1 2 #include "polly/Support/SCEVValidator.h" 3 #include "polly/ScopInfo.h" 4 #include "llvm/Analysis/RegionInfo.h" 5 #include "llvm/Analysis/ScalarEvolution.h" 6 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 7 #include "llvm/Support/Debug.h" 8 9 using namespace llvm; 10 using namespace polly; 11 12 #define DEBUG_TYPE "polly-scev-validator" 13 14 namespace SCEVType { 15 /// The type of a SCEV 16 /// 17 /// To check for the validity of a SCEV we assign to each SCEV a type. The 18 /// possible types are INT, PARAM, IV and INVALID. The order of the types is 19 /// important. The subexpressions of SCEV with a type X can only have a type 20 /// that is smaller or equal than X. 21 enum TYPE { 22 // An integer value. 23 INT, 24 25 // An expression that is constant during the execution of the Scop, 26 // but that may depend on parameters unknown at compile time. 27 PARAM, 28 29 // An expression that may change during the execution of the SCoP. 30 IV, 31 32 // An invalid expression. 33 INVALID 34 }; 35 } // namespace SCEVType 36 37 /// The result the validator returns for a SCEV expression. 38 class ValidatorResult { 39 /// The type of the expression 40 SCEVType::TYPE Type; 41 42 /// The set of Parameters in the expression. 43 ParameterSetTy Parameters; 44 45 public: 46 /// The copy constructor 47 ValidatorResult(const ValidatorResult &Source) { 48 Type = Source.Type; 49 Parameters = Source.Parameters; 50 } 51 52 /// Construct a result with a certain type and no parameters. 53 ValidatorResult(SCEVType::TYPE Type) : Type(Type) { 54 assert(Type != SCEVType::PARAM && "Did you forget to pass the parameter"); 55 } 56 57 /// Construct a result with a certain type and a single parameter. 58 ValidatorResult(SCEVType::TYPE Type, const SCEV *Expr) : Type(Type) { 59 Parameters.insert(Expr); 60 } 61 62 /// Get the type of the ValidatorResult. 63 SCEVType::TYPE getType() { return Type; } 64 65 /// Is the analyzed SCEV constant during the execution of the SCoP. 66 bool isConstant() { return Type == SCEVType::INT || Type == SCEVType::PARAM; } 67 68 /// Is the analyzed SCEV valid. 69 bool isValid() { return Type != SCEVType::INVALID; } 70 71 /// Is the analyzed SCEV of Type IV. 72 bool isIV() { return Type == SCEVType::IV; } 73 74 /// Is the analyzed SCEV of Type INT. 75 bool isINT() { return Type == SCEVType::INT; } 76 77 /// Is the analyzed SCEV of Type PARAM. 78 bool isPARAM() { return Type == SCEVType::PARAM; } 79 80 /// Get the parameters of this validator result. 81 const ParameterSetTy &getParameters() { return Parameters; } 82 83 /// Add the parameters of Source to this result. 84 void addParamsFrom(const ValidatorResult &Source) { 85 Parameters.insert(Source.Parameters.begin(), Source.Parameters.end()); 86 } 87 88 /// Merge a result. 89 /// 90 /// This means to merge the parameters and to set the Type to the most 91 /// specific Type that matches both. 92 void merge(const ValidatorResult &ToMerge) { 93 Type = std::max(Type, ToMerge.Type); 94 addParamsFrom(ToMerge); 95 } 96 97 void print(raw_ostream &OS) { 98 switch (Type) { 99 case SCEVType::INT: 100 OS << "SCEVType::INT"; 101 break; 102 case SCEVType::PARAM: 103 OS << "SCEVType::PARAM"; 104 break; 105 case SCEVType::IV: 106 OS << "SCEVType::IV"; 107 break; 108 case SCEVType::INVALID: 109 OS << "SCEVType::INVALID"; 110 break; 111 } 112 } 113 }; 114 115 raw_ostream &operator<<(raw_ostream &OS, class ValidatorResult &VR) { 116 VR.print(OS); 117 return OS; 118 } 119 120 bool polly::isConstCall(llvm::CallInst *Call) { 121 if (Call->mayReadOrWriteMemory()) 122 return false; 123 124 for (auto &Operand : Call->arg_operands()) 125 if (!isa<ConstantInt>(&Operand)) 126 return false; 127 128 return true; 129 } 130 131 /// Check if a SCEV is valid in a SCoP. 132 struct SCEVValidator 133 : public SCEVVisitor<SCEVValidator, class ValidatorResult> { 134 private: 135 const Region *R; 136 Loop *Scope; 137 ScalarEvolution &SE; 138 InvariantLoadsSetTy *ILS; 139 140 public: 141 SCEVValidator(const Region *R, Loop *Scope, ScalarEvolution &SE, 142 InvariantLoadsSetTy *ILS) 143 : R(R), Scope(Scope), SE(SE), ILS(ILS) {} 144 145 class ValidatorResult visitConstant(const SCEVConstant *Constant) { 146 return ValidatorResult(SCEVType::INT); 147 } 148 149 class ValidatorResult visitZeroExtendOrTruncateExpr(const SCEV *Expr, 150 const SCEV *Operand) { 151 ValidatorResult Op = visit(Operand); 152 auto Type = Op.getType(); 153 154 // If unsigned operations are allowed return the operand, otherwise 155 // check if we can model the expression without unsigned assumptions. 156 if (PollyAllowUnsignedOperations || Type == SCEVType::INVALID) 157 return Op; 158 159 if (Type == SCEVType::IV) 160 return ValidatorResult(SCEVType::INVALID); 161 return ValidatorResult(SCEVType::PARAM, Expr); 162 } 163 164 class ValidatorResult visitTruncateExpr(const SCEVTruncateExpr *Expr) { 165 return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand()); 166 } 167 168 class ValidatorResult visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 169 return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand()); 170 } 171 172 class ValidatorResult visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 173 return visit(Expr->getOperand()); 174 } 175 176 class ValidatorResult visitAddExpr(const SCEVAddExpr *Expr) { 177 ValidatorResult Return(SCEVType::INT); 178 179 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 180 ValidatorResult Op = visit(Expr->getOperand(i)); 181 Return.merge(Op); 182 183 // Early exit. 184 if (!Return.isValid()) 185 break; 186 } 187 188 return Return; 189 } 190 191 class ValidatorResult visitMulExpr(const SCEVMulExpr *Expr) { 192 ValidatorResult Return(SCEVType::INT); 193 194 bool HasMultipleParams = false; 195 196 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 197 ValidatorResult Op = visit(Expr->getOperand(i)); 198 199 if (Op.isINT()) 200 continue; 201 202 if (Op.isPARAM() && Return.isPARAM()) { 203 HasMultipleParams = true; 204 continue; 205 } 206 207 if ((Op.isIV() || Op.isPARAM()) && !Return.isINT()) { 208 DEBUG(dbgs() << "INVALID: More than one non-int operand in MulExpr\n" 209 << "\tExpr: " << *Expr << "\n" 210 << "\tPrevious expression type: " << Return << "\n" 211 << "\tNext operand (" << Op 212 << "): " << *Expr->getOperand(i) << "\n"); 213 214 return ValidatorResult(SCEVType::INVALID); 215 } 216 217 Return.merge(Op); 218 } 219 220 if (HasMultipleParams && Return.isValid()) 221 return ValidatorResult(SCEVType::PARAM, Expr); 222 223 return Return; 224 } 225 226 class ValidatorResult visitAddRecExpr(const SCEVAddRecExpr *Expr) { 227 if (!Expr->isAffine()) { 228 DEBUG(dbgs() << "INVALID: AddRec is not affine"); 229 return ValidatorResult(SCEVType::INVALID); 230 } 231 232 ValidatorResult Start = visit(Expr->getStart()); 233 ValidatorResult Recurrence = visit(Expr->getStepRecurrence(SE)); 234 235 if (!Start.isValid()) 236 return Start; 237 238 if (!Recurrence.isValid()) 239 return Recurrence; 240 241 auto *L = Expr->getLoop(); 242 if (R->contains(L) && (!Scope || !L->contains(Scope))) { 243 