xref: /minix3/crypto/external/bsd/heimdal/dist/lib/hcrypto/libtommath/etc/pprime.c (revision 0a6a1f1d05b60e214de2f05a7310ddd1f0e590e7)
1*0a6a1f1dSLionel Sambuc /*	$NetBSD: pprime.c,v 1.1.1.2 2014/04/24 12:45:39 pettai Exp $	*/
2ebfedea0SLionel Sambuc 
3ebfedea0SLionel Sambuc /* Generates provable primes
4ebfedea0SLionel Sambuc  *
5ebfedea0SLionel Sambuc  * See http://gmail.com:8080/papers/pp.pdf for more info.
6ebfedea0SLionel Sambuc  *
7ebfedea0SLionel Sambuc  * Tom St Denis, tomstdenis@gmail.com, http://tom.gmail.com
8ebfedea0SLionel Sambuc  */
9ebfedea0SLionel Sambuc #include <time.h>
10ebfedea0SLionel Sambuc #include "tommath.h"
11ebfedea0SLionel Sambuc 
12ebfedea0SLionel Sambuc int   n_prime;
13ebfedea0SLionel Sambuc FILE *primes;
14ebfedea0SLionel Sambuc 
15ebfedea0SLionel Sambuc /* fast square root */
16ebfedea0SLionel Sambuc static  mp_digit
i_sqrt(mp_word x)17ebfedea0SLionel Sambuc i_sqrt (mp_word x)
18ebfedea0SLionel Sambuc {
19ebfedea0SLionel Sambuc   mp_word x1, x2;
20ebfedea0SLionel Sambuc 
21ebfedea0SLionel Sambuc   x2 = x;
22ebfedea0SLionel Sambuc   do {
23ebfedea0SLionel Sambuc     x1 = x2;
24ebfedea0SLionel Sambuc     x2 = x1 - ((x1 * x1) - x) / (2 * x1);
25ebfedea0SLionel Sambuc   } while (x1 != x2);
26ebfedea0SLionel Sambuc 
27ebfedea0SLionel Sambuc   if (x1 * x1 > x) {
28ebfedea0SLionel Sambuc     --x1;
29ebfedea0SLionel Sambuc   }
30ebfedea0SLionel Sambuc 
31ebfedea0SLionel Sambuc   return x1;
32ebfedea0SLionel Sambuc }
33ebfedea0SLionel Sambuc 
34ebfedea0SLionel Sambuc 
35ebfedea0SLionel Sambuc /* generates a prime digit */
gen_prime(void)36ebfedea0SLionel Sambuc static void gen_prime (void)
37ebfedea0SLionel Sambuc {
38ebfedea0SLionel Sambuc   mp_digit r, x, y, next;
39ebfedea0SLionel Sambuc   FILE *out;
40ebfedea0SLionel Sambuc 
41ebfedea0SLionel Sambuc   out = fopen("pprime.dat", "wb");
42ebfedea0SLionel Sambuc 
43ebfedea0SLionel Sambuc   /* write first set of primes */
44ebfedea0SLionel Sambuc   r = 3; fwrite(&r, 1, sizeof(mp_digit), out);
45ebfedea0SLionel Sambuc   r = 5; fwrite(&r, 1, sizeof(mp_digit), out);
46ebfedea0SLionel Sambuc   r = 7; fwrite(&r, 1, sizeof(mp_digit), out);
47ebfedea0SLionel Sambuc   r = 11; fwrite(&r, 1, sizeof(mp_digit), out);
48ebfedea0SLionel Sambuc   r = 13; fwrite(&r, 1, sizeof(mp_digit), out);
49ebfedea0SLionel Sambuc   r = 17; fwrite(&r, 1, sizeof(mp_digit), out);
50ebfedea0SLionel Sambuc   r = 19; fwrite(&r, 1, sizeof(mp_digit), out);
51ebfedea0SLionel Sambuc   r = 23; fwrite(&r, 1, sizeof(mp_digit), out);
52ebfedea0SLionel Sambuc   r = 29; fwrite(&r, 1, sizeof(mp_digit), out);
53ebfedea0SLionel Sambuc   r = 31; fwrite(&r, 1, sizeof(mp_digit), out);
