1 2 #include "polly/Support/SCEVValidator.h" 3 #include "polly/ScopInfo.h" 4 #include "llvm/Analysis/RegionInfo.h" 5 #include "llvm/Analysis/ScalarEvolution.h" 6 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 7 #include "llvm/Support/Debug.h" 8 9 using namespace llvm; 10 using namespace polly; 11 12 #define DEBUG_TYPE "polly-scev-validator" 13 14 namespace SCEVType { 15 /// The type of a SCEV 16 /// 17 /// To check for the validity of a SCEV we assign to each SCEV a type. The 18 /// possible types are INT, PARAM, IV and INVALID. The order of the types is 19 /// important. The subexpressions of SCEV with a type X can only have a type 20 /// that is smaller or equal than X. 21 enum TYPE { 22 // An integer value. 23 INT, 24 25 // An expression that is constant during the execution of the Scop, 26 // but that may depend on parameters unknown at compile time. 27 PARAM, 28 29 // An expression that may change during the execution of the SCoP. 30 IV, 31 32 // An invalid expression. 33 INVALID 34 }; 35 } // namespace SCEVType 36 37 /// The result the validator returns for a SCEV expression. 38 class ValidatorResult { 39 /// The type of the expression 40 SCEVType::TYPE Type; 41 42 /// The set of Parameters in the expression. 43 ParameterSetTy Parameters; 44 45 public: 46 /// The copy constructor 47 ValidatorResult(const ValidatorResult &Source) { 48 Type = Source.Type; 49 Parameters = Source.Parameters; 50 } 51 52 /// Construct a result with a certain type and no parameters. 53 ValidatorResult(SCEVType::TYPE Type) : Type(Type) { 54 assert(Type != SCEVType::PARAM && "Did you forget to pass the parameter"); 55 } 56 57 /// Construct a result with a certain type and a single parameter. 58 ValidatorResult(SCEVType::TYPE Type, const SCEV *Expr) : Type(Type) { 59 Parameters.insert(Expr); 60 } 61 62 /// Get the type of the ValidatorResult. 63 SCEVType::TYPE getType() { return Type; } 64 65 /// Is the analyzed SCEV constant during the execution of the SCoP. 66 bool isConstant() { return Type == SCEVType::INT || Type == SCEVType::PARAM; } 67 68 /// Is the analyzed SCEV valid. 69 bool isValid() { return Type != SCEVType::INVALID; } 70 71 /// Is the analyzed SCEV of Type IV. 72 bool isIV() { return Type == SCEVType::IV; } 73 74 /// Is the analyzed SCEV of Type INT. 75 bool isINT() { return Type == SCEVType::INT; } 76 77 /// Is the analyzed SCEV of Type PARAM. 78 bool isPARAM() { return Type == SCEVType::PARAM; } 79 80 /// Get the parameters of this validator result. 81 const ParameterSetTy &getParameters() { return Parameters; } 82 83 /// Add the parameters of Source to this result. 84 void addParamsFrom(const ValidatorResult &Source) { 85 Parameters.insert(Source.Parameters.begin(), Source.Parameters.end()); 86 } 87 88 /// Merge a result. 89 /// 90 /// This means to merge the parameters and to set the Type to the most 91 /// specific Type that matches both. 92 void merge(const ValidatorResult &ToMerge) { 93 Type = std::max(Type, ToMerge.Type); 94 addParamsFrom(ToMerge); 95 } 96 97 void print(raw_ostream &OS) { 98 switch (Type) { 99 case SCEVType::INT: 100 OS << "SCEVType::INT"; 101 break; 102 case SCEVType::PARAM: 103 OS << "SCEVType::PARAM"; 104 break; 105 case SCEVType::IV: 106 OS << "SCEVType::IV"; 107 break; 108 case SCEVType::INVALID: 109 OS << "SCEVType::INVALID"; 110 break; 111 } 112 } 113 }; 114 115 raw_ostream &operator<<(raw_ostream &OS, class ValidatorResult &VR) { 116 VR.print(OS); 117 return OS; 118 } 119 120 bool polly::isConstCall(llvm::CallInst *Call) { 121 if (Call->mayReadOrWriteMemory()) 122 return false; 123 124 for (auto &Operand : Call->arg_operands()) 125 if (!isa<ConstantInt>(&Operand)) 