1 2 #include "polly/Support/SCEVValidator.h" 3 #include "polly/ScopInfo.h" 4 #include "llvm/Analysis/RegionInfo.h" 5 #include "llvm/Analysis/ScalarEvolution.h" 6 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 7 #include "llvm/Support/Debug.h" 8 9 using namespace llvm; 10 using namespace polly; 11 12 #define DEBUG_TYPE "polly-scev-validator" 13 14 namespace SCEVType { 15 /// The type of a SCEV 16 /// 17 /// To check for the validity of a SCEV we assign to each SCEV a type. The 18 /// possible types are INT, PARAM, IV and INVALID. The order of the types is 19 /// important. The subexpressions of SCEV with a type X can only have a type 20 /// that is smaller or equal than X. 21 enum TYPE { 22 // An integer value. 23 INT, 24 25 // An expression that is constant during the execution of the Scop, 26 // but that may depend on parameters unknown at compile time. 27 PARAM, 28 29 // An expression that may change during the execution of the SCoP. 30 IV, 31 32 // An invalid expression. 33 INVALID 34 }; 35 } // namespace SCEVType 36 37 /// The result the validator returns for a SCEV expression. 38 class ValidatorResult { 39 /// The type of the expression 40 SCEVType::TYPE Type; 41 42 /// The set of Parameters in the expression. 43 ParameterSetTy Parameters; 44 45 public: 46 /// The copy constructor 47 ValidatorResult(const ValidatorResult &Source) { 48 Type = Source.Type; 49 Parameters = Source.Parameters; 50 } 51 52 /// Construct a result with a certain type and no parameters. 53 ValidatorResult(SCEVType::TYPE Type) : Type(Type) { 54 assert(Type != SCEVType::PARAM && "Did you forget to pass the parameter"); 55 } 56 57 /// Construct a result with a certain type and a single parameter. 58 ValidatorResult(SCEVType::TYPE Type, const SCEV *Expr) : Type(Type) { 59 Parameters.insert(Expr); 60 } 61 62 /// Get the type of the ValidatorResult. 63 SCEVType::TYPE getType() { return Type; } 64 65 /// Is the analyzed SCEV constant during the execution of the SCoP. 66 bool isConstant() { return Type == SCEVType::INT || Type == SCEVType::PARAM; } 67 68 /// Is the analyzed SCEV valid. 69 bool isValid() { return Type != SCEVType::INVALID; } 70 71 /// Is the analyzed SCEV of Type IV. 72 bool isIV() { return Type == SCEVType::IV; } 73 74 /// Is the analyzed SCEV of Type INT. 75 bool isINT() { return Type == SCEVType::INT; } 76 77 /// Is the analyzed SCEV of Type PARAM. 78 bool isPARAM() { return Type == SCEVType::PARAM; } 79 80 /// Get the parameters of this validator result. 81 const ParameterSetTy &getParameters() { return Parameters; } 82 83 /// Add the parameters of Source to this result. 84 void addParamsFrom(const ValidatorResult &Source) { 85 Parameters.insert(Source.Parameters.begin(), Source.Parameters.end()); 86 } 87 88 /// Merge a result. 89 /// 90 /// This means to merge the parameters and to set the Type to the most 91 /// specific Type that matches both. 92 void merge(const ValidatorResult &ToMerge) { 93 Type = std::max(Type, ToMerge.Type); 94 addParamsFrom(ToMerge); 95 } 96 97 void print(raw_ostream &OS) { 98 switch (Type) { 99 case SCEVType::INT: 100 OS << "SCEVType::INT"; 101 break; 102 case SCEVType::PARAM: 103 OS << "SCEVType::PARAM"; 104 break; 105 case SCEVType::IV: 106 OS << "SCEVType::IV"; 107 break; 108 case SCEVType::INVALID: 109 OS << "SCEVType::INVALID"; 110 break; 111 } 112 } 113 }; 114 115 raw_ostream &operator<<(raw_ostream &OS, class ValidatorResult &VR) { 116 VR.print(OS); 117 return OS; 118 } 119 120 bool polly::isConstCall(llvm::CallInst *Call) { 121 if (Call->mayReadOrWriteMemory()) 122 return false; 123 124 for (auto &Operand : Call->arg_operands()) 125 if (!isa<ConstantInt>(&Operand)) 126 return false; 127 128 return true; 129 } 130 131 /// Check if a SCEV is valid in a SCoP. 132 struct SCEVValidator 133 : public SCEVVisitor<SCEVValidator, class ValidatorResult> { 134 private: 135 const Region *R; 136 Loop *Scope; 137 ScalarEvolution &SE; 138 InvariantLoadsSetTy *ILS; 139 140 public: 141 SCEVValidator(const Region *R, Loop *Scope, ScalarEvolution &SE, 142 InvariantLoadsSetTy *ILS) 143 : R(R), Scope(Scope), SE(SE), ILS(ILS) {} 144 145 class ValidatorResult visitConstant(const SCEVConstant *Constant) { 146 return ValidatorResult(SCEVType::INT); 147 } 148 149 class ValidatorResult visitZeroExtendOrTruncateExpr(const SCEV *Expr, 150 const SCEV *Operand) { 151 ValidatorResult Op = visit(Operand); 152 auto Type = Op.getType(); 153 154 // If unsigned operations are allowed return the operand, otherwise 155 // check if we can model the expression without unsigned assumptions. 156 if (PollyAllowUnsignedOperations || Type == SCEVType::INVALID) 157 return Op; 158 159 if (Type == SCEVType::IV) 160 return ValidatorResult(SCEVType::INVALID); 161 return ValidatorResult(SCEVType::PARAM, Expr); 162 } 163 164 class ValidatorResult visitTruncateExpr(const SCEVTruncateExpr *Expr) { 165 return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand()); 166 } 167 168 class ValidatorResult visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 169 return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand()); 170 } 171 172 class ValidatorResult visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 173 return visit(Expr->getOperand()); 174 } 175 176 class ValidatorResult visitAddExpr(const SCEVAddExpr *Expr) { 177 ValidatorResult Return(SCEVType::INT); 178 179 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 180 ValidatorResult Op = visit(Expr->getOperand(i)); 181 Return.merge(Op); 182 183 // Early exit. 184 if (!Return.isValid()) 185 break; 186 } 187 188 return Return; 189 } 190 191 class ValidatorResult visitMulExpr(const SCEVMulExpr *Expr) { 192 ValidatorResult Return(SCEVType::INT); 193 194 bool HasMultipleParams = false; 195 196 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 197 ValidatorResult Op = visit(Expr->getOperand(i)); 198 199 if (Op.isINT()) 200 continue; 201 202 if (Op.isPARAM() && Return.isPARAM()) { 203 HasMultipleParams = true; 204 continue; 205 } 206 207 if ((Op.isIV() || Op.isPARAM()) && !Return.isINT()) { 208 LLVM_DEBUG( 209 dbgs() << "INVALID: More than one non-int operand in MulExpr\n" 210 << "\tExpr: " << *Expr << "\n" 211 << "\tPrevious expression type: " << Return << "\n" 212 << "\tNext operand (" << Op << "): " << *Expr->getOperand(i) 213 << "\n"); 214 215 return ValidatorResult(SCEVType::INVALID); 216 } 217 218 Return.merge(Op); 219 } 220 221 if (HasMultipleParams && Return.isValid()) 222 return ValidatorResult(SCEVType::PARAM, Expr); 223 224 return Return; 225 } 226 227 class ValidatorResult visitAddRecExpr(const SCEVAddRecExpr *Expr) { 228 if (!Expr->isAffine()) { 229 LLVM_DEBUG(dbgs() << "INVALID: AddRec is not affine"); 230 return ValidatorResult(SCEVType::INVALID); 231 } 232 233 ValidatorResult Start = visit(Expr->getStart()); 234 ValidatorResult Recurrence = visit(Expr->getStepRecurrence(SE)); 235 236 if (!Start.isValid()) 237 return Start; 238 239 if (!Recurrence.isValid()) 240 return Recurrence; 241 242 auto *L = Expr->getLoop(); 243 if (R->contains(L) && (!Scope || !L->contains(Scope))) { 244 LLVM_DEBUG( 245 dbgs() << "INVALID: Loop of AddRec expression boxed in an a " 246 "non-affine subregion or has a non-synthesizable exit " 247 "value."); 248 return ValidatorResult(SCEVType::INVALID); 249 } 250 251 if (R->contains(L)) { 252 if (Recurrence.isINT()) { 253 ValidatorResult Result(SCEVType::IV); 254 Result.addParamsFrom(Start); 255 return Result; 256 } 257 258 LLVM_DEBUG(dbgs() << "INVALID: AddRec within scop has non-int" 259 "recurrence part"); 260 return ValidatorResult(SCEVType::INVALID); 261 } 262 263 assert(Recurrence.isConstant() && "Expected 'Recurrence' to be constant"); 264 265 // Directly generate ValidatorResult for Expr if 'start' is zero. 266 if (Expr->getStart()->isZero()) 267 return ValidatorResult(SCEVType::PARAM, Expr); 268 269 // Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}' 270 // if 'start' is not zero. 271 const SCEV *ZeroStartExpr = SE.getAddRecExpr( 272 SE.getConstant(Expr->getStart()->getType(), 0), 273 Expr->getStepRecurrence(SE), Expr->getLoop(), Expr->getNoWrapFlags()); 274 275 ValidatorResult ZeroStartResult = 276 ValidatorResult(SCEVType::PARAM, ZeroStartExpr); 277 ZeroStartResult.addParamsFrom(Start); 278 279 return ZeroStartResult; 280 } 281 282 class ValidatorResult visitSMaxExpr(const SCEVSMaxExpr *Expr) { 283 ValidatorResult Return(SCEVType::INT); 284 285 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 286 ValidatorResult Op = visit(Expr->getOperand(i)); 287 288 if (!Op.isValid()) 289 return Op; 290 291 Return.merge(Op); 292 } 293 294 return Return; 295 } 296 297 class ValidatorResult visitUMaxExpr(const SCEVUMaxExpr *Expr) { 298 // We do not support unsigned max operations. If 'Expr' is constant during 299 // Scop execution we treat this as a parameter, otherwise we bail out. 300 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 301 ValidatorResult Op = visit(Expr->getOperand(i)); 302 303 if (!Op.isConstant()) { 304 LLVM_DEBUG(dbgs() << "INVALID: UMaxExpr has a non-constant operand"); 305 return ValidatorResult(SCEVType::INVALID); 306 } 307 } 308 309 return ValidatorResult(SCEVType::PARAM, Expr); 310 } 311 312 ValidatorResult visitGenericInst(Instruction *I, const SCEV *S) { 313 if (R->contains(I)) { 314 LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr references an instruction " 315 "within the region\n"); 316 return ValidatorResult(SCEVType::INVALID); 317 } 318 319 return ValidatorResult(SCEVType::PARAM, S); 320 } 321 322 ValidatorResult visitCallInstruction(Instruction *I, const SCEV *S) { 323 assert(I->getOpcode() == Instruction::Call && "Call instruction expected"); 324 325 if (R->contains(I)) { 326 auto Call = cast<CallInst>(I); 327 328 if (!isConstCall(Call)) 329 return ValidatorResult(SCEVType::INVALID, S); 330 } 331 return ValidatorResult(SCEVType::PARAM, S); 332 } 333 334 ValidatorResult visitLoadInstruction(Instruction *I, const SCEV *S) { 335 if (R->contains(I) && ILS) { 336 ILS->insert(cast<LoadInst>(I)); 337 return ValidatorResult(SCEVType::PARAM, S); 338 } 339 340 return visitGenericInst(I, S); 341 } 342 343 ValidatorResult visitDivision(const SCEV *Dividend, const SCEV *Divisor, 344 const SCEV *DivExpr, 345 Instruction *SDiv = nullptr) { 346 347 // First check if we might be able to model the division, thus if the 348 // divisor is constant. If so, check the dividend, otherwise check if 349 // the whole division can be seen as a parameter. 