xref: /minix3/crypto/external/bsd/heimdal/dist/lib/hcrypto/libtommath/tommath.out (revision ebfedea0ce5bbe81e252ddf32d732e40fb633fae)
1*ebfedea0SLionel Sambuc\BOOKMARK [0][-]{chapter.1}{Introduction}{}
2*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.1.1}{Multiple Precision Arithmetic}{chapter.1}
3*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.1.1.1}{What is Multiple Precision Arithmetic?}{section.1.1}
4*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.1.1.2}{The Need for Multiple Precision Arithmetic}{section.1.1}
5*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.1.1.3}{Benefits of Multiple Precision Arithmetic}{section.1.1}
6*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.1.2}{Purpose of This Text}{chapter.1}
7*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.1.3}{Discussion and Notation}{chapter.1}
8*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.1.3.1}{Notation}{section.1.3}
9*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.1.3.2}{Precision Notation}{section.1.3}
10*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.1.3.3}{Algorithm Inputs and Outputs}{section.1.3}
11*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.1.3.4}{Mathematical Expressions}{section.1.3}
12*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.1.3.5}{Work Effort}{section.1.3}
13*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.1.4}{Exercises}{chapter.1}
14*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.1.5}{Introduction to LibTomMath}{chapter.1}
15*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.1.5.1}{What is LibTomMath?}{section.1.5}
16*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.1.5.2}{Goals of LibTomMath}{section.1.5}
17*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.1.6}{Choice of LibTomMath}{chapter.1}
18*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.1.6.1}{Code Base}{section.1.6}
19*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.1.6.2}{API Simplicity}{section.1.6}
20*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.1.6.3}{Optimizations}{section.1.6}
21*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.1.6.4}{Portability and Stability}{section.1.6}
22*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.1.6.5}{Choice}{section.1.6}
23*ebfedea0SLionel Sambuc\BOOKMARK [0][-]{chapter.2}{Getting Started}{}
24*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.2.1}{Library Basics}{chapter.2}
25*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.2.2}{What is a Multiple Precision Integer?}{chapter.2}
26*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.2.2.1}{The mp\137int Structure}{section.2.2}
27*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.2.3}{Argument Passing}{chapter.2}
28*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.2.4}{Return Values}{chapter.2}
29*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.2.5}{Initialization and Clearing}{chapter.2}
30*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.2.5.1}{Initializing an mp\137int}{section.2.5}
31*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.2.5.2}{Clearing an mp\137int}{section.2.5}
32*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.2.6}{Maintenance Algorithms}{chapter.2}
33*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.2.6.1}{Augmenting an mp\137int's Precision}{section.2.6}
34*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.2.6.2}{Initializing Variable Precision mp\137ints}{section.2.6}
35*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.2.6.3}{Multiple Integer Initializations and Clearings}{section.2.6}
36*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.2.6.4}{Clamping Excess Digits}{section.2.6}
37*ebfedea0SLionel Sambuc\BOOKMARK [0][-]{chapter.3}{Basic Operations}{}
38*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.3.1}{Introduction}{chapter.3}
39*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.3.2}{Assigning Values to mp\137int Structures}{chapter.3}
40*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.3.2.1}{Copying an mp\137int}{section.3.2}
41*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.3.2.2}{Creating a Clone}{section.3.2}
42*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.3.3}{Zeroing an Integer}{chapter.3}
43*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.3.4}{Sign Manipulation}{chapter.3}
44*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.3.4.1}{Absolute Value}{section.3.4}
45*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.3.4.2}{Integer Negation}{section.3.4}
46*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.3.5}{Small Constants}{chapter.3}
47*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.3.5.1}{Setting Small Constants}{section.3.5}
48*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.3.5.2}{Setting Large Constants}{section.3.5}
49*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.3.6}{Comparisons}{chapter.3}
50*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.3.6.1}{Unsigned Comparisions}{section.3.6}
51*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.3.6.2}{Signed Comparisons}{section.3.6}
52*ebfedea0SLionel Sambuc\BOOKMARK [0][-]{chapter.4}{Basic Arithmetic}{}
53*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.4.1}{Introduction}{chapter.4}
54*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.4.2}{Addition and Subtraction}{chapter.4}
55*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.4.2.1}{Low Level Addition}{section.4.2}
56*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.4.2.2}{Low Level Subtraction}{section.4.2}
57*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.4.2.3}{High Level Addition}{section.4.2}
58*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.4.2.4}{High Level Subtraction}{section.4.2}
59*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.4.3}{Bit and Digit Shifting}{chapter.4}
60*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.4.3.1}{Multiplication by Two}{section.4.3}
61*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.4.3.2}{Division by Two}{section.4.3}
62*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.4.4}{Polynomial Basis Operations}{chapter.4}
63*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.4.4.1}{Multiplication by x}{section.4.4}
64*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.4.4.2}{Division by x}{section.4.4}
65*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.4.5}{Powers of Two}{chapter.4}
66*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.4.5.1}{Multiplication by Power of Two}{section.4.5}
67*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.4.5.2}{Division by Power of Two}{section.4.5}
68*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.4.5.3}{Remainder of Division by Power of Two}{section.4.5}
69*ebfedea0SLionel Sambuc\BOOKMARK [0][-]{chapter.5}{Multiplication and Squaring}{}
70*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.5.1}{The Multipliers}{chapter.5}