126 return false; 127 128 return true; 129 } 130 131 /// Check if a SCEV is valid in a SCoP. 132 struct SCEVValidator 133 : public SCEVVisitor<SCEVValidator, class ValidatorResult> { 134 private: 135 const Region *R; 136 Loop *Scope; 137 ScalarEvolution &SE; 138 InvariantLoadsSetTy *ILS; 139 140 public: 141 SCEVValidator(const Region *R, Loop *Scope, ScalarEvolution &SE, 142 InvariantLoadsSetTy *ILS) 143 : R(R), Scope(Scope), SE(SE), ILS(ILS) {} 144 145 class ValidatorResult visitConstant(const SCEVConstant *Constant) { 146 return ValidatorResult(SCEVType::INT); 147 } 148 149 class ValidatorResult visitZeroExtendOrTruncateExpr(const SCEV *Expr, 150 const SCEV *Operand) { 151 ValidatorResult Op = visit(Operand); 152 auto Type = Op.getType(); 153 154 // If unsigned operations are allowed return the operand, otherwise 155 // check if we can model the expression without unsigned assumptions. 156 if (PollyAllowUnsignedOperations || Type == SCEVType::INVALID) 157 return Op; 158 159 if (Type == SCEVType::IV) 160 return ValidatorResult(SCEVType::INVALID); 161 return ValidatorResult(SCEVType::PARAM, Expr); 162 } 163 164 class ValidatorResult visitTruncateExpr(const SCEVTruncateExpr *Expr) { 165 return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand()); 166 } 167 168 class ValidatorResult visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 169 return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand()); 170 } 171 172 class ValidatorResult visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 173 return visit(Expr->getOperand()); 174 } 175 176 class ValidatorResult visitAddExpr(const SCEVAddExpr *Expr) { 177 ValidatorResult Return(SCEVType::INT); 178 179 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 180 ValidatorResult Op = visit(Expr->getOperand(i)); 181 Return.merge(Op); 182 183 // Early exit. 184 if (!Return.isValid()) 185 break; 186 } 187 188 return Return; 189 } 190 191 class ValidatorResult visitMulExpr(const SCEVMulExpr *Expr) { 192 ValidatorResult Return(SCEVType::INT); 193 194 bool HasMultipleParams = false; 195 196 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 197 ValidatorResult Op = visit(Expr->getOperand(i)); 198 199 if (Op.isINT()) 200 continue; 201 202 if (Op.isPARAM() && Return.isPARAM()) { 203 HasMultipleParams = true; 204 continue; 205 } 206 207 if ((Op.isIV() || Op.isPARAM()) && !Return.isINT()) { 208 DEBUG(dbgs() << "INVALID: More than one non-int operand in MulExpr\n" 209 << "\tExpr: " << *Expr << "\n" 210 << "\tPrevious expression type: " << Return << "\n" 211 << "\tNext operand (" << Op 212 << "): " << *Expr->getOperand(i) << "\n"); 213 214 return ValidatorResult(SCEVType::INVALID); 215 } 216 217 Return.merge(Op); 218 } 219 220 if (HasMultipleParams && Return.isValid()) 221 return ValidatorResult(SCEVType::PARAM, Expr); 222 223 return Return; 224 } 225 226 class ValidatorResult visitAddRecExpr(const SCEVAddRecExpr *Expr) { 227 if (!Expr->isAffine()) { 228 DEBUG(dbgs() << "INVALID: AddRec is not affine"); 229 return ValidatorResult(SCEVType::INVALID); 230 } 231 232 ValidatorResult Start = visit(Expr->getStart()); 233 ValidatorResult Recurrence = visit(Expr->getStepRecurrence(SE)); 234 235 if (!Start.isValid()) 236 return Start; 237 238 if (!Recurrence.isValid()) 239 return Recurrence; 240 241 auto *L = Expr->getLoop(); 242 if (R->contains(L) && (!Scope || !L->contains(Scope))) { 243 DEBUG(dbgs() << "INVALID: Loop of AddRec expression boxed in an a " 244 "non-affine subregion or has a non-synthesizable exit " 245 "value."); 246 return ValidatorResult(SCEVType::INVALID); 247 } 248 249 if (R->contains(L)) { 250 if (Recurrence.isINT()) { 