1 //===- CodeGeneration.cpp - Code generate the Scops using ISL. ---------======// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The CodeGeneration pass takes a Scop created by ScopInfo and translates it 10 // back to LLVM-IR using the ISL code generator. 11 // 12 // The Scop describes the high level memory behavior of a control flow region. 13 // Transformation passes can update the schedule (execution order) of statements 14 // in the Scop. ISL is used to generate an abstract syntax tree that reflects 15 // the updated execution order. This clast is used to create new LLVM-IR that is 16 // computationally equivalent to the original control flow region, but executes 17 // its code in the new execution order defined by the changed schedule. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "polly/CodeGen/CodeGeneration.h" 22 #include "polly/CodeGen/IRBuilder.h" 23 #include "polly/CodeGen/IslAst.h" 24 #include "polly/CodeGen/IslNodeBuilder.h" 25 #include "polly/CodeGen/PerfMonitor.h" 26 #include "polly/CodeGen/Utils.h" 27 #include "polly/DependenceInfo.h" 28 #include "polly/LinkAllPasses.h" 29 #include "polly/Options.h" 30 #include "polly/ScopDetectionDiagnostic.h" 31 #include "polly/ScopInfo.h" 32 #include "polly/Support/ScopHelper.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/Analysis/BasicAliasAnalysis.h" 36 #include "llvm/Analysis/GlobalsModRef.h" 37 #include "llvm/Analysis/LoopInfo.h" 38 #include "llvm/Analysis/RegionInfo.h" 39 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/IR/Verifier.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "isl/ast.h" 56 #include <cassert> 57 #include <utility> 58 59 using namespace llvm; 60 using namespace polly; 61 62 #define DEBUG_TYPE "polly-codegen" 63 64 static cl::opt<bool> Verify("polly-codegen-verify", 65 cl::desc("Verify the function generated by Polly"), 66 cl::Hidden, cl::init(false), cl::ZeroOrMore, 67 cl::cat(PollyCategory)); 68 69 bool polly::PerfMonitoring; 70 71 static cl::opt<bool, true> 72 XPerfMonitoring("polly-codegen-perf-monitoring", 73 cl::desc("Add run-time performance monitoring"), cl::Hidden, 74 cl::location(polly::PerfMonitoring), cl::init(false), 75 cl::ZeroOrMore, cl::cat(PollyCategory)); 76 77 STATISTIC(ScopsProcessed, "Number of SCoP processed"); 78 STATISTIC(CodegenedScops, "Number of successfully generated SCoPs"); 79 STATISTIC(CodegenedAffineLoops, 80 "Number of original affine loops in SCoPs that have been generated"); 81 STATISTIC(CodegenedBoxedLoops, 82 "Number of original boxed loops in SCoPs that have been generated"); 83 84 namespace polly { 85 86 /// Mark a basic block unreachable. 87 /// 88 /// Marks the basic block @p Block unreachable by equipping it with an 89 /// UnreachableInst. 90 void markBlockUnreachable(BasicBlock &Block, PollyIRBuilder &Builder) { 91 auto *OrigTerminator = Block.getTerminator(); 92 Builder.SetInsertPoint(OrigTerminator); 93 Builder.CreateUnreachable(); 94 OrigTerminator->eraseFromParent(); 95 } 96 } // namespace polly 97 98 static void verifyGeneratedFunction(Scop &S, Function &F, IslAstInfo &AI) { 99 if (!Verify || !verifyFunction(F, &errs())) 100 return; 101 102 LLVM_DEBUG({ 103 errs() << "== ISL Codegen created an invalid function ==\n\n== The " 104 "SCoP ==\n"; 105 errs() << S; 106 errs() << "\n== The isl AST ==\n"; 107 AI.print(errs()); 108 errs() << "\n== The invalid function ==\n"; 109 F.print(errs()); 110 }); 111 112 llvm_unreachable("Polly generated function could not be verified. Add " 113 "-polly-codegen-verify=false to disable this assertion."); 114 } 115 116 // CodeGeneration adds a lot of BBs without updating the RegionInfo 117 // We make all created BBs belong to the scop's parent region without any 118 // nested structure to keep the RegionInfo verifier happy. 