1a11cd0d9STom Stellard // Copyright 2007, Google Inc. 2a11cd0d9STom Stellard // All rights reserved. 3a11cd0d9STom Stellard // 4a11cd0d9STom Stellard // Redistribution and use in source and binary forms, with or without 5a11cd0d9STom Stellard // modification, are permitted provided that the following conditions are 6a11cd0d9STom Stellard // met: 7a11cd0d9STom Stellard // 8a11cd0d9STom Stellard // * Redistributions of source code must retain the above copyright 9a11cd0d9STom Stellard // notice, this list of conditions and the following disclaimer. 10a11cd0d9STom Stellard // * Redistributions in binary form must reproduce the above 11a11cd0d9STom Stellard // copyright notice, this list of conditions and the following disclaimer 12a11cd0d9STom Stellard // in the documentation and/or other materials provided with the 13a11cd0d9STom Stellard // distribution. 14a11cd0d9STom Stellard // * Neither the name of Google Inc. nor the names of its 15a11cd0d9STom Stellard // contributors may be used to endorse or promote products derived from 16a11cd0d9STom Stellard // this software without specific prior written permission. 17a11cd0d9STom Stellard // 18a11cd0d9STom Stellard // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19a11cd0d9STom Stellard // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20a11cd0d9STom Stellard // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21a11cd0d9STom Stellard // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22a11cd0d9STom Stellard // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23a11cd0d9STom Stellard // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24a11cd0d9STom Stellard // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25a11cd0d9STom Stellard // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26a11cd0d9STom Stellard // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27a11cd0d9STom Stellard // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28a11cd0d9STom Stellard // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29a11cd0d9STom Stellard 30a11cd0d9STom Stellard // Google Mock - a framework for writing C++ mock classes. 31a11cd0d9STom Stellard // 32*a866ce78SHaowei Wu // The ACTION* family of macros can be used in a namespace scope to 33*a866ce78SHaowei Wu // define custom actions easily. The syntax: 34*a866ce78SHaowei Wu // 35*a866ce78SHaowei Wu // ACTION(name) { statements; } 36*a866ce78SHaowei Wu // 37*a866ce78SHaowei Wu // will define an action with the given name that executes the 38*a866ce78SHaowei Wu // statements. The value returned by the statements will be used as 39*a866ce78SHaowei Wu // the return value of the action. Inside the statements, you can 40*a866ce78SHaowei Wu // refer to the K-th (0-based) argument of the mock function by 41*a866ce78SHaowei Wu // 'argK', and refer to its type by 'argK_type'. For example: 42*a866ce78SHaowei Wu // 43*a866ce78SHaowei Wu // ACTION(IncrementArg1) { 44*a866ce78SHaowei Wu // arg1_type temp = arg1; 45*a866ce78SHaowei Wu // return ++(*temp); 46*a866ce78SHaowei Wu // } 47*a866ce78SHaowei Wu // 48*a866ce78SHaowei Wu // allows you to write 49*a866ce78SHaowei Wu // 50*a866ce78SHaowei Wu // ...WillOnce(IncrementArg1()); 51*a866ce78SHaowei Wu // 52*a866ce78SHaowei Wu // You can also refer to the entire argument tuple and its type by 53*a866ce78SHaowei Wu // 'args' and 'args_type', and refer to the mock function type and its 54*a866ce78SHaowei Wu // return type by 'function_type' and 'return_type'. 55*a866ce78SHaowei Wu // 56*a866ce78SHaowei Wu // Note that you don't need to specify the types of the mock function 57*a866ce78SHaowei Wu // arguments. However rest assured that your code is still type-safe: 58*a866ce78SHaowei Wu // you'll get a compiler error if *arg1 doesn't support the ++ 59*a866ce78SHaowei Wu // operator, or if the type of ++(*arg1) isn't compatible with the 60*a866ce78SHaowei Wu // mock function's return type, for example. 61*a866ce78SHaowei Wu // 62*a866ce78SHaowei Wu // Sometimes you'll want to parameterize the action. For that you can use 63*a866ce78SHaowei Wu // another macro: 64*a866ce78SHaowei Wu // 65*a866ce78SHaowei Wu // ACTION_P(name, param_name) { statements; } 66*a866ce78SHaowei Wu // 67*a866ce78SHaowei Wu // For example: 68*a866ce78SHaowei Wu // 69*a866ce78SHaowei Wu // ACTION_P(Add, n) { return arg0 + n; } 70*a866ce78SHaowei Wu // 71*a866ce78SHaowei Wu // will allow you to write: 72*a866ce78SHaowei Wu // 73*a866ce78SHaowei Wu // ...WillOnce(Add(5)); 74*a866ce78SHaowei Wu // 75*a866ce78SHaowei Wu // Note that you don't need to provide the type of the parameter 76*a866ce78SHaowei Wu // either. If you need to reference the type of a parameter named 77*a866ce78SHaowei Wu // 'foo', you can write 'foo_type'. For example, in the body of 78*a866ce78SHaowei Wu // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type 79*a866ce78SHaowei Wu // of 'n'. 80*a866ce78SHaowei Wu // 81*a866ce78SHaowei Wu // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support 82*a866ce78SHaowei Wu // multi-parameter actions. 83*a866ce78SHaowei Wu // 84*a866ce78SHaowei Wu // For the purpose of typing, you can view 85*a866ce78SHaowei Wu // 86*a866ce78SHaowei Wu // ACTION_Pk(Foo, p1, ..., pk) { ... } 87*a866ce78SHaowei Wu // 88*a866ce78SHaowei Wu // as shorthand for 89*a866ce78SHaowei Wu // 90*a866ce78SHaowei Wu // template <typename p1_type, ..., typename pk_type> 91*a866ce78SHaowei Wu // FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } 92*a866ce78SHaowei Wu // 93*a866ce78SHaowei Wu // In particular, you can provide the template type arguments 94*a866ce78SHaowei Wu // explicitly when invoking Foo(), as in Foo<long, bool>(5, false); 95*a866ce78SHaowei Wu // although usually you can rely on the compiler to infer the types 96*a866ce78SHaowei Wu // for you automatically. You can assign the result of expression 97*a866ce78SHaowei Wu // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ..., 98*a866ce78SHaowei Wu // pk_type>. This can be useful when composing actions. 99*a866ce78SHaowei Wu // 100*a866ce78SHaowei Wu // You can also overload actions with different numbers of parameters: 101*a866ce78SHaowei Wu // 102*a866ce78SHaowei Wu // ACTION_P(Plus, a) { ... } 103*a866ce78SHaowei Wu // ACTION_P2(Plus, a, b) { ... } 104*a866ce78SHaowei Wu // 105*a866ce78SHaowei Wu // While it's tempting to always use the ACTION* macros when defining 106*a866ce78SHaowei Wu // a new action, you should also consider implementing ActionInterface 107*a866ce78SHaowei Wu // or using MakePolymorphicAction() instead, especially if you need to 108*a866ce78SHaowei Wu // use the action a lot. While these approaches require more work, 109*a866ce78SHaowei Wu // they give you more control on the types of the mock function 110*a866ce78SHaowei Wu // arguments and the action parameters, which in general leads to 111*a866ce78SHaowei Wu // better compiler error messages that pay off in the long run. They 112*a866ce78SHaowei Wu // also allow overloading actions based on parameter types (as opposed 113*a866ce78SHaowei Wu // to just based on the number of parameters). 114*a866ce78SHaowei Wu // 115*a866ce78SHaowei Wu // CAVEAT: 116*a866ce78SHaowei Wu // 117*a866ce78SHaowei Wu // ACTION*() can only be used in a namespace scope as templates cannot be 118*a866ce78SHaowei Wu // declared inside of a local class. 119*a866ce78SHaowei Wu // Users can, however, define any local functors (e.g. a lambda) that 120*a866ce78SHaowei Wu // can be used as actions. 121*a866ce78SHaowei Wu // 122*a866ce78SHaowei Wu // MORE INFORMATION: 123*a866ce78SHaowei Wu // 124*a866ce78SHaowei Wu // To learn more about using these macros, please search for 'ACTION' on 125*a866ce78SHaowei Wu // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md 126a11cd0d9STom Stellard 127a11cd0d9STom Stellard // IWYU pragma: private, include "gmock/gmock.h" 128a11cd0d9STom Stellard // IWYU pragma: friend gmock/.* 129a11cd0d9STom Stellard 130*a866ce78SHaowei Wu #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ 131*a866ce78SHaowei Wu #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ 132a11cd0d9STom Stellard 133a11cd0d9STom Stellard #ifndef _WIN32_WCE 134a11cd0d9STom Stellard #include <errno.h> 135a11cd0d9STom Stellard #endif 136a11cd0d9STom Stellard 137a11cd0d9STom Stellard #include <algorithm> 138a11cd0d9STom Stellard #include <functional> 139a11cd0d9STom Stellard #include <memory> 140a11cd0d9STom Stellard #include <string> 141*a866ce78SHaowei Wu #include <tuple> 142a11cd0d9STom Stellard #include <type_traits> 143a11cd0d9STom Stellard #include <utility> 144a11cd0d9STom Stellard 145a11cd0d9STom Stellard #include "gmock/internal/gmock-internal-utils.h" 146a11cd0d9STom Stellard #include "gmock/internal/gmock-port.h" 147*a866ce78SHaowei Wu #include "gmock/internal/gmock-pp.h" 148a11cd0d9STom Stellard 149*a866ce78SHaowei Wu GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100) 150a11cd0d9STom Stellard 151a11cd0d9STom Stellard namespace testing { 152a11cd0d9STom Stellard 153a11cd0d9STom Stellard // To implement an action Foo, define: 154a11cd0d9STom Stellard // 1. a class FooAction that implements the ActionInterface interface, and 155a11cd0d9STom Stellard // 2. a factory function that creates an Action object from a 156a11cd0d9STom Stellard // const FooAction*. 157a11cd0d9STom Stellard // 158a11cd0d9STom Stellard // The two-level delegation design follows that of Matcher, providing 159a11cd0d9STom Stellard // consistency for extension developers. It also eases ownership 160a11cd0d9STom Stellard // management as Action objects can now be copied like plain values. 161a11cd0d9STom Stellard 162a11cd0d9STom Stellard namespace internal { 163a11cd0d9STom Stellard 164a11cd0d9STom Stellard // BuiltInDefaultValueGetter<T, true>::Get() returns a 165a11cd0d9STom Stellard // default-constructed T value. BuiltInDefaultValueGetter<T, 166a11cd0d9STom Stellard // false>::Get() crashes with an error. 167a11cd0d9STom Stellard // 168a11cd0d9STom Stellard // This primary template is used when kDefaultConstructible is true. 169a11cd0d9STom Stellard template <typename T, bool kDefaultConstructible> 170a11cd0d9STom Stellard struct BuiltInDefaultValueGetter { GetBuiltInDefaultValueGetter171a11cd0d9STom Stellard static T Get() { return T(); } 172a11cd0d9STom Stellard }; 173a11cd0d9STom Stellard template <typename T> 174a11cd0d9STom Stellard struct BuiltInDefaultValueGetter<T, false> { 175a11cd0d9STom Stellard static T Get() { 176a11cd0d9STom Stellard Assert(false, __FILE__, __LINE__, 177a11cd0d9STom Stellard "Default action undefined for the function return type."); 178a11cd0d9STom Stellard return internal::Invalid<T>(); 179a11cd0d9STom Stellard // The above statement will never be reached, but is required in 180a11cd0d9STom Stellard // order for this function to compile. 181a11cd0d9STom Stellard } 182a11cd0d9STom Stellard }; 183a11cd0d9STom Stellard 184a11cd0d9STom Stellard // BuiltInDefaultValue<T>::Get() returns the "built-in" default value 185a11cd0d9STom Stellard // for type T, which is NULL when T is a raw pointer type, 0 when T is 186a11cd0d9STom Stellard // a numeric type, false when T is bool, or "" when T is string or 187a11cd0d9STom Stellard // std::string. In addition, in C++11 and above, it turns a 188a11cd0d9STom Stellard // default-constructed T value if T is default constructible. For any 189a11cd0d9STom Stellard // other type T, the built-in default T value is undefined, and the 190a11cd0d9STom Stellard // function will abort the process. 191a11cd0d9STom Stellard template <typename T> 192a11cd0d9STom Stellard class BuiltInDefaultValue { 193a11cd0d9STom Stellard public: 194a11cd0d9STom Stellard // This function returns true if and only if type T has a built-in default 195a11cd0d9STom Stellard // value. 196*a866ce78SHaowei Wu static bool Exists() { return ::std::is_default_constructible<T>::value; } 197a11cd0d9STom Stellard 198a11cd0d9STom Stellard static T Get() { 199a11cd0d9STom Stellard return BuiltInDefaultValueGetter< 200a11cd0d9STom Stellard T, ::std::is_default_constructible<T>::value>::Get(); 201a11cd0d9STom Stellard } 202a11cd0d9STom Stellard }; 203a11cd0d9STom Stellard 204a11cd0d9STom Stellard // This partial specialization says that we use the same built-in 205a11cd0d9STom Stellard // default value for T and const T. 206a11cd0d9STom Stellard template <typename T> 207a11cd0d9STom Stellard class BuiltInDefaultValue<const T> { 208a11cd0d9STom Stellard public: 209a11cd0d9STom Stellard static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } 210a11cd0d9STom Stellard static T Get() { return BuiltInDefaultValue<T>::Get(); } 211a11cd0d9STom Stellard }; 212a11cd0d9STom Stellard 213a11cd0d9STom Stellard // This partial specialization defines the default values for pointer 214a11cd0d9STom Stellard // types. 215a11cd0d9STom Stellard template <typename T> 216a11cd0d9STom Stellard class BuiltInDefaultValue<T*> { 217a11cd0d9STom Stellard public: 218a11cd0d9STom Stellard static bool Exists() { return true; } 219a11cd0d9STom Stellard static T* Get() { return nullptr; } 220a11cd0d9STom Stellard }; 221a11cd0d9STom Stellard 222a11cd0d9STom Stellard // The following specializations define the default values for 223a11cd0d9STom Stellard // specific types we care about. 224a11cd0d9STom Stellard #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ 225a11cd0d9STom Stellard template <> \ 226a11cd0d9STom Stellard class BuiltInDefaultValue<type> { \ 227a11cd0d9STom Stellard public: \ 228a11cd0d9STom Stellard static bool Exists() { return true; } \ 229a11cd0d9STom Stellard static type Get() { return value; } \ 230a11cd0d9STom Stellard } 231a11cd0d9STom Stellard 232a11cd0d9STom Stellard GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT 233a11cd0d9STom Stellard GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); 234a11cd0d9STom Stellard GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); 235a11cd0d9STom Stellard GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); 236a11cd0d9STom Stellard GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); 237a11cd0d9STom Stellard GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); 238a11cd0d9STom Stellard 239a11cd0d9STom Stellard // There's no need for a default action for signed wchar_t, as that 240a11cd0d9STom Stellard // type is the same as wchar_t for gcc, and invalid for MSVC. 241a11cd0d9STom Stellard // 242a11cd0d9STom Stellard // There's also no need for a default action for unsigned wchar_t, as 243a11cd0d9STom Stellard // that type is the same as unsigned int for gcc, and invalid for 244a11cd0d9STom Stellard // MSVC. 245a11cd0d9STom Stellard #if GMOCK_WCHAR_T_IS_NATIVE_ 246a11cd0d9STom Stellard GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT 247a11cd0d9STom Stellard #endif 248a11cd0d9STom Stellard 249a11cd0d9STom Stellard GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT 250a11cd0d9STom Stellard GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT 251a11cd0d9STom Stellard GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); 252a11cd0d9STom Stellard GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); 253a11cd0d9STom Stellard GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT 254a11cd0d9STom Stellard GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT 255*a866ce78SHaowei Wu GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT 256*a866ce78SHaowei Wu GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT 257a11cd0d9STom Stellard GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); 258a11cd0d9STom Stellard GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); 259a11cd0d9STom Stellard 260a11cd0d9STom Stellard #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ 261a11cd0d9STom Stellard 262*a866ce78SHaowei Wu // Partial implementations of metaprogramming types from the standard library 263*a866ce78SHaowei Wu // not available in C++11. 264*a866ce78SHaowei Wu 265*a866ce78SHaowei Wu template <typename P> 266*a866ce78SHaowei Wu struct negation 267*a866ce78SHaowei Wu // NOLINTNEXTLINE 268*a866ce78SHaowei Wu : std::integral_constant<bool, bool(!P::value)> {}; 269*a866ce78SHaowei Wu 270*a866ce78SHaowei Wu // Base case: with zero predicates the answer is always true. 271*a866ce78SHaowei Wu template <typename...> 272*a866ce78SHaowei Wu struct conjunction : std::true_type {}; 273*a866ce78SHaowei Wu 274*a866ce78SHaowei Wu // With a single predicate, the answer is that predicate. 275*a866ce78SHaowei Wu template <typename P1> 276*a866ce78SHaowei Wu struct conjunction<P1> : P1 {}; 277*a866ce78SHaowei Wu 278*a866ce78SHaowei Wu // With multiple predicates the answer is the first predicate if that is false, 279*a866ce78SHaowei Wu // and we recurse otherwise. 