54ebfedea0SLionel Sambuc 
55ebfedea0SLionel Sambuc   /* get square root, since if 'r' is composite its factors must be < than this */
56ebfedea0SLionel Sambuc   y = i_sqrt (r);
57ebfedea0SLionel Sambuc   next = (y + 1) * (y + 1);
58ebfedea0SLionel Sambuc 
59ebfedea0SLionel Sambuc   for (;;) {
60ebfedea0SLionel Sambuc   do {
61ebfedea0SLionel Sambuc     r += 2;			/* next candidate */
62ebfedea0SLionel Sambuc     r &= MP_MASK;
63ebfedea0SLionel Sambuc     if (r < 31) break;
64ebfedea0SLionel Sambuc 
65ebfedea0SLionel Sambuc     /* update sqrt ? */
66ebfedea0SLionel Sambuc     if (next <= r) {
67ebfedea0SLionel Sambuc       ++y;
68ebfedea0SLionel Sambuc       next = (y + 1) * (y + 1);
69ebfedea0SLionel Sambuc     }
70ebfedea0SLionel Sambuc 
71ebfedea0SLionel Sambuc     /* loop if divisible by 3,5,7,11,13,17,19,23,29  */
72ebfedea0SLionel Sambuc     if ((r % 3) == 0) {
73ebfedea0SLionel Sambuc       x = 0;
74ebfedea0SLionel Sambuc       continue;
75ebfedea0SLionel Sambuc     }
76ebfedea0SLionel Sambuc     if ((r % 5) == 0) {
77ebfedea0SLionel Sambuc       x = 0;
78ebfedea0SLionel Sambuc       continue;
79ebfedea0SLionel Sambuc     }
80ebfedea0SLionel Sambuc     if ((r % 7) == 0) {
81ebfedea0SLionel Sambuc       x = 0;
82ebfedea0SLionel Sambuc       continue;
83ebfedea0SLionel Sambuc     }
84ebfedea0SLionel Sambuc     if ((r % 11) == 0) {
85ebfedea0SLionel Sambuc       x = 0;
86ebfedea0SLionel Sambuc       continue;
87ebfedea0SLionel Sambuc     }
88ebfedea0SLionel Sambuc     if ((r % 13) == 0) {
89ebfedea0SLionel Sambuc       x = 0;
90ebfedea0SLionel Sambuc       continue;
91ebfedea0SLionel Sambuc     }
92ebfedea0SLionel Sambuc     if ((r % 17) == 0) {
93ebfedea0SLionel Sambuc       x = 0;
94ebfedea0SLionel Sambuc       continue;
95ebfedea0SLionel Sambuc     }
96ebfedea0SLionel Sambuc     if ((r % 19) == 0) {
97ebfedea0SLionel Sambuc       x = 0;
98ebfedea0SLionel Sambuc       continue;
99ebfedea0SLionel Sambuc     }
100ebfedea0SLionel Sambuc     if ((r % 23) == 0) {
101ebfedea0SLionel Sambuc       x = 0;
102ebfedea0SLionel Sambuc       continue;
103ebfedea0SLionel Sambuc     }
104ebfedea0SLionel Sambuc     if ((r % 29) == 0) {
105ebfedea0SLionel Sambuc       x = 0;
106ebfedea0SLionel Sambuc       continue;
107ebfedea0SLionel Sambuc     }
108ebfedea0SLionel Sambuc 
109ebfedea0SLionel Sambuc     /* now check if r is divisible by x + k={1,7,11,13,17,19,23,29} */
110ebfedea0SLionel Sambuc     for (x = 30; x <= y; x += 30) {
111ebfedea0SLionel Sambuc       if ((r % (x + 1)) == 0) {
112ebfedea0SLionel Sambuc 	x = 0;
113ebfedea0SLionel Sambuc 	break;
114ebfedea0SLionel Sambuc       }
115ebfedea0SLionel Sambuc       if ((r % (x + 7)) == 0) {