350 if (isa<SCEVConstant>(Divisor) && !Divisor->isZero()) 351 return visit(Dividend); 352 353 // For signed divisions use the SDiv instruction to check for a parameter 354 // division, for unsigned divisions check the operands. 355 if (SDiv) 356 return visitGenericInst(SDiv, DivExpr); 357 358 ValidatorResult LHS = visit(Dividend); 359 ValidatorResult RHS = visit(Divisor); 360 if (LHS.isConstant() && RHS.isConstant()) 361 return ValidatorResult(SCEVType::PARAM, DivExpr); 362 363 LLVM_DEBUG( 364 dbgs() << "INVALID: unsigned division of non-constant expressions"); 365 return ValidatorResult(SCEVType::INVALID); 366 } 367 368 ValidatorResult visitUDivExpr(const SCEVUDivExpr *Expr) { 369 if (!PollyAllowUnsignedOperations) 370 return ValidatorResult(SCEVType::INVALID); 371 372 auto *Dividend = Expr->getLHS(); 373 auto *Divisor = Expr->getRHS(); 374 return visitDivision(Dividend, Divisor, Expr); 375 } 376 377 ValidatorResult visitSDivInstruction(Instruction *SDiv, const SCEV *Expr) { 378 assert(SDiv->getOpcode() == Instruction::SDiv && 379 "Assumed SDiv instruction!"); 380 381 auto *Dividend = SE.getSCEV(SDiv->getOperand(0)); 382 auto *Divisor = SE.getSCEV(SDiv->getOperand(1)); 383 return visitDivision(Dividend, Divisor, Expr, SDiv); 384 } 385 386 ValidatorResult visitSRemInstruction(Instruction *SRem, const SCEV *S) { 387 assert(SRem->getOpcode() == Instruction::SRem && 388 "Assumed SRem instruction!"); 389 390 auto *Divisor = SRem->getOperand(1); 391 auto *CI = dyn_cast<ConstantInt>(Divisor); 392 if (!CI || CI->isZeroValue()) 393 return visitGenericInst(SRem, S); 394 395 auto *Dividend = SRem->getOperand(0); 396 auto *DividendSCEV = SE.getSCEV(Dividend); 397 return visit(DividendSCEV); 398 } 399 400 ValidatorResult visitUnknown(const SCEVUnknown *Expr) { 401 Value *V = Expr->getValue(); 402 403 if (!Expr->getType()->isIntegerTy() && !Expr->getType()->isPointerTy()) { 404 LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr is not an integer or pointer"); 405 return ValidatorResult(SCEVType::INVALID); 406 } 407 408 if (isa<UndefValue>(V)) { 409 LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr references an undef value"); 410 return ValidatorResult(SCEVType::INVALID); 411 } 412 413 if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) { 414 switch (I->getOpcode()) { 415 case Instruction::IntToPtr: 416 return visit(SE.getSCEVAtScope(I->getOperand(0), Scope)); 417 case Instruction::PtrToInt: 418 return visit(SE.getSCEVAtScope(I->getOperand(0), Scope)); 419 case Instruction::Load: 420 return visitLoadInstruction(I, Expr); 421 case Instruction::SDiv: 422 return visitSDivInstruction(I, Expr); 423 case Instruction::SRem: 424 return visitSRemInstruction(I, Expr); 425 case Instruction::Call: 426 return visitCallInstruction(I, Expr); 427 default: 428 return visitGenericInst(I, Expr); 429 } 430 } 431 432 return ValidatorResult(SCEVType::PARAM, Expr); 433 } 434 }; 435 436 class SCEVHasIVParams { 437 bool HasIVParams = false; 438 439 public: 440 SCEVHasIVParams() {} 441 442 bool follow(const SCEV *S) { 443 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S); 444 if (!Unknown) 445 return true; 446 447 CallInst *Call = dyn_cast<CallInst>(Unknown->getValue()); 448 449 if (!Call) 450 return true; 451 452 if (isConstCall(Call)) { 453 HasIVParams = true; 454 return false; 455 } 456 457 return true; 458 } 459 460 bool isDone() { return HasIVParams; } 461 bool hasIVParams() { return HasIVParams; } 462 }; 463 464 /// Check whether a SCEV refers to an SSA name defined inside a region. 