansionType>(getType()); 2268 } 2269 2270 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { 2271 getASTContext().setParameterIndex(this, parameterIndex); 2272 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; 2273 } 2274 2275 unsigned ParmVarDecl::getParameterIndexLarge() const { 2276 return getASTContext().getParameterIndex(this); 2277 } 2278 2279 //===----------------------------------------------------------------------===// 2280 // FunctionDecl Implementation 2281 //===----------------------------------------------------------------------===// 2282 2283 void FunctionDecl::getNameForDiagnostic( 2284 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { 2285 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); 2286 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); 2287 if (TemplateArgs) 2288 TemplateSpecializationType::PrintTemplateArgumentList( 2289 OS, TemplateArgs->data(), TemplateArgs->size(), Policy); 2290 } 2291 2292 bool FunctionDecl::isVariadic() const { 2293 if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>()) 2294 return FT->isVariadic(); 2295 return false; 2296 } 2297 2298 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { 2299 for (auto I : redecls()) { 2300 if (I->Body || I->IsLateTemplateParsed) { 2301 Definition = I; 2302 return true; 2303 } 2304 } 2305 2306 return false; 2307 } 2308 2309 bool FunctionDecl::hasTrivialBody() const 2310 { 2311 Stmt *S = getBody(); 2312 if (!S) { 2313 // Since we don't have a body for this function, we don't know if it's 2314 // trivial or not. 2315 return false; 2316 } 2317 2318 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) 2319 return true; 2320 return false; 2321 } 2322 2323 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const { 2324 for (auto I : redecls()) { 2325 if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed || 2326 I->hasAttr<AliasAttr>()) { 2327 Definition = I->IsDeleted ? I->getCanonicalDecl() : I; 2328 return true; 2329 } 2330 } 2331 2332 return false; 2333 } 2334 2335 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { 2336 if (!hasBody(Definition)) 2337 return nullptr; 2338 2339 if (Definition->Body) 2340 return Definition->Body.get(getASTContext().getExternalSource()); 2341 2342 return nullptr; 2343 } 2344 2345 void FunctionDecl::setBody(Stmt *B) { 2346 Body = B; 2347 if (B) 2348 EndRangeLoc = B->getLocEnd(); 2349 } 2350 2351 void FunctionDecl::setPure(bool P) { 2352 IsPure = P; 2353 if (P) 2354 if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) 2355 Parent->markedVirtualFunctionPure(); 2356 } 2357 2358 template<std::size_t Len> 2359 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { 2360 IdentifierInfo *II = ND->getIdentifier(); 2361 return II && II->isStr(Str); 2362 } 2363 2364 bool FunctionDecl::isMain() const { 2365 const TranslationUnitDecl *tunit = 2366 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 2367 return tunit && 2368 !tunit->getASTContext().getLangOpts().Freestanding && 2369 isNamed(this, "main"); 2370 } 2371 2372 bool FunctionDecl::isMSVCRTEntryPoint() const { 2373 const TranslationUnitDecl *TUnit = 2374 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 2375 if (!TUnit) 2376 return false; 2377 2378 // Even though we aren't really targeting MSVCRT if we are freestanding, 2379 // semantic analysis for these functions remains the same. 2380 2381 // MSVCRT entry points only exist on MSVCRT targets. 2382 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) 2383 return false; 2384 2385 // Nameless functions like constructors cannot be entry points. 2386 if (!getIdentifier()) 2387 return false; 2388 2389 return llvm::StringSwitch<bool>(getName()) 2390 .Cases("main", // an ANSI console app 2391 "wmain", // a Unicode console App 2392 "WinMain", // an ANSI GUI app 2393 "wWinMain", // a Unicode GUI app 2394 "DllMain", // a DLL 2395 true) 2396 .Default(false); 2397 } 2398 2399 bool FunctionDecl::isReservedGlobalPlacementOperator() const { 2400 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName); 2401 assert(getDeclName().getCXXOverloadedOperator() == OO_New || 2402 getDeclName().getCXXOverloadedOperator() == OO_Delete || 2403 getDeclName().getCXXOverloadedOperator() == OO_Array_New || 2404 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete); 2405 2406 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 2407 return false; 2408 2409 const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>(); 2410 if (proto->getNumParams() != 2 || proto->isVariadic()) 2411 return false; 2412 2413 ASTContext &Context = 2414 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) 2415 ->getASTContext(); 2416 2417 // The result type and first argument type are constant across all 2418 // these operators. The second argument must be exactly void*. 2419 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy); 2420 } 2421 2422 bool FunctionDecl::isReplaceableGlobalAllocationFunction() const { 2423 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 2424 return false; 2425 if (getDeclName().getCXXOverloadedOperator() != OO_New && 2426 getDeclName().getCXXOverloadedOperator() != OO_Delete && 2427 getDeclName().getCXXOverloadedOperator() != OO_Array_New && 2428 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 2429 return false; 2430 2431 if (isa<CXXRecordDecl>(getDeclContext())) 2432 return false; 2433 2434 // This can only fail for an invalid 'operator new' declaration. 2435 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 2436 return false; 2437 2438 const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>(); 2439 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 2 || FPT->isVariadic()) 2440 return false; 2441 2442 // If this is a single-parameter function, it must be a replaceable global 2443 // allocation or deallocation function. 2444 if (FPT->getNumParams() == 1) 2445 return true; 2446 2447 // Otherwise, we're looking for a second parameter whose type is 2448 // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'. 2449 QualType Ty = FPT->getParamType(1); 2450 ASTContext &Ctx = getASTContext(); 2451 if (Ctx.getLangOpts().SizedDeallocation && 2452 Ctx.hasSameType(Ty, Ctx.getSizeType())) 2453 return true; 2454 if (!Ty->isReferenceType()) 2455 return false; 2456 Ty = Ty->getPointeeType(); 2457 if (Ty.getCVRQualifiers() != Qualifiers::Const) 2458 return false; 2459 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 2460 return RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace(); 2461 } 2462 2463 FunctionDecl * 2464 FunctionDecl::getCorrespondingUnsizedGlobalDeallocationFunction() const { 2465 ASTContext &Ctx = getASTContext(); 2466 if (!Ctx.getLangOpts().SizedDeallocation) 2467 return nullptr; 2468 2469 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 2470 return nullptr; 2471 if (getDeclName().getCXXOverloadedOperator() != OO_Delete && 2472 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 2473 return nullptr; 2474 if (isa<CXXRecordDecl>(getDeclContext())) 2475 return nullptr; 2476 2477 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 2478 return nullptr; 2479 2480 if (getNumParams() != 2 || isVariadic() || 2481 !Ctx.hasSameType(getType()->castAs<FunctionProtoType>()->getParamType(1), 2482 Ctx.getSizeType())) 2483 return nullptr; 2484 2485 // This is a sized deallocation function. Find the corresponding unsized 2486 // deallocation function. 