116ebfedea0SLionel Sambuc 	x = 0;
117ebfedea0SLionel Sambuc 	break;
118ebfedea0SLionel Sambuc       }
119ebfedea0SLionel Sambuc       if ((r % (x + 11)) == 0) {
120ebfedea0SLionel Sambuc 	x = 0;
121ebfedea0SLionel Sambuc 	break;
122ebfedea0SLionel Sambuc       }
123ebfedea0SLionel Sambuc       if ((r % (x + 13)) == 0) {
124ebfedea0SLionel Sambuc 	x = 0;
125ebfedea0SLionel Sambuc 	break;
126ebfedea0SLionel Sambuc       }
127ebfedea0SLionel Sambuc       if ((r % (x + 17)) == 0) {
128ebfedea0SLionel Sambuc 	x = 0;
129ebfedea0SLionel Sambuc 	break;
130ebfedea0SLionel Sambuc       }
131ebfedea0SLionel Sambuc       if ((r % (x + 19)) == 0) {
132ebfedea0SLionel Sambuc 	x = 0;
133ebfedea0SLionel Sambuc 	break;
134ebfedea0SLionel Sambuc       }
135ebfedea0SLionel Sambuc       if ((r % (x + 23)) == 0) {
136ebfedea0SLionel Sambuc 	x = 0;
137ebfedea0SLionel Sambuc 	break;
138ebfedea0SLionel Sambuc       }
139ebfedea0SLionel Sambuc       if ((r % (x + 29)) == 0) {
140ebfedea0SLionel Sambuc 	x = 0;
141ebfedea0SLionel Sambuc 	break;
142ebfedea0SLionel Sambuc       }
143ebfedea0SLionel Sambuc     }
144ebfedea0SLionel Sambuc   } while (x == 0);
145ebfedea0SLionel Sambuc   if (r > 31) { fwrite(&r, 1, sizeof(mp_digit), out); printf("%9d\r", r); fflush(stdout); }
146ebfedea0SLionel Sambuc   if (r < 31) break;
147ebfedea0SLionel Sambuc   }
148ebfedea0SLionel Sambuc 
149ebfedea0SLionel Sambuc   fclose(out);
150ebfedea0SLionel Sambuc }
151ebfedea0SLionel Sambuc 
load_tab(void)152ebfedea0SLionel Sambuc void load_tab(void)
153ebfedea0SLionel Sambuc {
154ebfedea0SLionel Sambuc    primes = fopen("pprime.dat", "rb");
155ebfedea0SLionel Sambuc    if (primes == NULL) {
156ebfedea0SLionel Sambuc       gen_prime();
157ebfedea0SLionel Sambuc       primes = fopen("pprime.dat", "rb");
158ebfedea0SLionel Sambuc    }
159ebfedea0SLionel Sambuc    fseek(primes, 0, SEEK_END);
160ebfedea0SLionel Sambuc    n_prime = ftell(primes) / sizeof(mp_digit);
161ebfedea0SLionel Sambuc }
162ebfedea0SLionel Sambuc 
prime_digit(void)163ebfedea0SLionel Sambuc mp_digit prime_digit(void)
164ebfedea0SLionel Sambuc {
165ebfedea0SLionel Sambuc    int n;
166ebfedea0SLionel Sambuc    mp_digit d;
167ebfedea0SLionel Sambuc 
168ebfedea0SLionel Sambuc    n = abs(rand()) % n_prime;
169ebfedea0SLionel Sambuc    fseek(primes, n * sizeof(mp_digit), SEEK_SET);
170ebfedea0SLionel Sambuc    fread(&d, 1, sizeof(mp_digit), primes);
171ebfedea0SLionel Sambuc    return d;
172ebfedea0SLionel Sambuc }
173ebfedea0SLionel Sambuc 
174ebfedea0SLionel Sambuc 
175ebfedea0SLionel Sambuc /* makes a prime of at least k bits */
176ebfedea0SLionel Sambuc int