119 static void fixRegionInfo(Function &F, Region &ParentRegion, RegionInfo &RI) { 120 for (BasicBlock &BB : F) { 121 if (RI.getRegionFor(&BB)) 122 continue; 123 124 RI.setRegionFor(&BB, &ParentRegion); 125 } 126 } 127 128 /// Remove all lifetime markers (llvm.lifetime.start, llvm.lifetime.end) from 129 /// @R. 130 /// 131 /// CodeGeneration does not copy lifetime markers into the optimized SCoP, 132 /// which would leave the them only in the original path. This can transform 133 /// code such as 134 /// 135 /// llvm.lifetime.start(%p) 136 /// llvm.lifetime.end(%p) 137 /// 138 /// into 139 /// 140 /// if (RTC) { 141 /// // generated code 142 /// } else { 143 /// // original code 144 /// llvm.lifetime.start(%p) 145 /// } 146 /// llvm.lifetime.end(%p) 147 /// 148 /// The current StackColoring algorithm cannot handle if some, but not all, 149 /// paths from the end marker to the entry block cross the start marker. Same 150 /// for start markers that do not always cross the end markers. We avoid any 151 /// issues by removing all lifetime markers, even from the original code. 152 /// 153 /// A better solution could be to hoist all llvm.lifetime.start to the split 154 /// node and all llvm.lifetime.end to the merge node, which should be 155 /// conservatively correct. 156 static void removeLifetimeMarkers(Region *R) { 157 for (auto *BB : R->blocks()) { 158 auto InstIt = BB->begin(); 159 auto InstEnd = BB->end(); 160 161 while (InstIt != InstEnd) { 162 auto NextIt = InstIt; 163 ++NextIt; 164 165 if (auto *IT = dyn_cast<IntrinsicInst>(&*InstIt)) { 166 switch (IT->getIntrinsicID()) { 167 case Intrinsic::lifetime_start: 168 case Intrinsic::lifetime_end: 169 BB->getInstList().erase(InstIt); 170 break; 171 default: 172 break; 173 } 174 } 175 176 InstIt = NextIt; 177 } 178 } 179 } 180 181 static bool CodeGen(Scop &S, IslAstInfo &AI, LoopInfo &LI, DominatorTree &DT, 182 ScalarEvolution &SE, RegionInfo &RI) { 183 // Check whether IslAstInfo uses the same isl_ctx. Since -polly-codegen 184 // reports itself to preserve DependenceInfo and IslAstInfo, we might get 185 // those analysis that were computed by a different ScopInfo for a different 186 // Scop structure. When the ScopInfo/Scop object is freed, there is a high 187 // probability that the new ScopInfo/Scop object will be created at the same 188 // heap position with the same address. Comparing whether the Scop or ScopInfo 189 // address is the expected therefore is unreliable. 190 // Instead, we compare the address of the isl_ctx object. Both, DependenceInfo 191 // and IslAstInfo must hold a reference to the isl_ctx object to ensure it is 192 // not freed before the destruction of those analyses which might happen after 193 // the destruction of the Scop/ScopInfo they refer to. Hence, the isl_ctx 194 // will not be freed and its space not reused as long there is a 195 // DependenceInfo or IslAstInfo around. 196 IslAst &Ast = AI.getIslAst(); 197 if (Ast.getSharedIslCtx() != S.getSharedIslCtx()) { 198 LLVM_DEBUG(dbgs() << "Got an IstAst for a different Scop/isl_ctx\n"); 199 return false; 200 } 201 202 // Check if we created an isl_ast root node, otherwise exit. 203 isl_ast_node *AstRoot = Ast.getAst(); 204 if (!AstRoot) 205 return false; 206 207 // Collect statistics. Do it before we modify the IR to avoid having it any 208 // influence on the result. 