2487 lookup_const_result R = getDeclContext()->lookup(getDeclName()); 2488 for (lookup_const_result::iterator RI = R.begin(), RE = R.end(); RI != RE; 2489 ++RI) 2490 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*RI)) 2491 if (FD->getNumParams() == 1 && !FD->isVariadic()) 2492 return FD; 2493 return nullptr; 2494 } 2495 2496 LanguageLinkage FunctionDecl::getLanguageLinkage() const { 2497 return getDeclLanguageLinkage(*this); 2498 } 2499 2500 bool FunctionDecl::isExternC() const { 2501 return isDeclExternC(*this); 2502 } 2503 2504 bool FunctionDecl::isInExternCContext() const { 2505 return getLexicalDeclContext()->isExternCContext(); 2506 } 2507 2508 bool FunctionDecl::isInExternCXXContext() const { 2509 return getLexicalDeclContext()->isExternCXXContext(); 2510 } 2511 2512 bool FunctionDecl::isGlobal() const { 2513 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this)) 2514 return Method->isStatic(); 2515 2516 if (getCanonicalDecl()->getStorageClass() == SC_Static) 2517 return false; 2518 2519 for (const DeclContext *DC = getDeclContext(); 2520 DC->isNamespace(); 2521 DC = DC->getParent()) { 2522 if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) { 2523 if (!Namespace->getDeclName()) 2524 return false; 2525 break; 2526 } 2527 } 2528 2529 return true; 2530 } 2531 2532 bool FunctionDecl::isNoReturn() const { 2533 return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || 2534 hasAttr<C11NoReturnAttr>() || 2535 getType()->getAs<FunctionType>()->getNoReturnAttr(); 2536 } 2537 2538 void 2539 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { 2540 redeclarable_base::setPreviousDecl(PrevDecl); 2541 2542 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { 2543 FunctionTemplateDecl *PrevFunTmpl 2544 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr; 2545 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); 2546 FunTmpl->setPreviousDecl(PrevFunTmpl); 2547 } 2548 2549 if (PrevDecl && PrevDecl->IsInline) 2550 IsInline = true; 2551 } 2552 2553 const FunctionDecl *FunctionDecl::getCanonicalDecl() const { 2554 return getFirstDecl(); 2555 } 2556 2557 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); } 2558 2559 /// \brief Returns a value indicating whether this function 2560 /// corresponds to a builtin function. 2561 /// 2562 /// The function corresponds to a built-in function if it is 2563 /// declared at translation scope or within an extern "C" block and 2564 /// its name matches with the name of a builtin. The returned value 2565 /// will be 0 for functions that do not correspond to a builtin, a 2566 /// value of type \c Builtin::ID if in the target-independent range 2567 /// \c [1,Builtin::First), or a target-specific builtin value. 2568 unsigned FunctionDecl::getBuiltinID() const { 2569 if (!getIdentifier()) 2570 return 0; 2571 2572 unsigned BuiltinID = getIdentifier()->getBuiltinID(); 2573 if (!BuiltinID) 2574 return 0; 2575 2576 ASTContext &Context = getASTContext(); 2577 if (Context.getLangOpts().CPlusPlus) { 2578 const LinkageSpecDecl *LinkageDecl = dyn_cast<LinkageSpecDecl>( 2579 getFirstDecl()->getDeclContext()); 2580 // In C++, the first declaration of a builtin is always inside an implicit 2581 // extern "C". 2582 // FIXME: A recognised library function may not be directly in an extern "C" 2583 // declaration, for instance "extern "C" { namespace std { decl } }". 2584 if (!LinkageDecl || LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c) 2585 return 0; 2586 } 2587 2588 // If the function is marked "overloadable", it has a different mangled name 2589 // and is not the C library function. 2590 if (hasAttr<OverloadableAttr>()) 2591 return 0; 2592 2593 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 2594 return BuiltinID; 2595 2596 // This function has the name of a known C library 2597 // function. Determine whether it actually refers to the C library 2598 // function or whether it just has the same name. 2599 2600 // If this is a static function, it's not a builtin. 2601 if (getStorageClass() == SC_Static) 2602 return 0; 2603 2604 return BuiltinID; 2605 } 2606 2607 2608 /// getNumParams - Return the number of parameters this function must have 2609 /// based on its FunctionType. This is the length of the ParamInfo array 2610 /// after it has been created. 2611 unsigned FunctionDecl::getNumParams() const { 2612 const FunctionProtoType *FPT = getType()->getAs<FunctionProtoType>(); 2613 return FPT ? FPT->getNumParams() : 0; 2614 } 2615 2616 void FunctionDecl::setParams(ASTContext &C, 2617 ArrayRef<ParmVarDecl *> NewParamInfo) { 2618 assert(!ParamInfo && "Already has param info!"); 2619 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); 2620 2621 // Zero params -> null pointer. 2622 if (!NewParamInfo.empty()) { 2623 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; 2624 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 2625 } 2626 } 2627 2628 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) { 2629 assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!"); 2630 2631 if (!NewDecls.empty()) { 2632 NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()]; 2633 std::copy(NewDecls.begin(), NewDecls.end(), A); 2634 DeclsInPrototypeScope = llvm::makeArrayRef(A, NewDecls.size()); 2635 // Move declarations introduced in prototype to the function context. 2636 for (auto I : NewDecls) { 2637 DeclContext *DC = I->getDeclContext(); 2638 // Forward-declared reference to an enumeration is not added to 2639 // declaration scope, so skip declaration that is absent from its 2640 // declaration contexts. 2641 if (DC->containsDecl(I)) { 2642 DC->removeDecl(I); 2643 I->setDeclContext(this); 2644 addDecl(I); 2645 } 2646 } 2647 } 2648 } 2649 2650 /// getMinRequiredArguments - Returns the minimum number of arguments 2651 /// needed to call this function. This may be fewer than the number of 2652 /// function parameters, if some of the parameters have default 2653 /// arguments (in C++) or are parameter packs (C++11). 2654 unsigned FunctionDecl::getMinRequiredArguments() const { 2655 if (!getASTContext().getLangOpts().CPlusPlus) 2656 return getNumParams(); 2657 2658 unsigned NumRequiredArgs = 0; 2659 for (auto *Param : params()) 2660 if (!Param->isParameterPack() && !Param->hasDefaultArg()) 2661 ++NumRequiredArgs; 2662 return NumRequiredArgs; 2663 } 2664 2665 /// \brief The combination of the extern and inline keywords under MSVC forces 2666 /// the function to be required. 2667 /// 2668 /// Note: This function assumes that we will only get called when isInlined() 2669 /// would return true for this FunctionDecl. 2670 bool FunctionDecl::isMSExternInline() const { 2671 assert(isInlined() && "expected to get called on an inlined function!"); 2672 2673 const ASTContext &Context = getASTContext(); 2674 if (!Context.getLangOpts().MSVCCompat && !hasAttr<DLLExportAttr>()) 2675 return false; 2676 2677 for (const FunctionDecl *FD = getMostRecentDecl(); FD; 2678 FD = FD->getPreviousDecl()) 2679 if (FD->getStorageClass() == SC_Extern) 2680 return true; 2681 2682 return false; 2683 } 2684 2685 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) { 2686 if (Redecl->getStorageClass() != SC_Extern) 2687 return false; 2688 2689 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD; 2690 FD = FD->getPreviousDecl()) 2691 if (FD->getStorageClass() == SC_Extern) 2692 return false; 2693 2694 return true; 2695 } 2696 2697 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { 2698 // Only consider file-scope declarations in this test. 2699 if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) 2700 return false; 2701 2702 // Only consider explicit declarations; the presence of a builtin for a 2703 // libcall shouldn't affect whether a definition is externally visible. 2704 if (Redecl->isImplicit()) 2705 return false; 2706 2707 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 2708 return true; // Not an inline definition 2709 2710 return false; 2711 } 2712 2713 /// \brief For a function declaration in C or C++, determine whether this 2714 /// declaration causes the definition to be externally visible. 