280*a866ce78SHaowei Wu template <typename P1, typename... Ps> 281*a866ce78SHaowei Wu struct conjunction<P1, Ps...> 282*a866ce78SHaowei Wu : std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {}; 283*a866ce78SHaowei Wu 284*a866ce78SHaowei Wu template <typename...> 285*a866ce78SHaowei Wu struct disjunction : std::false_type {}; 286*a866ce78SHaowei Wu 287*a866ce78SHaowei Wu template <typename P1> 288*a866ce78SHaowei Wu struct disjunction<P1> : P1 {}; 289*a866ce78SHaowei Wu 290*a866ce78SHaowei Wu template <typename P1, typename... Ps> 291*a866ce78SHaowei Wu struct disjunction<P1, Ps...> 292*a866ce78SHaowei Wu // NOLINTNEXTLINE 293*a866ce78SHaowei Wu : std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {}; 294*a866ce78SHaowei Wu 295*a866ce78SHaowei Wu template <typename...> 296*a866ce78SHaowei Wu using void_t = void; 297*a866ce78SHaowei Wu 298*a866ce78SHaowei Wu // Detects whether an expression of type `From` can be implicitly converted to 299*a866ce78SHaowei Wu // `To` according to [conv]. In C++17, [conv]/3 defines this as follows: 300*a866ce78SHaowei Wu // 301*a866ce78SHaowei Wu // An expression e can be implicitly converted to a type T if and only if 302*a866ce78SHaowei Wu // the declaration T t=e; is well-formed, for some invented temporary 303*a866ce78SHaowei Wu // variable t ([dcl.init]). 304*a866ce78SHaowei Wu // 305*a866ce78SHaowei Wu // [conv]/2 implies we can use function argument passing to detect whether this 306*a866ce78SHaowei Wu // initialization is valid. 307*a866ce78SHaowei Wu // 308*a866ce78SHaowei Wu // Note that this is distinct from is_convertible, which requires this be valid: 309*a866ce78SHaowei Wu // 310*a866ce78SHaowei Wu // To test() { 311*a866ce78SHaowei Wu // return declval<From>(); 312*a866ce78SHaowei Wu // } 313*a866ce78SHaowei Wu // 314*a866ce78SHaowei Wu // In particular, is_convertible doesn't give the correct answer when `To` and 315*a866ce78SHaowei Wu // `From` are the same non-moveable type since `declval<From>` will be an rvalue 316*a866ce78SHaowei Wu // reference, defeating the guaranteed copy elision that would otherwise make 317*a866ce78SHaowei Wu // this function work. 318*a866ce78SHaowei Wu // 319*a866ce78SHaowei Wu // REQUIRES: `From` is not cv void. 320*a866ce78SHaowei Wu template <typename From, typename To> 321*a866ce78SHaowei Wu struct is_implicitly_convertible { 322*a866ce78SHaowei Wu private: 323*a866ce78SHaowei Wu // A function that accepts a parameter of type T. This can be called with type 324*a866ce78SHaowei Wu // U successfully only if U is implicitly convertible to T. 325*a866ce78SHaowei Wu template <typename T> 326*a866ce78SHaowei Wu static void Accept(T); 327*a866ce78SHaowei Wu 328*a866ce78SHaowei Wu // A function that creates a value of type T. 329*a866ce78SHaowei Wu template <typename T> 330*a866ce78SHaowei Wu static T Make(); 331*a866ce78SHaowei Wu 332*a866ce78SHaowei Wu // An overload be selected when implicit conversion from T to To is possible. 333*a866ce78SHaowei Wu template <typename T, typename = decltype(Accept<To>(Make<T>()))> 334*a866ce78SHaowei Wu static std::true_type TestImplicitConversion(int); 335*a866ce78SHaowei Wu 336*a866ce78SHaowei Wu // A fallback overload selected in all other cases. 337*a866ce78SHaowei Wu template <typename T> 338*a866ce78SHaowei Wu static std::false_type TestImplicitConversion(...); 339*a866ce78SHaowei Wu 340*a866ce78SHaowei Wu public: 341*a866ce78SHaowei Wu using type = decltype(TestImplicitConversion<From>(0)); 342*a866ce78SHaowei Wu static constexpr bool value = type::value; 343*a866ce78SHaowei Wu }; 344*a866ce78SHaowei Wu 345*a866ce78SHaowei Wu // Like std::invoke_result_t from C++17, but works only for objects with call 346*a866ce78SHaowei Wu // operators (not e.g. member function pointers, which we don't need specific 347*a866ce78SHaowei Wu // support for in OnceAction because std::function deals with them). 348*a866ce78SHaowei Wu template <typename F, typename... Args> 349*a866ce78SHaowei Wu using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...)); 350*a866ce78SHaowei Wu 351*a866ce78SHaowei Wu template <typename Void, typename R, typename F, typename... Args> 352*a866ce78SHaowei Wu struct is_callable_r_impl : std::false_type {}; 353*a866ce78SHaowei Wu 354*a866ce78SHaowei Wu // Specialize the struct for those template arguments where call_result_t is 355*a866ce78SHaowei Wu // well-formed. When it's not, the generic template above is chosen, resulting 356*a866ce78SHaowei Wu // in std::false_type. 357*a866ce78SHaowei Wu template <typename R, typename F, typename... Args> 358*a866ce78SHaowei Wu struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...> 359*a866ce78SHaowei Wu : std::conditional< 360*a866ce78SHaowei Wu std::is_void<R>::value, // 361*a866ce78SHaowei Wu std::true_type, // 362*a866ce78SHaowei Wu is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {}; 363*a866ce78SHaowei Wu 364*a866ce78SHaowei Wu // Like std::is_invocable_r from C++17, but works only for objects with call 365*a866ce78SHaowei Wu // operators. See the note on call_result_t. 366*a866ce78SHaowei Wu template <typename R, typename F, typename... Args> 367*a866ce78SHaowei Wu using is_callable_r = is_callable_r_impl<void, R, F, Args...>; 368*a866ce78SHaowei Wu 369*a866ce78SHaowei Wu // Like std::as_const from C++17. 370*a866ce78SHaowei Wu template <typename T> 371*a866ce78SHaowei Wu typename std::add_const<T>::type& as_const(T& t) { 372*a866ce78SHaowei Wu return t; 373*a866ce78SHaowei Wu } 374*a866ce78SHaowei Wu 375a11cd0d9STom Stellard } // namespace internal 376a11cd0d9STom Stellard 377*a866ce78SHaowei Wu // Specialized for function types below. 378*a866ce78SHaowei Wu template <typename F> 379*a866ce78SHaowei Wu class OnceAction; 380*a866ce78SHaowei Wu 381*a866ce78SHaowei Wu // An action that can only be used once. 382*a866ce78SHaowei Wu // 383*a866ce78SHaowei Wu // This is accepted by WillOnce, which doesn't require the underlying action to 384*a866ce78SHaowei Wu // be copy-constructible (only move-constructible), and promises to invoke it as 385*a866ce78SHaowei Wu // an rvalue reference. This allows the action to work with move-only types like 386*a866ce78SHaowei Wu // std::move_only_function in a type-safe manner. 387*a866ce78SHaowei Wu // 388*a866ce78SHaowei Wu // For example: 389*a866ce78SHaowei Wu // 390*a866ce78SHaowei Wu // // Assume we have some API that needs to accept a unique pointer to some 391*a866ce78SHaowei Wu // // non-copyable object Foo. 392*a866ce78SHaowei Wu // void AcceptUniquePointer(std::unique_ptr<Foo> foo); 393*a866ce78SHaowei Wu // 394*a866ce78SHaowei Wu // // We can define an action that provides a Foo to that API. Because It 395*a866ce78SHaowei Wu // // has to give away its unique pointer, it must not be called more than 396*a866ce78SHaowei Wu // // once, so its call operator is &&-qualified. 397*a866ce78SHaowei Wu // struct ProvideFoo { 398*a866ce78SHaowei Wu // std::unique_ptr<Foo> foo; 399*a866ce78SHaowei Wu // 400*a866ce78SHaowei Wu // void operator()() && { 401*a866ce78SHaowei Wu // AcceptUniquePointer(std::move(Foo)); 402*a866ce78SHaowei Wu // } 403*a866ce78SHaowei Wu // }; 404*a866ce78SHaowei Wu // 405*a866ce78SHaowei Wu // // This action can be used with WillOnce. 406*a866ce78SHaowei Wu // EXPECT_CALL(mock, Call) 407*a866ce78SHaowei Wu // .WillOnce(ProvideFoo{std::make_unique<Foo>(...)}); 408*a866ce78SHaowei Wu // 409*a866ce78SHaowei Wu // // But a call to WillRepeatedly will fail to compile. This is correct, 410*a866ce78SHaowei Wu // // since the action cannot correctly be used repeatedly. 411*a866ce78SHaowei Wu // EXPECT_CALL(mock, Call) 412*a866ce78SHaowei Wu // .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)}); 413*a866ce78SHaowei Wu // 414*a866ce78SHaowei Wu // A less-contrived example would be an action that returns an arbitrary type, 415*a866ce78SHaowei Wu // whose &&-qualified call operator is capable of dealing with move-only types. 416*a866ce78SHaowei Wu template <typename Result, typename... Args> 417*a866ce78SHaowei Wu class OnceAction<Result(Args...)> final { 418*a866ce78SHaowei Wu private: 419*a866ce78SHaowei Wu // True iff we can use the given callable type (or lvalue reference) directly 420*a866ce78SHaowei Wu // via StdFunctionAdaptor. 421*a866ce78SHaowei Wu template <typename Callable> 422*a866ce78SHaowei Wu using IsDirectlyCompatible = internal::conjunction< 423*a866ce78SHaowei Wu // It must be possible to capture the callable in StdFunctionAdaptor. 424*a866ce78SHaowei Wu std::is_constructible<typename std::decay<Callable>::type, Callable>, 425*a866ce78SHaowei Wu // The callable must be compatible with our signature. 426*a866ce78SHaowei Wu internal::is_callable_r<Result, typename std::decay<Callable>::type, 427*a866ce78SHaowei Wu Args...>>; 428*a866ce78SHaowei Wu 429*a866ce78SHaowei Wu // True iff we can use the given callable type via StdFunctionAdaptor once we 430*a866ce78SHaowei Wu // ignore incoming arguments. 431*a866ce78SHaowei Wu template <typename Callable> 432*a866ce78SHaowei Wu using IsCompatibleAfterIgnoringArguments = internal::conjunction< 433*a866ce78SHaowei Wu // It must be possible to capture the callable in a lambda. 434*a866ce78SHaowei Wu std::is_constructible<typename std::decay<Callable>::type, Callable>, 435*a866ce78SHaowei Wu // The callable must be invocable with zero arguments, returning something 436*a866ce78SHaowei Wu // convertible to Result. 437*a866ce78SHaowei Wu internal::is_callable_r<Result, typename std::decay<Callable>::type>>; 438*a866ce78SHaowei Wu 439*a866ce78SHaowei Wu public: 440*a866ce78SHaowei Wu // Construct from a callable that is directly compatible with our mocked 441*a866ce78SHaowei Wu // signature: it accepts our function type's arguments and returns something 442*a866ce78SHaowei Wu // convertible to our result type. 443*a866ce78SHaowei Wu template <typename Callable, 444*a866ce78SHaowei Wu typename std::enable_if< 445*a866ce78SHaowei Wu internal::conjunction< 446*a866ce78SHaowei Wu // Teach clang on macOS that we're not talking about a 447*a866ce78SHaowei Wu // copy/move constructor here. Otherwise it gets confused 448*a866ce78SHaowei Wu // when checking the is_constructible requirement of our 449*a866ce78SHaowei Wu // traits above. 450*a866ce78SHaowei Wu internal::negation<std::is_same< 451*a866ce78SHaowei Wu OnceAction, typename std::decay<Callable>::type>>, 452*a866ce78SHaowei Wu IsDirectlyCompatible<Callable>> // 453*a866ce78SHaowei Wu ::value, 454*a866ce78SHaowei Wu int>::type = 0> 455*a866ce78SHaowei Wu OnceAction(Callable&& callable) // NOLINT 456*a866ce78SHaowei Wu : function_(StdFunctionAdaptor<typename std::decay<Callable>::type>( 457*a866ce78SHaowei Wu {}, std::forward<Callable>(callable))) {} 458*a866ce78SHaowei Wu 459*a866ce78SHaowei Wu // As above, but for a callable that ignores the mocked function's arguments. 460*a866ce78SHaowei Wu template <typename Callable, 461*a866ce78SHaowei Wu typename std::enable_if< 462*a866ce78SHaowei Wu internal::conjunction< 463*a866ce78SHaowei Wu // Teach clang on macOS that we're not talking about a 464*a866ce78SHaowei Wu // copy/move constructor here. Otherwise it gets confused 465*a866ce78SHaowei Wu // when checking the is_constructible requirement of our 466*a866ce78SHaowei Wu // traits above. 467*a866ce78SHaowei Wu internal::negation<std::is_same< 468*a866ce78SHaowei Wu OnceAction, typename std::decay<Callable>::type>>, 469*a866ce78SHaowei Wu // Exclude callables for which the overload above works. 470*a866ce78SHaowei Wu // We'd rather provide the arguments if possible. 471*a866ce78SHaowei Wu internal::negation<IsDirectlyCompatible<Callable>>, 472*a866ce78SHaowei Wu IsCompatibleAfterIgnoringArguments<Callable>>::value, 473*a866ce78SHaowei Wu int>::type = 0> 474*a866ce78SHaowei Wu OnceAction(Callable&& callable) // NOLINT 475*a866ce78SHaowei Wu // Call the constructor above with a callable 476*a866ce78SHaowei Wu // that ignores the input arguments. 477*a866ce78SHaowei Wu : OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{ 478*a866ce78SHaowei Wu std::forward<Callable>(callable)}) {} 479*a866ce78SHaowei Wu 480*a866ce78SHaowei Wu // We are naturally copyable because we store only an std::function, but 481*a866ce78SHaowei Wu // semantically we should not be copyable. 482*a866ce78SHaowei Wu OnceAction(const OnceAction&) = delete; 483*a866ce78SHaowei Wu OnceAction& operator=(const OnceAction&) = delete; 484*a866ce78SHaowei Wu OnceAction(OnceAction&&) = default; 485*a866ce78SHaowei Wu 486*a866ce78SHaowei Wu // Invoke the underlying action callable with which we were constructed, 487*a866ce78SHaowei Wu // handing it the supplied arguments. 488*a866ce78SHaowei Wu Result Call(Args... args) && { 489*a866ce78SHaowei Wu return function_(std::forward<Args>(args)...); 490*a866ce78SHaowei Wu } 491*a866ce78SHaowei Wu 492*a866ce78SHaowei Wu private: 493*a866ce78SHaowei Wu // An adaptor that wraps a callable that is compatible with our signature and 494*a866ce78SHaowei Wu // being invoked as an rvalue reference so that it can be used as an 495*a866ce78SHaowei Wu // StdFunctionAdaptor. This throws away type safety, but that's fine because 496*a866ce78SHaowei Wu // this is only used by WillOnce, which we know calls at most once. 497*a866ce78SHaowei Wu // 498*a866ce78SHaowei Wu // Once we have something like std::move_only_function from C++23, we can do 499*a866ce78SHaowei Wu // away with this. 500*a866ce78SHaowei Wu template <typename Callable> 501*a866ce78SHaowei Wu class StdFunctionAdaptor final { 502*a866ce78SHaowei Wu public: 503*a866ce78SHaowei Wu // A tag indicating that the (otherwise universal) constructor is accepting 504*a866ce78SHaowei Wu // the callable itself, instead of e.g. stealing calls for the move 505*a866ce78SHaowei Wu // constructor. 506*a866ce78SHaowei Wu struct CallableTag final {}; 507*a866ce78SHaowei Wu 508*a866ce78SHaowei Wu template <typename F> 509*a866ce78SHaowei Wu explicit StdFunctionAdaptor(CallableTag, F&& callable) 510*a866ce78SHaowei Wu : callable_(std::make_shared<Callable>(std::forward<F>(callable))) {} 511*a866ce78SHaowei Wu 512*a866ce78SHaowei Wu // Rather than explicitly returning Result, we return whatever the wrapped 513*a866ce78SHaowei Wu // callable returns. This allows for compatibility with existing uses like 514*a866ce78SHaowei Wu // the following, when the mocked function returns void: 515*a866ce78SHaowei Wu // 516*a866ce78SHaowei Wu // EXPECT_CALL(mock_fn_, Call) 517*a866ce78SHaowei Wu // .WillOnce([&] { 518*a866ce78SHaowei Wu // [...] 519*a866ce78SHaowei Wu // return 0; 520*a866ce78SHaowei Wu // }); 521*a866ce78SHaowei Wu // 522*a866ce78SHaowei Wu // Such a callable can be turned into std::function<void()>. If we use an 523*a866ce78SHaowei Wu // explicit return type of Result here then it *doesn't* work with 524*a866ce78SHaowei Wu // std::function, because we'll get a "void function should not return a 525*a866ce78SHaowei Wu // value" error. 526*a866ce78SHaowei Wu // 527*a866ce78SHaowei Wu // We need not worry about incompatible result types because the SFINAE on 528*a866ce78SHaowei Wu // OnceAction already checks this for us. std::is_invocable_r_v itself makes 529*a866ce78SHaowei Wu // the same allowance for void result types. 530*a866ce78SHaowei Wu template <typename... ArgRefs> 531*a866ce78SHaowei Wu internal::call_result_t<Callable, ArgRefs...> operator()( 532*a866ce78SHaowei Wu ArgRefs&&... args) const { 533*a866ce78SHaowei Wu return std::move(*callable_)(std::forward<ArgRefs>(args)...); 534*a866ce78SHaowei Wu } 535*a866ce78SHaowei Wu 536*a866ce78SHaowei Wu private: 537*a866ce78SHaowei Wu // We must put the callable on the heap so that we are copyable, which 538*a866ce78SHaowei Wu // std::function needs. 539*a866ce78SHaowei Wu std::shared_ptr<Callable> callable_; 540*a866ce78SHaowei Wu }; 541*a866ce78SHaowei Wu 542*a866ce78SHaowei Wu // An adaptor that makes a callable that accepts zero arguments callable with 543*a866ce78SHaowei Wu // our mocked arguments. 544*a866ce78SHaowei Wu template <typename Callable> 545*a866ce78SHaowei Wu struct IgnoreIncomingArguments { 546*a866ce78SHaowei Wu internal::call_result_t<Callable> operator()(Args&&...) { 547*a866ce78SHaowei Wu return std::move(callable)(); 548*a866ce78SHaowei Wu } 549*a866ce78SHaowei Wu 550*a866ce78SHaowei Wu Callable callable; 551*a866ce78SHaowei Wu }; 552*a866ce78SHaowei Wu 553*a866ce78SHaowei Wu std::function<Result(Args...)