DEBUG(dbgs() << "INVALID: Loop of AddRec expression boxed in an a " 244 "non-affine subregion or has a non-synthesizable exit " 245 "value."); 246 return ValidatorResult(SCEVType::INVALID); 247 } 248 249 if (R->contains(L)) { 250 if (Recurrence.isINT()) { 251 ValidatorResult Result(SCEVType::IV); 252 Result.addParamsFrom(Start); 253 return Result; 254 } 255 256 DEBUG(dbgs() << "INVALID: AddRec within scop has non-int" 257 "recurrence part"); 258 return ValidatorResult(SCEVType::INVALID); 259 } 260 261 assert(Recurrence.isConstant() && "Expected 'Recurrence' to be constant"); 262 263 // Directly generate ValidatorResult for Expr if 'start' is zero. 264 if (Expr->getStart()->isZero()) 265 return ValidatorResult(SCEVType::PARAM, Expr); 266 267 // Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}' 268 // if 'start' is not zero. 269 const SCEV *ZeroStartExpr = SE.getAddRecExpr( 270 SE.getConstant(Expr->getStart()->getType(), 0), 271 Expr->getStepRecurrence(SE), Expr->getLoop(), Expr->getNoWrapFlags()); 272 273 ValidatorResult ZeroStartResult = 274 ValidatorResult(SCEVType::PARAM, ZeroStartExpr); 275 ZeroStartResult.addParamsFrom(Start); 276 277 return ZeroStartResult; 278 } 279 280 class ValidatorResult visitSMaxExpr(const SCEVSMaxExpr *Expr) { 281 ValidatorResult Return(SCEVType::INT); 282 283 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 284 ValidatorResult Op = visit(Expr->getOperand(i)); 285 286 if (!Op.isValid()) 287 return Op; 288 289 Return.merge(Op); 290 } 291 292 return Return; 293 } 294 295 class ValidatorResult visitUMaxExpr(const SCEVUMaxExpr *Expr) { 296 // We do not support unsigned max operations. If 'Expr' is constant during 297 // Scop execution we treat this as a parameter, otherwise we bail out. 298 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 299 ValidatorResult Op = visit(Expr->getOperand(i)); 300 301 if (!Op.isConstant()) { 302 DEBUG(dbgs() << "INVALID: UMaxExpr has a non-constant operand"); 303 return ValidatorResult(SCEVType::INVALID); 304 } 305 } 306 307 return ValidatorResult(SCEVType::PARAM, Expr); 308 } 309 310 ValidatorResult visitGenericInst(Instruction *I, const SCEV *S) { 311 if (R->contains(I)) { 312 DEBUG(dbgs() << "INVALID: UnknownExpr references an instruction " 313 "within the region\n"); 314 return ValidatorResult(SCEVType::INVALID); 315 } 316 317 return ValidatorResult(SCEVType::PARAM, S); 318 } 319 320 ValidatorResult visitCallInstruction(Instruction *I, const SCEV *S) { 321 assert(I->getOpcode() == Instruction::Call && "Call instruction expected"); 322 323 auto Call = cast<CallInst>(I); 324 325 if (!isConstCall(Call)) 326 return ValidatorResult(SCEVType::INVALID, S); 327 328 return ValidatorResult(SCEVType::PARAM, S); 329 } 330 331 ValidatorResult visitLoadInstruction(Instruction *I, const SCEV *S) { 332 if (R->contains(I) && ILS) { 333 ILS->insert(cast<LoadInst>(I)); 334 return ValidatorResult(SCEVType::PARAM, S); 335 } 336 337 return visitGenericInst(I, S); 338 } 339 340 ValidatorResult visitDivision(const SCEV *Dividend, const SCEV *Divisor, 341 const SCEV *DivExpr, 342 Instruction *SDiv = nullptr) { 343 344 // First check if we might be able to model the division, thus if the 345 // divisor is constant. If so, check the dividend, otherwise check if 346 // the whole division can be seen as a parameter. 347 if (isa<SCEVConstant>(Divisor) && !Divisor->isZero()) 348 return visit(Dividend); 349 350 // For signed divisions use the SDiv instruction to check for a parameter 351 // division, for unsigned divisions check the operands. 