209 auto ScopStats = S.getStatistics(); 210 ScopsProcessed++; 211 212 auto &DL = S.getFunction().getParent()->getDataLayout(); 213 Region *R = &S.getRegion(); 214 assert(!R->isTopLevelRegion() && "Top level regions are not supported"); 215 216 ScopAnnotator Annotator; 217 218 simplifyRegion(R, &DT, &LI, &RI); 219 assert(R->isSimple()); 220 BasicBlock *EnteringBB = S.getEnteringBlock(); 221 assert(EnteringBB); 222 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 223 224 // Only build the run-time condition and parameters _after_ having 225 // introduced the conditional branch. This is important as the conditional 226 // branch will guard the original scop from new induction variables that 227 // the SCEVExpander may introduce while code generating the parameters and 228 // which may introduce scalar dependences that prevent us from correctly 229 // code generating this scop. 230 BBPair StartExitBlocks = 231 std::get<0>(executeScopConditionally(S, Builder.getTrue(), DT, RI, LI)); 232 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 233 BasicBlock *ExitBlock = std::get<1>(StartExitBlocks); 234 235 removeLifetimeMarkers(R); 236 auto *SplitBlock = StartBlock->getSinglePredecessor(); 237 238 IslNodeBuilder NodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock); 239 240 // All arrays must have their base pointers known before 241 // ScopAnnotator::buildAliasScopes. 242 NodeBuilder.allocateNewArrays(StartExitBlocks); 243 Annotator.buildAliasScopes(S); 244 245 if (PerfMonitoring) { 246 PerfMonitor P(S, EnteringBB->getParent()->getParent()); 247 P.initialize(); 248 P.insertRegionStart(SplitBlock->getTerminator()); 249 250 BasicBlock *MergeBlock = ExitBlock->getUniqueSuccessor(); 251 P.insertRegionEnd(MergeBlock->getTerminator()); 252 } 253 254 // First generate code for the hoisted invariant loads and transitively the 255 // parameters they reference. Afterwards, for the remaining parameters that 256 // might reference the hoisted loads. Finally, build the runtime check 257 // that might reference both hoisted loads as well as parameters. 258 // If the hoisting fails we have to bail and execute the original code. 259 Builder.SetInsertPoint(SplitBlock->getTerminator()); 260 if (!NodeBuilder.preloadInvariantLoads()) { 261 // Patch the introduced branch condition to ensure that we always execute 262 // the original SCoP. 263 auto *FalseI1 = Builder.getFalse(); 264 auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator(); 265 SplitBBTerm->setOperand(0, FalseI1); 266 267 // Since the other branch is hence ignored we mark it as unreachable and 268 // adjust the dominator tree accordingly. 269 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 270 assert(ExitingBlock); 271 auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); 272 assert(MergeBlock); 273 markBlockUnreachable(*StartBlock, Builder); 274 markBlockUnreachable(*ExitingBlock, Builder); 275 auto *ExitingBB = S.getExitingBlock(); 276 assert(ExitingBB); 277 DT.changeImmediateDominator(MergeBlock, ExitingBB); 278 DT.eraseNode(ExitingBlock); 279 280 isl_ast_node_free(AstRoot); 281 } else { 282 NodeBuilder.addParameters(S.getContext().release()); 283 Value *RTC = NodeBuilder.createRTC(AI.getRunCondition()); 284 285 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 286 287 // Explicitly set the insert point to the end of the block to avoid that a 288 // split at the builder's current 289 // insert position would move the malloc calls to the wrong BasicBlock. 290 // Ideally we would just split the block during allocation of the new 291 // arrays, but this would break the assumption that there are no blocks 292 // between polly.start and polly.exiting (at this point). 