2715 /// 2716 /// For instance, this determines if adding the current declaration to the set 2717 /// of redeclarations of the given functions causes 2718 /// isInlineDefinitionExternallyVisible to change from false to true. 2719 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { 2720 assert(!doesThisDeclarationHaveABody() && 2721 "Must have a declaration without a body."); 2722 2723 ASTContext &Context = getASTContext(); 2724 2725 if (Context.getLangOpts().MSVCCompat) { 2726 const FunctionDecl *Definition; 2727 if (hasBody(Definition) && Definition->isInlined() && 2728 redeclForcesDefMSVC(this)) 2729 return true; 2730 } 2731 2732 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 2733 // With GNU inlining, a declaration with 'inline' but not 'extern', forces 2734 // an externally visible definition. 2735 // 2736 // FIXME: What happens if gnu_inline gets added on after the first 2737 // declaration? 2738 if (!isInlineSpecified() || getStorageClass() == SC_Extern) 2739 return false; 2740 2741 const FunctionDecl *Prev = this; 2742 bool FoundBody = false; 2743 while ((Prev = Prev->getPreviousDecl())) { 2744 FoundBody |= Prev->Body.isValid(); 2745 2746 if (Prev->Body) { 2747 // If it's not the case that both 'inline' and 'extern' are 2748 // specified on the definition, then it is always externally visible. 2749 if (!Prev->isInlineSpecified() || 2750 Prev->getStorageClass() != SC_Extern) 2751 return false; 2752 } else if (Prev->isInlineSpecified() && 2753 Prev->getStorageClass() != SC_Extern) { 2754 return false; 2755 } 2756 } 2757 return FoundBody; 2758 } 2759 2760 if (Context.getLangOpts().CPlusPlus) 2761 return false; 2762 2763 // C99 6.7.4p6: 2764 // [...] If all of the file scope declarations for a function in a 2765 // translation unit include the inline function specifier without extern, 2766 // then the definition in that translation unit is an inline definition. 2767 if (isInlineSpecified() && getStorageClass() != SC_Extern) 2768 return false; 2769 const FunctionDecl *Prev = this; 2770 bool FoundBody = false; 2771 while ((Prev = Prev->getPreviousDecl())) { 2772 FoundBody |= Prev->Body.isValid(); 2773 if (RedeclForcesDefC99(Prev)) 2774 return false; 2775 } 2776 return FoundBody; 2777 } 2778 2779 SourceRange FunctionDecl::getReturnTypeSourceRange() const { 2780 const TypeSourceInfo *TSI = getTypeSourceInfo(); 2781 if (!TSI) 2782 return SourceRange(); 2783 FunctionTypeLoc FTL = 2784 TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>(); 2785 if (!FTL) 2786 return SourceRange(); 2787 2788 // Skip self-referential return types. 2789 const SourceManager &SM = getASTContext().getSourceManager(); 2790 SourceRange RTRange = FTL.getReturnLoc().getSourceRange(); 2791 SourceLocation Boundary = getNameInfo().getLocStart(); 2792 if (RTRange.isInvalid() || Boundary.isInvalid() || 2793 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary)) 2794 return SourceRange(); 2795 2796 return RTRange; 2797 } 2798 2799 /// \brief For an inline function definition in C, or for a gnu_inline function 2800 /// in C++, determine whether the definition will be externally visible. 2801 /// 2802 /// Inline function definitions are always available for inlining optimizations. 2803 /// However, depending on the language dialect, declaration specifiers, and 2804 /// attributes, the definition of an inline function may or may not be 2805 /// "externally" visible to other translation units in the program. 2806 /// 2807 /// In C99, inline definitions are not externally visible by default. However, 2808 /// if even one of the global-scope declarations is marked "extern inline", the 2809 /// inline definition becomes externally visible (C99 6.7.4p6). 2810 /// 2811 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function 2812 /// definition, we use the GNU semantics for inline, which are nearly the 2813 /// opposite of C99 semantics. In particular, "inline" by itself will create 2814 /// an externally visible symbol, but "extern inline" will not create an 2815 /// externally visible symbol. 2816 bool FunctionDecl::isInlineDefinitionExternallyVisible() const { 2817 assert(doesThisDeclarationHaveABody() && "Must have the function definition"); 2818 assert(isInlined() && "Function must be inline"); 2819 ASTContext &Context = getASTContext(); 2820 2821 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 2822 // Note: If you change the logic here, please change 2823 // doesDeclarationForceExternallyVisibleDefinition as well. 2824 // 2825 // If it's not the case that both 'inline' and 'extern' are 2826 // specified on the definition, then this inline definition is 2827 // externally visible. 2828 if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) 2829 return true; 2830 2831 // If any declaration is 'inline' but not 'extern', then this definition 2832 // is externally visible. 2833 for (auto Redecl : redecls()) { 2834 if (Redecl->isInlineSpecified() && 2835 Redecl->getStorageClass() != SC_Extern) 2836 return true; 2837 } 2838 2839 return false; 2840 } 2841 2842 // The rest of this function is C-only. 2843 assert(!Context.getLangOpts().CPlusPlus && 2844 "should not use C inline rules in C++"); 2845 2846 // C99 6.7.4p6: 2847 // [...] If all of the file scope declarations for a function in a 2848 // translation unit include the inline function specifier without extern, 2849 // then the definition in that translation unit is an inline definition. 2850 for (auto Redecl : redecls()) { 2851 if (RedeclForcesDefC99(Redecl)) 2852 return true; 2853 } 2854 2855 // C99 6.7.4p6: 2856 // An inline definition does not provide an external definition for the 2857 // function, and does not forbid an external definition in another 2858 // translation unit. 2859 return false; 2860 } 2861 2862 /// getOverloadedOperator - Which C++ overloaded operator this 2863 /// function represents, if any. 2864 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { 2865 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 2866 return getDeclName().getCXXOverloadedOperator(); 2867 else 2868 return OO_None; 2869 } 2870 2871 /// getLiteralIdentifier - The literal suffix identifier this function 2872 /// represents, if any. 2873 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { 2874 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) 2875 return getDeclName().getCXXLiteralIdentifier(); 2876 else 2877 return nullptr; 2878 } 2879 2880 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { 2881 if (TemplateOrSpecialization.isNull()) 2882 return TK_NonTemplate; 2883 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>()) 2884 return TK_FunctionTemplate; 2885 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) 2886 return TK_MemberSpecialization; 2887 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) 2888 return TK_FunctionTemplateSpecialization; 2889 if (TemplateOrSpecialization.is 2890 <DependentFunctionTemplateSpecializationInfo*>()) 2891 return TK_DependentFunctionTemplateSpecialization; 2892 2893 llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); 2894 } 2895 2896 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { 2897 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) 2898 return cast<FunctionDecl>(Info->getInstantiatedFrom()); 2899 2900 return nullptr; 2901 } 2902 2903 void 2904 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, 2905 FunctionDecl *FD, 2906 TemplateSpecializationKind TSK) { 2907 assert(TemplateOrSpecialization.isNull() && 2908 "Member function is already a specialization"); 2909 MemberSpecializationInfo *Info 2910 = new (C) MemberSpecializationInfo(FD, TSK); 2911 TemplateOrSpecialization = Info; 2912 } 2913 2914 bool FunctionDecl::isImplicitlyInstantiable() const { 2915 // If the function is invalid, it can't be implicitly instantiated. 