> function_; 554*a866ce78SHaowei Wu }; 555*a866ce78SHaowei Wu 556a11cd0d9STom Stellard // When an unexpected function call is encountered, Google Mock will 557a11cd0d9STom Stellard // let it return a default value if the user has specified one for its 558a11cd0d9STom Stellard // return type, or if the return type has a built-in default value; 559a11cd0d9STom Stellard // otherwise Google Mock won't know what value to return and will have 560a11cd0d9STom Stellard // to abort the process. 561a11cd0d9STom Stellard // 562a11cd0d9STom Stellard // The DefaultValue<T> class allows a user to specify the 563a11cd0d9STom Stellard // default value for a type T that is both copyable and publicly 564a11cd0d9STom Stellard // destructible (i.e. anything that can be used as a function return 565a11cd0d9STom Stellard // type). The usage is: 566a11cd0d9STom Stellard // 567a11cd0d9STom Stellard // // Sets the default value for type T to be foo. 568a11cd0d9STom Stellard // DefaultValue<T>::Set(foo); 569a11cd0d9STom Stellard template <typename T> 570a11cd0d9STom Stellard class DefaultValue { 571a11cd0d9STom Stellard public: 572a11cd0d9STom Stellard // Sets the default value for type T; requires T to be 573a11cd0d9STom Stellard // copy-constructable and have a public destructor. 574a11cd0d9STom Stellard static void Set(T x) { 575a11cd0d9STom Stellard delete producer_; 576a11cd0d9STom Stellard producer_ = new FixedValueProducer(x); 577a11cd0d9STom Stellard } 578a11cd0d9STom Stellard 579a11cd0d9STom Stellard // Provides a factory function to be called to generate the default value. 580a11cd0d9STom Stellard // This method can be used even if T is only move-constructible, but it is not 581a11cd0d9STom Stellard // limited to that case. 582a11cd0d9STom Stellard typedef T (*FactoryFunction)(); 583a11cd0d9STom Stellard static void SetFactory(FactoryFunction factory) { 584a11cd0d9STom Stellard delete producer_; 585a11cd0d9STom Stellard producer_ = new FactoryValueProducer(factory); 586a11cd0d9STom Stellard } 587a11cd0d9STom Stellard 588a11cd0d9STom Stellard // Unsets the default value for type T. 589a11cd0d9STom Stellard static void Clear() { 590a11cd0d9STom Stellard delete producer_; 591a11cd0d9STom Stellard producer_ = nullptr; 592a11cd0d9STom Stellard } 593a11cd0d9STom Stellard 594a11cd0d9STom Stellard // Returns true if and only if the user has set the default value for type T. 595a11cd0d9STom Stellard static bool IsSet() { return producer_ != nullptr; } 596a11cd0d9STom Stellard 597a11cd0d9STom Stellard // Returns true if T has a default return value set by the user or there 598a11cd0d9STom Stellard // exists a built-in default value. 599a11cd0d9STom Stellard static bool Exists() { 600a11cd0d9STom Stellard return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); 601a11cd0d9STom Stellard } 602a11cd0d9STom Stellard 603a11cd0d9STom Stellard // Returns the default value for type T if the user has set one; 604a11cd0d9STom Stellard // otherwise returns the built-in default value. Requires that Exists() 605a11cd0d9STom Stellard // is true, which ensures that the return value is well-defined. 606a11cd0d9STom Stellard static T Get() { 607a11cd0d9STom Stellard return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get() 608a11cd0d9STom Stellard : producer_->Produce(); 609a11cd0d9STom Stellard } 610a11cd0d9STom Stellard 611a11cd0d9STom Stellard private: 612a11cd0d9STom Stellard class ValueProducer { 613a11cd0d9STom Stellard public: 614*a866ce78SHaowei Wu virtual ~ValueProducer() = default; 615a11cd0d9STom Stellard virtual T Produce() = 0; 616a11cd0d9STom Stellard }; 617a11cd0d9STom Stellard 618a11cd0d9STom Stellard class FixedValueProducer : public ValueProducer { 619a11cd0d9STom Stellard public: 620a11cd0d9STom Stellard explicit FixedValueProducer(T value) : value_(value) {} 621a11cd0d9STom Stellard T Produce() override { return value_; } 622a11cd0d9STom Stellard 623a11cd0d9STom Stellard private: 624a11cd0d9STom Stellard const T value_; 625*a866ce78SHaowei Wu FixedValueProducer(const FixedValueProducer&) = delete; 626*a866ce78SHaowei Wu FixedValueProducer& operator=(const FixedValueProducer&) = delete; 627a11cd0d9STom Stellard }; 628a11cd0d9STom Stellard 629a11cd0d9STom Stellard class FactoryValueProducer : public ValueProducer { 630a11cd0d9STom Stellard public: 631a11cd0d9STom Stellard explicit FactoryValueProducer(FactoryFunction factory) 632a11cd0d9STom Stellard : factory_(factory) {} 633a11cd0d9STom Stellard T Produce() override { return factory_(); } 634a11cd0d9STom Stellard 635a11cd0d9STom Stellard private: 636a11cd0d9STom Stellard const FactoryFunction factory_; 637*a866ce78SHaowei Wu FactoryValueProducer(const FactoryValueProducer&) = delete; 638*a866ce78SHaowei Wu FactoryValueProducer& operator=(const FactoryValueProducer&) = delete; 639a11cd0d9STom Stellard }; 640a11cd0d9STom Stellard 641a11cd0d9STom Stellard static ValueProducer* producer_; 642a11cd0d9STom Stellard }; 643a11cd0d9STom Stellard 644a11cd0d9STom Stellard // This partial specialization allows a user to set default values for 645a11cd0d9STom Stellard // reference types. 646a11cd0d9STom Stellard template <typename T> 647a11cd0d9STom Stellard class DefaultValue<T&> { 648a11cd0d9STom Stellard public: 649a11cd0d9STom Stellard // Sets the default value for type T&. 650a11cd0d9STom Stellard static void Set(T& x) { // NOLINT 651a11cd0d9STom Stellard address_ = &x; 652a11cd0d9STom Stellard } 653a11cd0d9STom Stellard 654a11cd0d9STom Stellard // Unsets the default value for type T&. 655a11cd0d9STom Stellard static void Clear() { address_ = nullptr; } 656a11cd0d9STom Stellard 657a11cd0d9STom Stellard // Returns true if and only if the user has set the default value for type T&. 658a11cd0d9STom Stellard static bool IsSet() { return address_ != nullptr; } 659a11cd0d9STom Stellard 660a11cd0d9STom Stellard // Returns true if T has a default return value set by the user or there 661a11cd0d9STom Stellard // exists a built-in default value. 662a11cd0d9STom Stellard static bool Exists() { 663a11cd0d9STom Stellard return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); 664a11cd0d9STom Stellard } 665a11cd0d9STom Stellard 666a11cd0d9STom Stellard // Returns the default value for type T& if the user has set one; 667a11cd0d9STom Stellard // otherwise returns the built-in default value if there is one; 668a11cd0d9STom Stellard // otherwise aborts the process. 669a11cd0d9STom Stellard static T& Get() { 670a11cd0d9STom Stellard return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get() 671a11cd0d9STom Stellard : *address_; 672a11cd0d9STom Stellard } 673a11cd0d9STom Stellard 674a11cd0d9STom Stellard private: 675a11cd0d9STom Stellard static T* address_; 676a11cd0d9STom Stellard }; 677a11cd0d9STom Stellard 678a11cd0d9STom Stellard // This specialization allows DefaultValue<void>::Get() to 679a11cd0d9STom Stellard // compile. 680a11cd0d9STom Stellard template <> 681a11cd0d9STom Stellard class DefaultValue<void> { 682a11cd0d9STom Stellard public: 683a11cd0d9STom Stellard static bool Exists() { return true; } 684a11cd0d9STom Stellard static void Get() {} 685a11cd0d9STom Stellard }; 686a11cd0d9STom Stellard 687a11cd0d9STom Stellard // Points to the user-set default value for type T. 688a11cd0d9STom Stellard template <typename T> 689a11cd0d9STom Stellard typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr; 690a11cd0d9STom Stellard 691a11cd0d9STom Stellard // Points to the user-set default value for type T&. 692a11cd0d9STom Stellard template <typename T> 693a11cd0d9STom Stellard T* DefaultValue<T&>::address_ = nullptr; 694a11cd0d9STom Stellard 695a11cd0d9STom Stellard // Implement this interface to define an action for function type F. 696a11cd0d9STom Stellard template <typename F> 697a11cd0d9STom Stellard class ActionInterface { 698a11cd0d9STom Stellard public: 699a11cd0d9STom Stellard typedef typename internal::Function<F>::Result Result; 700a11cd0d9STom Stellard typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 701a11cd0d9STom Stellard 702*a866ce78SHaowei Wu ActionInterface() = default; 703*a866ce78SHaowei Wu virtual ~ActionInterface() = default; 704a11cd0d9STom Stellard 705a11cd0d9STom Stellard // Performs the action. This method is not const, as in general an 706a11cd0d9STom Stellard // action can have side effects and be stateful. For example, a 707a11cd0d9STom Stellard // get-the-next-element-from-the-collection action will need to 708a11cd0d9STom Stellard // remember the current element. 709a11cd0d9STom Stellard virtual Result Perform(const ArgumentTuple& args) = 0; 710a11cd0d9STom Stellard 711a11cd0d9STom Stellard private: 712*a866ce78SHaowei Wu ActionInterface(const ActionInterface&) = delete; 713*a866ce78SHaowei Wu ActionInterface& operator=(const ActionInterface&) = delete; 714a11cd0d9STom Stellard }; 715a11cd0d9STom Stellard 716a11cd0d9STom Stellard template <typename F> 717*a866ce78SHaowei Wu class Action; 718*a866ce78SHaowei Wu 719*a866ce78SHaowei Wu // An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment) 720*a866ce78SHaowei Wu // object that represents an action to be taken when a mock function of type 721*a866ce78SHaowei Wu // R(Args...) is called. The implementation of Action<T> is just a 722*a866ce78SHaowei Wu // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You 723*a866ce78SHaowei Wu // can view an object implementing ActionInterface<F> as a concrete action 724*a866ce78SHaowei Wu // (including its current state), and an Action<F> object as a handle to it. 725*a866ce78SHaowei Wu template <typename R, typename... Args> 726*a866ce78SHaowei Wu class Action<R(Args...)> { 727*a866ce78SHaowei Wu private: 728*a866ce78SHaowei Wu using F = R(Args...); 729*a866ce78SHaowei Wu 730a11cd0d9STom Stellard // Adapter class to allow constructing Action from a legacy ActionInterface. 731a11cd0d9STom Stellard // New code should create Actions from functors instead. 732a11cd0d9STom Stellard struct ActionAdapter { 733a11cd0d9STom Stellard // Adapter must be copyable to satisfy std::function requirements. 734a11cd0d9STom Stellard ::std::shared_ptr<ActionInterface<F>> impl_; 735a11cd0d9STom Stellard 736*a866ce78SHaowei Wu template <typename... InArgs> 737*a866ce78SHaowei Wu typename internal::Function<F>::Result operator()(InArgs&&... args) { 738a11cd0d9STom Stellard return impl_->Perform( 739*a866ce78SHaowei Wu ::std::forward_as_tuple(::std::forward<InArgs>(args)...)); 740a11cd0d9STom Stellard } 741a11cd0d9STom Stellard }; 742a11cd0d9STom Stellard 743*a866ce78SHaowei Wu template <typename G> 744*a866ce78SHaowei Wu using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>; 745*a866ce78SHaowei Wu 746a11cd0d9STom Stellard public: 747a11cd0d9STom Stellard typedef typename internal::Function<F>::Result Result; 748a11cd0d9STom Stellard typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 749a11cd0d9STom Stellard 750a11cd0d9STom Stellard // Constructs a null Action. Needed for storing Action objects in 751a11cd0d9STom Stellard // STL containers. 752*a866ce78SHaowei Wu Action() = default; 753a11cd0d9STom Stellard 754a11cd0d9STom Stellard // Construct an Action from a specified callable. 755a11cd0d9STom Stellard // This cannot take std::function directly, because then Action would not be 756a11cd0d9STom Stellard // directly constructible from lambda (it would require two conversions). 757*a866ce78SHaowei Wu template < 758*a866ce78SHaowei Wu typename G, 759*a866ce78SHaowei Wu typename = typename std::enable_if<internal::disjunction< 760*a866ce78SHaowei Wu IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>, 761*a866ce78SHaowei Wu G>>::value>::type> 762*a866ce78SHaowei Wu Action(G&& fun) { // NOLINT 763*a866ce78SHaowei Wu Init(::std::forward<G>(fun), IsCompatibleFunctor<G>()); 764*a866ce78SHaowei Wu } 765a11cd0d9STom Stellard 766a11cd0d9STom Stellard // Constructs an Action from its implementation. 767a11cd0d9STom Stellard explicit Action(ActionInterface<F>* impl) 768a11cd0d9STom Stellard : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} 769a11cd0d9STom Stellard 770a11cd0d9STom Stellard // This constructor allows us to turn an Action<Func> object into an 771a11cd0d9STom Stellard // Action<F>, as long as F's arguments can be implicitly converted 772a11cd0d9STom Stellard // to Func's and Func's return type can be implicitly converted to F's. 773a11cd0d9STom Stellard template <typename Func> 774*a866ce78SHaowei Wu Action(const Action<Func>& action) // NOLINT 775*a866ce78SHaowei Wu : fun_(action.fun_) {} 776a11cd0d9STom Stellard 777a11cd0d9STom Stellard // Returns true if and only if this is the DoDefault() action. 778a11cd0d9STom Stellard bool IsDoDefault() const { return fun_ == nullptr; } 779a11cd0d9STom Stellard 780a11cd0d9STom Stellard // Performs the action. Note that this method is const even though 781a11cd0d9STom Stellard // the corresponding method in ActionInterface is not. The reason 782a11cd0d9STom Stellard // is that a const Action<F> means that it cannot be re-bound to 783a11cd0d9STom Stellard // another concrete action, not that the concrete action it binds to 784a11cd0d9STom Stellard // cannot change state. (Think of the difference between a const 785a11cd0d9STom Stellard // pointer and a pointer to const.) 786a11cd0d9STom Stellard Result Perform(ArgumentTuple args) const { 787a11cd0d9STom Stellard if (IsDoDefault()) { 788a11cd0d9STom Stellard internal::IllegalDoDefault(__FILE__, __LINE__); 789a11cd0d9STom Stellard } 790a11cd0d9STom Stellard return internal::Apply(fun_, ::std::move(args)); 791a11cd0d9STom Stellard } 792a11cd0d9STom Stellard 793*a866ce78SHaowei Wu // An action can be used as a OnceAction, since it's obviously safe to call it 794*a866ce78SHaowei Wu // once. 795*a866ce78SHaowei Wu operator OnceAction<F>() const { // NOLINT 796*a866ce78SHaowei Wu // Return a OnceAction-compatible callable that calls Perform with the 797*a866ce78SHaowei Wu // arguments it is provided. We could instead just return fun_, but then 798*a866ce78SHaowei Wu // we'd need to handle the IsDoDefault() case separately. 799*a866ce78SHaowei Wu struct OA { 800*a866ce78SHaowei Wu Action<F> action; 801*a866ce78SHaowei Wu 802*a866ce78SHaowei Wu R operator()(Args... args) && { 803*a866ce78SHaowei Wu return action.Perform( 804*a866ce78SHaowei Wu std::forward_as_tuple(std::forward<Args>(args)...)); 805*a866ce78SHaowei Wu } 806*a866ce78SHaowei Wu }; 807*a866ce78SHaowei Wu 808*a866ce78SHaowei Wu return OA{*this}; 809*a866ce78SHaowei Wu } 810*a866ce78SHaowei Wu 811a11cd0d9STom Stellard private: 812a11cd0d9STom Stellard template <typename G> 813a11cd0d9STom Stellard friend class Action; 814a11cd0d9STom Stellard 815*a866ce78SHaowei Wu template <typename G> 816*a866ce78SHaowei Wu void Init(G&& g, ::std::true_type) { 817*a866ce78SHaowei Wu fun_ = ::std::forward<G>(g); 818*a866ce78SHaowei Wu } 819*a866ce78SHaowei Wu 820*a866ce78SHaowei Wu template <typename G> 821*a866ce78SHaowei Wu void Init(G&& g, ::std::false_type) { 822*a866ce78SHaowei Wu fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)}; 823*a866ce78SHaowei Wu } 824*a866ce78SHaowei Wu 825*a866ce78SHaowei Wu template <typename FunctionImpl> 826*a866ce78SHaowei Wu struct IgnoreArgs { 827*a866ce78SHaowei Wu template <typename... InArgs> 828*a866ce78SHaowei Wu Result operator()(const InArgs&...) const { 829*a866ce78SHaowei Wu return function_impl(); 830*a866ce78SHaowei Wu } 831*a866ce78SHaowei Wu 832*a866ce78SHaowei Wu FunctionImpl function_impl; 833*a866ce78SHaowei Wu }; 834*a866ce78SHaowei Wu 835a11cd0d9STom Stellard // fun_ is an empty function if and only if this is the DoDefault() action. 836a11cd0d9STom Stellard ::std::function<F> fun_; 837a11cd0d9STom Stellard }; 838a11cd0d9STom Stellard 839a11cd0d9STom Stellard // The PolymorphicAction class template makes it easy to implement a 840a11cd0d9STom Stellard // polymorphic action (i.e. an action that can be used in mock 841a11cd0d9STom Stellard // functions of than one type, e.g. Return()). 842a11cd0d9STom Stellard // 843a11cd0d9STom Stellard // To define a polymorphic action, a user first provides a COPYABLE 844a11cd0d9STom Stellard // implementation class that has a Perform() method template: 845a11cd0d9STom Stellard // 846a11cd0d9STom Stellard // class FooAction { 847a11cd0d9STom Stellard // public: 848a11cd0d9STom Stellard // template <typename Result, typename ArgumentTuple> 849a11cd0d9STom Stellard // Result Perform(const ArgumentTuple& args) const { 850a11cd0d9STom Stellard // // Processes the arguments and returns a result, using 851a11cd0d9STom Stellard // // std::get<N>(args) to get the N-th (0-based) argument in the tuple. 852a11cd0d9STom Stellard // } 853a11cd0d9STom Stellard // ... 