1 2 #include "polly/Support/SCEVValidator.h" 3 #include "polly/ScopInfo.h" 4 #include "llvm/Analysis/RegionInfo.h" 5 #include "llvm/Analysis/ScalarEvolution.h" 6 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 7 #include "llvm/Support/Debug.h" 8 9 using namespace llvm; 10 using namespace polly; 11 12 #define DEBUG_TYPE "polly-scev-validator" 13 14 namespace SCEVType { 15 /// The type of a SCEV 16 /// 17 /// To check for the validity of a SCEV we assign to each SCEV a type. The 18 /// possible types are INT, PARAM, IV and INVALID. The order of the types is 19 /// important. The subexpressions of SCEV with a type X can only have a type 20 /// that is smaller or equal than X. 21 enum TYPE { 22 // An integer value. 23 INT, 24 25 // An expression that is constant during the execution of the Scop, 26 // but that may depend on parameters unknown at compile time. 27 PARAM, 28 29 // An expression that may change during the execution of the SCoP. 30 IV, 31 32 // An invalid expression. 33 INVALID 34 }; 35 } // namespace SCEVType 36 37 /// The result the validator returns for a SCEV expression. 38 class ValidatorResult { 39 /// The type of the expression 40 SCEVType::TYPE Type; 41 42 /// The set of Parameters in the expression. 43 ParameterSetTy Parameters; 44 45 public: 46 /// The copy constructor 47 ValidatorResult(const ValidatorResult &Source) { 48 Type = Source.Type; 49 Parameters = Source.Parameters; 50 } 51 52 /// Construct a result with a certain type and no parameters. 53 ValidatorResult(SCEVType::TYPE Type) : Type(Type) { 54 assert(Type != SCEVType::PARAM && "Did you forget to pass the parameter"); 55 } 56 57 /// Construct a result with a certain type and a single parameter. 58 ValidatorResult(SCEVType::TYPE Type, const SCEV *Expr) : Type(Type) { 59 Parameters.insert(Expr); 60 } 61 62 /// Get the type of the ValidatorResult. 63 SCEVType::TYPE getType() { return Type; } 64 65 /// Is the analyzed SCEV constant during the execution of the SCoP. 66 bool isConstant() { return Type == SCEVType::INT || Type == SCEVType::PARAM; } 67 68 /// Is the analyzed SCEV valid. 69 bool isValid() { return Type != SCEVType::INVALID; } 70 71 /// Is the analyzed SCEV of Type IV. 72 bool isIV() { return Type == SCEVType::IV; } 73 74 /// Is the analyzed SCEV of Type INT. 75 bool isINT() { return Type == SCEVType::INT; } 76 77 /// Is the analyzed SCEV of Type PARAM. 78 bool isPARAM() { return Type == SCEVType::PARAM; } 79 80 /// Get the parameters of this validator result. 81 const ParameterSetTy &getParameters() { return Parameters; } 82 83 /// Add the parameters of Source to this result. 84 void addParamsFrom(const ValidatorResult &Source) { 85 Parameters.insert(Source.Parameters.begin(), Source.Parameters.end()); 86 } 87 88 /// Merge a result. 89 /// 90 /// This means to merge the parameters and to set the Type to the most 91 /// specific Type that matches both. 92 void merge(const ValidatorResult &ToMerge) { 93 Type = std::max(Type, ToMerge.Type); 94 addParamsFrom(ToMerge); 95 } 96 97 void print(raw_ostream &OS) { 98 switch (Type) { 99 case SCEVType::INT: 100 OS << "SCEVType::INT"; 101 break; 102 case SCEVType::PARAM: 103 OS << "SCEVType::PARAM"; 104 break; 105 case SCEVType::IV: 106 OS << "SCEVType::IV"; 107 break; 108 case SCEVType::INVALID: 109 OS << "SCEVType::INVALID"; 110 break; 111 } 112 } 113 }; 114 115 raw_ostream &operator<<(raw_ostream &OS, class ValidatorResult &VR) { 116 VR.print(OS); 117 return OS; 118 } 119 120 bool polly::isConstCall(llvm::CallInst *Call) { 121 if (Call->mayReadOrWriteMemory()) 122 return false; 123 124 for (auto &Operand : Call->arg_operands()) 125 if (!isa<ConstantInt>(&Operand)) 126 return false; 127 128 return true; 129 } 130 131 /// Check if a SCEV is valid in a SCoP. 132 struct SCEVValidator 133 : public SCEVVisitor<SCEVValidator, class ValidatorResult> { 134 private: 135 const Region *R; 136 Loop *Scope; 137 ScalarEvolution &SE; 138 InvariantLoadsSetTy *ILS; 139 140 public: 141 SCEVValidator(const Region *R, Loop *Scope, ScalarEvolution &SE, 142 InvariantLoadsSetTy *ILS) 143 : R(R), Scope(Scope), SE(SE), ILS(ILS) {} 144 145 class ValidatorResult visitConstant(const SCEVConstant *Constant) { 146 return ValidatorResult(SCEVType::INT); 147 } 148 149 class ValidatorResult visitZeroExtendOrTruncateExpr(const SCEV *Expr, 150 const SCEV *Operand) { 151 ValidatorResult Op = visit(Operand); 152 auto Type = Op.getType(); 153 154 // If unsigned operations are allowed return the operand, otherwise 155 // check if we can model the expression without unsigned assumptions. 156 if (PollyAllowUnsignedOperations || Type == SCEVType::INVALID) 157 return Op; 158 159 if (Type == SCEVType::IV) 160 return ValidatorResult(SCEVType::INVALID); 161 return ValidatorResult(SCEVType::PARAM, Expr); 162 } 163 164 class ValidatorResult visitTruncateExpr(const SCEVTruncateExpr *Expr) { 165 return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand()); 166 } 167 168 class ValidatorResult visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 169 return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand()); 170 } 171 172 class ValidatorResult visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 173 return visit(Expr->getOperand()); 174 } 175 176 class ValidatorResult visitAddExpr(const SCEVAddExpr *Expr) { 177 ValidatorResult Return(SCEVType::INT); 178 179 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 180 ValidatorResult Op = visit(Expr->getOperand(i)); 181 Return.merge(Op); 182 183 // Early exit. 184 if (!Return.isValid()) 185 break; 186 } 187 188 return Return; 189 } 190 191 class ValidatorResult visitMulExpr(const SCEVMulExpr *Expr) { 192 ValidatorResult Return(SCEVType::INT); 193 194 bool HasMultipleParams = false; 195 196 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 197 ValidatorResult Op = visit(Expr->getOperand(i)); 198 199 if (Op.isINT()) 200 continue; 201 202 if (Op.isPARAM() && Return.isPARAM()) { 203 HasMultipleParams = true; 204 continue; 205 } 206 207 if ((Op.isIV() || Op.isPARAM()) && !Return.isINT()) { 208 DEBUG(dbgs() << "INVALID: More than one non-int operand in MulExpr\n" 209 << "\tExpr: " << *Expr << "\n" 210 << "\tPrevious expression type: " << Return << "\n" 211 << "\tNext operand (" << Op 212 << "): " << *Expr->getOperand(i) << "\n"); 213 214 return ValidatorResult(SCEVType::INVALID); 215 } 216 217 Return.merge(Op); 218 } 219 220 if (HasMultipleParams && Return.isValid()) 221 return ValidatorResult(SCEVType::PARAM, Expr); 222 223 return Return; 224 } 225 226 class ValidatorResult visitAddRecExpr(const SCEVAddRecExpr *Expr) { 227 if (!Expr->isAffine()) { 228 DEBUG(dbgs() << "INVALID: AddRec is not affine"); 229 return ValidatorResult(SCEVType::INVALID); 230 } 231 232 ValidatorResult