2916 if (isInvalidDecl()) 2917 return false; 2918 2919 switch (getTemplateSpecializationKind()) { 2920 case TSK_Undeclared: 2921 case TSK_ExplicitInstantiationDefinition: 2922 return false; 2923 2924 case TSK_ImplicitInstantiation: 2925 return true; 2926 2927 // It is possible to instantiate TSK_ExplicitSpecialization kind 2928 // if the FunctionDecl has a class scope specialization pattern. 2929 case TSK_ExplicitSpecialization: 2930 return getClassScopeSpecializationPattern() != nullptr; 2931 2932 case TSK_ExplicitInstantiationDeclaration: 2933 // Handled below. 2934 break; 2935 } 2936 2937 // Find the actual template from which we will instantiate. 2938 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); 2939 bool HasPattern = false; 2940 if (PatternDecl) 2941 HasPattern = PatternDecl->hasBody(PatternDecl); 2942 2943 // C++0x [temp.explicit]p9: 2944 // Except for inline functions, other explicit instantiation declarations 2945 // have the effect of suppressing the implicit instantiation of the entity 2946 // to which they refer. 2947 if (!HasPattern || !PatternDecl) 2948 return true; 2949 2950 return PatternDecl->isInlined(); 2951 } 2952 2953 bool FunctionDecl::isTemplateInstantiation() const { 2954 switch (getTemplateSpecializationKind()) { 2955 case TSK_Undeclared: 2956 case TSK_ExplicitSpecialization: 2957 return false; 2958 case TSK_ImplicitInstantiation: 2959 case TSK_ExplicitInstantiationDeclaration: 2960 case TSK_ExplicitInstantiationDefinition: 2961 return true; 2962 } 2963 llvm_unreachable("All TSK values handled."); 2964 } 2965 2966 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const { 2967 // Handle class scope explicit specialization special case. 2968 if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 2969 return getClassScopeSpecializationPattern(); 2970 2971 // If this is a generic lambda call operator specialization, its 2972 // instantiation pattern is always its primary template's pattern 2973 // even if its primary template was instantiated from another 2974 // member template (which happens with nested generic lambdas). 2975 // Since a lambda's call operator's body is transformed eagerly, 2976 // we don't have to go hunting for a prototype definition template 2977 // (i.e. instantiated-from-member-template) to use as an instantiation 2978 // pattern. 2979 2980 if (isGenericLambdaCallOperatorSpecialization( 2981 dyn_cast<CXXMethodDecl>(this))) { 2982 assert(getPrimaryTemplate() && "A generic lambda specialization must be " 2983 "generated from a primary call operator " 2984 "template"); 2985 assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() && 2986 "A generic lambda call operator template must always have a body - " 2987 "even if instantiated from a prototype (i.e. as written) member " 2988 "template"); 2989 return getPrimaryTemplate()->getTemplatedDecl(); 2990 } 2991 2992 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { 2993 while (Primary->getInstantiatedFromMemberTemplate()) { 2994 // If we have hit a point where the user provided a specialization of 2995 // this template, we're done looking. 2996 if (Primary->isMemberSpecialization()) 2997 break; 2998 Primary = Primary->getInstantiatedFromMemberTemplate(); 2999 } 3000 3001 return Primary->getTemplatedDecl(); 3002 } 3003 3004 return getInstantiatedFromMemberFunction(); 3005 } 3006 3007 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { 3008 if (FunctionTemplateSpecializationInfo *Info 3009 = TemplateOrSpecialization 3010 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3011 return Info->Template.getPointer(); 3012 } 3013 return nullptr; 3014 } 3015 3016 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const { 3017 return getASTContext().getClassScopeSpecializationPattern(this); 3018 } 3019 3020 const TemplateArgumentList * 3021 FunctionDecl::getTemplateSpecializationArgs() const { 3022 if (FunctionTemplateSpecializationInfo *Info 3023 = TemplateOrSpecialization 3024 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3025 return Info->TemplateArguments; 3026 } 3027 return nullptr; 3028 } 3029 3030 const ASTTemplateArgumentListInfo * 3031 FunctionDecl::getTemplateSpecializationArgsAsWritten() const { 3032 if (FunctionTemplateSpecializationInfo *Info 3033 = TemplateOrSpecialization 3034 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3035 return Info->TemplateArgumentsAsWritten; 3036 } 3037 return nullptr; 3038 } 3039 3040 void 3041 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, 3042 FunctionTemplateDecl *Template, 3043 const TemplateArgumentList *TemplateArgs, 3044 void *InsertPos, 3045 TemplateSpecializationKind TSK, 3046 const TemplateArgumentListInfo *TemplateArgsAsWritten, 3047 SourceLocation PointOfInstantiation) { 3048 assert(TSK != TSK_Undeclared && 3049 "Must specify the type of function template specialization"); 3050 FunctionTemplateSpecializationInfo *Info 3051 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>(); 3052 if (!Info) 3053 Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK, 3054 TemplateArgs, 3055 TemplateArgsAsWritten, 3056 PointOfInstantiation); 3057 TemplateOrSpecialization = Info; 3058 Template->addSpecialization(Info, InsertPos); 3059 } 3060 3061 void 3062 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, 3063 const UnresolvedSetImpl &Templates, 3064 const TemplateArgumentListInfo &TemplateArgs) { 3065 assert(TemplateOrSpecialization.isNull()); 3066 size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo); 3067 Size += Templates.size() * sizeof(FunctionTemplateDecl*); 3068 Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc); 3069 void *Buffer = Context.Allocate(Size); 3070 DependentFunctionTemplateSpecializationInfo *Info = 3071 new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates, 3072 TemplateArgs); 3073 TemplateOrSpecialization = Info; 3074 } 3075 3076 DependentFunctionTemplateSpecializationInfo:: 3077 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, 3078 const TemplateArgumentListInfo &TArgs) 3079 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { 3080 3081 d.NumTemplates = Ts.size(); 3082 d.NumArgs = TArgs.size(); 3083 3084 FunctionTemplateDecl **TsArray = 3085 const_cast<FunctionTemplateDecl**>(getTemplates()); 3086 for (unsigned I = 0, E = Ts.size(); I != E; ++I) 3087 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); 3088 3089 TemplateArgumentLoc *ArgsArray = 3090 const_cast<TemplateArgumentLoc*>(getTemplateArgs()); 3091 for (unsigned I = 0, E = TArgs.size(); I != E; ++I) 3092 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); 3093 } 3094 3095 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { 3096 // For a function template specialization, query the specialization 3097 // information object. 