1 //===- CodeGeneration.cpp - Code generate the Scops using ISL. ---------======// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The CodeGeneration pass takes a Scop created by ScopInfo and translates it 10 // back to LLVM-IR using the ISL code generator. 11 // 12 // The Scop describes the high level memory behavior of a control flow region. 13 // Transformation passes can update the schedule (execution order) of statements 14 // in the Scop. ISL is used to generate an abstract syntax tree that reflects 15 // the updated execution order. This clast is used to create new LLVM-IR that is 16 // computationally equivalent to the original control flow region, but executes 17 // its code in the new execution order defined by the changed schedule. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "polly/CodeGen/CodeGeneration.h" 22 #include "polly/CodeGen/IRBuilder.h" 23 #include "polly/CodeGen/IslAst.h" 24 #include "polly/CodeGen/IslNodeBuilder.h" 25 #include "polly/CodeGen/PerfMonitor.h" 26 #include "polly/CodeGen/Utils.h" 27 #include "polly/DependenceInfo.h" 28 #include "polly/LinkAllPasses.h" 29 #include "polly/Options.h" 30 #include "polly/ScopInfo.h" 31 #include "polly/Support/ScopHelper.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/RegionInfo.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/PassManager.h" 39 #include "llvm/IR/Verifier.h" 40 #include "llvm/InitializePasses.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "isl/ast.h" 45 #include <cassert> 46 47 using namespace llvm; 48 using namespace polly; 49 50 #define DEBUG_TYPE "polly-codegen" 51 52 static cl::opt<bool> Verify("polly-codegen-verify", 53 cl::desc("Verify the function generated by Polly"), 54 cl::Hidden, cl::init(false), cl::ZeroOrMore, 55 cl::cat(PollyCategory)); 56 57 bool polly::PerfMonitoring; 58 59 static cl::opt<bool, true> 60 XPerfMonitoring("polly-codegen-perf-monitoring", 61 cl::desc("Add run-time performance monitoring"), cl::Hidden, 62 cl::location(polly::PerfMonitoring), cl::init(false), 63 cl::ZeroOrMore, cl::cat(PollyCategory)); 64 65 STATISTIC(ScopsProcessed, "Number of SCoP processed"); 66 STATISTIC(CodegenedScops, "Number of successfully generated SCoPs"); 67 STATISTIC(CodegenedAffineLoops, 68 "Number of original affine loops in SCoPs that have been generated"); 69 STATISTIC(CodegenedBoxedLoops, 70 "Number of original boxed loops in SCoPs that have been generated"); 71 72 namespace polly { 73 74 /// Mark a basic block unreachable. 75 /// 76 /// Marks the basic block @p Block unreachable by equipping it with an 77 /// UnreachableInst. 78 void markBlockUnreachable(BasicBlock &Block, PollyIRBuilder &Builder) { 79 auto *OrigTerminator = Block.getTerminator(); 80 Builder.SetInsertPoint(OrigTerminator); 81 Builder.CreateUnreachable(); 82 OrigTerminator->eraseFromParent(); 83 } 84 } // namespace polly 85 86 static void verifyGeneratedFunction(Scop &S, Function &F, IslAstInfo &AI) { 87 if (!Verify || !verifyFunction(F, &errs())) 88 return; 89 90 LLVM_DEBUG({ 91 errs() << "== ISL Codegen created an invalid function ==\n\n== The " 92 "SCoP ==\n"; 93 errs() << S; 94 errs() << "\n== The isl AST ==\n"; 95 AI.print(errs()); 96 errs() << "\n== The invalid function ==\n"; 97 F.print(errs()); 98 }); 99 100 llvm_unreachable("Polly generated function could not be verified. Add " 101 "-polly-codegen-verify=false to disable this assertion."); 102 } 103 104 // CodeGeneration adds a lot of BBs without updating the RegionInfo 105 // We make all created BBs belong to the scop's parent region without any 106 // nested structure to keep the RegionInfo verifier happy. 