465 class SCEVInRegionDependences { 466 const Region *R; 467 Loop *Scope; 468 const InvariantLoadsSetTy &ILS; 469 bool AllowLoops; 470 bool HasInRegionDeps = false; 471 472 public: 473 SCEVInRegionDependences(const Region *R, Loop *Scope, bool AllowLoops, 474 const InvariantLoadsSetTy &ILS) 475 : R(R), Scope(Scope), ILS(ILS), AllowLoops(AllowLoops) {} 476 477 bool follow(const SCEV *S) { 478 if (auto Unknown = dyn_cast<SCEVUnknown>(S)) { 479 Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue()); 480 481 CallInst *Call = dyn_cast<CallInst>(Unknown->getValue()); 482 483 if (Call && isConstCall(Call)) 484 return false; 485 486 if (Inst) { 487 // When we invariant load hoist a load, we first make sure that there 488 // can be no dependences created by it in the Scop region. So, we should 489 // not consider scalar dependences to `LoadInst`s that are invariant 490 // load hoisted. 491 // 492 // If this check is not present, then we create data dependences which 493 // are strictly not necessary by tracking the invariant load as a 494 // scalar. 495 LoadInst *LI = dyn_cast<LoadInst>(Inst); 496 if (LI && ILS.count(LI) > 0) 497 return false; 498 } 499 500 // Return true when Inst is defined inside the region R. 501 if (!Inst || !R->contains(Inst)) 502 return true; 503 504 HasInRegionDeps = true; 505 return false; 506 } 507 508 if (auto AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 509 if (AllowLoops) 510 return true; 511 512 auto *L = AddRec->getLoop(); 513 if (R->contains(L) && !L->contains(Scope)) { 514 HasInRegionDeps = true; 515 return false; 516 } 517 } 518 519 return true; 520 } 521 bool isDone() { return false; } 522 bool hasDependences() { return HasInRegionDeps; } 523 }; 524 525 namespace polly { 526 /// Find all loops referenced in SCEVAddRecExprs. 527 class SCEVFindLoops { 528 SetVector<const Loop *> &Loops; 529 530 public: 531 SCEVFindLoops(SetVector<const Loop *> &Loops) : Loops(Loops) {} 532 533 bool follow(const SCEV *S) { 534 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 535 Loops.insert(AddRec->getLoop()); 536 return true; 537 } 538 bool isDone() { return false; } 539 }; 540 541 void findLoops(const SCEV *Expr, SetVector<const Loop *> &Loops) { 542 SCEVFindLoops FindLoops(Loops); 543 SCEVTraversal<SCEVFindLoops> ST(FindLoops); 544 ST.visitAll(Expr); 545 } 546 547 /// Find all values referenced in SCEVUnknowns. 548 class SCEVFindValues { 549 ScalarEvolution &SE; 550 SetVector<Value *> &Values; 551 552 public: 553 SCEVFindValues(ScalarEvolution &SE, SetVector<Value *> &Values) 554 : SE(SE), Values(Values) {} 555 556 bool follow(const SCEV *S) { 557 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S); 558 if (!Unknown) 559 return true; 560 561 Values.insert(Unknown->getValue()); 562 Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue()); 563 if (!Inst || (Inst->getOpcode() != Instruction::SRem && 564 Inst->getOpcode() != Instruction::SDiv)) 565 return false; 566 