352 if (SDiv) 353 return visitGenericInst(SDiv, DivExpr); 354 355 ValidatorResult LHS = visit(Dividend); 356 ValidatorResult RHS = visit(Divisor); 357 if (LHS.isConstant() && RHS.isConstant()) 358 return ValidatorResult(SCEVType::PARAM, DivExpr); 359 360 DEBUG(dbgs() << "INVALID: unsigned division of non-constant expressions"); 361 return ValidatorResult(SCEVType::INVALID); 362 } 363 364 ValidatorResult visitUDivExpr(const SCEVUDivExpr *Expr) { 365 if (!PollyAllowUnsignedOperations) 366 return ValidatorResult(SCEVType::INVALID); 367 368 auto *Dividend = Expr->getLHS(); 369 auto *Divisor = Expr->getRHS(); 370 return visitDivision(Dividend, Divisor, Expr); 371 } 372 373 ValidatorResult visitSDivInstruction(Instruction *SDiv, const SCEV *Expr) { 374 assert(SDiv->getOpcode() == Instruction::SDiv && 375 "Assumed SDiv instruction!"); 376 377 auto *Dividend = SE.getSCEV(SDiv->getOperand(0)); 378 auto *Divisor = SE.getSCEV(SDiv->getOperand(1)); 379 return visitDivision(Dividend, Divisor, Expr, SDiv); 380 } 381 382 ValidatorResult visitSRemInstruction(Instruction *SRem, const SCEV *S) { 383 assert(SRem->getOpcode() == Instruction::SRem && 384 "Assumed SRem instruction!"); 385 386 auto *Divisor = SRem->getOperand(1); 387 auto *CI = dyn_cast<ConstantInt>(Divisor); 388 if (!CI || CI->isZeroValue()) 389 return visitGenericInst(SRem, S); 390 391 auto *Dividend = SRem->getOperand(0); 392 auto *DividendSCEV = SE.getSCEV(Dividend); 393 return visit(DividendSCEV); 394 } 395 396 ValidatorResult visitUnknown(const SCEVUnknown *Expr) { 397 Value *V = Expr->getValue(); 398 399 if (!Expr->getType()->isIntegerTy() && !Expr->getType()->isPointerTy()) { 400 DEBUG(dbgs() << "INVALID: UnknownExpr is not an integer or pointer"); 401 return ValidatorResult(SCEVType::INVALID); 402 } 403 404 if (isa<UndefValue>(V)) { 405 DEBUG(dbgs() << "INVALID: UnknownExpr references an undef value"); 406 return ValidatorResult(SCEVType::INVALID); 407 } 408 409 if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) { 410 switch (I->getOpcode()) { 411 case Instruction::IntToPtr: 412 return visit(SE.getSCEVAtScope(I->getOperand(0), Scope)); 413 case Instruction::PtrToInt: 414 return visit(SE.getSCEVAtScope(I->getOperand(0), Scope)); 415 case Instruction::Load: 416 return visitLoadInstruction(I, Expr); 417 case Instruction::SDiv: 418 return visitSDivInstruction(I, Expr); 419 case Instruction::SRem: 420 return visitSRemInstruction(I, Expr); 421 case Instruction::Call: 422 return visitCallInstruction(I, Expr); 423 default: 424 return visitGenericInst(I, Expr); 425 } 426 } 427 428 return ValidatorResult(SCEVType::PARAM, Expr); 429 } 430 }; 431 432 /// Check whether a SCEV refers to an SSA name defined inside a region. 433 class SCEVInRegionDependences { 434 const Region *R; 435 Loop *Scope; 436 bool AllowLoops; 437 bool HasInRegionDeps = false; 438 439 public: 440 SCEVInRegionDependences(const Region *R, Loop *Scope, bool AllowLoops) 441 : R(R), Scope(Scope), AllowLoops(AllowLoops) {} 442 443 bool follow(const SCEV *S) { 444 if (auto Unknown = dyn_cast<SCEVUnknown>(S)) { 445 Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue()); 446 447 CallInst *Call = dyn_cast<CallInst>(Unknown->getValue()); 448 449 if (Call && isConstCall(Call)) 450 return false; 451 452 // Return true when Inst is defined inside the region R. 453 if (!Inst || !R->contains(Inst)) 454 return true; 455 456 HasInRegionDeps = true; 457 return false; 458 } 459 460 if (auto AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 461 if (AllowLoops) 462 return true; 463 464 if (!Scope) { 465 HasInRegionDeps = true; 466 return false; 467 } 468 auto *L = AddRec->getLoop(); 469 if (R->contains(L) && !L->contains(Scope)) { 470 HasInRegionDeps = true; 471 return false; 472 } 473 } 474 475 return true; 476 } 477 bool isDone() { return false; } 478 bool hasDependences() { return HasInRegionDeps; } 479 }; 480 481 namespace polly { 482 /// Find all loops referenced in SCEVAddRecExprs. 