107 static void fixRegionInfo(Function &F, Region &ParentRegion, RegionInfo &RI) { 108 for (BasicBlock &BB : F) { 109 if (RI.getRegionFor(&BB)) 110 continue; 111 112 RI.setRegionFor(&BB, &ParentRegion); 113 } 114 } 115 116 /// Remove all lifetime markers (llvm.lifetime.start, llvm.lifetime.end) from 117 /// @R. 118 /// 119 /// CodeGeneration does not copy lifetime markers into the optimized SCoP, 120 /// which would leave the them only in the original path. This can transform 121 /// code such as 122 /// 123 /// llvm.lifetime.start(%p) 124 /// llvm.lifetime.end(%p) 125 /// 126 /// into 127 /// 128 /// if (RTC) { 129 /// // generated code 130 /// } else { 131 /// // original code 132 /// llvm.lifetime.start(%p) 133 /// } 134 /// llvm.lifetime.end(%p) 135 /// 136 /// The current StackColoring algorithm cannot handle if some, but not all, 137 /// paths from the end marker to the entry block cross the start marker. Same 138 /// for start markers that do not always cross the end markers. We avoid any 139 /// issues by removing all lifetime markers, even from the original code. 140 /// 141 /// A better solution could be to hoist all llvm.lifetime.start to the split 142 /// node and all llvm.lifetime.end to the merge node, which should be 143 /// conservatively correct. 144 static void removeLifetimeMarkers(Region *R) { 145 for (auto *BB : R->blocks()) { 146 auto InstIt = BB->begin(); 147 auto InstEnd = BB->end(); 148 149 while (InstIt != InstEnd) { 150 auto NextIt = InstIt; 151 ++NextIt; 152 153 if (auto *IT = dyn_cast<IntrinsicInst>(&*InstIt)) { 154 switch (IT->getIntrinsicID()) { 155 case Intrinsic::lifetime_start: 156 case Intrinsic::lifetime_end: 157 BB->getInstList().erase(InstIt); 158 break; 159 default: 160 break; 161 } 162 } 163 164 InstIt = NextIt; 165 } 166 } 167 } 168 169 static bool generateCode(Scop &S, IslAstInfo &AI, LoopInfo &LI, 170 DominatorTree &DT, ScalarEvolution &SE, 171 RegionInfo &RI) { 172 // Check whether IslAstInfo uses the same isl_ctx. Since -polly-codegen 173 // reports itself to preserve DependenceInfo and IslAstInfo, we might get 174 // those analysis that were computed by a different ScopInfo for a different 175 // Scop structure. When the ScopInfo/Scop object is freed, there is a high 176 // probability that the new ScopInfo/Scop object will be created at the same 177 // heap position with the same address. Comparing whether the Scop or ScopInfo 178 // address is the expected therefore is unreliable. 179 // Instead, we compare the address of the isl_ctx object. Both, DependenceInfo 180 // and IslAstInfo must hold a reference to the isl_ctx object to ensure it is 181 // not freed before the destruction of those analyses which might happen after 182 // the destruction of the Scop/ScopInfo they refer to. Hence, the isl_ctx 183 // will not be freed and its space not reused as long there is a 184 // DependenceInfo or IslAstInfo around. 185 IslAst &Ast = AI.getIslAst(); 186 if (Ast.getSharedIslCtx() != S.getSharedIslCtx()) { 187 LLVM_DEBUG(dbgs() << "Got an IstAst for a different Scop/isl_ctx\n"); 188 return false; 189 } 190 191 // Check if we created an isl_ast root node, otherwise exit. 192 isl::ast_node AstRoot = Ast.getAst(); 193 if (AstRoot.is_null()) 194 return false; 195 196 // Collect statistics. Do it before we modify the IR to avoid having it any 197 // influence on the result. 