567 auto *Dividend = SE.getSCEV(Inst->getOperand(1)); 568 if (!isa<SCEVConstant>(Dividend)) 569 return false; 570 571 auto *Divisor = SE.getSCEV(Inst->getOperand(0)); 572 SCEVFindValues FindValues(SE, Values); 573 SCEVTraversal<SCEVFindValues> ST(FindValues); 574 ST.visitAll(Dividend); 575 ST.visitAll(Divisor); 576 577 return false; 578 } 579 bool isDone() { return false; } 580 }; 581 582 void findValues(const SCEV *Expr, ScalarEvolution &SE, 583 SetVector<Value *> &Values) { 584 SCEVFindValues FindValues(SE, Values); 585 SCEVTraversal<SCEVFindValues> ST(FindValues); 586 ST.visitAll(Expr); 587 } 588 589 bool hasIVParams(const SCEV *Expr) { 590 SCEVHasIVParams HasIVParams; 591 SCEVTraversal<SCEVHasIVParams> ST(HasIVParams); 592 ST.visitAll(Expr); 593 return HasIVParams.hasIVParams(); 594 } 595 596 bool hasScalarDepsInsideRegion(const SCEV *Expr, const Region *R, 597 llvm::Loop *Scope, bool AllowLoops, 598 const InvariantLoadsSetTy &ILS) { 599 SCEVInRegionDependences InRegionDeps(R, Scope, AllowLoops, ILS); 600 SCEVTraversal<SCEVInRegionDependences> ST(InRegionDeps); 601 ST.visitAll(Expr); 602 return InRegionDeps.hasDependences(); 603 } 604 605 bool isAffineExpr(const Region *R, llvm::Loop *Scope, const SCEV *Expr, 606 ScalarEvolution &SE, InvariantLoadsSetTy *ILS) { 607 if (isa<SCEVCouldNotCompute>(Expr)) 608 return false; 609 610 SCEVValidator Validator(R, Scope, SE, ILS); 611 LLVM_DEBUG({ 612 dbgs() << "\n"; 613 dbgs() << "Expr: " << *Expr << "\n"; 614 dbgs() << "Region: " << R->getNameStr() << "\n"; 615 dbgs() << " -> "; 616 }); 617 618 ValidatorResult Result = Validator.visit(Expr); 619 620 LLVM_DEBUG({ 621 if (Result.isValid()) 622 dbgs() << "VALID\n"; 623 dbgs() << "\n"; 624 }); 625 626 return Result.isValid(); 627 } 628 629 static bool isAffineExpr(Value *V, const Region *R, Loop *Scope, 630 ScalarEvolution &SE, ParameterSetTy &Params) { 631 auto *E = SE.getSCEV(V); 632 if (isa<SCEVCouldNotCompute>(E)) 633 return false; 634 635 SCEVValidator Validator(R, Scope, SE, nullptr); 636 ValidatorResult Result = Validator.visit(E); 637 if (!Result.isValid()) 638 return false; 639 640 auto ResultParams = Result.getParameters(); 641 Params.insert(ResultParams.begin(), ResultParams.end()); 642 643 return true; 644 } 645 646 bool isAffineConstraint(Value *V, const Region *R, llvm::Loop *Scope, 647 ScalarEvolution &SE, ParameterSetTy &Params, 648 bool OrExpr) { 649 if (auto *ICmp = dyn_cast<ICmpInst>(V)) { 650 return isAffineConstraint(ICmp->getOperand(0), R, Scope, SE, Params, 651 true) && 652 isAffineConstraint(ICmp->getOperand(1), R, Scope, SE, Params, true); 653 } else if (auto *BinOp = dyn_cast<BinaryOperator>(V)) { 654 auto Opcode = BinOp->getOpcode(); 655 if (Opcode == Instruction::And || Opcode == Instruction::Or) 656 return isAffineConstraint(BinOp->getOperand(0), R, Scope, SE, Params, 657 false) && 658 isAffineConstraint(BinOp->getOperand(1), R, Scope, SE, Params, 659 false); 660 /* Fall through */ 661 } 662 663 if (!OrExpr) 664 return false; 665 666 return isAffineExpr(V, R, Scope, SE, Params); 667 } 668 669 ParameterSetTy getParamsInAffineExpr(const Region *R, Loop *Scope, 670 const SCEV *Expr, ScalarEvolution &SE) { 671 if (isa<SCEVCouldNotCompute>(Expr)) 672 return ParameterSetTy(); 673 674 InvariantLoadsSetTy ILS; 675 SCEVValidator Validator(R, Scope, SE, &ILS); 676 ValidatorResult Result = Validator.visit(Expr); 677 