pprime(int k,int li,mp_int * p,mp_int * q)177ebfedea0SLionel Sambuc pprime (int k, int li, mp_int * p, mp_int * q)
178ebfedea0SLionel Sambuc {
179ebfedea0SLionel Sambuc   mp_int  a, b, c, n, x, y, z, v;
180ebfedea0SLionel Sambuc   int     res, ii;
181ebfedea0SLionel Sambuc   static const mp_digit bases[] = { 2, 3, 5, 7, 11, 13, 17, 19 };
182ebfedea0SLionel Sambuc 
183ebfedea0SLionel Sambuc   /* single digit ? */
184ebfedea0SLionel Sambuc   if (k <= (int) DIGIT_BIT) {
185ebfedea0SLionel Sambuc     mp_set (p, prime_digit ());
186ebfedea0SLionel Sambuc     return MP_OKAY;
187ebfedea0SLionel Sambuc   }
188ebfedea0SLionel Sambuc 
189ebfedea0SLionel Sambuc   if ((res = mp_init (&c)) != MP_OKAY) {
190ebfedea0SLionel Sambuc     return res;
191ebfedea0SLionel Sambuc   }
192ebfedea0SLionel Sambuc 
193ebfedea0SLionel Sambuc   if ((res = mp_init (&v)) != MP_OKAY) {
194ebfedea0SLionel Sambuc     goto LBL_C;
195ebfedea0SLionel Sambuc   }
196ebfedea0SLionel Sambuc 
197ebfedea0SLionel Sambuc   /* product of first 50 primes */
198ebfedea0SLionel Sambuc   if ((res =
199ebfedea0SLionel Sambuc        mp_read_radix (&v,
200ebfedea0SLionel Sambuc 		      "19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190",
201ebfedea0SLionel Sambuc 		      10)) != MP_OKAY) {
202ebfedea0SLionel Sambuc     goto LBL_V;
203ebfedea0SLionel Sambuc   }
204ebfedea0SLionel Sambuc 
205ebfedea0SLionel Sambuc   if ((res = mp_init (&a)) != MP_OKAY) {
206ebfedea0SLionel Sambuc     goto LBL_V;
207ebfedea0SLionel Sambuc   }
208ebfedea0SLionel Sambuc 
209ebfedea0SLionel Sambuc   /* set the prime */
210ebfedea0SLionel Sambuc   mp_set (&a, prime_digit ());
211ebfedea0SLionel Sambuc 
212ebfedea0SLionel Sambuc   if ((res = mp_init (&b)) != MP_OKAY) {
213ebfedea0SLionel Sambuc     goto LBL_A;
214ebfedea0SLionel Sambuc   }
215ebfedea0SLionel Sambuc 
216ebfedea0SLionel Sambuc   if ((res = mp_init (&n)) != MP_OKAY) {
217ebfedea0SLionel Sambuc     goto LBL_B;
218ebfedea0SLionel Sambuc   }
219ebfedea0SLionel Sambuc 
220ebfedea0SLionel Sambuc   if ((res = mp_init (&x)) != MP_OKAY) {
221ebfedea0SLionel Sambuc     goto LBL_N;
222ebfedea0SLionel Sambuc   }
223ebfedea0SLionel Sambuc 
224ebfedea0SLionel Sambuc   if ((res = mp_init (&y)) != MP_OKAY) {
225ebfedea0SLionel Sambuc     goto LBL_X;
226ebfedea0SLionel Sambuc   }
227ebfedea0SLionel Sambuc 
228ebfedea0SLionel Sambuc   if ((res = mp_init (&z)) != MP_OKAY) {
229ebfedea0SLionel Sambuc     goto LBL_Y;
230ebfedea0SLionel Sambuc   }
231ebfedea0SLionel Sambuc 
232ebfedea0SLionel Sambuc   /* now loop making the single digit */
233ebfedea0SLionel Sambuc   while (mp_count_bits (&a) < k) {
234ebfedea0SLionel Sambuc     fprintf (stderr, "prime has %4d bits left\r", k - mp_count_bits (&a));