Start = visit(Expr->getStart()); 233 ValidatorResult Recurrence = visit(Expr->getStepRecurrence(SE)); 234 235 if (!Start.isValid()) 236 return Start; 237 238 if (!Recurrence.isValid()) 239 return Recurrence; 240 241 auto *L = Expr->getLoop(); 242 if (R->contains(L) && (!Scope || !L->contains(Scope))) { 243 DEBUG(dbgs() << "INVALID: Loop of AddRec expression boxed in an a " 244 "non-affine subregion or has a non-synthesizable exit " 245 "value."); 246 return ValidatorResult(SCEVType::INVALID); 247 } 248 249 if (R->contains(L)) { 250 if (Recurrence.isINT()) { 251 ValidatorResult Result(SCEVType::IV); 252 Result.addParamsFrom(Start); 253 return Result; 254 } 255 256 DEBUG(dbgs() << "INVALID: AddRec within scop has non-int" 257 "recurrence part"); 258 return ValidatorResult(SCEVType::INVALID); 259 } 260 261 assert(Recurrence.isConstant() && "Expected 'Recurrence' to be constant"); 262 263 // Directly generate ValidatorResult for Expr if 'start' is zero. 264 if (Expr->getStart()->isZero()) 265 return ValidatorResult(SCEVType::PARAM, Expr); 266 267 // Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}' 268 // if 'start' is not zero. 269 const SCEV *ZeroStartExpr = SE.getAddRecExpr( 270 SE.getConstant(Expr->getStart()->getType(), 0), 271 Expr->getStepRecurrence(SE), Expr->getLoop(), Expr->getNoWrapFlags()); 272 273 ValidatorResult ZeroStartResult = 274 ValidatorResult(SCEVType::PARAM, ZeroStartExpr); 275 ZeroStartResult.addParamsFrom(Start); 276 277 return ZeroStartResult; 278 } 279 280 class ValidatorResult visitSMaxExpr(const SCEVSMaxExpr *Expr) { 281 ValidatorResult Return(SCEVType::INT); 282 283 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 284 ValidatorResult Op = visit(Expr->getOperand(i)); 285 286 if (!Op.isValid()) 287 return Op; 288 289 Return.merge(Op); 290 } 291 292 return Return; 293 } 294 295 class ValidatorResult visitUMaxExpr(const SCEVUMaxExpr *Expr) { 296 // We do not support unsigned max operations. If 'Expr' is constant during 297 // Scop execution we treat this as a parameter, otherwise we bail out. 298 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) { 299 ValidatorResult Op = visit(Expr->getOperand(i)); 300 301 if (!Op.isConstant()) { 302 DEBUG(dbgs() << "INVALID: UMaxExpr has a non-constant operand"); 303 return ValidatorResult(SCEVType::INVALID); 304 } 305 } 306 307 return ValidatorResult(SCEVType::PARAM, Expr); 308 } 309 310 ValidatorResult visitGenericInst(Instruction *I, const SCEV *S) { 311 if (R->contains(I)) { 312 DEBUG(dbgs() << "INVALID: UnknownExpr references an instruction " 313 "within the region\n"); 314 return ValidatorResult(SCEVType::INVALID); 315 } 316 317 return ValidatorResult(SCEVType::PARAM, S); 318 } 319 320 ValidatorResult visitCallInstruction(Instruction *I, const SCEV *S) { 321 assert(I->getOpcode() == Instruction::Call && "Call instruction expected"); 322 323 if (R->contains(I)) { 324 auto Call = cast<CallInst>(I); 325 326 if (!isConstCall(Call)) 327 return ValidatorResult(SCEVType::INVALID, S); 328 } 329 return ValidatorResult(SCEVType::PARAM, S); 330 } 331 332 ValidatorResult visitLoadInstruction(Instruction *I, const SCEV *S) { 333 if (R->contains(I) && ILS) { 334 ILS->insert(cast<LoadInst>(I)); 335 return ValidatorResult(SCEVType::PARAM, S); 336 } 337 338 return visitGenericInst(I, S); 339 } 340 341 ValidatorResult visitDivision(const SCEV *Dividend, const SCEV *Divisor, 342 const SCEV *DivExpr, 343 Instruction *SDiv = nullptr) { 344 345 // First check if we might be able to model the division, thus if the 346 // divisor is constant. If so, check the dividend, otherwise check if 347 // the whole division can be seen as a parameter. 