251 ValidatorResult Result(SCEVType::IV); 252 Result.addParamsFrom(Start); 253 return Result; 254 } 255 256 DEBUG(dbgs() << "INVALID: AddRec within scop has non-int" 257 "recurrence part"); 258 return ValidatorResult(SCEVType::INVALID); 259 } 260 261 assert(Recurrence.isConstant() && "Expected 'Recurrence' to be constant"); 262 263 // Directly generate ValidatorResult for Expr if 'start' is zero. 264 if (Expr->getStart()->isZero()) 265 return ValidatorResult(SCEVType::PARAM, Expr); 266 267 // Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}' 268 // if 'start' is not zero. 269 const SCEV *ZeroStartExpr = SE.getAddRecExpr( 270 SE.getConstant(Expr->getStart()->getType(), 0), 271 Expr->getStepRecurrence(SE), Expr->getLoop(), Expr->getNoWrapFlags()); 272 273 ValidatorResult ZeroStartResult = 274 ValidatorResult(SCEVType::PARAM, ZeroStartExpr); 275 ZeroStartResult.addParamsFrom(Start); 276 277 return ZeroStartResult; 278 } 279 280 class ValidatorResult visitSMaxExpr(const SCEVSMaxExpr *Expr) { 281 ValidatorResult Return(SCEVType::INT); 282 283 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 284 ValidatorResult Op = visit(Expr->getOperand(i)); 285 286 if (!Op.isValid()) 287 return Op; 288 289 Return.merge(Op); 290 } 291 292 return Return; 293 } 294 295 class ValidatorResult visitUMaxExpr(const SCEVUMaxExpr *Expr) { 296 // We do not support unsigned max operations. If 'Expr' is constant during 297 // Scop execution we treat this as a parameter, otherwise we bail out. 298 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 299 ValidatorResult Op = visit(Expr->getOperand(i)); 300 301 if (!Op.isConstant()) { 302 DEBUG(dbgs() << "INVALID: UMaxExpr has a non-constant operand"); 303 return ValidatorResult(SCEVType::INVALID); 304 } 305 } 306 307 return ValidatorResult(SCEVType::PARAM, Expr); 308 } 309 310 ValidatorResult visitGenericInst(Instruction *I, const SCEV *S) { 311 if (R->contains(I)) { 312 DEBUG(dbgs() << "INVALID: UnknownExpr references an instruction " 313 "within the region\n"); 314 return ValidatorResult(SCEVType::INVALID); 315 } 316 317 return ValidatorResult(SCEVType::PARAM, S); 318 } 319 320 ValidatorResult visitCallInstruction(Instruction *I, const SCEV *S) { 321 assert(I->getOpcode() == Instruction::Call && "Call instruction expected"); 322 323 auto Call = cast<CallInst>(I); 324 325 if (!isConstCall(Call)) 326 return ValidatorResult(SCEVType::INVALID, S); 327 328 return ValidatorResult(SCEVType::PARAM, S); 329 } 330 331 ValidatorResult visitLoadInstruction(Instruction *I, const SCEV *S) { 332 if (R->contains(I) && ILS) { 333 ILS->insert(cast<LoadInst>(I)); 334 return ValidatorResult(SCEVType::PARAM, S); 335 } 336 337 return visitGenericInst(I, S); 338 } 339 340 ValidatorResult visitDivision(const SCEV *Dividend, const SCEV *Divisor, 341 const SCEV *DivExpr, 342 Instruction *SDiv = nullptr) { 343 344 // First check if we might be able to model the division, thus if the 345 // divisor is constant. If so, check the dividend, otherwise check if 346 // the whole division can be seen as a parameter. 347 if (isa<SCEVConstant>(Divisor) && !Divisor->isZero()) 348 return visit(Dividend); 349 350 // For signed divisions use the SDiv instruction to check for a parameter 351 // division, for unsigned divisions check the operands. 