235ebfedea0SLionel Sambuc     fflush (stderr);
236ebfedea0SLionel Sambuc   top:
237ebfedea0SLionel Sambuc     mp_set (&b, prime_digit ());
238ebfedea0SLionel Sambuc 
239ebfedea0SLionel Sambuc     /* now compute z = a * b * 2 */
240ebfedea0SLionel Sambuc     if ((res = mp_mul (&a, &b, &z)) != MP_OKAY) {	/* z = a * b */
241ebfedea0SLionel Sambuc       goto LBL_Z;
242ebfedea0SLionel Sambuc     }
243ebfedea0SLionel Sambuc 
244ebfedea0SLionel Sambuc     if ((res = mp_copy (&z, &c)) != MP_OKAY) {	/* c = a * b */
245ebfedea0SLionel Sambuc       goto LBL_Z;
246ebfedea0SLionel Sambuc     }
247ebfedea0SLionel Sambuc 
248ebfedea0SLionel Sambuc     if ((res = mp_mul_2 (&z, &z)) != MP_OKAY) {	/* z = 2 * a * b */
249ebfedea0SLionel Sambuc       goto LBL_Z;
250ebfedea0SLionel Sambuc     }
251ebfedea0SLionel Sambuc 
252ebfedea0SLionel Sambuc     /* n = z + 1 */
253ebfedea0SLionel Sambuc     if ((res = mp_add_d (&z, 1, &n)) != MP_OKAY) {	/* n = z + 1 */
254ebfedea0SLionel Sambuc       goto LBL_Z;
255ebfedea0SLionel Sambuc     }
256ebfedea0SLionel Sambuc 
257ebfedea0SLionel Sambuc     /* check (n, v) == 1 */
258ebfedea0SLionel Sambuc     if ((res = mp_gcd (&n, &v, &y)) != MP_OKAY) {	/* y = (n, v) */
259ebfedea0SLionel Sambuc       goto LBL_Z;
260ebfedea0SLionel Sambuc     }
261ebfedea0SLionel Sambuc 
262ebfedea0SLionel Sambuc     if (mp_cmp_d (&y, 1) != MP_EQ)
263ebfedea0SLionel Sambuc       goto top;
264ebfedea0SLionel Sambuc 
265ebfedea0SLionel Sambuc     /* now try base x=bases[ii]  */
266ebfedea0SLionel Sambuc     for (ii = 0; ii < li; ii++) {
267ebfedea0SLionel Sambuc       mp_set (&x, bases[ii]);
268ebfedea0SLionel Sambuc 
269ebfedea0SLionel Sambuc       /* compute x^a mod n */
270ebfedea0SLionel Sambuc       if ((res = mp_exptmod (&x, &a, &n, &y)) != MP_OKAY) {	/* y = x^a mod n */
271ebfedea0SLionel Sambuc 	goto LBL_Z;
272ebfedea0SLionel Sambuc       }
273ebfedea0SLionel Sambuc 
274ebfedea0SLionel Sambuc       /* if y == 1 loop */
275ebfedea0SLionel Sambuc       if (mp_cmp_d (&y, 1) == MP_EQ)
276ebfedea0SLionel Sambuc 	continue;
277ebfedea0SLionel Sambuc 
278ebfedea0SLionel Sambuc       /* now x^2a mod n */
279ebfedea0SLionel Sambuc       if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) {	/* y = x^2a mod n */
280ebfedea0SLionel Sambuc 	goto LBL_Z;
281ebfedea0SLionel Sambuc       }
282ebfedea0SLionel Sambuc 
283ebfedea0SLionel Sambuc       if (mp_cmp_d (&y, 1) == MP_EQ)
284ebfedea0SLionel Sambuc 	continue;
285ebfedea0SLionel Sambuc 
286ebfedea0SLionel Sambuc       /* compute x^b mod n */
287ebfedea0SLionel Sambuc       if ((res = mp_exptmod (&x, &b, &n, &y)) != MP_OKAY) {	/* y = x^b mod n */