854a11cd0d9STom Stellard // }; 855a11cd0d9STom Stellard // 856a11cd0d9STom Stellard // Then the user creates the polymorphic action using 857a11cd0d9STom Stellard // MakePolymorphicAction(object) where object has type FooAction. See 858a11cd0d9STom Stellard // the definition of Return(void) and SetArgumentPointee<N>(value) for 859a11cd0d9STom Stellard // complete examples. 860a11cd0d9STom Stellard template <typename Impl> 861a11cd0d9STom Stellard class PolymorphicAction { 862a11cd0d9STom Stellard public: 863a11cd0d9STom Stellard explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} 864a11cd0d9STom Stellard 865a11cd0d9STom Stellard template <typename F> 866a11cd0d9STom Stellard operator Action<F>() const { 867a11cd0d9STom Stellard return Action<F>(new MonomorphicImpl<F>(impl_)); 868a11cd0d9STom Stellard } 869a11cd0d9STom Stellard 870a11cd0d9STom Stellard private: 871a11cd0d9STom Stellard template <typename F> 872a11cd0d9STom Stellard class MonomorphicImpl : public ActionInterface<F> { 873a11cd0d9STom Stellard public: 874a11cd0d9STom Stellard typedef typename internal::Function<F>::Result Result; 875a11cd0d9STom Stellard typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 876a11cd0d9STom Stellard 877a11cd0d9STom Stellard explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} 878a11cd0d9STom Stellard 879a11cd0d9STom Stellard Result Perform(const ArgumentTuple& args) override { 880a11cd0d9STom Stellard return impl_.template Perform<Result>(args); 881a11cd0d9STom Stellard } 882a11cd0d9STom Stellard 883a11cd0d9STom Stellard private: 884a11cd0d9STom Stellard Impl impl_; 885a11cd0d9STom Stellard }; 886a11cd0d9STom Stellard 887a11cd0d9STom Stellard Impl impl_; 888a11cd0d9STom Stellard }; 889a11cd0d9STom Stellard 890a11cd0d9STom Stellard // Creates an Action from its implementation and returns it. The 891a11cd0d9STom Stellard // created Action object owns the implementation. 892a11cd0d9STom Stellard template <typename F> 893a11cd0d9STom Stellard Action<F> MakeAction(ActionInterface<F>* impl) { 894a11cd0d9STom Stellard return Action<F>(impl); 895a11cd0d9STom Stellard } 896a11cd0d9STom Stellard 897a11cd0d9STom Stellard // Creates a polymorphic action from its implementation. This is 898a11cd0d9STom Stellard // easier to use than the PolymorphicAction<Impl> constructor as it 899a11cd0d9STom Stellard // doesn't require you to explicitly write the template argument, e.g. 900a11cd0d9STom Stellard // 901a11cd0d9STom Stellard // MakePolymorphicAction(foo); 902a11cd0d9STom Stellard // vs 903a11cd0d9STom Stellard // PolymorphicAction<TypeOfFoo>(foo); 904a11cd0d9STom Stellard template <typename Impl> 905a11cd0d9STom Stellard inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { 906a11cd0d9STom Stellard return PolymorphicAction<Impl>(impl); 907a11cd0d9STom Stellard } 908a11cd0d9STom Stellard 909a11cd0d9STom Stellard namespace internal { 910a11cd0d9STom Stellard 911a11cd0d9STom Stellard // Helper struct to specialize ReturnAction to execute a move instead of a copy 912a11cd0d9STom Stellard // on return. Useful for move-only types, but could be used on any type. 913a11cd0d9STom Stellard template <typename T> 914a11cd0d9STom Stellard struct ByMoveWrapper { 915a11cd0d9STom Stellard explicit ByMoveWrapper(T value) : payload(std::move(value)) {} 916a11cd0d9STom Stellard T payload; 917a11cd0d9STom Stellard }; 918a11cd0d9STom Stellard 919*a866ce78SHaowei Wu // The general implementation of Return(R). Specializations follow below. 920*a866ce78SHaowei Wu template <typename R> 921*a866ce78SHaowei Wu class ReturnAction final { 922*a866ce78SHaowei Wu public: 923*a866ce78SHaowei Wu explicit ReturnAction(R value) : value_(std::move(value)) {} 924*a866ce78SHaowei Wu 925*a866ce78SHaowei Wu template <typename U, typename... Args, 926*a866ce78SHaowei Wu typename = typename std::enable_if<conjunction< 927*a866ce78SHaowei Wu // See the requirements documented on Return. 928*a866ce78SHaowei Wu negation<std::is_same<void, U>>, // 929*a866ce78SHaowei Wu negation<std::is_reference<U>>, // 930*a866ce78SHaowei Wu std::is_convertible<R, U>, // 931*a866ce78SHaowei Wu std::is_move_constructible<U>>::value>::type> 932*a866ce78SHaowei Wu operator OnceAction<U(Args...)>() && { // NOLINT 933*a866ce78SHaowei Wu return Impl<U>(std::move(value_)); 934*a866ce78SHaowei Wu } 935*a866ce78SHaowei Wu 936*a866ce78SHaowei Wu template <typename U, typename... Args, 937*a866ce78SHaowei Wu typename = typename std::enable_if<conjunction< 938*a866ce78SHaowei Wu // See the requirements documented on Return. 939*a866ce78SHaowei Wu negation<std::is_same<void, U>>, // 940*a866ce78SHaowei Wu negation<std::is_reference<U>>, // 941*a866ce78SHaowei Wu std::is_convertible<const R&, U>, // 942*a866ce78SHaowei Wu std::is_copy_constructible<U>>::value>::type> 943*a866ce78SHaowei Wu operator Action<U(Args...)>() const { // NOLINT 944*a866ce78SHaowei Wu return Impl<U>(value_); 945*a866ce78SHaowei Wu } 946*a866ce78SHaowei Wu 947*a866ce78SHaowei Wu private: 948*a866ce78SHaowei Wu // Implements the Return(x) action for a mock function that returns type U. 949*a866ce78SHaowei Wu template <typename U> 950*a866ce78SHaowei Wu class Impl final { 951*a866ce78SHaowei Wu public: 952*a866ce78SHaowei Wu // The constructor used when the return value is allowed to move from the 953*a866ce78SHaowei Wu // input value (i.e. we are converting to OnceAction). 954*a866ce78SHaowei Wu explicit Impl(R&& input_value) 955*a866ce78SHaowei Wu : state_(new State(std::move(input_value))) {} 956*a866ce78SHaowei Wu 957*a866ce78SHaowei Wu // The constructor used when the return value is not allowed to move from 958*a866ce78SHaowei Wu // the input value (i.e. we are converting to Action). 959*a866ce78SHaowei Wu explicit Impl(const R& input_value) : state_(new State(input_value)) {} 960*a866ce78SHaowei Wu 961*a866ce78SHaowei Wu U operator()() && { return std::move(state_->value); } 962*a866ce78SHaowei Wu U operator()() const& { return state_->value; } 963*a866ce78SHaowei Wu 964*a866ce78SHaowei Wu private: 965*a866ce78SHaowei Wu // We put our state on the heap so that the compiler-generated copy/move 966*a866ce78SHaowei Wu // constructors work correctly even when U is a reference-like type. This is 967*a866ce78SHaowei Wu // necessary only because we eagerly create State::value (see the note on 968*a866ce78SHaowei Wu // that symbol for details). If we instead had only the input value as a 969*a866ce78SHaowei Wu // member then the default constructors would work fine. 970499d713bSHaowei Wu // 971*a866ce78SHaowei Wu // For example, when R is std::string and U is std::string_view, value is a 972*a866ce78SHaowei Wu // reference to the string backed by input_value. The copy constructor would 973*a866ce78SHaowei Wu // copy both, so that we wind up with a new input_value object (with the 974*a866ce78SHaowei Wu // same contents) and a reference to the *old* input_value object rather 975*a866ce78SHaowei Wu // than the new one. 976*a866ce78SHaowei Wu struct State { 977*a866ce78SHaowei Wu explicit State(const R& input_value_in) 978*a866ce78SHaowei Wu : input_value(input_value_in), 979*a866ce78SHaowei Wu // Make an implicit conversion to Result before initializing the U 980*a866ce78SHaowei Wu // object we store, avoiding calling any explicit constructor of U 981*a866ce78SHaowei Wu // from R. 982499d713bSHaowei Wu // 983*a866ce78SHaowei Wu // This simulates the language rules: a function with return type U 984*a866ce78SHaowei Wu // that does `return R()` requires R to be implicitly convertible to 985*a866ce78SHaowei Wu // U, and uses that path for the conversion, even U Result has an 986*a866ce78SHaowei Wu // explicit constructor from R. 987*a866ce78SHaowei Wu value(ImplicitCast_<U>(internal::as_const(input_value))) {} 988*a866ce78SHaowei Wu 989*a866ce78SHaowei Wu // As above, but for the case where we're moving from the ReturnAction 990*a866ce78SHaowei Wu // object because it's being used as a OnceAction. 991*a866ce78SHaowei Wu explicit State(R&& input_value_in) 992*a866ce78SHaowei Wu : input_value(std::move(input_value_in)), 993*a866ce78SHaowei Wu // For the same reason as above we make an implicit conversion to U 994*a866ce78SHaowei Wu // before initializing the value. 995*a866ce78SHaowei Wu // 996*a866ce78SHaowei Wu // Unlike above we provide the input value as an rvalue to the 997*a866ce78SHaowei Wu // implicit conversion because this is a OnceAction: it's fine if it 998*a866ce78SHaowei Wu // wants to consume the input value. 999*a866ce78SHaowei Wu value(ImplicitCast_<U>(std::move(input_value))) {} 1000*a866ce78SHaowei Wu 1001*a866ce78SHaowei Wu // A copy of the value originally provided by the user. We retain this in 1002*a866ce78SHaowei Wu // addition to the value of the mock function's result type below in case 1003*a866ce78SHaowei Wu // the latter is a reference-like type. See the std::string_view example 1004*a866ce78SHaowei Wu // in the documentation on Return. 1005*a866ce78SHaowei Wu R input_value; 1006*a866ce78SHaowei Wu 1007*a866ce78SHaowei Wu // The value we actually return, as the type returned by the mock function 1008*a866ce78SHaowei Wu // itself. 1009*a866ce78SHaowei Wu // 1010*a866ce78SHaowei Wu // We eagerly initialize this here, rather than lazily doing the implicit 1011*a866ce78SHaowei Wu // conversion automatically each time Perform is called, for historical 1012*a866ce78SHaowei Wu // reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126) 1013*a866ce78SHaowei Wu // made the Action<U()> conversion operator eagerly convert the R value to 1014*a866ce78SHaowei Wu // U, but without keeping the R alive. This broke the use case discussed 1015*a866ce78SHaowei Wu // in the documentation for Return, making reference-like types such as 1016*a866ce78SHaowei Wu // std::string_view not safe to use as U where the input type R is a 1017*a866ce78SHaowei Wu // value-like type such as std::string. 1018*a866ce78SHaowei Wu // 1019*a866ce78SHaowei Wu // The example the commit gave was not very clear, nor was the issue 1020*a866ce78SHaowei Wu // thread (https://github.com/google/googlemock/issues/86), but it seems 1021*a866ce78SHaowei Wu // the worry was about reference-like input types R that flatten to a 1022*a866ce78SHaowei Wu // value-like type U when being implicitly converted. An example of this 1023*a866ce78SHaowei Wu // is std::vector<bool>::reference, which is often a proxy type with an 1024*a866ce78SHaowei Wu // reference to the underlying vector: 1025*a866ce78SHaowei Wu // 1026*a866ce78SHaowei Wu // // Helper method: have the mock function return bools according 1027*a866ce78SHaowei Wu // // to the supplied script. 1028*a866ce78SHaowei Wu // void SetActions(MockFunction<bool(size_t)>& mock, 1029*a866ce78SHaowei Wu // const std::vector<bool>& script) { 1030*a866ce78SHaowei Wu // for (size_t i = 0; i < script.size(); ++i) { 1031*a866ce78SHaowei Wu // EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i])); 1032*a866ce78SHaowei Wu // } 1033499d713bSHaowei Wu // } 1034499d713bSHaowei Wu // 1035*a866ce78SHaowei Wu // TEST(Foo, Bar) { 1036*a866ce78SHaowei Wu // // Set actions using a temporary vector, whose operator[] 1037*a866ce78SHaowei Wu // // returns proxy objects that references that will be 1038*a866ce78SHaowei Wu // // dangling once the call to SetActions finishes and the 1039*a866ce78SHaowei Wu // // vector is destroyed. 1040*a866ce78SHaowei Wu // MockFunction<bool(size_t)> mock; 1041*a866ce78SHaowei Wu // SetActions(mock, {false, true}); 1042499d713bSHaowei Wu // 1043*a866ce78SHaowei Wu // EXPECT_FALSE(mock.AsStdFunction()(0)); 1044*a866ce78SHaowei Wu // EXPECT_TRUE(mock.AsStdFunction()(1)); 1045*a866ce78SHaowei Wu // } 1046499d713bSHaowei Wu // 1047*a866ce78SHaowei Wu // This eager conversion helps with a simple case like this, but doesn't 1048*a866ce78SHaowei Wu // fully make these types work in general. For example the following still 1049*a866ce78SHaowei Wu // uses a dangling reference: 1050*a866ce78SHaowei Wu // 1051*a866ce78SHaowei Wu // TEST(Foo, Baz) { 1052*a866ce78SHaowei Wu // MockFunction<std::vector<std::string>()> mock; 1053*a866ce78SHaowei Wu // 1054*a866ce78SHaowei Wu // // Return the same vector twice, and then the empty vector 1055*a866ce78SHaowei Wu // // thereafter. 1056*a866ce78SHaowei Wu // auto action = Return(std::initializer_list<std::string>{ 1057*a866ce78SHaowei Wu // "taco", "burrito", 1058*a866ce78SHaowei Wu // }); 1059*a866ce78SHaowei Wu // 1060*a866ce78SHaowei Wu // EXPECT_CALL(mock, Call) 1061*a866ce78SHaowei Wu // .WillOnce(action) 1062*a866ce78SHaowei Wu // .WillOnce(action) 1063*a866ce78SHaowei Wu // .WillRepeatedly(Return(std::vector<std::string>{})); 1064*a866ce78SHaowei Wu // 1065*a866ce78SHaowei Wu // EXPECT_THAT(mock.AsStdFunction()(), 1066*a866ce78SHaowei Wu // ElementsAre("taco", "burrito")); 1067*a866ce78SHaowei Wu // EXPECT_THAT(mock.AsStdFunction()(), 1068*a866ce78SHaowei Wu // ElementsAre("taco", "burrito")); 1069*a866ce78SHaowei Wu // EXPECT_THAT(mock.AsStdFunction()(), IsEmpty()); 1070*a866ce78SHaowei Wu // } 1071*a866ce78SHaowei Wu // 1072*a866ce78SHaowei Wu U value; 1073*a866ce78SHaowei Wu }; 107454c1a9b2SZero Omega 1075*a866ce78SHaowei Wu const std::shared_ptr<State> state_; 1076*a866ce78SHaowei Wu }; 1077*a866ce78SHaowei Wu 1078*a866ce78SHaowei Wu R value_; 1079*a866ce78SHaowei Wu }; 1080*a866ce78SHaowei Wu 1081*a866ce78SHaowei Wu // A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T. 1082*a866ce78SHaowei Wu // 1083*a866ce78SHaowei Wu // This version applies the type system-defeating hack of moving from T even in 1084*a866ce78SHaowei Wu // the const call operator, checking at runtime that it isn't called more than 1085*a866ce78SHaowei Wu // once, since the user has declared their intent to do so by using ByMove. 1086*a866ce78SHaowei Wu template <typename T> 1087*a866ce78SHaowei Wu class ReturnAction<ByMoveWrapper<T>> final { 1088*a866ce78SHaowei Wu public: 1089*a866ce78SHaowei Wu explicit ReturnAction(ByMoveWrapper<T> wrapper) 1090*a866ce78SHaowei Wu : state_(new State(std::move(wrapper.payload))) {} 1091*a866ce78SHaowei Wu 1092*a866ce78SHaowei Wu T operator()() const { 1093*a866ce78SHaowei Wu GTEST_CHECK_(!state_->called) 1094*a866ce78SHaowei Wu << "A ByMove() action must be performed at most once."; 1095*a866ce78SHaowei Wu 1096*a866ce78SHaowei Wu state_->called = true; 1097*a866ce78SHaowei Wu return std::move(state_->value); 109854c1a9b2SZero Omega } 109954c1a9b2SZero Omega 110054c1a9b2SZero Omega private: 1101*a866ce78SHaowei Wu // We store our state on the heap so that we are copyable as required by 1102*a866ce78SHaowei Wu // Action, despite the fact that we are stateful and T may not be copyable. 1103*a866ce78SHaowei Wu struct State { 1104*a866ce78SHaowei Wu explicit State(T&& value_in) : value(std::move(value_in)) {} 110554c1a9b2SZero Omega 1106*a866ce78SHaowei Wu T value; 1107*a866ce78SHaowei Wu bool called = false; 110854c1a9b2SZero Omega }; 1109a11cd0d9STom Stellard 1110*a866ce78SHaowei Wu const std::shared_ptr<State> state_; 1111a11cd0d9STom Stellard }; 1112a11cd0d9STom Stellard 1113a11cd0d9STom Stellard // Implements the ReturnNull() action. 1114a11cd0d9STom Stellard class ReturnNullAction { 1115a11cd0d9STom Stellard public: 1116a11cd0d9STom Stellard // Allows ReturnNull() to be used in any pointer-returning function. In C++11 1117a11cd0d9STom Stellard // this is enforced by returning nullptr, and in non-C++11 by asserting a 1118a11cd0d9STom Stellard // pointer type on compile time. 1119a11cd0d9STom Stellard template <typename Result, typename ArgumentTuple> 1120a11cd0d9STom Stellard static Result Perform(const ArgumentTuple&) { 1121a11cd0d9STom Stellard return nullptr; 1122a11cd0d9STom Stellard } 1123a11cd0d9STom Stellard }; 1124a11cd0d9STom Stellard 1125a11cd0d9STom Stellard // Implements the Return() action. 1126a11cd0d9STom Stellard class ReturnVoidAction { 1127a11cd0d9STom Stellard public: 1128a11cd0d9STom Stellard // Allows Return() to be used in any void-returning function. 1129a11cd0d9STom Stellard template <typename Result, typename ArgumentTuple> 1130a11cd0d9STom Stellard static void Perform(const ArgumentTuple&) { 1131a11cd0d9STom Stellard static_assert(std::is_void<Result>::value, "Result should be void."); 1132a11cd0d9STom Stellard } 1133a11cd0d9STom Stellard }; 1134a11cd0d9STom Stellard 1135a11cd0d9STom Stellard // Implements the polymorphic ReturnRef(x) action, which can be used 1136a11cd0d9STom Stellard // in any function that returns a reference to the type of x, 1137a11cd0d9STom Stellard // regardless of the argument types. 1138a11cd0d9STom Stellard template <typename T> 1139a11cd0d9STom Stellard class ReturnRefAction { 1140a11cd0d9STom Stellard public: 1141a11cd0d9STom Stellard // Constructs a ReturnRefAction object from the reference to be returned. 