71*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.5.2}{Multiplication}{chapter.5}
72*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.5.2.1}{The Baseline Multiplication}{section.5.2}
73*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.5.2.2}{Faster Multiplication by the ``Comba'' Method}{section.5.2}
74*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.5.2.3}{Polynomial Basis Multiplication}{section.5.2}
75*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.5.2.4}{Karatsuba Multiplication}{section.5.2}
76*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.5.2.5}{Toom-Cook 3-Way Multiplication}{section.5.2}
77*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.5.2.6}{Signed Multiplication}{section.5.2}
78*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.5.3}{Squaring}{chapter.5}
79*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.5.3.1}{The Baseline Squaring Algorithm}{section.5.3}
80*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.5.3.2}{Faster Squaring by the ``Comba'' Method}{section.5.3}
81*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.5.3.3}{Polynomial Basis Squaring}{section.5.3}
82*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.5.3.4}{Karatsuba Squaring}{section.5.3}
83*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.5.3.5}{Toom-Cook Squaring}{section.5.3}
84*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.5.3.6}{High Level Squaring}{section.5.3}
85*ebfedea0SLionel Sambuc\BOOKMARK [0][-]{chapter.6}{Modular Reduction}{}
86*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.6.1}{Basics of Modular Reduction}{chapter.6}
87*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.6.2}{The Barrett Reduction}{chapter.6}
88*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.6.2.1}{Fixed Point Arithmetic}{section.6.2}
89*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.6.2.2}{Choosing a Radix Point}{section.6.2}
90*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.6.2.3}{Trimming the Quotient}{section.6.2}
91*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.6.2.4}{Trimming the Residue}{section.6.2}
92*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.6.2.5}{The Barrett Algorithm}{section.6.2}
93*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.6.2.6}{The Barrett Setup Algorithm}{section.6.2}
94*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.6.3}{The Montgomery Reduction}{chapter.6}
95*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.6.3.1}{Digit Based Montgomery Reduction}{section.6.3}
96*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.6.3.2}{Baseline Montgomery Reduction}{section.6.3}
97*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.6.3.3}{Faster ``Comba'' Montgomery Reduction}{section.6.3}
98*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.6.3.4}{Montgomery Setup}{section.6.3}
99*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.6.4}{The Diminished Radix Algorithm}{chapter.6}
100*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.6.4.1}{Choice of Moduli}{section.6.4}
101*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.6.4.2}{Choice of k}{section.6.4}
102*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.6.4.3}{Restricted Diminished Radix Reduction}{section.6.4}
103*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.6.4.4}{Unrestricted Diminished Radix Reduction}{section.6.4}
104*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.6.5}{Algorithm Comparison}{chapter.6}
105*ebfedea0SLionel Sambuc\BOOKMARK [0][-]{chapter.7}{Exponentiation}{}
106*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.7.1}{Exponentiation Basics}{chapter.7}
107*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.7.1.1}{Single Digit Exponentiation}{section.7.1}
108*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.7.2}{k-ary Exponentiation}{chapter.7}
109*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.7.2.1}{Optimal Values of k}{section.7.2}
110*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.7.2.2}{Sliding-Window Exponentiation}{section.7.2}
111*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.7.3}{Modular Exponentiation}{chapter.7}
112*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.7.3.1}{Barrett Modular Exponentiation}{section.7.3}
113*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.7.4}{Quick Power of Two}{chapter.7}
114*ebfedea0SLionel Sambuc\BOOKMARK [0][-]{chapter.8}{Higher Level Algorithms}{}
115*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.8.1}{Integer Division with Remainder}{chapter.8}
116*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.8.1.1}{Quotient Estimation}{section.8.1}
117*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.8.1.2}{Normalized Integers}{section.8.1}
118*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.8.1.3}{Radix- Division with Remainder}{section.8.1}
119*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.8.2}{Single Digit Helpers}{chapter.8}
120*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.8.2.1}{Single Digit Addition and Subtraction}{section.8.2}
121*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.8.2.2}{Single Digit Multiplication}{section.8.2}
122*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.8.2.3}{Single Digit Division}{section.8.2}
123*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.8.2.4}{Single Digit Root Extraction}{section.8.2}
124*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.8.3}{Random Number Generation}{chapter.8}
125*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.8.4}{Formatted Representations}{chapter.8}
126*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.8.4.1}{Reading Radix-n Input}{section.8.4}
127*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.8.4.2}{Generating Radix-n Output}{section.8.4}
128*ebfedea0SLionel Sambuc\BOOKMARK [0][-]{chapter.9}{Number Theoretic Algorithms}{}
129*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.9.1}{Greatest Common Divisor}{chapter.9}
130*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.9.1.1}{Complete Greatest Common Divisor}{section.9.1}
131*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.9.2}{Least Common Multiple}{chapter.9}
132*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.9.3}{Jacobi Symbol Computation}{chapter.9}
133*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.9.3.1}{Jacobi Symbol}{section.9.3}
134*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.9.4}{Modular Inverse}{chapter.9}
135*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.9.4.1}{General Case}{section.9.4}
136*ebfedea0SLionel Sambuc\BOOKMARK [1][-]{section.9.5}{Primality Tests}{chapter.9}
137*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.9.5.1}{Trial Division}{section.9.5}
138*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.9.5.2}{The Fermat Test}{section.9.5}
139*ebfedea0SLionel Sambuc\BOOKMARK [2][-]{subsection.9.5.3}{The Miller-Rabin Test}{section.9.5}
140