352 if (SDiv) 353 return visitGenericInst(SDiv, DivExpr); 354 355 ValidatorResult LHS = visit(Dividend); 356 ValidatorResult RHS = visit(Divisor); 357 if (LHS.isConstant() && RHS.isConstant()) 358 return ValidatorResult(SCEVType::PARAM, DivExpr); 359 360 DEBUG(dbgs() << "INVALID: unsigned division of non-constant expressions"); 361 return ValidatorResult(SCEVType::INVALID); 362 } 363 364 ValidatorResult visitUDivExpr(const SCEVUDivExpr *Expr) { 365 if (!PollyAllowUnsignedOperations) 366 return ValidatorResult(SCEVType::INVALID); 367 368 auto *Dividend = Expr->getLHS(); 369 auto *Divisor = Expr->getRHS(); 370 return visitDivision(Dividend, Divisor, Expr); 371 } 372 373 ValidatorResult visitSDivInstruction(Instruction *SDiv, const SCEV *Expr) { 374 assert(SDiv->getOpcode() == Instruction::SDiv && 375 "Assumed SDiv instruction!"); 376 377 auto *Dividend = SE.getSCEV(SDiv->getOperand(0)); 378 auto *Divisor = SE.getSCEV(SDiv->getOperand(1)); 379 return visitDivision(Dividend, Divisor, Expr, SDiv); 380 } 381 382 ValidatorResult visitSRemInstruction(Instruction *SRem, const SCEV *S) { 383 assert(SRem->getOpcode() == Instruction::SRem && 384 "Assumed SRem instruction!"); 385 386 auto *Divisor = SRem->getOperand(1); 387 auto *CI = dyn_cast<ConstantInt>(Divisor); 388 if (!CI || CI->isZeroValue()) 389 return visitGenericInst(SRem, S); 390 391 auto *Dividend = SRem->getOperand(0); 392 auto *DividendSCEV = SE.getSCEV(Dividend); 393 return visit(DividendSCEV); 394 } 395 396 ValidatorResult visitUnknown(const SCEVUnknown *Expr) { 397 Value *V = Expr->getValue(); 398 399 if (!Expr->getType()->isIntegerTy() && !Expr->getType()->isPointerTy()) { 400 DEBUG(dbgs() << "INVALID: UnknownExpr is not an integer or pointer"); 401 return ValidatorResult(SCEVType::INVALID); 402 } 403 404 if (isa<UndefValue>(V)) { 405 DEBUG(dbgs() << "INVALID: UnknownExpr references an undef value"); 406 return ValidatorResult(SCEVType::INVALID); 407 } 408 409 if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) { 410 switch (I->getOpcode()) { 411 case Instruction::IntToPtr: 412 return visit(SE.getSCEVAtScope(I->getOperand(0), Scope)); 413 case Instruction::PtrToInt: 414 return visit(SE.getSCEVAtScope(I->getOperand(0), Scope)); 415 case Instruction::Load: 416 return visitLoadInstruction(I, Expr); 417 case Instruction::SDiv: 418 return visitSDivInstruction(I, Expr); 419 case Instruction::SRem: 420 return visitSRemInstruction(I, Expr); 421 case Instruction::Call: 422 return visitCallInstruction(I, Expr); 423 default: 424 return visitGenericInst(I, Expr); 425 } 426 } 427 428 return ValidatorResult(SCEVType::PARAM, Expr); 429 } 430 }; 431 432 class SCEVHasIVParams { 433 bool HasIVParams = false; 434 435 public: 436 SCEVHasIVParams() {} 437 438 bool follow(const SCEV *S) { 439 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S); 440 if (!Unknown) 441 return true; 442 443 CallInst *Call = dyn_cast<CallInst>(Unknown->getValue()); 444 445 if (!Call) 446 return true; 447 448 if (isConstCall(Call)) { 449 HasIVParams = true; 450 return false; 451 } 452 453 return true; 454 } 455 456 bool isDone() { return HasIVParams; } 457 bool hasIVParams() { return HasIVParams; } 458 }; 459 460 /// Check whether a SCEV refers to an SSA name defined inside a region. 461 class SCEVInRegionDependences { 462 const Region *R; 463 Loop *Scope; 464 bool AllowLoops; 465 bool HasInRegionDeps = false; 466 467 public: 468 SCEVInRegionDependences(const Region *R, Loop *Scope, bool AllowLoops) 469 : R(R), Scope(Scope), AllowLoops(AllowLoops) {} 470 471 bool follow(const SCEV *S) { 472 if (auto Unknown = dyn_cast<SCEVUnknown>(S)) { 473 Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue()); 474 475 CallInst *Call = dyn_cast<CallInst>(Unknown->getValue()); 476 477 if (Call && isConstCall(Call)) 478 return false; 479 480 // Return true when Inst is defined inside the region R. 481 if (!Inst || !R->contains(Inst)) 482 return true; 483 484 HasInRegionDeps = true; 485 return false; 486 } 487 488 if (auto AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 489 if (AllowLoops) 490 return true; 491 492 if (!Scope) { 493 HasInRegionDeps = true; 494 return false; 495 } 496 auto *L = AddRec->getLoop(); 497 if (R->contains(L) && !L->contains(Scope)) { 498 HasInRegionDeps = true; 499 return false; 500 } 501 } 502 503 return true; 504 } 505 bool isDone() { return false; } 506 bool hasDependences() { return HasInRegionDeps; } 507 }; 508 509 namespace polly { 510 /// Find all loops referenced in SCEVAddRecExprs. 