1142a11cd0d9STom Stellard explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT 1143a11cd0d9STom Stellard 1144a11cd0d9STom Stellard // This template type conversion operator allows ReturnRef(x) to be 1145a11cd0d9STom Stellard // used in ANY function that returns a reference to x's type. 1146a11cd0d9STom Stellard template <typename F> 1147a11cd0d9STom Stellard operator Action<F>() const { 1148a11cd0d9STom Stellard typedef typename Function<F>::Result Result; 1149a11cd0d9STom Stellard // Asserts that the function return type is a reference. This 1150a11cd0d9STom Stellard // catches the user error of using ReturnRef(x) when Return(x) 1151a11cd0d9STom Stellard // should be used, and generates some helpful error message. 1152*a866ce78SHaowei Wu static_assert(std::is_reference<Result>::value, 1153*a866ce78SHaowei Wu "use Return instead of ReturnRef to return a value"); 1154a11cd0d9STom Stellard return Action<F>(new Impl<F>(ref_)); 1155a11cd0d9STom Stellard } 1156a11cd0d9STom Stellard 1157a11cd0d9STom Stellard private: 1158a11cd0d9STom Stellard // Implements the ReturnRef(x) action for a particular function type F. 1159a11cd0d9STom Stellard template <typename F> 1160a11cd0d9STom Stellard class Impl : public ActionInterface<F> { 1161a11cd0d9STom Stellard public: 1162a11cd0d9STom Stellard typedef typename Function<F>::Result Result; 1163a11cd0d9STom Stellard typedef typename Function<F>::ArgumentTuple ArgumentTuple; 1164a11cd0d9STom Stellard 1165a11cd0d9STom Stellard explicit Impl(T& ref) : ref_(ref) {} // NOLINT 1166a11cd0d9STom Stellard 1167a11cd0d9STom Stellard Result Perform(const ArgumentTuple&) override { return ref_; } 1168a11cd0d9STom Stellard 1169a11cd0d9STom Stellard private: 1170a11cd0d9STom Stellard T& ref_; 1171a11cd0d9STom Stellard }; 1172a11cd0d9STom Stellard 1173a11cd0d9STom Stellard T& ref_; 1174a11cd0d9STom Stellard }; 1175a11cd0d9STom Stellard 1176a11cd0d9STom Stellard // Implements the polymorphic ReturnRefOfCopy(x) action, which can be 1177a11cd0d9STom Stellard // used in any function that returns a reference to the type of x, 1178a11cd0d9STom Stellard // regardless of the argument types. 1179a11cd0d9STom Stellard template <typename T> 1180a11cd0d9STom Stellard class ReturnRefOfCopyAction { 1181a11cd0d9STom Stellard public: 1182a11cd0d9STom Stellard // Constructs a ReturnRefOfCopyAction object from the reference to 1183a11cd0d9STom Stellard // be returned. 1184a11cd0d9STom Stellard explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT 1185a11cd0d9STom Stellard 1186a11cd0d9STom Stellard // This template type conversion operator allows ReturnRefOfCopy(x) to be 1187a11cd0d9STom Stellard // used in ANY function that returns a reference to x's type. 1188a11cd0d9STom Stellard template <typename F> 1189a11cd0d9STom Stellard operator Action<F>() const { 1190a11cd0d9STom Stellard typedef typename Function<F>::Result Result; 1191a11cd0d9STom Stellard // Asserts that the function return type is a reference. This 1192a11cd0d9STom Stellard // catches the user error of using ReturnRefOfCopy(x) when Return(x) 1193a11cd0d9STom Stellard // should be used, and generates some helpful error message. 1194*a866ce78SHaowei Wu static_assert(std::is_reference<Result>::value, 1195*a866ce78SHaowei Wu "use Return instead of ReturnRefOfCopy to return a value"); 1196a11cd0d9STom Stellard return Action<F>(new Impl<F>(value_)); 1197a11cd0d9STom Stellard } 1198a11cd0d9STom Stellard 1199a11cd0d9STom Stellard private: 1200a11cd0d9STom Stellard // Implements the ReturnRefOfCopy(x) action for a particular function type F. 1201a11cd0d9STom Stellard template <typename F> 1202a11cd0d9STom Stellard class Impl : public ActionInterface<F> { 1203a11cd0d9STom Stellard public: 1204a11cd0d9STom Stellard typedef typename Function<F>::Result Result; 1205a11cd0d9STom Stellard typedef typename Function<F>::ArgumentTuple ArgumentTuple; 1206a11cd0d9STom Stellard 1207a11cd0d9STom Stellard explicit Impl(const T& value) : value_(value) {} // NOLINT 1208a11cd0d9STom Stellard 1209a11cd0d9STom Stellard Result Perform(const ArgumentTuple&) override { return value_; } 1210a11cd0d9STom Stellard 1211a11cd0d9STom Stellard private: 1212a11cd0d9STom Stellard T value_; 1213a11cd0d9STom Stellard }; 1214a11cd0d9STom Stellard 1215a11cd0d9STom Stellard const T value_; 1216*a866ce78SHaowei Wu }; 1217a11cd0d9STom Stellard 1218*a866ce78SHaowei Wu // Implements the polymorphic ReturnRoundRobin(v) action, which can be 1219*a866ce78SHaowei Wu // used in any function that returns the element_type of v. 1220*a866ce78SHaowei Wu template <typename T> 1221*a866ce78SHaowei Wu class ReturnRoundRobinAction { 1222*a866ce78SHaowei Wu public: 1223*a866ce78SHaowei Wu explicit ReturnRoundRobinAction(std::vector<T> values) { 1224*a866ce78SHaowei Wu GTEST_CHECK_(!values.empty()) 1225*a866ce78SHaowei Wu << "ReturnRoundRobin requires at least one element."; 1226*a866ce78SHaowei Wu state_->values = std::move(values); 1227*a866ce78SHaowei Wu } 1228*a866ce78SHaowei Wu 1229*a866ce78SHaowei Wu template <typename... Args> 1230*a866ce78SHaowei Wu T operator()(Args&&...) const { 1231*a866ce78SHaowei Wu return state_->Next(); 1232*a866ce78SHaowei Wu } 1233*a866ce78SHaowei Wu 1234*a866ce78SHaowei Wu private: 1235*a866ce78SHaowei Wu struct State { 1236*a866ce78SHaowei Wu T Next() { 1237*a866ce78SHaowei Wu T ret_val = values[i++]; 1238*a866ce78SHaowei Wu if (i == values.size()) i = 0; 1239*a866ce78SHaowei Wu return ret_val; 1240*a866ce78SHaowei Wu } 1241*a866ce78SHaowei Wu 1242*a866ce78SHaowei Wu std::vector<T> values; 1243*a866ce78SHaowei Wu size_t i = 0; 1244*a866ce78SHaowei Wu }; 1245*a866ce78SHaowei Wu std::shared_ptr<State> state_ = std::make_shared<State>(); 1246a11cd0d9STom Stellard }; 1247a11cd0d9STom Stellard 1248a11cd0d9STom Stellard // Implements the polymorphic DoDefault() action. 1249a11cd0d9STom Stellard class DoDefaultAction { 1250a11cd0d9STom Stellard public: 1251a11cd0d9STom Stellard // This template type conversion operator allows DoDefault() to be 1252a11cd0d9STom Stellard // used in any function. 1253a11cd0d9STom Stellard template <typename F> 1254*a866ce78SHaowei Wu operator Action<F>() const { 1255*a866ce78SHaowei Wu return Action<F>(); 1256*a866ce78SHaowei Wu } // NOLINT 1257a11cd0d9STom Stellard }; 1258a11cd0d9STom Stellard 1259a11cd0d9STom Stellard // Implements the Assign action to set a given pointer referent to a 1260a11cd0d9STom Stellard // particular value. 1261a11cd0d9STom Stellard template <typename T1, typename T2> 1262a11cd0d9STom Stellard class AssignAction { 1263a11cd0d9STom Stellard public: 1264a11cd0d9STom Stellard AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} 1265a11cd0d9STom Stellard 1266a11cd0d9STom Stellard template <typename Result, typename ArgumentTuple> 1267a11cd0d9STom Stellard void Perform(const ArgumentTuple& /* args */) const { 1268a11cd0d9STom Stellard *ptr_ = value_; 1269a11cd0d9STom Stellard } 1270a11cd0d9STom Stellard 1271a11cd0d9STom Stellard private: 1272a11cd0d9STom Stellard T1* const ptr_; 1273a11cd0d9STom Stellard const T2 value_; 1274a11cd0d9STom Stellard }; 1275a11cd0d9STom Stellard 1276*a866ce78SHaowei Wu #ifndef GTEST_OS_WINDOWS_MOBILE 1277a11cd0d9STom Stellard 1278a11cd0d9STom Stellard // Implements the SetErrnoAndReturn action to simulate return from 1279a11cd0d9STom Stellard // various system calls and libc functions. 1280a11cd0d9STom Stellard template <typename T> 1281a11cd0d9STom Stellard class SetErrnoAndReturnAction { 1282a11cd0d9STom Stellard public: 1283a11cd0d9STom Stellard SetErrnoAndReturnAction(int errno_value, T result) 1284*a866ce78SHaowei Wu : errno_(errno_value), result_(result) {} 1285a11cd0d9STom Stellard template <typename Result, typename ArgumentTuple> 1286a11cd0d9STom Stellard Result Perform(const ArgumentTuple& /* args */) const { 1287a11cd0d9STom Stellard errno = errno_; 1288a11cd0d9STom Stellard return result_; 1289a11cd0d9STom Stellard } 1290a11cd0d9STom Stellard 1291a11cd0d9STom Stellard private: 1292a11cd0d9STom Stellard const int errno_; 1293a11cd0d9STom Stellard const T result_; 1294a11cd0d9STom Stellard }; 1295a11cd0d9STom Stellard 1296a11cd0d9STom Stellard #endif // !GTEST_OS_WINDOWS_MOBILE 1297a11cd0d9STom Stellard 1298a11cd0d9STom Stellard // Implements the SetArgumentPointee<N>(x) action for any function 1299a11cd0d9STom Stellard // whose N-th argument (0-based) is a pointer to x's type. 1300a11cd0d9STom Stellard template <size_t N, typename A, typename = void> 1301a11cd0d9STom Stellard struct SetArgumentPointeeAction { 1302a11cd0d9STom Stellard A value; 1303a11cd0d9STom Stellard 1304a11cd0d9STom Stellard template <typename... Args> 1305a11cd0d9STom Stellard void operator()(const Args&... args) const { 1306a11cd0d9STom Stellard *::std::get<N>(std::tie(args...)) = value; 1307a11cd0d9STom Stellard } 1308a11cd0d9STom Stellard }; 1309a11cd0d9STom Stellard 1310a11cd0d9STom Stellard // Implements the Invoke(object_ptr, &Class::Method) action. 1311a11cd0d9STom Stellard template <class Class, typename MethodPtr> 1312a11cd0d9STom Stellard struct InvokeMethodAction { 1313a11cd0d9STom Stellard Class* const obj_ptr; 1314a11cd0d9STom Stellard const MethodPtr method_ptr; 1315a11cd0d9STom Stellard 1316a11cd0d9STom Stellard template <typename... Args> 1317a11cd0d9STom Stellard auto operator()(Args&&... args) const 1318a11cd0d9STom Stellard -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) { 1319a11cd0d9STom Stellard return (obj_ptr->*method_ptr)(std::forward<Args>(args)...); 1320a11cd0d9STom Stellard } 1321a11cd0d9STom Stellard }; 1322a11cd0d9STom Stellard 1323a11cd0d9STom Stellard // Implements the InvokeWithoutArgs(f) action. The template argument 1324a11cd0d9STom Stellard // FunctionImpl is the implementation type of f, which can be either a 1325a11cd0d9STom Stellard // function pointer or a functor. InvokeWithoutArgs(f) can be used as an 1326a11cd0d9STom Stellard // Action<F> as long as f's type is compatible with F. 1327a11cd0d9STom Stellard template <typename FunctionImpl> 1328a11cd0d9STom Stellard struct InvokeWithoutArgsAction { 1329a11cd0d9STom Stellard FunctionImpl function_impl; 1330a11cd0d9STom Stellard 1331a11cd0d9STom Stellard // Allows InvokeWithoutArgs(f) to be used as any action whose type is 1332a11cd0d9STom Stellard // compatible with f. 1333a11cd0d9STom Stellard template <typename... Args> 1334a11cd0d9STom Stellard auto operator()(const Args&...) -> decltype(function_impl()) { 1335a11cd0d9STom Stellard return function_impl(); 1336a11cd0d9STom Stellard } 1337a11cd0d9STom Stellard }; 1338a11cd0d9STom Stellard 1339a11cd0d9STom Stellard // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. 1340a11cd0d9STom Stellard template <class Class, typename MethodPtr> 1341a11cd0d9STom Stellard struct InvokeMethodWithoutArgsAction { 1342a11cd0d9STom Stellard Class* const obj_ptr; 1343a11cd0d9STom Stellard const MethodPtr method_ptr; 1344a11cd0d9STom Stellard 1345a11cd0d9STom Stellard using ReturnType = 1346a11cd0d9STom Stellard decltype((std::declval<Class*>()->*std::declval<MethodPtr>())()); 1347a11cd0d9STom Stellard 1348a11cd0d9STom Stellard template <typename... Args> 1349a11cd0d9STom Stellard ReturnType operator()(const Args&...) const { 1350a11cd0d9STom Stellard return (obj_ptr->*method_ptr)(); 1351a11cd0d9STom Stellard } 1352a11cd0d9STom Stellard }; 1353a11cd0d9STom Stellard 1354a11cd0d9STom Stellard // Implements the IgnoreResult(action) action. 1355a11cd0d9STom Stellard template <typename A> 1356a11cd0d9STom Stellard class IgnoreResultAction { 1357a11cd0d9STom Stellard public: 1358a11cd0d9STom Stellard explicit IgnoreResultAction(const A& action) : action_(action) {} 1359a11cd0d9STom Stellard 1360a11cd0d9STom Stellard template <typename F> 1361a11cd0d9STom Stellard operator Action<F>() const { 1362a11cd0d9STom Stellard // Assert statement belongs here because this is the best place to verify 1363a11cd0d9STom Stellard // conditions on F. It produces the clearest error messages 1364a11cd0d9STom Stellard // in most compilers. 1365a11cd0d9STom Stellard // Impl really belongs in this scope as a local class but can't 1366a11cd0d9STom Stellard // because MSVC produces duplicate symbols in different translation units 1367a11cd0d9STom Stellard // in this case. Until MS fixes that bug we put Impl into the class scope 1368a11cd0d9STom Stellard // and put the typedef both here (for use in assert statement) and 1369a11cd0d9STom Stellard // in the Impl class. But both definitions must be the same. 1370a11cd0d9STom Stellard typedef typename internal::Function<F>::Result Result; 1371a11cd0d9STom Stellard 1372a11cd0d9STom Stellard // Asserts at compile time that F returns void. 1373a11cd0d9STom Stellard static_assert(std::is_void<Result>::value, "Result type should be void."); 1374a11cd0d9STom Stellard 1375a11cd0d9STom Stellard return Action<F>(new Impl<F>(action_)); 1376a11cd0d9STom Stellard } 1377a11cd0d9STom Stellard 1378a11cd0d9STom Stellard private: 1379a11cd0d9STom Stellard template <typename F> 1380a11cd0d9STom Stellard class Impl : public ActionInterface<F> { 1381a11cd0d9STom Stellard public: 1382a11cd0d9STom Stellard typedef typename internal::Function<F>::Result Result; 1383a11cd0d9STom Stellard typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 1384a11cd0d9STom Stellard 1385a11cd0d9STom Stellard explicit Impl(const A& action) : action_(action) {} 1386a11cd0d9STom Stellard 1387a11cd0d9STom Stellard void Perform(const ArgumentTuple& args) override { 1388a11cd0d9STom Stellard // Performs the action and ignores its result. 1389a11cd0d9STom Stellard action_.Perform(args); 1390a11cd0d9STom Stellard } 1391a11cd0d9STom Stellard 1392a11cd0d9STom Stellard private: 1393a11cd0d9STom Stellard // Type OriginalFunction is the same as F except that its return 1394a11cd0d9STom Stellard // type is IgnoredValue. 1395*a866ce78SHaowei Wu typedef 1396*a866ce78SHaowei Wu typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction; 1397a11cd0d9STom Stellard 1398a11cd0d9STom Stellard const Action<OriginalFunction> action_; 1399a11cd0d9STom Stellard }; 1400a11cd0d9STom Stellard 1401a11cd0d9STom Stellard const A action_; 1402a11cd0d9STom Stellard }; 1403a11cd0d9STom Stellard 1404a11cd0d9STom Stellard template <typename InnerAction, size_t... I> 1405a11cd0d9STom Stellard struct WithArgsAction { 1406*a866ce78SHaowei Wu InnerAction inner_action; 1407a11cd0d9STom Stellard 1408*a866ce78SHaowei Wu // The signature of the function as seen by the inner action, given an out 1409*a866ce78SHaowei Wu // action with the given result and argument types. 1410a11cd0d9STom Stellard template <typename R, typename... Args> 1411*a866ce78SHaowei Wu using InnerSignature = 1412*a866ce78SHaowei Wu R(typename std::tuple_element<I, std::tuple<Args...>>::type...); 141354c1a9b2SZero Omega 1414*a866ce78SHaowei Wu // Rather than a call operator, we must define conversion operators to 1415*a866ce78SHaowei Wu // particular action types. This is necessary for embedded actions like 1416*a866ce78SHaowei Wu // DoDefault(), which rely on an action conversion operators rather than 1417*a866ce78SHaowei Wu // providing a call operator because even with a particular set of arguments 1418*a866ce78SHaowei Wu // they don't have a fixed return type. 1419*a866ce78SHaowei Wu 1420*a866ce78SHaowei Wu template < 1421*a866ce78SHaowei Wu typename R, typename... Args, 1422*a866ce78SHaowei Wu typename std::enable_if< 1423*a866ce78SHaowei Wu std::is_convertible<InnerAction, 1424*a866ce78SHaowei Wu // Unfortunately we can't use the InnerSignature 1425*a866ce78SHaowei Wu // alias here; MSVC complains about the I 1426*a866ce78SHaowei Wu // parameter pack not being expanded (error C3520) 1427*a866ce78SHaowei Wu // despite it being expanded in the type alias. 1428*a866ce78SHaowei Wu // TupleElement is also an MSVC workaround. 1429*a866ce78SHaowei Wu // See its definition for details. 1430*a866ce78SHaowei Wu OnceAction<R(internal::TupleElement< 1431*a866ce78SHaowei Wu I, std::tuple<Args...>>...)>>::value, 1432*a866ce78SHaowei Wu int>::type = 0> 1433*a866ce78SHaowei Wu operator OnceAction<R(Args...)>() && { // NOLINT 1434*a866ce78SHaowei Wu struct OA { 1435*a866ce78SHaowei Wu OnceAction<InnerSignature<R, Args...>> inner_action; 1436*a866ce78SHaowei Wu 1437*a866ce78SHaowei Wu R operator()(Args&&... args) && { 1438*a866ce78SHaowei Wu return std::move(inner_action) 1439*a866ce78SHaowei Wu .Call(std::get<I>( 1440*a866ce78SHaowei Wu std::forward_as_tuple(std::forward<Args>(args)...))