483 class SCEVFindLoops { 484 SetVector<const Loop *> &Loops; 485 486 public: 487 SCEVFindLoops(SetVector<const Loop *> &Loops) : Loops(Loops) {} 488 489 bool follow(const SCEV *S) { 490 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 491 Loops.insert(AddRec->getLoop()); 492 return true; 493 } 494 bool isDone() { return false; } 495 }; 496 497 void findLoops(const SCEV *Expr, SetVector<const Loop *> &Loops) { 498 SCEVFindLoops FindLoops(Loops); 499 SCEVTraversal<SCEVFindLoops> ST(FindLoops); 500 ST.visitAll(Expr); 501 } 502 503 /// Find all values referenced in SCEVUnknowns. 504 class SCEVFindValues { 505 ScalarEvolution &SE; 506 SetVector<Value *> &Values; 507 508 public: 509 SCEVFindValues(ScalarEvolution &SE, SetVector<Value *> &Values) 510 : SE(SE), Values(Values) {} 511 512 bool follow(const SCEV *S) { 513 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S); 514 if (!Unknown) 515 return true; 516 517 Values.insert(Unknown->getValue()); 518 Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue()); 519 if (!Inst || (Inst->getOpcode() != Instruction::SRem && 520 Inst->getOpcode() != Instruction::SDiv)) 521 return false; 522 523 auto *Dividend = SE.getSCEV(Inst->getOperand(1)); 524 if (!isa<SCEVConstant>(Dividend)) 525 return false; 526 527 auto *Divisor = SE.getSCEV(Inst->getOperand(0)); 528 SCEVFindValues FindValues(SE, Values); 529 SCEVTraversal<SCEVFindValues> ST(FindValues); 530 ST.visitAll(Dividend); 531 ST.visitAll(Divisor); 532 533 return false; 534 } 535 bool isDone() { return false; } 536 }; 537 538 void findValues(const SCEV *Expr, ScalarEvolution &SE, 539 SetVector<Value *> &Values) { 540 SCEVFindValues FindValues(SE, Values); 541 SCEVTraversal<SCEVFindValues> ST(FindValues); 542 ST.visitAll(Expr); 543 } 544 545 bool hasScalarDepsInsideRegion(const SCEV *Expr, const Region *R, 546 llvm::Loop *Scope, bool AllowLoops) { 547 SCEVInRegionDependences InRegionDeps(R, Scope, AllowLoops); 548 SCEVTraversal<SCEVInRegionDependences> ST(InRegionDeps); 549 ST.visitAll(Expr); 550 return InRegionDeps.hasDependences(); 551 } 552 553 bool isAffineExpr(const Region *R, llvm::Loop *Scope, const SCEV *Expr, 554 ScalarEvolution &SE, InvariantLoadsSetTy *ILS) { 555 if (isa<SCEVCouldNotCompute>(Expr)) 556 return false; 557 558 SCEVValidator Validator(R, Scope, SE, ILS); 559 DEBUG({ 560 dbgs() << "\n"; 561 dbgs() << "Expr: " << *Expr << "\n"; 562 dbgs() << "Region: " << R->getNameStr() << "\n"; 563 dbgs() << " -> "; 564 }); 565 566 ValidatorResult Result = Validator.visit(Expr); 567 568 DEBUG({ 569 if (Result.isValid()) 570 dbgs() << "VALID\n"; 571 dbgs() << "\n"; 572 }); 573 574 return Result.isValid(); 575 } 576 577 static bool isAffineExpr(Value *V, const Region *R, Loop *Scope, 578 ScalarEvolution &SE, ParameterSetTy &Params) { 579 auto *E = SE.getSCEV(V); 580 if (isa<SCEVCouldNotCompute>(E)) 581 return false; 582 583 SCEVValidator Validator(R, Scope, SE, nullptr); 584 ValidatorResult Result = Validator.visit(E); 585 if (!Result.isValid()) 586 return false; 587 588 auto ResultParams = Result.getParameters(); 589 