3098 FunctionTemplateSpecializationInfo *FTSInfo 3099 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>(); 3100 if (FTSInfo) 3101 return FTSInfo->getTemplateSpecializationKind(); 3102 3103 MemberSpecializationInfo *MSInfo 3104 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>(); 3105 if (MSInfo) 3106 return MSInfo->getTemplateSpecializationKind(); 3107 3108 return TSK_Undeclared; 3109 } 3110 3111 void 3112 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 3113 SourceLocation PointOfInstantiation) { 3114 if (FunctionTemplateSpecializationInfo *FTSInfo 3115 = TemplateOrSpecialization.dyn_cast< 3116 FunctionTemplateSpecializationInfo*>()) { 3117 FTSInfo->setTemplateSpecializationKind(TSK); 3118 if (TSK != TSK_ExplicitSpecialization && 3119 PointOfInstantiation.isValid() && 3120 FTSInfo->getPointOfInstantiation().isInvalid()) 3121 FTSInfo->setPointOfInstantiation(PointOfInstantiation); 3122 } else if (MemberSpecializationInfo *MSInfo 3123 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { 3124 MSInfo->setTemplateSpecializationKind(TSK); 3125 if (TSK != TSK_ExplicitSpecialization && 3126 PointOfInstantiation.isValid() && 3127 MSInfo->getPointOfInstantiation().isInvalid()) 3128 MSInfo->setPointOfInstantiation(PointOfInstantiation); 3129 } else 3130 llvm_unreachable("Function cannot have a template specialization kind"); 3131 } 3132 3133 SourceLocation FunctionDecl::getPointOfInstantiation() const { 3134 if (FunctionTemplateSpecializationInfo *FTSInfo 3135 = TemplateOrSpecialization.dyn_cast< 3136 FunctionTemplateSpecializationInfo*>()) 3137 return FTSInfo->getPointOfInstantiation(); 3138 else if (MemberSpecializationInfo *MSInfo 3139 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) 3140 return MSInfo->getPointOfInstantiation(); 3141 3142 return SourceLocation(); 3143 } 3144 3145 bool FunctionDecl::isOutOfLine() const { 3146 if (Decl::isOutOfLine()) 3147 return true; 3148 3149 // If this function was instantiated from a member function of a 3150 // class template, check whether that member function was defined out-of-line. 3151 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { 3152 const FunctionDecl *Definition; 3153 if (FD->hasBody(Definition)) 3154 return Definition->isOutOfLine(); 3155 } 3156 3157 // If this function was instantiated from a function template, 3158 // check whether that function template was defined out-of-line. 3159 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { 3160 const FunctionDecl *Definition; 3161 if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) 3162 return Definition->isOutOfLine(); 3163 } 3164 3165 return false; 3166 } 3167 3168 SourceRange FunctionDecl::getSourceRange() const { 3169 return SourceRange(getOuterLocStart(), EndRangeLoc); 3170 } 3171 3172 unsigned FunctionDecl::getMemoryFunctionKind() const { 3173 IdentifierInfo *FnInfo = getIdentifier(); 3174 3175 if (!FnInfo) 3176 return 0; 3177 3178 // Builtin handling. 3179 switch (getBuiltinID()) { 3180 case Builtin::BI__builtin_memset: 3181 case Builtin::BI__builtin___memset_chk: 3182 case Builtin::BImemset: 3183 return Builtin::BImemset; 3184 3185 case Builtin::BI__builtin_memcpy: 3186 case Builtin::BI__builtin___memcpy_chk: 3187 case Builtin::BImemcpy: 3188 return Builtin::BImemcpy; 3189 3190 case Builtin::BI__builtin_memmove: 3191 case Builtin::BI__builtin___memmove_chk: 3192 case Builtin::BImemmove: 3193 return Builtin::BImemmove; 3194 3195 case Builtin::BIstrlcpy: 3196 case Builtin::BI__builtin___strlcpy_chk: 3197 return Builtin::BIstrlcpy; 3198 3199 case Builtin::BIstrlcat: 3200 case Builtin::BI__builtin___strlcat_chk: 3201 return Builtin::BIstrlcat; 3202 3203 case Builtin::BI__builtin_memcmp: 3204 case Builtin::BImemcmp: 3205 return Builtin::BImemcmp; 3206 3207 case Builtin::BI__builtin_strncpy: 3208 case Builtin::BI__builtin___strncpy_chk: 3209 case Builtin::BIstrncpy: 3210 return Builtin::BIstrncpy; 3211 3212 case Builtin::BI__builtin_strncmp: 3213 case Builtin::BIstrncmp: 3214 return Builtin::BIstrncmp; 3215 3216 case Builtin::BI__builtin_strncasecmp: 3217 case Builtin::BIstrncasecmp: 3218 return Builtin::BIstrncasecmp; 3219 3220 case Builtin::BI__builtin_strncat: 3221 case Builtin::BI__builtin___strncat_chk: 3222 case Builtin::BIstrncat: 3223 return Builtin::BIstrncat; 3224 3225 case Builtin::BI__builtin_strndup: 3226 case Builtin::BIstrndup: 3227 return Builtin::BIstrndup; 3228 3229 case Builtin::BI__builtin_strlen: 3230 case Builtin::BIstrlen: 3231 return Builtin::BIstrlen; 3232 3233 default: 3234 if (isExternC()) { 3235 if (FnInfo->isStr("memset")) 3236 return Builtin::BImemset; 3237 else if (FnInfo->isStr("memcpy")) 3238 return Builtin::BImemcpy; 3239 else if (FnInfo->isStr("memmove")) 3240 return Builtin::BImemmove; 3241 else if (FnInfo->isStr("memcmp")) 3242 return Builtin::BImemcmp; 3243 else if (FnInfo->isStr("strncpy")) 3244 return Builtin::BIstrncpy; 3245 else if (FnInfo->isStr("strncmp")) 3246 return Builtin::BIstrncmp; 3247 else if (FnInfo->isStr("strncasecmp")) 3248 return Builtin::BIstrncasecmp; 3249 else if (FnInfo->isStr("strncat")) 3250 return Builtin::BIstrncat; 3251 else if (FnInfo->isStr("strndup")) 3252 return Builtin::BIstrndup; 3253 else if (FnInfo->isStr("strlen")) 3254 return Builtin::BIstrlen; 3255 } 3256 break; 3257 } 3258 return 0; 3259 } 3260 3261 //===----------------------------------------------------------------------===// 3262 // FieldDecl Implementation 3263 //===----------------------------------------------------------------------===// 3264 3265 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, 3266 SourceLocation StartLoc, SourceLocation IdLoc, 3267 IdentifierInfo *Id, QualType T, 3268 TypeSourceInfo *TInfo, Expr *BW, bool Mutable, 3269 InClassInitStyle InitStyle) { 3270 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, 3271 BW, Mutable, InitStyle); 3272 } 3273 3274 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3275 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(), 3276 SourceLocation(), nullptr, QualType(), nullptr, 3277 nullptr, false, ICIS_NoInit); 3278 } 3279 3280 bool FieldDecl::isAnonymousStructOrUnion() const { 3281 if (!isImplicit() || getDeclName()) 3282 return false; 3283 3284 if (const RecordType *Record = getType()->getAs<RecordType>()) 3285 return Record->getDecl()->isAnonymousStructOrUnion(); 3286 3287 return false; 3288 } 3289 3290 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { 3291 assert(isBitField() && "not a bitfield"); 3292 Expr *BitWidth = static_cast<Expr *>(InitStorage.getPointer()); 3293 return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue(); 3294 } 3295 3296 unsigned FieldDecl::getFieldIndex() const { 3297 const FieldDecl *Canonical = getCanonicalDecl(); 3298 if (Canonical != this) 3299 return Canonical->getFieldIndex(); 3300 3301 if (CachedFieldIndex) return CachedFieldIndex - 1; 3302 3303 unsigned Index = 0; 3304 const RecordDecl *RD = getParent(); 3305 3306 for (auto *Field : RD->fields()) { 3307 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1; 3308 ++Index; 3309 } 3310 3311 assert(CachedFieldIndex && "failed to find field in parent"); 3312 return CachedFieldIndex - 1; 3313 } 3314 3315 SourceRange FieldDecl::getSourceRange() const { 3316 switch (InitStorage.getInt()) { 3317 // All three of these cases store an optional Expr*. 