...); 1441*a866ce78SHaowei Wu } 1442*a866ce78SHaowei Wu }; 1443*a866ce78SHaowei Wu 1444*a866ce78SHaowei Wu return OA{std::move(inner_action)}; 1445*a866ce78SHaowei Wu } 1446*a866ce78SHaowei Wu 1447*a866ce78SHaowei Wu template < 1448*a866ce78SHaowei Wu typename R, typename... Args, 1449*a866ce78SHaowei Wu typename std::enable_if< 1450*a866ce78SHaowei Wu std::is_convertible<const InnerAction&, 1451*a866ce78SHaowei Wu // Unfortunately we can't use the InnerSignature 1452*a866ce78SHaowei Wu // alias here; MSVC complains about the I 1453*a866ce78SHaowei Wu // parameter pack not being expanded (error C3520) 1454*a866ce78SHaowei Wu // despite it being expanded in the type alias. 1455*a866ce78SHaowei Wu // TupleElement is also an MSVC workaround. 1456*a866ce78SHaowei Wu // See its definition for details. 1457*a866ce78SHaowei Wu Action<R(internal::TupleElement< 1458*a866ce78SHaowei Wu I, std::tuple<Args...>>...)>>::value, 1459*a866ce78SHaowei Wu int>::type = 0> 1460*a866ce78SHaowei Wu operator Action<R(Args...)>() const { // NOLINT 1461*a866ce78SHaowei Wu Action<InnerSignature<R, Args...>> converted(inner_action); 1462*a866ce78SHaowei Wu 1463*a866ce78SHaowei Wu return [converted](Args&&... args) -> R { 1464a11cd0d9STom Stellard return converted.Perform(std::forward_as_tuple( 1465a11cd0d9STom Stellard std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); 1466a11cd0d9STom Stellard }; 1467a11cd0d9STom Stellard } 1468a11cd0d9STom Stellard }; 1469a11cd0d9STom Stellard 1470a11cd0d9STom Stellard template <typename... Actions> 1471*a866ce78SHaowei Wu class DoAllAction; 1472*a866ce78SHaowei Wu 1473*a866ce78SHaowei Wu // Base case: only a single action. 1474*a866ce78SHaowei Wu template <typename FinalAction> 1475*a866ce78SHaowei Wu class DoAllAction<FinalAction> { 1476*a866ce78SHaowei Wu public: 1477*a866ce78SHaowei Wu struct UserConstructorTag {}; 1478*a866ce78SHaowei Wu 1479*a866ce78SHaowei Wu template <typename T> 1480*a866ce78SHaowei Wu explicit DoAllAction(UserConstructorTag, T&& action) 1481*a866ce78SHaowei Wu : final_action_(std::forward<T>(action)) {} 1482*a866ce78SHaowei Wu 1483*a866ce78SHaowei Wu // Rather than a call operator, we must define conversion operators to 1484*a866ce78SHaowei Wu // particular action types. This is necessary for embedded actions like 1485*a866ce78SHaowei Wu // DoDefault(), which rely on an action conversion operators rather than 1486*a866ce78SHaowei Wu // providing a call operator because even with a particular set of arguments 1487*a866ce78SHaowei Wu // they don't have a fixed return type. 1488*a866ce78SHaowei Wu 1489*a866ce78SHaowei Wu template <typename R, typename... Args, 1490*a866ce78SHaowei Wu typename std::enable_if< 1491*a866ce78SHaowei Wu std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value, 1492*a866ce78SHaowei Wu int>::type = 0> 1493*a866ce78SHaowei Wu operator OnceAction<R(Args...)>() && { // NOLINT 1494*a866ce78SHaowei Wu return std::move(final_action_); 1495499d713bSHaowei Wu } 149654c1a9b2SZero Omega 1497*a866ce78SHaowei Wu template < 1498*a866ce78SHaowei Wu typename R, typename... Args, 1499*a866ce78SHaowei Wu typename std::enable_if< 1500*a866ce78SHaowei Wu std::is_convertible<const FinalAction&, Action<R(Args...)>>::value, 1501*a866ce78SHaowei Wu int>::type = 0> 1502*a866ce78SHaowei Wu operator Action<R(Args...)>() const { // NOLINT 1503*a866ce78SHaowei Wu return final_action_; 1504*a866ce78SHaowei Wu } 1505*a866ce78SHaowei Wu 1506*a866ce78SHaowei Wu private: 1507*a866ce78SHaowei Wu FinalAction final_action_; 1508*a866ce78SHaowei Wu }; 1509*a866ce78SHaowei Wu 1510*a866ce78SHaowei Wu // Recursive case: support N actions by calling the initial action and then 1511*a866ce78SHaowei Wu // calling through to the base class containing N-1 actions. 1512*a866ce78SHaowei Wu template <typename InitialAction, typename... OtherActions> 1513*a866ce78SHaowei Wu class DoAllAction<InitialAction, OtherActions...> 1514*a866ce78SHaowei Wu : private DoAllAction<OtherActions...> { 1515*a866ce78SHaowei Wu private: 1516*a866ce78SHaowei Wu using Base = DoAllAction<OtherActions...>; 1517*a866ce78SHaowei Wu 1518*a866ce78SHaowei Wu // The type of reference that should be provided to an initial action for a 1519*a866ce78SHaowei Wu // mocked function parameter of type T. 1520*a866ce78SHaowei Wu // 1521*a866ce78SHaowei Wu // There are two quirks here: 1522*a866ce78SHaowei Wu // 1523*a866ce78SHaowei Wu // * Unlike most forwarding functions, we pass scalars through by value. 1524*a866ce78SHaowei Wu // This isn't strictly necessary because an lvalue reference would work 1525*a866ce78SHaowei Wu // fine too and be consistent with other non-reference types, but it's 1526*a866ce78SHaowei Wu // perhaps less surprising. 1527*a866ce78SHaowei Wu // 1528*a866ce78SHaowei Wu // For example if the mocked function has signature void(int), then it 1529*a866ce78SHaowei Wu // might seem surprising for the user's initial action to need to be 1530*a866ce78SHaowei Wu // convertible to Action<void(const int&)>. This is perhaps less 1531*a866ce78SHaowei Wu // surprising for a non-scalar type where there may be a performance 1532*a866ce78SHaowei Wu // impact, or it might even be impossible, to pass by value. 1533*a866ce78SHaowei Wu // 1534*a866ce78SHaowei Wu // * More surprisingly, `const T&` is often not a const reference type. 1535*a866ce78SHaowei Wu // By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to 1536*a866ce78SHaowei Wu // U& or U&& for some non-scalar type U, then InitialActionArgType<T> is 1537*a866ce78SHaowei Wu // U&. In other words, we may hand over a non-const reference. 1538*a866ce78SHaowei Wu // 1539*a866ce78SHaowei Wu // So for example, given some non-scalar type Obj we have the following 1540*a866ce78SHaowei Wu // mappings: 1541*a866ce78SHaowei Wu // 1542*a866ce78SHaowei Wu // T InitialActionArgType<T> 1543*a866ce78SHaowei Wu // ------- ----------------------- 1544*a866ce78SHaowei Wu // Obj const Obj& 1545*a866ce78SHaowei Wu // Obj& Obj& 1546*a866ce78SHaowei Wu // Obj&& Obj& 1547*a866ce78SHaowei Wu // const Obj const Obj& 1548*a866ce78SHaowei Wu // const Obj& const Obj& 1549*a866ce78SHaowei Wu // const Obj&& const Obj& 1550*a866ce78SHaowei Wu // 1551*a866ce78SHaowei Wu // In other words, the initial actions get a mutable view of an non-scalar 1552*a866ce78SHaowei Wu // argument if and only if the mock function itself accepts a non-const 1553*a866ce78SHaowei Wu // reference type. They are never given an rvalue reference to an 1554*a866ce78SHaowei Wu // non-scalar type. 1555*a866ce78SHaowei Wu // 1556*a866ce78SHaowei Wu // This situation makes sense if you imagine use with a matcher that is 1557*a866ce78SHaowei Wu // designed to write through a reference. For example, if the caller wants 1558*a866ce78SHaowei Wu // to fill in a reference argument and then return a canned value: 1559*a866ce78SHaowei Wu // 1560*a866ce78SHaowei Wu // EXPECT_CALL(mock, Call) 1561*a866ce78SHaowei Wu // .WillOnce(DoAll(SetArgReferee<0>(17), Return(19))); 1562*a866ce78SHaowei Wu // 1563*a866ce78SHaowei Wu template <typename T> 1564*a866ce78SHaowei Wu using InitialActionArgType = 1565*a866ce78SHaowei Wu typename std::conditional<std::is_scalar<T>::value, T, const T&>::type; 1566*a866ce78SHaowei Wu 1567a11cd0d9STom Stellard public: 1568*a866ce78SHaowei Wu struct UserConstructorTag {}; 1569a11cd0d9STom Stellard 1570*a866ce78SHaowei Wu template <typename T, typename... U> 1571*a866ce78SHaowei Wu explicit DoAllAction(UserConstructorTag, T&& initial_action, 1572*a866ce78SHaowei Wu U&&... other_actions) 1573*a866ce78SHaowei Wu : Base({}, std::forward<U>(other_actions)...), 1574*a866ce78SHaowei Wu initial_action_(std::forward<T>(initial_action)) {} 1575*a866ce78SHaowei Wu 1576*a866ce78SHaowei Wu template <typename R, typename... Args, 1577*a866ce78SHaowei Wu typename std::enable_if< 1578*a866ce78SHaowei Wu conjunction< 1579*a866ce78SHaowei Wu // Both the initial action and the rest must support 1580*a866ce78SHaowei Wu // conversion to OnceAction. 1581*a866ce78SHaowei Wu std::is_convertible< 1582*a866ce78SHaowei Wu InitialAction, 1583*a866ce78SHaowei Wu OnceAction<void(InitialActionArgType<Args>...)>>, 1584*a866ce78SHaowei Wu std::is_convertible<Base, OnceAction<R(Args...)>>>::value, 1585*a866ce78SHaowei Wu int>::type = 0> 1586*a866ce78SHaowei Wu operator OnceAction<R(Args...)>() && { // NOLINT 1587*a866ce78SHaowei Wu // Return an action that first calls the initial action with arguments 1588*a866ce78SHaowei Wu // filtered through InitialActionArgType, then forwards arguments directly 1589*a866ce78SHaowei Wu // to the base class to deal with the remaining actions. 1590*a866ce78SHaowei Wu struct OA { 1591*a866ce78SHaowei Wu OnceAction<void(InitialActionArgType<Args>...)> initial_action; 1592*a866ce78SHaowei Wu OnceAction<R(Args...)> remaining_actions; 1593*a866ce78SHaowei Wu 1594*a866ce78SHaowei Wu R operator()(Args... args) && { 1595*a866ce78SHaowei Wu std::move(initial_action) 1596*a866ce78SHaowei Wu .Call(static_cast<InitialActionArgType<Args>>(args)...); 1597*a866ce78SHaowei Wu 1598*a866ce78SHaowei Wu return std::move(remaining_actions).Call(std::forward<Args>(args)...); 1599*a866ce78SHaowei Wu } 1600*a866ce78SHaowei Wu }; 1601*a866ce78SHaowei Wu 1602*a866ce78SHaowei Wu return OA{ 1603*a866ce78SHaowei Wu std::move(initial_action_), 1604*a866ce78SHaowei Wu std::move(static_cast<Base&>(*this)), 1605*a866ce78SHaowei Wu }; 1606*a866ce78SHaowei Wu } 1607*a866ce78SHaowei Wu 1608*a866ce78SHaowei Wu template < 1609*a866ce78SHaowei Wu typename R, typename... Args, 1610*a866ce78SHaowei Wu typename std::enable_if< 1611*a866ce78SHaowei Wu conjunction< 1612*a866ce78SHaowei Wu // Both the initial action and the rest must support conversion to 1613*a866ce78SHaowei Wu // Action. 1614*a866ce78SHaowei Wu std::is_convertible<const InitialAction&, 1615*a866ce78SHaowei Wu Action<void(InitialActionArgType<Args>...)>>, 1616*a866ce78SHaowei Wu std::is_convertible<const Base&, Action<R(Args...)>>>::value, 1617*a866ce78SHaowei Wu int>::type = 0> 1618*a866ce78SHaowei Wu operator Action<R(Args...)>() const { // NOLINT 1619*a866ce78SHaowei Wu // Return an action that first calls the initial action with arguments 1620*a866ce78SHaowei Wu // filtered through InitialActionArgType, then forwards arguments directly 1621*a866ce78SHaowei Wu // to the base class to deal with the remaining actions. 1622*a866ce78SHaowei Wu struct OA { 1623*a866ce78SHaowei Wu Action<void(InitialActionArgType<Args>...)> initial_action; 1624*a866ce78SHaowei Wu Action<R(Args...)> remaining_actions; 1625*a866ce78SHaowei Wu 1626*a866ce78SHaowei Wu R operator()(Args... args) const { 1627*a866ce78SHaowei Wu initial_action.Perform(std::forward_as_tuple( 1628*a866ce78SHaowei Wu static_cast<InitialActionArgType<Args>>(args)...)); 1629*a866ce78SHaowei Wu 1630*a866ce78SHaowei Wu return remaining_actions.Perform( 1631*a866ce78SHaowei Wu std::forward_as_tuple(std::forward<Args>(args)...)); 1632*a866ce78SHaowei Wu } 1633*a866ce78SHaowei Wu }; 1634*a866ce78SHaowei Wu 1635*a866ce78SHaowei Wu return OA{ 1636*a866ce78SHaowei Wu initial_action_, 1637*a866ce78SHaowei Wu static_cast<const Base&>(*this), 1638*a866ce78SHaowei Wu }; 1639*a866ce78SHaowei Wu } 1640*a866ce78SHaowei Wu 1641*a866ce78SHaowei Wu private: 1642*a866ce78SHaowei Wu InitialAction initial_action_; 1643*a866ce78SHaowei Wu }; 1644*a866ce78SHaowei Wu 1645*a866ce78SHaowei Wu template <typename T, typename... Params> 1646*a866ce78SHaowei Wu struct ReturnNewAction { 1647*a866ce78SHaowei Wu T* operator()() const { 1648*a866ce78SHaowei Wu return internal::Apply( 1649*a866ce78SHaowei Wu [](const Params&... unpacked_params) { 1650*a866ce78SHaowei Wu return new T(unpacked_params...); 1651*a866ce78SHaowei Wu }, 1652*a866ce78SHaowei Wu params); 1653*a866ce78SHaowei Wu } 1654*a866ce78SHaowei Wu std::tuple<Params...> params; 1655*a866ce78SHaowei Wu }; 1656*a866ce78SHaowei Wu 1657*a866ce78SHaowei Wu template <size_t k> 1658*a866ce78SHaowei Wu struct ReturnArgAction { 1659*a866ce78SHaowei Wu template <typename... Args, 1660*a866ce78SHaowei Wu typename = typename std::enable_if<(k < sizeof...(Args))>::type> 1661*a866ce78SHaowei Wu auto operator()(Args&&... args) const -> decltype(std::get<k>( 1662*a866ce78SHaowei Wu std::forward_as_tuple(std::forward<Args>(args)...))) { 1663*a866ce78SHaowei Wu return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...)); 1664*a866ce78SHaowei Wu } 1665*a866ce78SHaowei Wu }; 1666*a866ce78SHaowei Wu 1667*a866ce78SHaowei Wu template <size_t k, typename Ptr> 1668*a866ce78SHaowei Wu struct SaveArgAction { 1669*a866ce78SHaowei Wu Ptr pointer; 1670*a866ce78SHaowei Wu 1671*a866ce78SHaowei Wu template <typename... Args> 1672*a866ce78SHaowei Wu void operator()(const Args&... args) const { 1673*a866ce78SHaowei Wu *pointer = std::get<k>(std::tie(args...)); 1674*a866ce78SHaowei Wu } 1675*a866ce78SHaowei Wu }; 1676*a866ce78SHaowei Wu 1677*a866ce78SHaowei Wu template <size_t k, typename Ptr> 1678*a866ce78SHaowei Wu struct SaveArgPointeeAction { 1679*a866ce78SHaowei Wu Ptr pointer; 1680*a866ce78SHaowei Wu 1681*a866ce78SHaowei Wu template <typename... Args> 1682*a866ce78SHaowei Wu void operator()(const Args&... args) const { 1683*a866ce78SHaowei Wu *pointer = *std::get<k>(std::tie(args...)); 1684*a866ce78SHaowei Wu } 1685*a866ce78SHaowei Wu }; 1686*a866ce78SHaowei Wu 1687*a866ce78SHaowei Wu template <size_t k, typename T> 1688*a866ce78SHaowei Wu struct SetArgRefereeAction { 1689*a866ce78SHaowei Wu T value; 1690*a866ce78SHaowei Wu 1691*a866ce78SHaowei Wu template <typename... Args> 1692*a866ce78SHaowei Wu void operator()(Args&&... args) const { 1693*a866ce78SHaowei Wu using argk_type = 1694*a866ce78SHaowei Wu typename ::std::tuple_element<k, std::tuple<Args...>>::type; 1695*a866ce78SHaowei Wu static_assert(std::is_lvalue_reference<argk_type>::value, 1696*a866ce78SHaowei Wu "Argument must be a reference type."); 1697*a866ce78SHaowei Wu std::get<k>(std::tie(args...)) = value; 1698*a866ce78SHaowei Wu } 1699*a866ce78SHaowei Wu }; 1700*a866ce78SHaowei Wu 1701*a866ce78SHaowei Wu template <size_t k, typename I1, typename I2> 1702*a866ce78SHaowei Wu struct SetArrayArgumentAction { 1703*a866ce78SHaowei Wu I1 first; 1704*a866ce78SHaowei Wu I2 last; 1705*a866ce78SHaowei Wu 1706*a866ce78SHaowei Wu template <typename... Args> 1707*a866ce78SHaowei Wu void operator()(const Args&... args) const { 1708*a866ce78SHaowei Wu auto value = std::get<k>(std::tie(args...)); 1709*a866ce78SHaowei Wu for (auto it = first; it != last; ++it, (void)++value) { 1710*a866ce78SHaowei Wu *value = *it; 1711*a866ce78SHaowei Wu } 1712*a866ce78SHaowei Wu } 1713*a866ce78SHaowei Wu }; 1714*a866ce78SHaowei Wu 1715*a866ce78SHaowei Wu template <size_t k> 1716*a866ce78SHaowei Wu struct DeleteArgAction { 1717*a866ce78SHaowei Wu template <typename... Args> 1718*a866ce78SHaowei Wu void operator()(const Args&... args) const { 1719*a866ce78SHaowei Wu delete std::get<k>(std::tie(args...)); 1720*a866ce78SHaowei Wu } 1721*a866ce78SHaowei Wu }; 1722*a866ce78SHaowei Wu 1723*a866ce78SHaowei Wu template <typename Ptr> 1724*a866ce78SHaowei Wu struct ReturnPointeeAction { 1725*a866ce78SHaowei Wu Ptr pointer; 1726*a866ce78SHaowei Wu template <typename... Args> 1727*a866ce78SHaowei Wu auto operator()(const Args&...) const -> decltype(*pointer) { 1728*a866ce78SHaowei Wu return *pointer; 1729*a866ce78SHaowei Wu } 1730*a866ce78SHaowei Wu }; 1731*a866ce78SHaowei Wu 1732*a866ce78SHaowei Wu #if GTEST_HAS_EXCEPTIONS 1733*a866ce78SHaowei Wu template <typename T> 1734*a866ce78SHaowei Wu struct ThrowAction { 1735*a866ce78SHaowei Wu T exception; 1736*a866ce78SHaowei Wu // We use a conversion operator to adapt to any return type. 1737a11cd0d9STom Stellard template <typename R, typename... Args> 1738a11cd0d9STom Stellard operator Action<R(Args...)>() const { // NOLINT 1739*a866ce78SHaowei Wu T copy = exception; 1740*a866ce78SHaowei Wu return [copy](Args...) -> R { throw copy; }; 1741a11cd0d9STom Stellard } 1742a11cd0d9STom Stellard }; 1743*a866ce78SHaowei Wu #endif // GTEST_HAS_EXCEPTIONS 1744a11cd0d9STom Stellard 1745a11cd0d9STom Stellard } // namespace internal 1746a11cd0d9STom Stellard 1747a11cd0d9STom Stellard // An Unused object can be implicitly constructed from ANY value. 1748a11cd0d9STom Stellard // This is handy when defining actions that ignore some or all of the 1749a11cd0d9STom Stellard // mock function arguments. For example, given 1750a11cd0d9STom Stellard // 1751a11cd0d9STom Stellard // MOCK_METHOD3(Foo, double(const string& label, double x, double y)); 1752a11cd0d9STom Stellard // MOCK_METHOD3(Bar, double(int index, double x, double y)); 1753a11cd0d9STom Stellard // 1754a11cd0d9STom Stellard // instead of 1755a11cd0d9STom Stellard // 1756a11cd0d9STom Stellard // double DistanceToOriginWithLabel(const string& label, double x, double y) { 1757a11cd0d9STom Stellard // return sqrt(x*x + y*y); 1758a11cd0d9STom Stellard // } 1759a11cd0d9STom Stellard // double DistanceToOriginWithIndex(int index, double x, double y) { 1760a11cd0d9STom Stellard // return sqrt(x*x + y*y); 1761a11cd0d9STom Stellard // } 1762a11cd0d9STom Stellard // ... 