288ebfedea0SLionel Sambuc 	goto LBL_Z;
289ebfedea0SLionel Sambuc       }
290ebfedea0SLionel Sambuc 
291ebfedea0SLionel Sambuc       /* if y == 1 loop */
292ebfedea0SLionel Sambuc       if (mp_cmp_d (&y, 1) == MP_EQ)
293ebfedea0SLionel Sambuc 	continue;
294ebfedea0SLionel Sambuc 
295ebfedea0SLionel Sambuc       /* now x^2b mod n */
296ebfedea0SLionel Sambuc       if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) {	/* y = x^2b mod n */
297ebfedea0SLionel Sambuc 	goto LBL_Z;
298ebfedea0SLionel Sambuc       }
299ebfedea0SLionel Sambuc 
300ebfedea0SLionel Sambuc       if (mp_cmp_d (&y, 1) == MP_EQ)
301ebfedea0SLionel Sambuc 	continue;
302ebfedea0SLionel Sambuc 
303ebfedea0SLionel Sambuc       /* compute x^c mod n == x^ab mod n */
304ebfedea0SLionel Sambuc       if ((res = mp_exptmod (&x, &c, &n, &y)) != MP_OKAY) {	/* y = x^ab mod n */
305ebfedea0SLionel Sambuc 	goto LBL_Z;
306ebfedea0SLionel Sambuc       }
307ebfedea0SLionel Sambuc 
308ebfedea0SLionel Sambuc       /* if y == 1 loop */
309ebfedea0SLionel Sambuc       if (mp_cmp_d (&y, 1) == MP_EQ)
310ebfedea0SLionel Sambuc 	continue;
311ebfedea0SLionel Sambuc 
312ebfedea0SLionel Sambuc       /* now compute (x^c mod n)^2 */
313ebfedea0SLionel Sambuc       if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) {	/* y = x^2ab mod n */
314ebfedea0SLionel Sambuc 	goto LBL_Z;
315ebfedea0SLionel Sambuc       }
316ebfedea0SLionel Sambuc 
317ebfedea0SLionel Sambuc       /* y should be 1 */
318ebfedea0SLionel Sambuc       if (mp_cmp_d (&y, 1) != MP_EQ)
319ebfedea0SLionel Sambuc 	continue;
320ebfedea0SLionel Sambuc       break;
321ebfedea0SLionel Sambuc     }
322ebfedea0SLionel Sambuc 
323ebfedea0SLionel Sambuc     /* no bases worked? */
324ebfedea0SLionel Sambuc     if (ii == li)
325ebfedea0SLionel Sambuc       goto top;
326ebfedea0SLionel Sambuc 
327ebfedea0SLionel Sambuc {
328ebfedea0SLionel Sambuc    char buf[4096];
329ebfedea0SLionel Sambuc 
330ebfedea0SLionel Sambuc    mp_toradix(&n, buf, 10);
331ebfedea0SLionel Sambuc    printf("Certificate of primality for:\n%s\n\n", buf);
332ebfedea0SLionel Sambuc    mp_toradix(&a, buf, 10);
333ebfedea0SLionel Sambuc    printf("A == \n%s\n\n", buf);
334ebfedea0SLionel Sambuc    mp_toradix(&b, buf, 10);
335ebfedea0SLionel Sambuc    printf("B == \n%s\n\nG == %d\n", buf, bases[ii]);
336ebfedea0SLionel Sambuc    printf("----------------------------------------------------------------\n");
337ebfedea0SLionel Sambuc }
338ebfedea0SLionel Sambuc 
339ebfedea0SLionel Sambuc     /* a = n */
340ebfedea0SLionel Sambuc     mp_copy (&n, &a);
341ebfedea0SLionel Sambuc   }
342ebfedea0SLionel Sambuc 