3318 case ISK_BitWidthOrNothing: 3319 case ISK_InClassCopyInit: 3320 case ISK_InClassListInit: 3321 if (const Expr *E = static_cast<const Expr *>(InitStorage.getPointer())) 3322 return SourceRange(getInnerLocStart(), E->getLocEnd()); 3323 // FALLTHROUGH 3324 3325 case ISK_CapturedVLAType: 3326 return DeclaratorDecl::getSourceRange(); 3327 } 3328 llvm_unreachable("bad init storage kind"); 3329 } 3330 3331 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) { 3332 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) && 3333 "capturing type in non-lambda or captured record."); 3334 assert(InitStorage.getInt() == ISK_BitWidthOrNothing && 3335 InitStorage.getPointer() == nullptr && 3336 "bit width, initializer or captured type already set"); 3337 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType), 3338 ISK_CapturedVLAType); 3339 } 3340 3341 //===----------------------------------------------------------------------===// 3342 // TagDecl Implementation 3343 //===----------------------------------------------------------------------===// 3344 3345 SourceLocation TagDecl::getOuterLocStart() const { 3346 return getTemplateOrInnerLocStart(this); 3347 } 3348 3349 SourceRange TagDecl::getSourceRange() const { 3350 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); 3351 return SourceRange(getOuterLocStart(), E); 3352 } 3353 3354 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); } 3355 3356 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { 3357 NamedDeclOrQualifier = TDD; 3358 if (const Type *T = getTypeForDecl()) { 3359 (void)T; 3360 assert(T->isLinkageValid()); 3361 } 3362 assert(isLinkageValid()); 3363 } 3364 3365 void TagDecl::startDefinition() { 3366 IsBeingDefined = true; 3367 3368 if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) { 3369 struct CXXRecordDecl::DefinitionData *Data = 3370 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); 3371 for (auto I : redecls()) 3372 cast<CXXRecordDecl>(I)->DefinitionData = Data; 3373 } 3374 } 3375 3376 void TagDecl::completeDefinition() { 3377 assert((!isa<CXXRecordDecl>(this) || 3378 cast<CXXRecordDecl>(this)->hasDefinition()) && 3379 "definition completed but not started"); 3380 3381 IsCompleteDefinition = true; 3382 IsBeingDefined = false; 3383 3384 if (ASTMutationListener *L = getASTMutationListener()) 3385 L->CompletedTagDefinition(this); 3386 } 3387 3388 TagDecl *TagDecl::getDefinition() const { 3389 if (isCompleteDefinition()) 3390 return const_cast<TagDecl *>(this); 3391 3392 // If it's possible for us to have an out-of-date definition, check now. 3393 if (MayHaveOutOfDateDef) { 3394 if (IdentifierInfo *II = getIdentifier()) { 3395 if (II->isOutOfDate()) { 3396 updateOutOfDate(*II); 3397 } 3398 } 3399 } 3400 3401 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this)) 3402 return CXXRD->getDefinition(); 3403 3404 for (auto R : redecls()) 3405 if (R->isCompleteDefinition()) 3406 return R; 3407 3408 return nullptr; 3409 } 3410 3411 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 3412 if (QualifierLoc) { 3413 // Make sure the extended qualifier info is allocated. 3414 if (!hasExtInfo()) 3415 NamedDeclOrQualifier = new (getASTContext()) ExtInfo; 3416 // Set qualifier info. 3417 getExtInfo()->QualifierLoc = QualifierLoc; 3418 } else { 3419 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 3420 if (hasExtInfo()) { 3421 if (getExtInfo()->NumTemplParamLists == 0) { 3422 getASTContext().Deallocate(getExtInfo()); 3423 NamedDeclOrQualifier = (TypedefNameDecl*)nullptr; 3424 } 3425 else 3426 getExtInfo()->QualifierLoc = QualifierLoc; 3427 } 3428 } 3429 } 3430 3431 void TagDecl::setTemplateParameterListsInfo(ASTContext &Context, 3432 unsigned NumTPLists, 3433 TemplateParameterList **TPLists) { 3434 assert(NumTPLists > 0); 3435 // Make sure the extended decl info is allocated. 3436 if (!hasExtInfo()) 3437 // Allocate external info struct. 3438 NamedDeclOrQualifier = new (getASTContext()) ExtInfo; 3439 // Set the template parameter lists info. 3440 getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists); 3441 } 3442 3443 //===----------------------------------------------------------------------===// 3444 // EnumDecl Implementation 3445 //===----------------------------------------------------------------------===// 3446 3447 void EnumDecl::anchor() { } 3448 3449 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, 3450 SourceLocation StartLoc, SourceLocation IdLoc, 3451 IdentifierInfo *Id, 3452 EnumDecl *PrevDecl, bool IsScoped, 3453 bool IsScopedUsingClassTag, bool IsFixed) { 3454 EnumDecl *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl, 3455 IsScoped, IsScopedUsingClassTag, 3456 IsFixed); 3457 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3458 C.getTypeDeclType(Enum, PrevDecl); 3459 return Enum; 3460 } 3461 3462 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3463 EnumDecl *Enum = 3464 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(), 3465 nullptr, nullptr, false, false, false); 3466 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3467 return Enum; 3468 } 3469 3470 SourceRange EnumDecl::getIntegerTypeRange() const { 3471 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo()) 3472 return TI->getTypeLoc().getSourceRange(); 3473 return SourceRange(); 3474 } 3475 3476 void EnumDecl::completeDefinition(QualType NewType, 3477 QualType NewPromotionType, 3478 unsigned NumPositiveBits, 3479 unsigned NumNegativeBits) { 3480 assert(!isCompleteDefinition() && "Cannot redefine enums!"); 3481 if (!IntegerType) 3482 IntegerType = NewType.getTypePtr(); 3483 PromotionType = NewPromotionType; 3484 setNumPositiveBits(NumPositiveBits); 3485 setNumNegativeBits(NumNegativeBits); 3486 TagDecl::completeDefinition(); 3487 } 3488 3489 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { 3490 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 3491 return MSI->getTemplateSpecializationKind(); 3492 3493 return TSK_Undeclared; 3494 } 3495 3496 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 3497 SourceLocation PointOfInstantiation) { 3498 MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); 3499 assert(MSI && "Not an instantiated member enumeration?"); 3500 MSI->setTemplateSpecializationKind(TSK); 3501 if (TSK != TSK_ExplicitSpecialization && 3502 PointOfInstantiation.isValid() && 3503 MSI->getPointOfInstantiation().isInvalid()) 3504 MSI->setPointOfInstantiation(PointOfInstantiation); 3505 } 3506 3507 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { 3508 if (SpecializationInfo) 3509 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); 3510 3511 return nullptr; 3512 } 3513 3514 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, 3515 TemplateSpecializationKind TSK) { 3516 assert(!SpecializationInfo && "Member enum is already a specialization"); 3517 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); 3518 } 3519 3520 //===----------------------------------------------------------------------===// 3521 // RecordDecl Implementation 3522 //===----------------------------------------------------------------------===// 3523 3524 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C, 3525 DeclContext *DC, SourceLocation StartLoc, 3526 SourceLocation IdLoc, IdentifierInfo *Id, 3527 RecordDecl *PrevDecl) 3528 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 3529 HasFlexibleArrayMember = false; 3530 AnonymousStructOrUnion = false; 3531 HasObjectMember = false; 3532 HasVolatileMember = false; 3533 LoadedFieldsFromExternalStorage = false; 3534 assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!"); 3535 } 3536 3537 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, 3538 SourceLocation StartLoc, SourceLocation IdLoc, 3539 IdentifierInfo *Id, RecordDecl* PrevDecl) { 3540 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC, 3541 StartLoc, IdLoc, Id, PrevDecl); 3542 R->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3543 3544 C.getTypeDeclType(R, PrevDecl); 3545 return R; 3546 } 3547 3548 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 3549 RecordDecl *R = 3550 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(), 3551 SourceLocation(), nullptr, nullptr); 3552 R->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3553 return R; 3554 } 3555 3556 bool RecordDecl::isInjectedClassName() const { 3557 return isImplicit() && getDeclName() && getDeclContext()->isRecord() && 3558 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); 3559 } 3560 3561 bool RecordDecl::isLambda() const { 3562 if (auto RD = dyn_cast<CXXRecordDecl>(this)) 3563 return RD->isLambda(); 3564 return false; 3565 } 3566 3567 bool RecordDecl::isCapturedRecord() const { 3568 return hasAttr<CapturedRecordAttr>(); 3569 } 3570 3571 void RecordDecl::setCapturedRecord() { 3572 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext())); 3573 } 3574 3575 RecordDecl::field_iterator RecordDecl::field_begin() const { 3576 if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage) 3577 LoadFieldsFromExternalStorage(); 3578 3579 return field_iterator(decl_iterator(FirstDecl)); 3580 } 3581 3582 /// completeDefinition - Notes that the definition of this type is now 3583 /// complete. 