Params.insert(ResultParams.begin(), ResultParams.end()); 590 591 return true; 592 } 593 594 bool isAffineConstraint(Value *V, const Region *R, llvm::Loop *Scope, 595 ScalarEvolution &SE, ParameterSetTy &Params, 596 bool OrExpr) { 597 if (auto *ICmp = dyn_cast<ICmpInst>(V)) { 598 return isAffineConstraint(ICmp->getOperand(0), R, Scope, SE, Params, 599 true) && 600 isAffineConstraint(ICmp->getOperand(1), R, Scope, SE, Params, true); 601 } else if (auto *BinOp = dyn_cast<BinaryOperator>(V)) { 602 auto Opcode = BinOp->getOpcode(); 603 if (Opcode == Instruction::And || Opcode == Instruction::Or) 604 return isAffineConstraint(BinOp->getOperand(0), R, Scope, SE, Params, 605 false) && 606 isAffineConstraint(BinOp->getOperand(1), R, Scope, SE, Params, 607 false); 608 /* Fall through */ 609 } 610 611 if (!OrExpr) 612 return false; 613 614 return isAffineExpr(V, R, Scope, SE, Params); 615 } 616 617 ParameterSetTy getParamsInAffineExpr(const Region *R, Loop *Scope, 618 const SCEV *Expr, ScalarEvolution &SE) { 619 if (isa<SCEVCouldNotCompute>(Expr)) 620 return ParameterSetTy(); 621 622 InvariantLoadsSetTy ILS; 623 SCEVValidator Validator(R, Scope, SE, &ILS); 624 ValidatorResult Result = Validator.visit(Expr); 625 assert(Result.isValid() && "Requested parameters for an invalid SCEV!"); 626 627 return Result.getParameters(); 628 } 629 630 std::pair<const SCEVConstant *, const SCEV *> 631 extractConstantFactor(const SCEV *S, ScalarEvolution &SE) { 632 auto *ConstPart = cast<SCEVConstant>(SE.getConstant(S->getType(), 1)); 633 634 if (auto *Constant = dyn_cast<SCEVConstant>(S)) 635 return std::make_pair(Constant, SE.getConstant(S->getType(), 1)); 636 637 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 638 if (AddRec) { 639 auto *StartExpr = AddRec->getStart(); 640 if (StartExpr->isZero()) { 641 auto StepPair = extractConstantFactor(AddRec->getStepRecurrence(SE), SE); 642 auto *LeftOverAddRec = 643 SE.getAddRecExpr(StartExpr, StepPair.second, AddRec->getLoop(), 644 AddRec->getNoWrapFlags()); 645 return std::make_pair(StepPair.first, LeftOverAddRec); 646 } 647 return std::make_pair(ConstPart, S); 648 } 649 650 if (auto *Add = dyn_cast<SCEVAddExpr>(S)) { 651 SmallVector<const SCEV *, 4> LeftOvers; 652 auto Op0Pair = extractConstantFactor(Add->getOperand(0), SE); 653 auto *Factor = Op0Pair.first; 654 if (SE.isKnownNegative(Factor)) { 655 Factor = cast<SCEVConstant>(SE.getNegativeSCEV(Factor)); 656 LeftOvers.push_back(SE.getNegativeSCEV(Op0Pair.second)); 657 } else { 658 LeftOvers.push_back(Op0Pair.second); 659 } 660 661 for (unsigned u = 1, e = Add->getNumOperands(); u < e; u++) { 662 auto OpUPair = extractConstantFactor(Add->getOperand(u), SE); 663 // TODO: Use something smarter than equality here, e.g., gcd. 664 if (Factor == OpUPair.first) 665 LeftOvers.push_back(OpUPair.second); 666 else if (Factor == SE.getNegativeSCEV(OpUPair.first)) 667 LeftOvers.push_back(SE.getNegativeSCEV(OpUPair.second)); 668 else 669 return std::make_pair(ConstPart, S); 670 } 671 672 auto *NewAdd = SE.getAddExpr(LeftOvers, Add->getNoWrapFlags()); 673 return std::make_pair(Factor, NewAdd); 674 } 675 676 auto *Mul = dyn_cast<SCEVMulExpr>(S); 677 if (!Mul) 678 return std::make_pair(ConstPart, S); 679 680 SmallVector<const SCEV *, 4> LeftOvers; 681 for (auto *Op : Mul->operands()) 682 if (isa<SCEVConstant>(Op)) 683 ConstPart = cast<SCEVConstant>(SE.getMulExpr(ConstPart, Op)); 684 else 685 LeftOvers.push_back(Op); 686 687 return std::make_pair(ConstPart, SE.getMulExpr(LeftOvers)); 688 } 689 } // namespace polly 690