1763a11cd0d9STom Stellard // EXPECT_CALL(mock, Foo("abc", _, _)) 1764a11cd0d9STom Stellard // .WillOnce(Invoke(DistanceToOriginWithLabel)); 1765a11cd0d9STom Stellard // EXPECT_CALL(mock, Bar(5, _, _)) 1766a11cd0d9STom Stellard // .WillOnce(Invoke(DistanceToOriginWithIndex)); 1767a11cd0d9STom Stellard // 1768a11cd0d9STom Stellard // you could write 1769a11cd0d9STom Stellard // 1770a11cd0d9STom Stellard // // We can declare any uninteresting argument as Unused. 1771a11cd0d9STom Stellard // double DistanceToOrigin(Unused, double x, double y) { 1772a11cd0d9STom Stellard // return sqrt(x*x + y*y); 1773a11cd0d9STom Stellard // } 1774a11cd0d9STom Stellard // ... 1775a11cd0d9STom Stellard // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); 1776a11cd0d9STom Stellard // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); 1777a11cd0d9STom Stellard typedef internal::IgnoredValue Unused; 1778a11cd0d9STom Stellard 1779a11cd0d9STom Stellard // Creates an action that does actions a1, a2, ..., sequentially in 1780*a866ce78SHaowei Wu // each invocation. All but the last action will have a readonly view of the 1781*a866ce78SHaowei Wu // arguments. 1782a11cd0d9STom Stellard template <typename... Action> 1783a11cd0d9STom Stellard internal::DoAllAction<typename std::decay<Action>::type...> DoAll( 1784a11cd0d9STom Stellard Action&&... action) { 1785*a866ce78SHaowei Wu return internal::DoAllAction<typename std::decay<Action>::type...>( 1786*a866ce78SHaowei Wu {}, std::forward<Action>(action)...); 1787a11cd0d9STom Stellard } 1788a11cd0d9STom Stellard 1789a11cd0d9STom Stellard // WithArg<k>(an_action) creates an action that passes the k-th 1790a11cd0d9STom Stellard // (0-based) argument of the mock function to an_action and performs 1791a11cd0d9STom Stellard // it. It adapts an action accepting one argument to one that accepts 1792a11cd0d9STom Stellard // multiple arguments. For convenience, we also provide 1793a11cd0d9STom Stellard // WithArgs<k>(an_action) (defined below) as a synonym. 1794a11cd0d9STom Stellard template <size_t k, typename InnerAction> 1795*a866ce78SHaowei Wu internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg( 1796*a866ce78SHaowei Wu InnerAction&& action) { 1797a11cd0d9STom Stellard return {std::forward<InnerAction>(action)}; 1798a11cd0d9STom Stellard } 1799a11cd0d9STom Stellard 1800a11cd0d9STom Stellard // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes 1801a11cd0d9STom Stellard // the selected arguments of the mock function to an_action and 1802a11cd0d9STom Stellard // performs it. It serves as an adaptor between actions with 1803a11cd0d9STom Stellard // different argument lists. 1804a11cd0d9STom Stellard template <size_t k, size_t... ks, typename InnerAction> 1805a11cd0d9STom Stellard internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> 1806a11cd0d9STom Stellard WithArgs(InnerAction&& action) { 1807a11cd0d9STom Stellard return {std::forward<InnerAction>(action)}; 1808a11cd0d9STom Stellard } 1809a11cd0d9STom Stellard 1810a11cd0d9STom Stellard // WithoutArgs(inner_action) can be used in a mock function with a 1811a11cd0d9STom Stellard // non-empty argument list to perform inner_action, which takes no 1812a11cd0d9STom Stellard // argument. In other words, it adapts an action accepting no 1813a11cd0d9STom Stellard // argument to one that accepts (and ignores) arguments. 1814a11cd0d9STom Stellard template <typename InnerAction> 1815*a866ce78SHaowei Wu internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs( 1816*a866ce78SHaowei Wu InnerAction&& action) { 1817a11cd0d9STom Stellard return {std::forward<InnerAction>(action)}; 1818a11cd0d9STom Stellard } 1819a11cd0d9STom Stellard 1820*a866ce78SHaowei Wu // Creates an action that returns a value. 1821*a866ce78SHaowei Wu // 1822*a866ce78SHaowei Wu // The returned type can be used with a mock function returning a non-void, 1823*a866ce78SHaowei Wu // non-reference type U as follows: 1824*a866ce78SHaowei Wu // 1825*a866ce78SHaowei Wu // * If R is convertible to U and U is move-constructible, then the action can 1826*a866ce78SHaowei Wu // be used with WillOnce. 1827*a866ce78SHaowei Wu // 1828*a866ce78SHaowei Wu // * If const R& is convertible to U and U is copy-constructible, then the 1829*a866ce78SHaowei Wu // action can be used with both WillOnce and WillRepeatedly. 1830*a866ce78SHaowei Wu // 1831*a866ce78SHaowei Wu // The mock expectation contains the R value from which the U return value is 1832*a866ce78SHaowei Wu // constructed (a move/copy of the argument to Return). This means that the R 1833*a866ce78SHaowei Wu // value will survive at least until the mock object's expectations are cleared 1834*a866ce78SHaowei Wu // or the mock object is destroyed, meaning that U can safely be a 1835*a866ce78SHaowei Wu // reference-like type such as std::string_view: 1836*a866ce78SHaowei Wu // 1837*a866ce78SHaowei Wu // // The mock function returns a view of a copy of the string fed to 1838*a866ce78SHaowei Wu // // Return. The view is valid even after the action is performed. 1839*a866ce78SHaowei Wu // MockFunction<std::string_view()> mock; 1840*a866ce78SHaowei Wu // EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco"))); 1841*a866ce78SHaowei Wu // const std::string_view result = mock.AsStdFunction()(); 1842*a866ce78SHaowei Wu // EXPECT_EQ("taco", result); 1843*a866ce78SHaowei Wu // 1844a11cd0d9STom Stellard template <typename R> 1845a11cd0d9STom Stellard internal::ReturnAction<R> Return(R value) { 1846a11cd0d9STom Stellard return internal::ReturnAction<R>(std::move(value)); 1847a11cd0d9STom Stellard } 1848a11cd0d9STom Stellard 1849a11cd0d9STom Stellard // Creates an action that returns NULL. 1850a11cd0d9STom Stellard inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { 1851a11cd0d9STom Stellard return MakePolymorphicAction(internal::ReturnNullAction()); 1852a11cd0d9STom Stellard } 1853a11cd0d9STom Stellard 1854a11cd0d9STom Stellard // Creates an action that returns from a void function. 1855a11cd0d9STom Stellard inline PolymorphicAction<internal::ReturnVoidAction> Return() { 1856a11cd0d9STom Stellard return MakePolymorphicAction(internal::ReturnVoidAction()); 1857a11cd0d9STom Stellard } 1858a11cd0d9STom Stellard 1859a11cd0d9STom Stellard // Creates an action that returns the reference to a variable. 1860a11cd0d9STom Stellard template <typename R> 1861a11cd0d9STom Stellard inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT 1862a11cd0d9STom Stellard return internal::ReturnRefAction<R>(x); 1863a11cd0d9STom Stellard } 1864a11cd0d9STom Stellard 1865*a866ce78SHaowei Wu // Prevent using ReturnRef on reference to temporary. 1866*a866ce78SHaowei Wu template <typename R, R* = nullptr> 1867*a866ce78SHaowei Wu internal::ReturnRefAction<R> ReturnRef(R&&) = delete; 1868*a866ce78SHaowei Wu 1869a11cd0d9STom Stellard // Creates an action that returns the reference to a copy of the 1870a11cd0d9STom Stellard // argument. The copy is created when the action is constructed and 1871a11cd0d9STom Stellard // lives as long as the action. 1872a11cd0d9STom Stellard template <typename R> 1873a11cd0d9STom Stellard inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { 1874a11cd0d9STom Stellard return internal::ReturnRefOfCopyAction<R>(x); 1875a11cd0d9STom Stellard } 1876a11cd0d9STom Stellard 1877*a866ce78SHaowei Wu // DEPRECATED: use Return(x) directly with WillOnce. 1878*a866ce78SHaowei Wu // 1879a11cd0d9STom Stellard // Modifies the parent action (a Return() action) to perform a move of the 1880a11cd0d9STom Stellard // argument instead of a copy. 1881a11cd0d9STom Stellard // Return(ByMove()) actions can only be executed once and will assert this 1882a11cd0d9STom Stellard // invariant. 1883a11cd0d9STom Stellard template <typename R> 1884a11cd0d9STom Stellard internal::ByMoveWrapper<R> ByMove(R x) { 1885a11cd0d9STom Stellard return internal::ByMoveWrapper<R>(std::move(x)); 1886a11cd0d9STom Stellard } 1887a11cd0d9STom Stellard 1888*a866ce78SHaowei Wu // Creates an action that returns an element of `vals`. Calling this action will 1889*a866ce78SHaowei Wu // repeatedly return the next value from `vals` until it reaches the end and 1890*a866ce78SHaowei Wu // will restart from the beginning. 1891*a866ce78SHaowei Wu template <typename T> 1892*a866ce78SHaowei Wu internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) { 1893*a866ce78SHaowei Wu return internal::ReturnRoundRobinAction<T>(std::move(vals)); 1894*a866ce78SHaowei Wu } 1895*a866ce78SHaowei Wu 1896*a866ce78SHaowei Wu // Creates an action that returns an element of `vals`. Calling this action will 1897*a866ce78SHaowei Wu // repeatedly return the next value from `vals` until it reaches the end and 1898*a866ce78SHaowei Wu // will restart from the beginning. 1899*a866ce78SHaowei Wu template <typename T> 1900*a866ce78SHaowei Wu internal::ReturnRoundRobinAction<T> ReturnRoundRobin( 1901*a866ce78SHaowei Wu std::initializer_list<T> vals) { 1902*a866ce78SHaowei Wu return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals)); 1903*a866ce78SHaowei Wu } 1904*a866ce78SHaowei Wu 1905a11cd0d9STom Stellard // Creates an action that does the default action for the give mock function. 1906a11cd0d9STom Stellard inline internal::DoDefaultAction DoDefault() { 1907a11cd0d9STom Stellard return internal::DoDefaultAction(); 1908a11cd0d9STom Stellard } 1909a11cd0d9STom Stellard 1910a11cd0d9STom Stellard // Creates an action that sets the variable pointed by the N-th 1911a11cd0d9STom Stellard // (0-based) function argument to 'value'. 1912a11cd0d9STom Stellard template <size_t N, typename T> 1913*a866ce78SHaowei Wu internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) { 1914*a866ce78SHaowei Wu return {std::move(value)}; 1915a11cd0d9STom Stellard } 1916a11cd0d9STom Stellard 1917a11cd0d9STom Stellard // The following version is DEPRECATED. 1918a11cd0d9STom Stellard template <size_t N, typename T> 1919*a866ce78SHaowei Wu internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) { 1920*a866ce78SHaowei Wu return {std::move(value)}; 1921a11cd0d9STom Stellard } 1922a11cd0d9STom Stellard 1923a11cd0d9STom Stellard // Creates an action that sets a pointer referent to a given value. 1924a11cd0d9STom Stellard template <typename T1, typename T2> 1925a11cd0d9STom Stellard PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) { 1926a11cd0d9STom Stellard return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); 1927a11cd0d9STom Stellard } 1928a11cd0d9STom Stellard 1929*a866ce78SHaowei Wu #ifndef GTEST_OS_WINDOWS_MOBILE 1930a11cd0d9STom Stellard 1931a11cd0d9STom Stellard // Creates an action that sets errno and returns the appropriate error. 1932a11cd0d9STom Stellard template <typename T> 1933*a866ce78SHaowei Wu PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn( 1934*a866ce78SHaowei Wu int errval, T result) { 1935a11cd0d9STom Stellard return MakePolymorphicAction( 1936a11cd0d9STom Stellard internal::SetErrnoAndReturnAction<T>(errval, result)); 1937a11cd0d9STom Stellard } 1938a11cd0d9STom Stellard 1939a11cd0d9STom Stellard #endif // !GTEST_OS_WINDOWS_MOBILE 1940a11cd0d9STom Stellard 1941a11cd0d9STom Stellard // Various overloads for Invoke(). 1942a11cd0d9STom Stellard 1943a11cd0d9STom Stellard // Legacy function. 1944a11cd0d9STom Stellard // Actions can now be implicitly constructed from callables. No need to create 1945a11cd0d9STom Stellard // wrapper objects. 1946a11cd0d9STom Stellard // This function exists for backwards compatibility. 1947a11cd0d9STom Stellard template <typename FunctionImpl> 1948a11cd0d9STom Stellard typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) { 1949a11cd0d9STom Stellard return std::forward<FunctionImpl>(function_impl); 1950a11cd0d9STom Stellard } 1951a11cd0d9STom Stellard 1952a11cd0d9STom Stellard // Creates an action that invokes the given method on the given object 1953a11cd0d9STom Stellard // with the mock function's arguments. 1954a11cd0d9STom Stellard template <class Class, typename MethodPtr> 1955a11cd0d9STom Stellard internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr, 1956a11cd0d9STom Stellard MethodPtr method_ptr) { 1957a11cd0d9STom Stellard return {obj_ptr, method_ptr}; 1958a11cd0d9STom Stellard } 1959a11cd0d9STom Stellard 1960a11cd0d9STom Stellard // Creates an action that invokes 'function_impl' with no argument. 1961a11cd0d9STom Stellard template <typename FunctionImpl> 1962a11cd0d9STom Stellard internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type> 1963a11cd0d9STom Stellard InvokeWithoutArgs(FunctionImpl function_impl) { 1964a11cd0d9STom Stellard return {std::move(function_impl)}; 1965a11cd0d9STom Stellard } 1966a11cd0d9STom Stellard 1967a11cd0d9STom Stellard // Creates an action that invokes the given method on the given object 1968a11cd0d9STom Stellard // with no argument. 1969a11cd0d9STom Stellard template <class Class, typename MethodPtr> 1970a11cd0d9STom Stellard internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs( 1971a11cd0d9STom Stellard Class* obj_ptr, MethodPtr method_ptr) { 1972a11cd0d9STom Stellard return {obj_ptr, method_ptr}; 1973a11cd0d9STom Stellard } 1974a11cd0d9STom Stellard 1975a11cd0d9STom Stellard // Creates an action that performs an_action and throws away its 1976a11cd0d9STom Stellard // result. In other words, it changes the return type of an_action to 1977a11cd0d9STom Stellard // void. an_action MUST NOT return void, or the code won't compile. 1978a11cd0d9STom Stellard template <typename A> 1979a11cd0d9STom Stellard inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { 1980a11cd0d9STom Stellard return internal::IgnoreResultAction<A>(an_action); 1981a11cd0d9STom Stellard } 1982a11cd0d9STom Stellard 1983a11cd0d9STom Stellard // Creates a reference wrapper for the given L-value. If necessary, 1984a11cd0d9STom Stellard // you can explicitly specify the type of the reference. For example, 1985a11cd0d9STom Stellard // suppose 'derived' is an object of type Derived, ByRef(derived) 1986a11cd0d9STom Stellard // would wrap a Derived&. If you want to wrap a const Base& instead, 1987a11cd0d9STom Stellard // where Base is a base class of Derived, just write: 1988a11cd0d9STom Stellard // 1989a11cd0d9STom Stellard // ByRef<const Base>(derived) 1990a11cd0d9STom Stellard // 1991a11cd0d9STom Stellard // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper. 1992a11cd0d9STom Stellard // However, it may still be used for consistency with ByMove(). 1993a11cd0d9STom Stellard template <typename T> 1994a11cd0d9STom Stellard inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT 1995a11cd0d9STom Stellard return ::std::reference_wrapper<T>(l_value); 1996a11cd0d9STom Stellard } 1997a11cd0d9STom Stellard 1998*a866ce78SHaowei Wu // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new 1999*a866ce78SHaowei Wu // instance of type T, constructed on the heap with constructor arguments 2000*a866ce78SHaowei Wu // a1, a2, ..., and a_k. The caller assumes ownership of the returned value. 2001*a866ce78SHaowei Wu template <typename T, typename... Params> 2002*a866ce78SHaowei Wu internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew( 2003*a866ce78SHaowei Wu Params&&... params) { 2004*a866ce78SHaowei Wu return {std::forward_as_tuple(std::forward<Params>(params)...)}; 2005*a866ce78SHaowei Wu } 2006*a866ce78SHaowei Wu 2007*a866ce78SHaowei Wu // Action ReturnArg<k>() returns the k-th argument of the mock function. 2008*a866ce78SHaowei Wu template <size_t k> 2009*a866ce78SHaowei Wu internal::ReturnArgAction<k> ReturnArg() { 2010*a866ce78SHaowei Wu return {}; 2011*a866ce78SHaowei Wu } 2012*a866ce78SHaowei Wu 2013*a866ce78SHaowei Wu // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the 2014*a866ce78SHaowei Wu // mock function to *pointer. 2015*a866ce78SHaowei Wu template <size_t k, typename Ptr> 2016*a866ce78SHaowei Wu internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) { 2017*a866ce78SHaowei Wu return {pointer}; 2018*a866ce78SHaowei Wu } 2019*a866ce78SHaowei Wu 2020*a866ce78SHaowei Wu // Action SaveArgPointee<k>(pointer) saves the value pointed to 2021*a866ce78SHaowei Wu // by the k-th (0-based) argument of the mock function to *pointer. 