3584 void RecordDecl::completeDefinition() { 3585 assert(!isCompleteDefinition() && "Cannot redefine record!"); 3586 TagDecl::completeDefinition(); 3587 } 3588 3589 /// isMsStruct - Get whether or not this record uses ms_struct layout. 3590 /// This which can be turned on with an attribute, pragma, or the 3591 /// -mms-bitfields command-line option. 3592 bool RecordDecl::isMsStruct(const ASTContext &C) const { 3593 return hasAttr<MsStructAttr>() || C.getLangOpts().MSBitfields == 1; 3594 } 3595 3596 static bool isFieldOrIndirectField(Decl::Kind K) { 3597 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); 3598 } 3599 3600 void RecordDecl::LoadFieldsFromExternalStorage() const { 3601 ExternalASTSource *Source = getASTContext().getExternalSource(); 3602 assert(hasExternalLexicalStorage() && Source && "No external storage?"); 3603 3604 // Notify that we have a RecordDecl doing some initialization. 3605 ExternalASTSource::Deserializing TheFields(Source); 3606 3607 SmallVector<Decl*, 64> Decls; 3608 LoadedFieldsFromExternalStorage = true; 3609 switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField, 3610 Decls)) { 3611 case ELR_Success: 3612 break; 3613 3614 case ELR_AlreadyLoaded: 3615 case ELR_Failure: 3616 return; 3617 } 3618 3619 #ifndef NDEBUG 3620 // Check that all decls we got were FieldDecls. 3621 for (unsigned i=0, e=Decls.size(); i != e; ++i) 3622 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); 3623 #endif 3624 3625 if (Decls.empty()) 3626 return; 3627 3628 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, 3629 /*FieldsAlreadyLoaded=*/false); 3630 } 3631 3632 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const { 3633 ASTContext &Context = getASTContext(); 3634 if (!Context.getLangOpts().Sanitize.has(SanitizerKind::Address) || 3635 !Context.getLangOpts().SanitizeAddressFieldPadding) 3636 return false; 3637 const auto &Blacklist = Context.getSanitizerBlacklist(); 3638 const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this); 3639 // We may be able to relax some of these requirements. 3640 int ReasonToReject = -1; 3641 if (!CXXRD || CXXRD->isExternCContext()) 3642 ReasonToReject = 0; // is not C++. 3643 else if (CXXRD->hasAttr<PackedAttr>()) 3644 ReasonToReject = 1; // is packed. 3645 else if (CXXRD->isUnion()) 3646 ReasonToReject = 2; // is a union. 3647 else if (CXXRD->isTriviallyCopyable()) 3648 ReasonToReject = 3; // is trivially copyable. 3649 else if (CXXRD->hasTrivialDestructor()) 3650 ReasonToReject = 4; // has trivial destructor. 3651 else if (CXXRD->isStandardLayout()) 3652 ReasonToReject = 5; // is standard layout. 3653 else if (Blacklist.isBlacklistedLocation(getLocation(), "field-padding")) 3654 ReasonToReject = 6; // is in a blacklisted file. 3655 else if (Blacklist.isBlacklistedType(getQualifiedNameAsString(), 3656 "field-padding")) 3657 ReasonToReject = 7; // is blacklisted. 3658 3659 if (EmitRemark) { 3660 if (ReasonToReject >= 0) 3661 Context.getDiagnostics().Report( 3662 getLocation(), 3663 diag::remark_sanitize_address_insert_extra_padding_rejected) 3664 << getQualifiedNameAsString() << ReasonToReject; 3665 else 3666 Context.getDiagnostics().Report( 3667 getLocation(), 3668 diag::remark_sanitize_address_insert_extra_padding_accepted) 3669 << getQualifiedNameAsString(); 3670 } 3671 return ReasonToReject < 0; 3672 } 3673 3674 const FieldDecl *RecordDecl::findFirstNamedDataMember() const { 3675 for (const auto *I : fields()) { 3676 if (I->getIdentifier()) 3677 return I; 3678 3679 if (const RecordType *RT = I->getType()->getAs<RecordType>()) 3680 if (const FieldDecl *NamedDataMember = 3681 RT->getDecl()->findFirstNamedDataMember()) 3682 return NamedDataMember; 3683 } 3684 3685 // We didn't find a named data member. 3686 return nullptr; 3687 } 3688 3689 3690 //===----------------------------------------------------------------------===// 3691 // BlockDecl Implementation 3692 //===----------------------------------------------------------------------===// 3693 3694 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { 3695 assert(!ParamInfo && "Already has param info!"); 3696 3697 // Zero params -> null pointer. 3698 if (!NewParamInfo.empty()) { 3699 NumParams = NewParamInfo.size(); 3700 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; 3701 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 3702 } 3703 } 3704 3705 void BlockDecl::setCaptures(ASTContext &Context, 3706 const Capture *begin, 3707 const Capture *end, 3708 bool capturesCXXThis) { 3709 CapturesCXXThis = capturesCXXThis; 3710 3711 if (begin == end) { 3712 NumCaptures = 0; 3713 Captures = nullptr; 3714 return; 3715 } 3716 3717 NumCaptures = end - begin; 3718 3719 // Avoid new Capture[] because we don't want to provide a default 3720 // constructor. 3721 size_t allocationSize = NumCaptures * sizeof(Capture); 3722 void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*)); 3723 memcpy(buffer, begin, allocationSize); 3724 Captures = static_cast<Capture*>(buffer); 3725 } 3726 3727 bool BlockDecl::capturesVariable(const VarDecl *variable) const { 3728 for (const auto &I : captures()) 3729 // Only auto vars can be captured, so no redeclaration worries. 3730 if (I.getVariable() == variable) 3731 return true; 3732 3733 return false; 3734 } 3735 3736 SourceRange BlockDecl::getSourceRange() const { 3737 return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation()); 3738 } 3739 3740 //===----------------------------------------------------------------------===// 3741 // Other Decl Allocation/Deallocation Method Implementations 3742 //===----------------------------------------------------------------------===// 3743 3744 void TranslationUnitDecl::anchor() { } 3745 3746 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { 3747 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C); 3748 } 3749 3750 void LabelDecl::anchor() { } 3751 3752 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 3753 SourceLocation IdentL, IdentifierInfo *II) { 3754 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL); 3755 } 3756 3757 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 3758 SourceLocation IdentL, IdentifierInfo *II, 3759 SourceLocation GnuLabelL) { 3760 assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); 3761 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL); 3762 } 3763 3764 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3765 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr, 3766 SourceLocation()); 3767 } 3768 3769 void LabelDecl::setMSAsmLabel(StringRef Name) { 3770 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1]; 3771 memcpy(Buffer, Name.data(), Name.size()); 3772 Buffer[Name.size()] = '\0'; 3773 MSAsmName = Buffer; 3774 } 3775 3776 void ValueDecl::anchor() { } 3777 3778 bool ValueDecl::isWeak() const { 3779 for (const auto *I : attrs()) 3780 if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I)) 3781 return true; 3782 3783 return isWeakImported(); 3784 } 3785 3786 void ImplicitParamDecl::anchor() { } 3787 3788 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, 3789 SourceLocation IdLoc, 3790 IdentifierInfo *Id, 3791 