348 if (isa<SCEVConstant>(Divisor) && !Divisor->isZero()) 349 return visit(Dividend); 350 351 // For signed divisions use the SDiv instruction to check for a parameter 352 // division, for unsigned divisions check the operands. 353 if (SDiv) 354 return visitGenericInst(SDiv, DivExpr); 355 356 ValidatorResult LHS = visit(Dividend); 357 ValidatorResult RHS = visit(Divisor); 358 if (LHS.isConstant() && RHS.isConstant()) 359 return ValidatorResult(SCEVType::PARAM, DivExpr); 360 361 DEBUG(dbgs() << "INVALID: unsigned division of non-constant expressions"); 362 return ValidatorResult(SCEVType::INVALID); 363 } 364 365 ValidatorResult visitUDivExpr(const SCEVUDivExpr *Expr) { 366 if (!PollyAllowUnsignedOperations) 367 return ValidatorResult(SCEVType::INVALID); 368 369 auto *Dividend = Expr->getLHS(); 370 auto *Divisor = Expr->getRHS(); 371 return visitDivision(Dividend, Divisor, Expr); 372 } 373 374 ValidatorResult visitSDivInstruction(Instruction *SDiv, const SCEV *Expr) { 375 assert(SDiv->getOpcode() == Instruction::SDiv && 376 "Assumed SDiv instruction!"); 377 378 auto *Dividend = SE.getSCEV(SDiv->getOperand(0)); 379 auto *Divisor = SE.getSCEV(SDiv->getOperand(1)); 380 return visitDivision(Dividend, Divisor, Expr, SDiv); 381 } 382 383 ValidatorResult visitSRemInstruction(Instruction *SRem, const SCEV *S) { 384 assert(SRem->getOpcode() == Instruction::SRem && 385 "Assumed SRem instruction!"); 386 387 auto *Divisor = SRem->getOperand(1); 388 auto *CI = dyn_cast<ConstantInt>(Divisor); 389 if (!CI || CI->isZeroValue()) 390 return visitGenericInst(SRem, S); 391 392 auto *Dividend = SRem->getOperand(0); 393 auto *DividendSCEV = SE.getSCEV(Dividend); 394 return visit(DividendSCEV); 395 } 396 397 ValidatorResult visitUnknown(const SCEVUnknown *Expr) { 398 Value *V = Expr->getValue(); 399 400 if (!Expr->getType()->isIntegerTy() && !Expr->getType()->isPointerTy()) { 401 DEBUG(dbgs() << "INVALID: UnknownExpr is not an integer or pointer"); 402 return ValidatorResult(SCEVType::INVALID); 403 } 404 405 if (isa<UndefValue>(V)) { 406 DEBUG(dbgs() << "INVALID: UnknownExpr references an undef value"); 407 return ValidatorResult(SCEVType::INVALID); 408 } 409 410 if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) { 411 switch (I->getOpcode()) { 412 case Instruction::IntToPtr: 413 return visit(SE.getSCEVAtScope(I->getOperand(0), Scope)); 414 case Instruction::PtrToInt: 415 return visit(SE.getSCEVAtScope(I->getOperand(0), Scope)); 416 case Instruction::Load: 417 return visitLoadInstruction(I, Expr); 418 case Instruction::SDiv: 419 return visitSDivInstruction(I, Expr); 420 case Instruction::SRem: 421 return visitSRemInstruction(I, Expr); 422 case Instruction::Call: 423 return visitCallInstruction(I, Expr); 424 default: 425 return visitGenericInst(I, Expr); 426 } 427 } 428 429 return ValidatorResult(SCEVType::PARAM, Expr); 430 } 431 }; 432 433 class SCEVHasIVParams { 434 bool HasIVParams = false; 435 436 public: 437 SCEVHasIVParams() {} 438 439 bool follow(const SCEV *S) { 440 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S); 441 if (!Unknown) 442 return true; 443 444 CallInst *Call = dyn_cast<CallInst>(Unknown->getValue()); 445 446 if (!Call) 447 return true; 448 449 if (isConstCall(Call)) { 450 HasIVParams = true; 451 return false; 452 } 453 454 return true; 455 } 456 457 bool isDone() { return HasIVParams; } 458 bool hasIVParams() { return HasIVParams; } 459 }; 460 461 /// Check whether a SCEV refers to an SSA name defined inside a region. 