2022*a866ce78SHaowei Wu template <size_t k, typename Ptr> 2023*a866ce78SHaowei Wu internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) { 2024*a866ce78SHaowei Wu return {pointer}; 2025*a866ce78SHaowei Wu } 2026*a866ce78SHaowei Wu 2027*a866ce78SHaowei Wu // Action SetArgReferee<k>(value) assigns 'value' to the variable 2028*a866ce78SHaowei Wu // referenced by the k-th (0-based) argument of the mock function. 2029*a866ce78SHaowei Wu template <size_t k, typename T> 2030*a866ce78SHaowei Wu internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee( 2031*a866ce78SHaowei Wu T&& value) { 2032*a866ce78SHaowei Wu return {std::forward<T>(value)}; 2033*a866ce78SHaowei Wu } 2034*a866ce78SHaowei Wu 2035*a866ce78SHaowei Wu // Action SetArrayArgument<k>(first, last) copies the elements in 2036*a866ce78SHaowei Wu // source range [first, last) to the array pointed to by the k-th 2037*a866ce78SHaowei Wu // (0-based) argument, which can be either a pointer or an 2038*a866ce78SHaowei Wu // iterator. The action does not take ownership of the elements in the 2039*a866ce78SHaowei Wu // source range. 2040*a866ce78SHaowei Wu template <size_t k, typename I1, typename I2> 2041*a866ce78SHaowei Wu internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first, 2042*a866ce78SHaowei Wu I2 last) { 2043*a866ce78SHaowei Wu return {first, last}; 2044*a866ce78SHaowei Wu } 2045*a866ce78SHaowei Wu 2046*a866ce78SHaowei Wu // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock 2047*a866ce78SHaowei Wu // function. 2048*a866ce78SHaowei Wu template <size_t k> 2049*a866ce78SHaowei Wu internal::DeleteArgAction<k> DeleteArg() { 2050*a866ce78SHaowei Wu return {}; 2051*a866ce78SHaowei Wu } 2052*a866ce78SHaowei Wu 2053*a866ce78SHaowei Wu // This action returns the value pointed to by 'pointer'. 2054*a866ce78SHaowei Wu template <typename Ptr> 2055*a866ce78SHaowei Wu internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) { 2056*a866ce78SHaowei Wu return {pointer}; 2057*a866ce78SHaowei Wu } 2058*a866ce78SHaowei Wu 2059*a866ce78SHaowei Wu // Action Throw(exception) can be used in a mock function of any type 2060*a866ce78SHaowei Wu // to throw the given exception. Any copyable value can be thrown. 2061*a866ce78SHaowei Wu #if GTEST_HAS_EXCEPTIONS 2062*a866ce78SHaowei Wu template <typename T> 2063*a866ce78SHaowei Wu internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) { 2064*a866ce78SHaowei Wu return {std::forward<T>(exception)}; 2065*a866ce78SHaowei Wu } 2066*a866ce78SHaowei Wu #endif // GTEST_HAS_EXCEPTIONS 2067*a866ce78SHaowei Wu 2068*a866ce78SHaowei Wu namespace internal { 2069*a866ce78SHaowei Wu 2070*a866ce78SHaowei Wu // A macro from the ACTION* family (defined later in gmock-generated-actions.h) 2071*a866ce78SHaowei Wu // defines an action that can be used in a mock function. Typically, 2072*a866ce78SHaowei Wu // these actions only care about a subset of the arguments of the mock 2073*a866ce78SHaowei Wu // function. For example, if such an action only uses the second 2074*a866ce78SHaowei Wu // argument, it can be used in any mock function that takes >= 2 2075*a866ce78SHaowei Wu // arguments where the type of the second argument is compatible. 2076*a866ce78SHaowei Wu // 2077*a866ce78SHaowei Wu // Therefore, the action implementation must be prepared to take more 2078*a866ce78SHaowei Wu // arguments than it needs. The ExcessiveArg type is used to 2079*a866ce78SHaowei Wu // represent those excessive arguments. In order to keep the compiler 2080*a866ce78SHaowei Wu // error messages tractable, we define it in the testing namespace 2081*a866ce78SHaowei Wu // instead of testing::internal. However, this is an INTERNAL TYPE 2082*a866ce78SHaowei Wu // and subject to change without notice, so a user MUST NOT USE THIS 2083*a866ce78SHaowei Wu // TYPE DIRECTLY. 2084*a866ce78SHaowei Wu struct ExcessiveArg {}; 2085*a866ce78SHaowei Wu 2086*a866ce78SHaowei Wu // Builds an implementation of an Action<> for some particular signature, using 2087*a866ce78SHaowei Wu // a class defined by an ACTION* macro. 2088*a866ce78SHaowei Wu template <typename F, typename Impl> 2089*a866ce78SHaowei Wu struct ActionImpl; 2090*a866ce78SHaowei Wu 2091*a866ce78SHaowei Wu template <typename Impl> 2092*a866ce78SHaowei Wu struct ImplBase { 2093*a866ce78SHaowei Wu struct Holder { 2094*a866ce78SHaowei Wu // Allows each copy of the Action<> to get to the Impl. 2095*a866ce78SHaowei Wu explicit operator const Impl&() const { return *ptr; } 2096*a866ce78SHaowei Wu std::shared_ptr<Impl> ptr; 2097*a866ce78SHaowei Wu }; 2098*a866ce78SHaowei Wu using type = typename std::conditional<std::is_constructible<Impl>::value, 2099*a866ce78SHaowei Wu Impl, Holder>::type; 2100*a866ce78SHaowei Wu }; 2101*a866ce78SHaowei Wu 2102*a866ce78SHaowei Wu template <typename R, typename... Args, typename Impl> 2103*a866ce78SHaowei Wu struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type { 2104*a866ce78SHaowei Wu using Base = typename ImplBase<Impl>::type; 2105*a866ce78SHaowei Wu using function_type = R(Args...); 2106*a866ce78SHaowei Wu using args_type = std::tuple<Args...>; 2107*a866ce78SHaowei Wu 2108*a866ce78SHaowei Wu ActionImpl() = default; // Only defined if appropriate for Base. 2109*a866ce78SHaowei Wu explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {} 2110*a866ce78SHaowei Wu 2111*a866ce78SHaowei Wu R operator()(Args&&... arg) const { 2112*a866ce78SHaowei Wu static constexpr size_t kMaxArgs = 2113*a866ce78SHaowei Wu sizeof...(Args) <= 10 ? sizeof...(Args) : 10; 2114*a866ce78SHaowei Wu return Apply(MakeIndexSequence<kMaxArgs>{}, 2115*a866ce78SHaowei Wu MakeIndexSequence<10 - kMaxArgs>{}, 2116*a866ce78SHaowei Wu args_type{std::forward<Args>(arg)...}); 2117*a866ce78SHaowei Wu } 2118*a866ce78SHaowei Wu 2119*a866ce78SHaowei Wu template <std::size_t... arg_id, std::size_t... excess_id> 2120*a866ce78SHaowei Wu R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>, 2121*a866ce78SHaowei Wu const args_type& args) const { 2122*a866ce78SHaowei Wu // Impl need not be specific to the signature of action being implemented; 2123*a866ce78SHaowei Wu // only the implementing function body needs to have all of the specific 2124*a866ce78SHaowei Wu // types instantiated. Up to 10 of the args that are provided by the 2125*a866ce78SHaowei Wu // args_type get passed, followed by a dummy of unspecified type for the 2126*a866ce78SHaowei Wu // remainder up to 10 explicit args. 2127*a866ce78SHaowei Wu static constexpr ExcessiveArg kExcessArg{}; 2128*a866ce78SHaowei Wu return static_cast<const Impl&>(*this) 2129*a866ce78SHaowei Wu .template gmock_PerformImpl< 2130*a866ce78SHaowei Wu /*function_type=*/function_type, /*return_type=*/R, 2131*a866ce78SHaowei Wu /*args_type=*/args_type, 2132*a866ce78SHaowei Wu /*argN_type=*/ 2133*a866ce78SHaowei Wu typename std::tuple_element<arg_id, args_type>::type...>( 2134*a866ce78SHaowei Wu /*args=*/args, std::get<arg_id>(args)..., 2135*a866ce78SHaowei Wu ((void)excess_id, kExcessArg)...); 2136*a866ce78SHaowei Wu } 2137*a866ce78SHaowei Wu }; 2138*a866ce78SHaowei Wu 2139*a866ce78SHaowei Wu // Stores a default-constructed Impl as part of the Action<>'s 2140*a866ce78SHaowei Wu // std::function<>. The Impl should be trivial to copy. 2141*a866ce78SHaowei Wu template <typename F, typename Impl> 2142*a866ce78SHaowei Wu ::testing::Action<F> MakeAction() { 2143*a866ce78SHaowei Wu return ::testing::Action<F>(ActionImpl<F, Impl>()); 2144*a866ce78SHaowei Wu } 2145*a866ce78SHaowei Wu 2146*a866ce78SHaowei Wu // Stores just the one given instance of Impl. 2147*a866ce78SHaowei Wu template <typename F, typename Impl> 2148*a866ce78SHaowei Wu ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) { 2149*a866ce78SHaowei Wu return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl))); 2150*a866ce78SHaowei Wu } 2151*a866ce78SHaowei Wu 2152*a866ce78SHaowei Wu #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \ 2153*a866ce78SHaowei Wu , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_ 2154*a866ce78SHaowei Wu #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \ 2155*a866ce78SHaowei Wu const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \ 2156*a866ce78SHaowei Wu GMOCK_INTERNAL_ARG_UNUSED, , 10) 2157*a866ce78SHaowei Wu 2158*a866ce78SHaowei Wu #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i 2159*a866ce78SHaowei Wu #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \ 2160*a866ce78SHaowei Wu const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10) 2161*a866ce78SHaowei Wu 2162*a866ce78SHaowei Wu #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type 2163*a866ce78SHaowei Wu #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \ 2164*a866ce78SHaowei Wu GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10)) 2165*a866ce78SHaowei Wu 2166*a866ce78SHaowei Wu #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type 2167*a866ce78SHaowei Wu #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \ 2168*a866ce78SHaowei Wu GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params)) 2169*a866ce78SHaowei Wu 2170*a866ce78SHaowei Wu #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type 2171*a866ce78SHaowei Wu #define GMOCK_ACTION_TYPE_PARAMS_(params) \ 2172*a866ce78SHaowei Wu GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params)) 2173*a866ce78SHaowei Wu 2174*a866ce78SHaowei Wu #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \ 2175*a866ce78SHaowei Wu , param##_type gmock_p##i 2176*a866ce78SHaowei Wu #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \ 2177*a866ce78SHaowei Wu GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params)) 2178*a866ce78SHaowei Wu 2179*a866ce78SHaowei Wu #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \ 2180*a866ce78SHaowei Wu , std::forward<param##_type>(gmock_p##i) 2181*a866ce78SHaowei Wu #define GMOCK_ACTION_GVALUE_PARAMS_(params) \ 2182*a866ce78SHaowei Wu GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params)) 2183*a866ce78SHaowei Wu 2184*a866ce78SHaowei Wu #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \ 2185*a866ce78SHaowei Wu , param(::std::forward<param##_type>(gmock_p##i)) 2186*a866ce78SHaowei Wu #define GMOCK_ACTION_INIT_PARAMS_(params) \ 2187*a866ce78SHaowei Wu GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params)) 2188*a866ce78SHaowei Wu 2189*a866ce78SHaowei Wu #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param; 2190*a866ce78SHaowei Wu #define GMOCK_ACTION_FIELD_PARAMS_(params) \ 2191*a866ce78SHaowei Wu GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params) 2192*a866ce78SHaowei Wu 2193*a866ce78SHaowei Wu #define GMOCK_INTERNAL_ACTION(name, full_name, params) \ 2194*a866ce78SHaowei Wu template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ 2195*a866ce78SHaowei Wu class full_name { \ 2196*a866ce78SHaowei Wu public: \ 2197*a866ce78SHaowei Wu explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ 2198*a866ce78SHaowei Wu : impl_(std::make_shared<gmock_Impl>( \ 2199*a866ce78SHaowei Wu GMOCK_ACTION_GVALUE_PARAMS_(params))) {} \ 2200*a866ce78SHaowei Wu full_name(const full_name&) = default; \ 2201*a866ce78SHaowei Wu full_name(full_name&&) noexcept = default; \ 2202*a866ce78SHaowei Wu template <typename F> \ 2203*a866ce78SHaowei Wu operator ::testing::Action<F>() const { \ 2204*a866ce78SHaowei Wu return ::testing::internal::MakeAction<F>(impl_); \ 2205*a866ce78SHaowei Wu } \ 2206*a866ce78SHaowei Wu \ 2207*a866ce78SHaowei Wu private: \ 2208*a866ce78SHaowei Wu class gmock_Impl { \ 2209*a866ce78SHaowei Wu public: \ 2210*a866ce78SHaowei Wu explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ 2211*a866ce78SHaowei Wu : GMOCK_ACTION_INIT_PARAMS_(params) {} \ 2212*a866ce78SHaowei Wu template <typename function_type, typename return_type, \ 2213*a866ce78SHaowei Wu typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ 2214*a866ce78SHaowei Wu return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ 2215*a866ce78SHaowei Wu GMOCK_ACTION_FIELD_PARAMS_(params) \ 2216*a866ce78SHaowei Wu }; \ 2217*a866ce78SHaowei Wu std::shared_ptr<const gmock_Impl> impl_; \ 2218*a866ce78SHaowei Wu }; \ 2219*a866ce78SHaowei Wu template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ 2220*a866ce78SHaowei Wu inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ 2221*a866ce78SHaowei Wu GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_; \ 2222*a866ce78SHaowei Wu template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ 2223*a866ce78SHaowei Wu inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ 2224*a866ce78SHaowei Wu GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \ 2225*a866ce78SHaowei Wu return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \ 2226*a866ce78SHaowei Wu GMOCK_ACTION_GVALUE_PARAMS_(params)); \ 2227*a866ce78SHaowei Wu } \ 2228*a866ce78SHaowei Wu template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ 2229*a866ce78SHaowei Wu template <typename function_type, typename return_type, typename args_type, \ 2230*a866ce78SHaowei Wu GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ 2231*a866ce78SHaowei Wu return_type \ 2232*a866ce78SHaowei Wu full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \ 2233*a866ce78SHaowei Wu GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const 2234*a866ce78SHaowei Wu 2235*a866ce78SHaowei Wu } // namespace internal 2236*a866ce78SHaowei Wu 2237*a866ce78SHaowei Wu // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored. 2238*a866ce78SHaowei Wu #define ACTION(name) \ 2239*a866ce78SHaowei Wu class name##Action { \ 2240*a866ce78SHaowei Wu public: \ 2241*a866ce78SHaowei Wu explicit name##Action() noexcept {} \ 2242*a866ce78SHaowei Wu name##Action(const name##Action&) noexcept {} \ 2243*a866ce78SHaowei Wu template <typename F> \ 2244*a866ce78SHaowei Wu operator ::testing::Action<F>() const { \ 2245*a866ce78SHaowei Wu return ::testing::internal::MakeAction<F, gmock_Impl>(); \ 2246*a866ce78SHaowei Wu } \ 2247*a866ce78SHaowei Wu \ 2248*a866ce78SHaowei Wu private: \ 2249*a866ce78SHaowei Wu class gmock_Impl { \ 2250*a866ce78SHaowei Wu public: \ 2251*a866ce78SHaowei Wu template <typename function_type, typename return_type, \ 2252*a866ce78SHaowei Wu typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ 2253*a866ce78SHaowei Wu return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ 2254*a866ce78SHaowei Wu }; \ 2255*a866ce78SHaowei Wu }; \ 2256*a866ce78SHaowei Wu inline name##Action name() GTEST_MUST_USE_RESULT_; \ 2257*a866ce78SHaowei Wu inline name##Action name() { return name##Action(); } \ 2258*a866ce78SHaowei Wu template <typename function_type, typename return_type, typename args_type, \ 2259*a866ce78SHaowei Wu GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ 2260*a866ce78SHaowei Wu return_type name##Action::gmock_Impl::gmock_PerformImpl( \ 2261*a866ce78SHaowei Wu GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const 2262*a866ce78SHaowei Wu 2263*a866ce78SHaowei Wu #define ACTION_P(name, ...) \ 2264*a866ce78SHaowei Wu GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__)) 2265*a866ce78SHaowei Wu 2266*a866ce78SHaowei Wu #define ACTION_P2(name, ...) \ 2267*a866ce78SHaowei Wu GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__)) 2268*a866ce78SHaowei Wu 2269*a866ce78SHaowei Wu #define ACTION_P3(name, ...) \ 2270*a866ce78SHaowei Wu GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__)) 2271*a866ce78SHaowei Wu 2272*a866ce78SHaowei Wu #define ACTION_P4(name, ...) \ 2273*a866ce78SHaowei Wu GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__)) 2274*a866ce78SHaowei Wu 2275*a866ce78SHaowei Wu #define ACTION_P5(name, ...) \ 2276*a866ce78SHaowei Wu GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__)) 2277*a866ce78SHaowei Wu 2278*a866ce78SHaowei Wu #define ACTION_P6(name, ...) \ 2279*a866ce78SHaowei Wu GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__)) 2280*a866ce78SHaowei Wu 2281*a866ce78SHaowei Wu #define ACTION_P7(name, ...) \ 2282*a866ce78SHaowei Wu GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__)) 2283*a866ce78SHaowei Wu 2284*a866ce78SHaowei Wu #define ACTION_P8(name, ...) \ 2285*a866ce78SHaowei Wu GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__)) 2286*a866ce78SHaowei Wu 2287*a866ce78SHaowei Wu #define ACTION_P9(name, ...) \ 2288*a866ce78SHaowei Wu GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__)) 2289*a866ce78SHaowei Wu 2290*a866ce78SHaowei Wu #define ACTION_P10(name, ...) \ 2291*a866ce78SHaowei Wu GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__)) 2292*a866ce78SHaowei Wu 2293a11cd0d9STom Stellard } // namespace testing 2294a11cd0d9STom Stellard 2295*a866ce78SHaowei Wu GTEST_DISABLE_MSC_WARNINGS_POP_() // 4100 2296a11cd0d9STom Stellard 2297*a866ce78SHaowei Wu #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ 2298