assert(Result.isValid() && "Requested parameters for an invalid SCEV!"); 678 679 return Result.getParameters(); 680 } 681 682 std::pair<const SCEVConstant *, const SCEV *> 683 extractConstantFactor(const SCEV *S, ScalarEvolution &SE) { 684 auto *ConstPart = cast<SCEVConstant>(SE.getConstant(S->getType(), 1)); 685 686 if (auto *Constant = dyn_cast<SCEVConstant>(S)) 687 return std::make_pair(Constant, SE.getConstant(S->getType(), 1)); 688 689 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 690 if (AddRec) { 691 auto *StartExpr = AddRec->getStart(); 692 if (StartExpr->isZero()) { 693 auto StepPair = extractConstantFactor(AddRec->getStepRecurrence(SE), SE); 694 auto *LeftOverAddRec = 695 SE.getAddRecExpr(StartExpr, StepPair.second, AddRec->getLoop(), 696 AddRec->getNoWrapFlags()); 697 return std::make_pair(StepPair.first, LeftOverAddRec); 698 } 699 return std::make_pair(ConstPart, S); 700 } 701 702 if (auto *Add = dyn_cast<SCEVAddExpr>(S)) { 703 SmallVector<const SCEV *, 4> LeftOvers; 704 auto Op0Pair = extractConstantFactor(Add->getOperand(0), SE); 705 auto *Factor = Op0Pair.first; 706 if (SE.isKnownNegative(Factor)) { 707 Factor = cast<SCEVConstant>(SE.getNegativeSCEV(Factor)); 708 LeftOvers.push_back(SE.getNegativeSCEV(Op0Pair.second)); 709 } else { 710 LeftOvers.push_back(Op0Pair.second); 711 } 712 713 for (unsigned u = 1, e = Add->getNumOperands(); u < e; u++) { 714 auto OpUPair = extractConstantFactor(Add->getOperand(u), SE); 715 // TODO: Use something smarter than equality here, e.g., gcd. 716 if (Factor == OpUPair.first) 717 LeftOvers.push_back(OpUPair.second); 718 else if (Factor == SE.getNegativeSCEV(OpUPair.first)) 719 LeftOvers.push_back(SE.getNegativeSCEV(OpUPair.second)); 720 else 721 return std::make_pair(ConstPart, S); 722 } 723 724 auto *NewAdd = SE.getAddExpr(LeftOvers, Add->getNoWrapFlags()); 725 return std::make_pair(Factor, NewAdd); 726 } 727 728 auto *Mul = dyn_cast<SCEVMulExpr>(S); 729 if (!Mul) 730 return std::make_pair(ConstPart, S); 731 732 SmallVector<const SCEV *, 4> LeftOvers; 733 for (auto *Op : Mul->operands()) 734 if (isa<SCEVConstant>(Op)) 735 ConstPart = cast<SCEVConstant>(SE.getMulExpr(ConstPart, Op)); 736 else 737 LeftOvers.push_back(Op); 738 739 return std::make_pair(ConstPart, SE.getMulExpr(LeftOvers)); 740 } 741 742 const SCEV *tryForwardThroughPHI(const SCEV *Expr, Region &R, 743 ScalarEvolution &SE, LoopInfo &LI, 744 const DominatorTree &DT) { 745 if (auto *Unknown = dyn_cast<SCEVUnknown>(Expr)) { 746 Value *V = Unknown->getValue(); 747 auto *PHI = dyn_cast<PHINode>(V); 748 if (!PHI) 749 return Expr; 750 751 Value *Final = nullptr; 752 753 for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) { 754 BasicBlock *Incoming = PHI->getIncomingBlock(i); 755 if (isErrorBlock(*Incoming, R, LI, DT) && R.contains(Incoming)) 756 continue; 757 if (Final) 758 return Expr; 759 Final = PHI->getIncomingValue(i); 760 } 761 762 if (Final) 763 return SE.getSCEV(Final); 764 } 765 return Expr; 766 } 767 768 Value *getUniqueNonErrorValue(PHINode *PHI, Region *R, LoopInfo &LI, 769 const DominatorTree &DT) { 770 Value *V = nullptr; 771 for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) { 772 BasicBlock *BB = PHI->getIncomingBlock(i); 773 if (!isErrorBlock(*BB, *R, LI, DT)) { 774 if (V) 775 return nullptr; 776 V = PHI->getIncomingValue(i); 777 } 778 } 779 780 return V; 781 } 782 } // namespace polly 783