462 class SCEVInRegionDependences { 463 const Region *R; 464 Loop *Scope; 465 const InvariantLoadsSetTy &ILS; 466 bool AllowLoops; 467 bool HasInRegionDeps = false; 468 469 public: 470 SCEVInRegionDependences(const Region *R, Loop *Scope, bool AllowLoops, 471 const InvariantLoadsSetTy &ILS) 472 : R(R), Scope(Scope), ILS(ILS), AllowLoops(AllowLoops) {} 473 474 bool follow(const SCEV *S) { 475 if (auto Unknown = dyn_cast<SCEVUnknown>(S)) { 476 Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue()); 477 478 CallInst *Call = dyn_cast<CallInst>(Unknown->getValue()); 479 480 if (Call && isConstCall(Call)) 481 return false; 482 483 if (Inst) { 484 // When we invariant load hoist a load, we first make sure that there 485 // can be no dependences created by it in the Scop region. So, we should 486 // not consider scalar dependences to `LoadInst`s that are invariant 487 // load hoisted. 488 // 489 // If this check is not present, then we create data dependences which 490 // are strictly not necessary by tracking the invariant load as a 491 // scalar. 492 LoadInst *LI = dyn_cast<LoadInst>(Inst); 493 if (LI && ILS.count(LI) > 0) 494 return false; 495 } 496 497 // Return true when Inst is defined inside the region R. 498 if (!Inst || !R->contains(Inst)) 499 return true; 500 501 HasInRegionDeps = true; 502 return false; 503 } 504 505 if (auto AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 506 if (AllowLoops) 507 return true; 508 509 auto *L = AddRec->getLoop(); 510 if (R->contains(L) && !L->contains(Scope)) { 511 HasInRegionDeps = true; 512 return false; 513 } 514 } 515 516 return true; 517 } 518 bool isDone() { return false; } 519 bool hasDependences() { return HasInRegionDeps; } 520 }; 521 522 namespace polly { 523 /// Find all loops referenced in SCEVAddRecExprs. 524 class SCEVFindLoops { 525 SetVector<const Loop *> &Loops; 526 527 public: 528 SCEVFindLoops(SetVector<const Loop *> &Loops) : Loops(Loops) {} 529 530 bool follow(const SCEV *S) { 531 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 532 Loops.insert(AddRec->getLoop()); 533 return true; 534 } 535 bool isDone() { return false; } 536 }; 537 538 void findLoops(const SCEV *Expr, SetVector<const Loop *> &Loops) { 539 SCEVFindLoops FindLoops(Loops); 540 SCEVTraversal<SCEVFindLoops> ST(FindLoops); 541 ST.visitAll(Expr); 542 } 543 544 /// Find all values referenced in SCEVUnknowns. 545 class SCEVFindValues { 546 ScalarEvolution &SE; 547 SetVector<Value *> &Values; 548 549 public: 550 SCEVFindValues(ScalarEvolution &SE, SetVector<Value *> &Values) 551 : SE(SE), Values(Values) {} 552 553 bool follow(const SCEV *S) { 554 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S); 555 if (!Unknown) 556 return true; 557 558 Values.insert(Unknown->getValue()); 559 Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue()); 560 if (!Inst || (Inst->getOpcode() != Instruction::SRem && 561 Inst->getOpcode() != Instruction::SDiv)) 562 return false; 563 564 auto *Dividend = SE.getSCEV(Inst->getOperand(1)); 565 if (!isa<SCEVConstant>(Dividend)) 566 return false; 567 568 auto *Divisor = SE.getSCEV(Inst->getOperand(0)); 569 SCEVFindValues FindValues(SE, Values); 570 SCEVTraversal<SCEVFindValues> ST(FindValues); 571 ST.visitAll(Dividend); 572 ST.visitAll(Divisor); 573 574 return false; 575 } 576 bool isDone() { return false; } 577 }; 578 579 void findValues(const SCEV *Expr, ScalarEvolution &SE, 580 SetVector<Value *> &Values) { 581 SCEVFindValues FindValues(SE, Values); 582 SCEVTraversal<SCEVFindValues> ST(FindValues); 583 ST.visitAll(Expr); 584 } 585 586 bool hasIVParams(const SCEV *Expr) { 587 SCEVHasIVParams HasIVParams; 588 SCEVTraversal<SCEVHasIVParams> ST(HasIVParams); 589 ST.visitAll(Expr); 590 return HasIVParams.hasIVParams(); 591 } 592 593 bool hasScalarDepsInsideRegion(const SCEV *Expr, const Region *R, 594 llvm::Loop *Scope, bool AllowLoops, 595 const InvariantLoadsSetTy &ILS) { 596 SCEVInRegionDependences InRegionDeps(R, Scope, AllowLoops, ILS); 597 SCEVTraversal<SCEVInRegionDependences> ST(InRegionDeps); 598 ST.visitAll(Expr); 599 return InRegionDeps.hasDependences(); 600 } 601 602 bool isAffineExpr(const Region *R, llvm::Loop *Scope, const SCEV *Expr, 603 ScalarEvolution &SE, InvariantLoadsSetTy *ILS) { 604 if (isa<SCEVCouldNotCompute>(Expr)) 605 return false; 606 607 SCEVValidator Validator(R, Scope, SE, ILS); 608 DEBUG({ 609 dbgs() << "\n"; 610 dbgs() << "Expr: " << *Expr << "\n"; 611 dbgs() << "Region: " << R->getNameStr() << "\n"; 612 dbgs() << " -> "; 613 }); 614 615 ValidatorResult Result = Validator.visit(Expr); 616 617 DEBUG({ 618 if (Result.isValid()) 619 dbgs() << "VALID\n"; 620 dbgs() << "\n"; 621 }); 622 623 return Result.isValid(); 624 } 625 626 static bool isAffineExpr(Value *V, const Region *R, Loop *Scope, 627 ScalarEvolution &SE, ParameterSetTy &Params) { 628 auto *E = SE.getSCEV(V); 629 if (isa<SCEVCouldNotCompute>(E)) 630 return false; 631 632 SCEVValidator Validator(R, Scope, SE, nullptr); 633 ValidatorResult Result = Validator.visit(E); 634 if (!Result.isValid()) 635 return false; 636 637 auto ResultParams = Result.getParameters(); 638 Params.insert(ResultParams.begin(), ResultParams.end()); 639 640 return true; 641 } 642 643 bool isAffineConstraint(Value *V, const Region *R, llvm::Loop *Scope, 644 ScalarEvolution &SE, ParameterSetTy &Params, 645 bool OrExpr) { 646 if (auto *ICmp = dyn_cast<ICmpInst>(V)) { 647 return isAffineConstraint(ICmp->getOperand(0), R, Scope, SE, Params, 648 true) && 649 isAffineConstraint(ICmp->getOperand(1), R, Scope, SE, Params, true); 650 } else if (auto *BinOp = dyn_cast<BinaryOperator>(V)) { 651 auto Opcode = BinOp->getOpcode(); 652 if (Opcode == Instruction::And || Opcode == Instruction::Or) 653 return isAffineConstraint(BinOp->getOperand(0), R, Scope, SE, Params, 654 false) && 655 isAffineConstraint(BinOp->getOperand(1), R, Scope, SE, Params, 656 false); 657 /* Fall through */ 658 } 659 660 if (!OrExpr) 661 return false; 662 663 return isAffineExpr(V, R, Scope, SE, Params); 664 } 665 666 ParameterSetTy getParamsInAffineExpr(const Region *R, Loop *Scope, 667 const SCEV *Expr, ScalarEvolution &SE) { 668 if (isa<SCEVCouldNotCompute>(Expr)) 669 return ParameterSetTy(); 670 671 InvariantLoadsSetTy ILS; 672 SCEVValidator Validator(R, Scope, SE, &ILS); 673 ValidatorResult Result = Validator.visit(Expr); 674 