293 Builder.SetInsertPoint(StartBlock->getTerminator()); 294 295 NodeBuilder.create(AstRoot); 296 NodeBuilder.finalize(); 297 fixRegionInfo(*EnteringBB->getParent(), *R->getParent(), RI); 298 299 CodegenedScops++; 300 CodegenedAffineLoops += ScopStats.NumAffineLoops; 301 CodegenedBoxedLoops += ScopStats.NumBoxedLoops; 302 } 303 304 Function *F = EnteringBB->getParent(); 305 verifyGeneratedFunction(S, *F, AI); 306 for (auto *SubF : NodeBuilder.getParallelSubfunctions()) 307 verifyGeneratedFunction(S, *SubF, AI); 308 309 // Mark the function such that we run additional cleanup passes on this 310 // function (e.g. mem2reg to rediscover phi nodes). 311 F->addFnAttr("polly-optimized"); 312 return true; 313 } 314 315 namespace { 316 317 class CodeGeneration : public ScopPass { 318 public: 319 static char ID; 320 321 /// The data layout used. 322 const DataLayout *DL; 323 324 /// @name The analysis passes we need to generate code. 325 /// 326 ///{ 327 LoopInfo *LI; 328 IslAstInfo *AI; 329 DominatorTree *DT; 330 ScalarEvolution *SE; 331 RegionInfo *RI; 332 ///} 333 334 CodeGeneration() : ScopPass(ID) {} 335 336 /// Generate LLVM-IR for the SCoP @p S. 337 bool runOnScop(Scop &S) override { 338 // Skip SCoPs in case they're already code-generated by PPCGCodeGeneration. 339 if (S.isToBeSkipped()) 340 return false; 341 342 AI = &getAnalysis<IslAstInfoWrapperPass>().getAI(); 343 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 344 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 345 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 346 DL = &S.getFunction().getParent()->getDataLayout(); 347 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 348 return CodeGen(S, *AI, *LI, *DT, *SE, *RI); 349 } 350 351 /// Register all analyses and transformation required. 352 void getAnalysisUsage(AnalysisUsage &AU) const override { 353 ScopPass::getAnalysisUsage(AU); 354 355 AU.addRequired<DominatorTreeWrapperPass>(); 356 AU.addRequired<IslAstInfoWrapperPass>(); 357 AU.addRequired<RegionInfoPass>(); 358 AU.addRequired<ScalarEvolutionWrapperPass>(); 359 AU.addRequired<ScopDetectionWrapperPass>(); 360 AU.addRequired<ScopInfoRegionPass>(); 361 AU.addRequired<LoopInfoWrapperPass>(); 362 363 AU.addPreserved<DependenceInfo>(); 364 AU.addPreserved<IslAstInfoWrapperPass>(); 365 366 // FIXME: We do not yet add regions for the newly generated code to the 367 // region tree. 368 } 369 }; 370 } // namespace 371 372 PreservedAnalyses CodeGenerationPass::run(Scop &S, ScopAnalysisManager &SAM, 373 ScopStandardAnalysisResults &AR, 374 SPMUpdater &U) { 375 auto &AI = SAM.getResult<IslAstAnalysis>(S, AR); 376 if (CodeGen(S, AI, AR.LI, AR.DT, AR.SE, AR.RI)) { 377 U.invalidateScop(S); 378 return PreservedAnalyses::none(); 379 } 380 381 return PreservedAnalyses::all(); 382 } 383 384 char CodeGeneration::ID = 1; 385 386 Pass *polly::createCodeGenerationPass() { return new CodeGeneration(); } 387 388 INITIALIZE_PASS_BEGIN(CodeGeneration, "polly-codegen", 389 "Polly - Create LLVM-IR from SCoPs", false, false); 390 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 391 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 392 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 393 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 394 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 395 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 396 INITIALIZE_PASS_END(CodeGeneration, "polly-codegen", 397 "Polly - Create LLVM-IR from SCoPs", false, false) 398