QualType Type) { 3792 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type); 3793 } 3794 3795 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, 3796 unsigned ID) { 3797 return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr, 3798 QualType()); 3799 } 3800 3801 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC, 3802 SourceLocation StartLoc, 3803 const DeclarationNameInfo &NameInfo, 3804 QualType T, TypeSourceInfo *TInfo, 3805 StorageClass SC, 3806 bool isInlineSpecified, 3807 bool hasWrittenPrototype, 3808 bool isConstexprSpecified) { 3809 FunctionDecl *New = 3810 new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo, 3811 SC, isInlineSpecified, isConstexprSpecified); 3812 New->HasWrittenPrototype = hasWrittenPrototype; 3813 return New; 3814 } 3815 3816 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3817 return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(), 3818 DeclarationNameInfo(), QualType(), nullptr, 3819 SC_None, false, false); 3820 } 3821 3822 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 3823 return new (C, DC) BlockDecl(DC, L); 3824 } 3825 3826 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3827 return new (C, ID) BlockDecl(nullptr, SourceLocation()); 3828 } 3829 3830 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, 3831 unsigned NumParams) { 3832 return new (C, DC, NumParams * sizeof(ImplicitParamDecl *)) 3833 CapturedDecl(DC, NumParams); 3834 } 3835 3836 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, 3837 unsigned NumParams) { 3838 return new (C, ID, NumParams * sizeof(ImplicitParamDecl *)) 3839 CapturedDecl(nullptr, NumParams); 3840 } 3841 3842 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, 3843 SourceLocation L, 3844 IdentifierInfo *Id, QualType T, 3845 Expr *E, const llvm::APSInt &V) { 3846 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V); 3847 } 3848 3849 EnumConstantDecl * 3850 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3851 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr, 3852 QualType(), nullptr, llvm::APSInt()); 3853 } 3854 3855 void IndirectFieldDecl::anchor() { } 3856 3857 IndirectFieldDecl * 3858 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, 3859 IdentifierInfo *Id, QualType T, NamedDecl **CH, 3860 unsigned CHS) { 3861 return new (C, DC) IndirectFieldDecl(DC, L, Id, T, CH, CHS); 3862 } 3863 3864 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, 3865 unsigned ID) { 3866 return new (C, ID) IndirectFieldDecl(nullptr, SourceLocation(), 3867 DeclarationName(), QualType(), nullptr, 3868 0); 3869 } 3870 3871 SourceRange EnumConstantDecl::getSourceRange() const { 3872 SourceLocation End = getLocation(); 3873 if (Init) 3874 End = Init->getLocEnd(); 3875 return SourceRange(getLocation(), End); 3876 } 3877 3878 void TypeDecl::anchor() { } 3879 3880 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, 3881 SourceLocation StartLoc, SourceLocation IdLoc, 3882 IdentifierInfo *Id, TypeSourceInfo *TInfo) { 3883 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 3884 } 3885 3886 void TypedefNameDecl::anchor() { } 3887 3888 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3889 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(), 3890 nullptr, nullptr); 3891 } 3892 3893 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, 3894 SourceLocation StartLoc, 3895 SourceLocation IdLoc, IdentifierInfo *Id, 3896 TypeSourceInfo *TInfo) { 3897 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 3898 } 3899 3900 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3901 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(), 3902 SourceLocation(), nullptr, nullptr); 3903 } 3904 3905 SourceRange TypedefDecl::getSourceRange() const { 3906 SourceLocation RangeEnd = getLocation(); 3907 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 3908 if (typeIsPostfix(TInfo->getType())) 3909 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 3910 } 3911 return SourceRange(getLocStart(), RangeEnd); 3912 } 3913 3914 SourceRange TypeAliasDecl::getSourceRange() const { 3915 SourceLocation RangeEnd = getLocStart(); 3916 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) 3917 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 3918 return SourceRange(getLocStart(), RangeEnd); 3919 } 3920 3921 void FileScopeAsmDecl::anchor() { } 3922 3923 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, 3924 StringLiteral *Str, 3925 SourceLocation AsmLoc, 3926 SourceLocation RParenLoc) { 3927 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); 3928 } 3929 3930 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, 3931 unsigned ID) { 3932 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(), 3933 SourceLocation()); 3934 } 3935 3936 void EmptyDecl::anchor() {} 3937 3938 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 3939 return new (C, DC) EmptyDecl(DC, L); 3940 } 3941 3942 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3943 return new (C, ID) EmptyDecl(nullptr, SourceLocation()); 3944 } 3945 3946 //===----------------------------------------------------------------------===// 3947 // ImportDecl Implementation 3948 //===----------------------------------------------------------------------===// 3949 3950 /// \brief Retrieve the number of module identifiers needed to name the given 3951 /// module. 3952 static unsigned getNumModuleIdentifiers(Module *Mod) { 3953 unsigned Result = 1; 3954 while (Mod->Parent) { 3955 Mod = Mod->Parent; 3956 ++Result; 3957 } 3958 return Result; 3959 } 3960 3961 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 3962 Module *Imported, 3963 ArrayRef<SourceLocation> IdentifierLocs) 3964 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true), 3965 NextLocalImport() 3966 { 3967 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); 3968 SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1); 3969 memcpy(StoredLocs, IdentifierLocs.data(), 3970 IdentifierLocs.size() * sizeof(SourceLocation)); 3971 } 3972 3973 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 3974 Module *Imported, SourceLocation EndLoc) 3975 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false), 3976 NextLocalImport() 3977 { 3978 *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc; 3979 } 3980 3981 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, 3982 SourceLocation StartLoc, Module *Imported, 3983 ArrayRef<SourceLocation> IdentifierLocs) { 3984 return new (C, DC, IdentifierLocs.size() * sizeof(SourceLocation)) 3985 ImportDecl(DC, StartLoc, Imported, IdentifierLocs); 3986 } 3987 3988 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, 3989 SourceLocation StartLoc, 3990 Module *Imported, 3991 SourceLocation EndLoc) { 3992 ImportDecl *Import = 3993 new (C, DC, sizeof(SourceLocation)) ImportDecl(DC, StartLoc, 3994 Imported, EndLoc); 3995 Import->setImplicit(); 3996 return Import; 3997 } 3998 3999 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4000 unsigned NumLocations) { 4001 return new (C, ID, NumLocations * sizeof(SourceLocation)) 4002 ImportDecl(EmptyShell()); 4003 } 4004 4005 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { 4006 if (!ImportedAndComplete.getInt()) 4007 return None; 4008 4009 const SourceLocation *StoredLocs 4010 = reinterpret_cast<const SourceLocation *>(this + 1); 4011 return llvm::makeArrayRef(StoredLocs, 4012 getNumModuleIdentifiers(getImportedModule())); 4013 } 4014 4015 SourceRange ImportDecl::getSourceRange() const { 4016 if (!ImportedAndComplete.getInt()) 4017 return SourceRange(getLocation(), 4018 *reinterpret_cast<const SourceLocation *>(this + 1)); 4019 4020 return SourceRange(getLocation(), getIdentifierLocs().back()); 4021 } 4022