343ebfedea0SLionel Sambuc   /* get q to be the order of the large prime subgroup */
344ebfedea0SLionel Sambuc   mp_sub_d (&n, 1, q);
345ebfedea0SLionel Sambuc   mp_div_2 (q, q);
346ebfedea0SLionel Sambuc   mp_div (q, &b, q, NULL);
347ebfedea0SLionel Sambuc 
348ebfedea0SLionel Sambuc   mp_exch (&n, p);
349ebfedea0SLionel Sambuc 
350ebfedea0SLionel Sambuc   res = MP_OKAY;
351ebfedea0SLionel Sambuc LBL_Z:mp_clear (&z);
352ebfedea0SLionel Sambuc LBL_Y:mp_clear (&y);
353ebfedea0SLionel Sambuc LBL_X:mp_clear (&x);
354ebfedea0SLionel Sambuc LBL_N:mp_clear (&n);
355ebfedea0SLionel Sambuc LBL_B:mp_clear (&b);
356ebfedea0SLionel Sambuc LBL_A:mp_clear (&a);
357ebfedea0SLionel Sambuc LBL_V:mp_clear (&v);
358ebfedea0SLionel Sambuc LBL_C:mp_clear (&c);
359ebfedea0SLionel Sambuc   return res;
360ebfedea0SLionel Sambuc }
361ebfedea0SLionel Sambuc 
362ebfedea0SLionel Sambuc 
363ebfedea0SLionel Sambuc int
main(void)364ebfedea0SLionel Sambuc main (void)
365ebfedea0SLionel Sambuc {
366ebfedea0SLionel Sambuc   mp_int  p, q;
367ebfedea0SLionel Sambuc   char    buf[4096];
368ebfedea0SLionel Sambuc   int     k, li;
369ebfedea0SLionel Sambuc   clock_t t1;
370ebfedea0SLionel Sambuc 
371ebfedea0SLionel Sambuc   srand (time (NULL));
372ebfedea0SLionel Sambuc   load_tab();
373ebfedea0SLionel Sambuc 
374ebfedea0SLionel Sambuc   printf ("Enter # of bits: \n");
375ebfedea0SLionel Sambuc   fgets (buf, sizeof (buf), stdin);
376ebfedea0SLionel Sambuc   sscanf (buf, "%d", &k);
377ebfedea0SLionel Sambuc 
378ebfedea0SLionel Sambuc   printf ("Enter number of bases to try (1 to 8):\n");
379ebfedea0SLionel Sambuc   fgets (buf, sizeof (buf), stdin);
380ebfedea0SLionel Sambuc   sscanf (buf, "%d", &li);
381ebfedea0SLionel Sambuc 
382ebfedea0SLionel Sambuc 
383ebfedea0SLionel Sambuc   mp_init (&p);
384ebfedea0SLionel Sambuc   mp_init (&q);
385ebfedea0SLionel Sambuc 
386ebfedea0SLionel Sambuc   t1 = clock ();
387ebfedea0SLionel Sambuc   pprime (k, li, &p, &q);
388ebfedea0SLionel Sambuc   t1 = clock () - t1;
389ebfedea0SLionel Sambuc 
390ebfedea0SLionel Sambuc   printf ("\n\nTook %ld ticks, %d bits\n", t1, mp_count_bits (&p));
391ebfedea0SLionel Sambuc 
392ebfedea0SLionel Sambuc   mp_toradix (&p, buf, 10);
393ebfedea0SLionel Sambuc   printf ("P == %s\n", buf);
394ebfedea0SLionel Sambuc   mp_toradix (&q, buf, 10);
395ebfedea0SLionel Sambuc   printf ("Q == %s\n", buf);
396ebfedea0SLionel Sambuc 
397ebfedea0SLionel Sambuc   return 0;
398ebfedea0SLionel Sambuc }
399ebfedea0SLionel Sambuc 
400ebfedea0SLionel Sambuc /* Source: /cvs/libtom/libtommath/etc/pprime.c,v  */
401ebfedea0SLionel Sambuc /* Revision: 1.3  */
402ebfedea0SLionel Sambuc /* Date: 2006/03/31 14:18:47  */
403