198 auto ScopStats = S.getStatistics(); 199 ScopsProcessed++; 200 201 auto &DL = S.getFunction().getParent()->getDataLayout(); 202 Region *R = &S.getRegion(); 203 assert(!R->isTopLevelRegion() && "Top level regions are not supported"); 204 205 ScopAnnotator Annotator; 206 207 simplifyRegion(R, &DT, &LI, &RI); 208 assert(R->isSimple()); 209 BasicBlock *EnteringBB = S.getEnteringBlock(); 210 assert(EnteringBB); 211 PollyIRBuilder Builder(EnteringBB->getContext(), ConstantFolder(), 212 IRInserter(Annotator)); 213 Builder.SetInsertPoint(EnteringBB->getTerminator()); 214 215 // Only build the run-time condition and parameters _after_ having 216 // introduced the conditional branch. This is important as the conditional 217 // branch will guard the original scop from new induction variables that 218 // the SCEVExpander may introduce while code generating the parameters and 219 // which may introduce scalar dependences that prevent us from correctly 220 // code generating this scop. 221 BBPair StartExitBlocks = 222 std::get<0>(executeScopConditionally(S, Builder.getTrue(), DT, RI, LI)); 223 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 224 BasicBlock *ExitBlock = std::get<1>(StartExitBlocks); 225 226 removeLifetimeMarkers(R); 227 auto *SplitBlock = StartBlock->getSinglePredecessor(); 228 229 IslNodeBuilder NodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock); 230 231 // All arrays must have their base pointers known before 232 // ScopAnnotator::buildAliasScopes. 233 NodeBuilder.allocateNewArrays(StartExitBlocks); 234 Annotator.buildAliasScopes(S); 235 236 if (PerfMonitoring) { 237 PerfMonitor P(S, EnteringBB->getParent()->getParent()); 238 P.initialize(); 239 P.insertRegionStart(SplitBlock->getTerminator()); 240 241 BasicBlock *MergeBlock = ExitBlock->getUniqueSuccessor(); 242 P.insertRegionEnd(MergeBlock->getTerminator()); 243 } 244 245 // First generate code for the hoisted invariant loads and transitively the 246 // parameters they reference. Afterwards, for the remaining parameters that 247 // might reference the hoisted loads. Finally, build the runtime check 248 // that might reference both hoisted loads as well as parameters. 249 // If the hoisting fails we have to bail and execute the original code. 250 Builder.SetInsertPoint(SplitBlock->getTerminator()); 251 if (!NodeBuilder.preloadInvariantLoads()) { 252 // Patch the introduced branch condition to ensure that we always execute 253 // the original SCoP. 254 auto *FalseI1 = Builder.getFalse(); 255 auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator(); 256 SplitBBTerm->setOperand(0, FalseI1); 257 258 // Since the other branch is hence ignored we mark it as unreachable and 259 // adjust the dominator tree accordingly. 260 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 261 assert(ExitingBlock); 262 auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); 263 assert(MergeBlock); 264 markBlockUnreachable(*StartBlock, Builder); 265 markBlockUnreachable(*ExitingBlock, Builder); 266 auto *ExitingBB = S.getExitingBlock(); 267 assert(ExitingBB); 268 DT.changeImmediateDominator(MergeBlock, ExitingBB); 269 DT.eraseNode(ExitingBlock); 270 } else { 271 NodeBuilder.addParameters(S.getContext().release()); 272 Value *RTC = NodeBuilder.createRTC(AI.getRunCondition().release()); 273 274 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 275 276 // Explicitly set the insert point to the end of the block to avoid that a 277 // split at the builder's current 278 // insert position would move the malloc calls to the wrong BasicBlock. 279 // Ideally we would just split the block during allocation of the new 280 // arrays, but this would break the assumption that there are no blocks 281 // between polly.start and polly.exiting (at this point). 