assert(Result.isValid() && "Requested parameters for an invalid SCEV!"); 675 676 return Result.getParameters(); 677 } 678 679 std::pair<const SCEVConstant *, const SCEV *> 680 extractConstantFactor(const SCEV *S, ScalarEvolution &SE) { 681 auto *ConstPart = cast<SCEVConstant>(SE.getConstant(S->getType(), 1)); 682 683 if (auto *Constant = dyn_cast<SCEVConstant>(S)) 684 return std::make_pair(Constant, SE.getConstant(S->getType(), 1)); 685 686 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 687 if (AddRec) { 688 auto *StartExpr = AddRec->getStart(); 689 if (StartExpr->isZero()) { 690 auto StepPair = extractConstantFactor(AddRec->getStepRecurrence(SE), SE); 691 auto *LeftOverAddRec = 692 SE.getAddRecExpr(StartExpr, StepPair.second, AddRec->getLoop(), 693 AddRec->getNoWrapFlags()); 694 return std::make_pair(StepPair.first, LeftOverAddRec); 695 } 696 return std::make_pair(ConstPart, S); 697 } 698 699 if (auto *Add = dyn_cast<SCEVAddExpr>(S)) { 700 SmallVector<const SCEV *, 4> LeftOvers; 701 auto Op0Pair = extractConstantFactor(Add->getOperand(0), SE); 702 auto *Factor = Op0Pair.first; 703 if (SE.isKnownNegative(Factor)) { 704 Factor = cast<SCEVConstant>(SE.getNegativeSCEV(Factor)); 705 LeftOvers.push_back(SE.getNegativeSCEV(Op0Pair.second)); 706 } else { 707 LeftOvers.push_back(Op0Pair.second); 708 } 709 710 for (unsigned u = 1, e = Add->getNumOperands(); u < e; u++) { 711 auto OpUPair = extractConstantFactor(Add->getOperand(u), SE); 712 // TODO: Use something smarter than equality here, e.g., gcd. 713 if (Factor == OpUPair.first) 714 LeftOvers.push_back(OpUPair.second); 715 else if (Factor == SE.getNegativeSCEV(OpUPair.first)) 716 LeftOvers.push_back(SE.getNegativeSCEV(OpUPair.second)); 717 else 718 return std::make_pair(ConstPart, S); 719 } 720 721 auto *NewAdd = SE.getAddExpr(LeftOvers, Add->getNoWrapFlags()); 722 return std::make_pair(Factor, NewAdd); 723 } 724 725 auto *Mul = dyn_cast<SCEVMulExpr>(S); 726 if (!Mul) 727 return std::make_pair(ConstPart, S); 728 729 SmallVector<const SCEV *, 4> LeftOvers; 730 for (auto *Op : Mul->operands()) 731 if (isa<SCEVConstant>(Op)) 732 ConstPart = cast<SCEVConstant>(SE.getMulExpr(ConstPart, Op)); 733 else 734 LeftOvers.push_back(Op); 735 736 return std::make_pair(ConstPart, SE.getMulExpr(LeftOvers)); 737 } 738 739 const SCEV *tryForwardThroughPHI(const SCEV *Expr, Region &R, 740 ScalarEvolution &SE, LoopInfo &LI, 741 const DominatorTree &DT) { 742 if (auto *Unknown = dyn_cast<SCEVUnknown>(Expr)) { 743 Value *V = Unknown->getValue(); 744 auto *PHI = dyn_cast<PHINode>(V); 745 if (!PHI) 746 return Expr; 747 748 Value *Final = nullptr; 749 750 for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) { 751 BasicBlock *Incoming = PHI->getIncomingBlock(i); 752 if (isErrorBlock(*Incoming, R, LI, DT) && R.contains(Incoming)) 753 continue; 754 if (Final) 755 return Expr; 756 Final = PHI->getIncomingValue(i); 757 } 758 759 if (Final) 760 return SE.getSCEV(Final); 761 } 762 return Expr; 763 } 764 765 Value *getUniqueNonErrorValue(PHINode *PHI, Region *R, LoopInfo &LI, 766 const DominatorTree &DT) { 767 Value *V = nullptr; 768 for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) { 769 BasicBlock *BB = PHI->getIncomingBlock(i); 770 if (!isErrorBlock(*BB, *R, LI, DT)) { 771 if (V) 772 return nullptr; 773 V = PHI->getIncomingValue(i); 774 } 775 } 776 777 return V; 778 } 779 } // namespace polly 780