511 class SCEVFindLoops { 512 SetVector<const Loop *> &Loops; 513 514 public: 515 SCEVFindLoops(SetVector<const Loop *> &Loops) : Loops(Loops) {} 516 517 bool follow(const SCEV *S) { 518 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 519 Loops.insert(AddRec->getLoop()); 520 return true; 521 } 522 bool isDone() { return false; } 523 }; 524 525 void findLoops(const SCEV *Expr, SetVector<const Loop *> &Loops) { 526 SCEVFindLoops FindLoops(Loops); 527 SCEVTraversal<SCEVFindLoops> ST(FindLoops); 528 ST.visitAll(Expr); 529 } 530 531 /// Find all values referenced in SCEVUnknowns. 532 class SCEVFindValues { 533 ScalarEvolution &SE; 534 SetVector<Value *> &Values; 535 536 public: 537 SCEVFindValues(ScalarEvolution &SE, SetVector<Value *> &Values) 538 : SE(SE), Values(Values) {} 539 540 bool follow(const SCEV *S) { 541 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S); 542 if (!Unknown) 543 return true; 544 545 Values.insert(Unknown->getValue()); 546 Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue()); 547 if (!Inst || (Inst->getOpcode() != Instruction::SRem && 548 Inst->getOpcode() != Instruction::SDiv)) 549 return false; 550 551 auto *Dividend = SE.getSCEV(Inst->getOperand(1)); 552 if (!isa<SCEVConstant>(Dividend)) 553 return false; 554 555 auto *Divisor = SE.getSCEV(Inst->getOperand(0)); 556 SCEVFindValues FindValues(SE, Values); 557 SCEVTraversal<SCEVFindValues> ST(FindValues); 558 ST.visitAll(Dividend); 559 ST.visitAll(Divisor); 560 561 return false; 562 } 563 bool isDone() { return false; } 564 }; 565 566 void findValues(const SCEV *Expr, ScalarEvolution &SE, 567 SetVector<Value *> &Values) { 568 SCEVFindValues FindValues(SE, Values); 569 SCEVTraversal<SCEVFindValues> ST(FindValues); 570 ST.visitAll(Expr); 571 } 572 573 bool hasIVParams(const SCEV *Expr) { 574 SCEVHasIVParams HasIVParams; 575 SCEVTraversal<SCEVHasIVParams> ST(HasIVParams); 576 ST.visitAll(Expr); 577 return HasIVParams.hasIVParams(); 578 } 579 580 bool hasScalarDepsInsideRegion(const SCEV *Expr, const Region *R, 581 llvm::Loop *Scope, bool AllowLoops) { 582 SCEVInRegionDependences InRegionDeps(R, Scope, AllowLoops); 583 SCEVTraversal<SCEVInRegionDependences> ST(InRegionDeps); 584 ST.visitAll(Expr); 585 return InRegionDeps.hasDependences(); 586 } 587 588 bool isAffineExpr(const Region *R, llvm::Loop *Scope, const SCEV *Expr, 589 ScalarEvolution &SE, InvariantLoadsSetTy *ILS) { 590 if (isa<SCEVCouldNotCompute>(Expr)) 591 return false; 592 593 SCEVValidator Validator(R, Scope, SE, ILS); 594 DEBUG({ 595 dbgs() << "\n"; 596 dbgs() << "Expr: " << *Expr << "\n"; 597 dbgs() << "Region: " << R->getNameStr() << "\n"; 598 dbgs() << " -> "; 599 }); 600 601 ValidatorResult Result = Validator.visit(Expr); 602 603 DEBUG({ 604 if (Result.isValid()) 605 dbgs() << "VALID\n"; 606 dbgs() << "\n"; 607 }); 608 609 return Result.isValid(); 610 } 611 612 static bool isAffineExpr(Value *V, const Region *R, Loop *Scope, 613 ScalarEvolution &SE, ParameterSetTy &Params) { 614 auto *E = SE.getSCEV(V); 615 if (isa<SCEVCouldNotCompute>(E)) 616 return false; 617 618 SCEVValidator Validator(R, Scope, SE, nullptr); 619 ValidatorResult Result = Validator.visit(E); 620 if (!Result.isValid()) 621 return false; 622 623 auto ResultParams = Result.getParameters(); 624 Params.insert(ResultParams.begin(), ResultParams.end()); 625 626 return true; 627 } 628 629 bool isAffineConstraint(Value *V, const Region *R, llvm::Loop *Scope, 630 ScalarEvolution &SE, ParameterSetTy &Params, 631 bool OrExpr) { 632 if (auto *ICmp = dyn_cast<ICmpInst>(V)) { 633 return isAffineConstraint(ICmp->getOperand(0), R, Scope, SE, Params, 634 true) && 635 isAffineConstraint(ICmp->getOperand(1), R, Scope, SE, Params, true); 636 } else if (auto *BinOp = dyn_cast<BinaryOperator>(V)) { 637 auto Opcode = BinOp->getOpcode(); 638 if (Opcode == Instruction::And || Opcode == Instruction::Or) 639 return isAffineConstraint(BinOp->getOperand(0), R, Scope, SE, Params, 640 false) && 641 isAffineConstraint(BinOp->getOperand(1), R, Scope, SE, Params, 642 false); 643 /* Fall through */ 644 } 645 646 if (!OrExpr) 647 return false; 648 649 return isAffineExpr(V, R, Scope, SE, Params); 650 } 651 652 ParameterSetTy getParamsInAffineExpr(const Region *R, Loop *Scope, 653 const SCEV *Expr, ScalarEvolution &SE) { 654 if (isa<SCEVCouldNotCompute>(Expr)) 655 return ParameterSetTy(); 656 657 InvariantLoadsSetTy ILS; 658 SCEVValidator Validator(R, Scope, SE, &ILS); 659 ValidatorResult Result = Validator.visit(Expr); 660 assert(Result.isValid() && "Requested parameters for an invalid SCEV!"); 661 662 return Result.getParameters(); 663 } 664 665 std::pair<const SCEVConstant *, const SCEV *> 666 extractConstantFactor(const SCEV *S, ScalarEvolution &SE) { 667 auto *ConstPart = cast<SCEVConstant>(SE.getConstant(S->getType(), 1)); 668 669 if (auto *Constant = dyn_cast<SCEVConstant>(S)) 670 return std::make_pair(Constant, SE.getConstant(S->getType(), 1)); 671 672 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 673 if (AddRec) { 674 auto *StartExpr = AddRec->getStart(); 675 if (StartExpr->isZero()) { 676 auto StepPair = extractConstantFactor(AddRec->getStepRecurrence(SE), SE); 677 auto *LeftOverAddRec = 678 SE.getAddRecExpr(StartExpr, StepPair.second, AddRec->getLoop(), 679 AddRec->getNoWrapFlags()); 680 return std::make_pair(StepPair.first, LeftOverAddRec); 681 } 682 return std::make_pair(ConstPart, S); 683 } 684 685 if (auto *Add = dyn_cast<SCEVAddExpr>(S)) { 686 SmallVector<const SCEV *, 4> LeftOvers; 687 auto Op0Pair = extractConstantFactor(Add->getOperand(0), SE); 688 auto *Factor = Op0Pair.first; 689 if (SE.isKnownNegative(Factor)) { 690 Factor = cast<SCEVConstant>(SE.getNegativeSCEV(Factor)); 691 LeftOvers.push_back(SE.getNegativeSCEV(Op0Pair.second)); 692 } else { 693 LeftOvers.push_back(Op0Pair.second); 694 } 695 696 for (unsigned u = 1, e = Add->getNumOperands(); u < e; u++) { 697 auto OpUPair = extractConstantFactor(Add->getOperand(u), SE); 698 // TODO: Use something smarter than equality here, e.g., gcd. 699 if (Factor == OpUPair.first) 700 LeftOvers.push_back(OpUPair.second); 701 else if (Factor == SE.getNegativeSCEV(OpUPair.first)) 702 LeftOvers.push_back(SE.getNegativeSCEV(OpUPair.second)); 703 else 704 return std::make_pair(ConstPart, S); 705 } 706 707 auto *NewAdd = SE.getAddExpr(LeftOvers, Add->getNoWrapFlags()); 708 return std::make_pair(Factor, NewAdd); 709 } 710 711 auto *Mul = dyn_cast<SCEVMulExpr>(S); 712 if (!Mul) 713 return std::make_pair(ConstPart, S); 714 715 SmallVector<const SCEV *, 4> LeftOvers; 716 for (auto *Op : Mul->operands()) 717 if (isa<SCEVConstant>(Op)) 718 ConstPart = cast<SCEVConstant>(SE.getMulExpr(ConstPart, Op)); 719 else 720 LeftOvers.push_back(Op); 721 722 return std::make_pair(ConstPart, SE.getMulExpr(LeftOvers)); 723 } 724 } // namespace polly 725