282 Builder.SetInsertPoint(StartBlock->getTerminator()); 283 284 NodeBuilder.create(AstRoot.release()); 285 NodeBuilder.finalize(); 286 fixRegionInfo(*EnteringBB->getParent(), *R->getParent(), RI); 287 288 CodegenedScops++; 289 CodegenedAffineLoops += ScopStats.NumAffineLoops; 290 CodegenedBoxedLoops += ScopStats.NumBoxedLoops; 291 } 292 293 Function *F = EnteringBB->getParent(); 294 verifyGeneratedFunction(S, *F, AI); 295 for (auto *SubF : NodeBuilder.getParallelSubfunctions()) 296 verifyGeneratedFunction(S, *SubF, AI); 297 298 // Mark the function such that we run additional cleanup passes on this 299 // function (e.g. mem2reg to rediscover phi nodes). 300 F->addFnAttr("polly-optimized"); 301 return true; 302 } 303 304 namespace { 305 306 class CodeGeneration final : public ScopPass { 307 public: 308 static char ID; 309 310 /// The data layout used. 311 const DataLayout *DL; 312 313 /// @name The analysis passes we need to generate code. 314 /// 315 ///{ 316 LoopInfo *LI; 317 IslAstInfo *AI; 318 DominatorTree *DT; 319 ScalarEvolution *SE; 320 RegionInfo *RI; 321 ///} 322 323 CodeGeneration() : ScopPass(ID) {} 324 325 /// Generate LLVM-IR for the SCoP @p S. 326 bool runOnScop(Scop &S) override { 327 // Skip SCoPs in case they're already code-generated by PPCGCodeGeneration. 328 if (S.isToBeSkipped()) 329 return false; 330 331 AI = &getAnalysis<IslAstInfoWrapperPass>().getAI(); 332 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 333 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 334 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 335 DL = &S.getFunction().getParent()->getDataLayout(); 336 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 337 return generateCode(S, *AI, *LI, *DT, *SE, *RI); 338 } 339 340 /// Register all analyses and transformation required. 341 void getAnalysisUsage(AnalysisUsage &AU) const override { 342 ScopPass::getAnalysisUsage(AU); 343 344 AU.addRequired<DominatorTreeWrapperPass>(); 345 AU.addRequired<IslAstInfoWrapperPass>(); 346 AU.addRequired<RegionInfoPass>(); 347 AU.addRequired<ScalarEvolutionWrapperPass>(); 348 AU.addRequired<ScopDetectionWrapperPass>(); 349 AU.addRequired<ScopInfoRegionPass>(); 350 AU.addRequired<LoopInfoWrapperPass>(); 351 352 AU.addPreserved<DependenceInfo>(); 353 AU.addPreserved<IslAstInfoWrapperPass>(); 354 355 // FIXME: We do not yet add regions for the newly generated code to the 356 // region tree. 357 } 358 }; 359 } // namespace 360 361 PreservedAnalyses CodeGenerationPass::run(Scop &S, ScopAnalysisManager &SAM, 362 ScopStandardAnalysisResults &AR, 363 SPMUpdater &U) { 364 auto &AI = SAM.getResult<IslAstAnalysis>(S, AR); 365 if (generateCode(S, AI, AR.LI, AR.DT, AR.SE, AR.RI)) { 366 U.invalidateScop(S); 367 return PreservedAnalyses::none(); 368 } 369 370 return PreservedAnalyses::all(); 371 } 372 373 char CodeGeneration::ID = 1; 374 375 Pass *polly::createCodeGenerationPass() { return new CodeGeneration(); } 376 377 INITIALIZE_PASS_BEGIN(CodeGeneration, "polly-codegen", 378 "Polly - Create LLVM-IR from SCoPs", false, false); 379 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 380 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 381 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 382 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 383 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 384 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 385 INITIALIZE_PASS_END(CodeGeneration, "polly-codegen", 386 "Polly - Create LLVM-IR from SCoPs", false, false) 387