xref: /llvm-project/polly/lib/CodeGen/CodeGeneration.cpp (revision 19afbfe33156d211fa959dadeea46cd17b9c723c)
1 //===- CodeGeneration.cpp - Code generate the Scops using ISL. ---------======//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The CodeGeneration pass takes a Scop created by ScopInfo and translates it
10 // back to LLVM-IR using the ISL code generator.
11 //
12 // The Scop describes the high level memory behavior of a control flow region.
13 // Transformation passes can update the schedule (execution order) of statements
14 // in the Scop. ISL is used to generate an abstract syntax tree that reflects
15 // the updated execution order. This clast is used to create new LLVM-IR that is
16 // computationally equivalent to the original control flow region, but executes
17 // its code in the new execution order defined by the changed schedule.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "polly/CodeGen/CodeGeneration.h"
22 #include "polly/CodeGen/IRBuilder.h"
23 #include "polly/CodeGen/IslAst.h"
24 #include "polly/CodeGen/IslNodeBuilder.h"
25 #include "polly/CodeGen/PerfMonitor.h"
26 #include "polly/CodeGen/Utils.h"
27 #include "polly/DependenceInfo.h"
28 #include "polly/LinkAllPasses.h"
29 #include "polly/Options.h"
30 #include "polly/ScopInfo.h"
31 #include "polly/Support/ScopHelper.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/RegionInfo.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/PassManager.h"
39 #include "llvm/IR/Verifier.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "isl/ast.h"
45 #include <cassert>
46 
47 using namespace llvm;
48 using namespace polly;
49 
50 #define DEBUG_TYPE "polly-codegen"
51 
52 static cl::opt<bool> Verify("polly-codegen-verify",
53                             cl::desc("Verify the function generated by Polly"),
54                             cl::Hidden, cl::cat(PollyCategory));
55 
56 bool polly::PerfMonitoring;
57 
58 static cl::opt<bool, true>
59     XPerfMonitoring("polly-codegen-perf-monitoring",
60                     cl::desc("Add run-time performance monitoring"), cl::Hidden,
61                     cl::location(polly::PerfMonitoring),
62                     cl::cat(PollyCategory));
63 
64 STATISTIC(ScopsProcessed, "Number of SCoP processed");
65 STATISTIC(CodegenedScops, "Number of successfully generated SCoPs");
66 STATISTIC(CodegenedAffineLoops,
67           "Number of original affine loops in SCoPs that have been generated");
68 STATISTIC(CodegenedBoxedLoops,
69           "Number of original boxed loops in SCoPs that have been generated");
70 
71 namespace polly {
72 
73 /// Mark a basic block unreachable.
74 ///
75 /// Marks the basic block @p Block unreachable by equipping it with an
76 /// UnreachableInst.
77 void markBlockUnreachable(BasicBlock &Block, PollyIRBuilder &Builder) {
78   auto *OrigTerminator = Block.getTerminator();
79   Builder.SetInsertPoint(OrigTerminator);
80   Builder.CreateUnreachable();
81   OrigTerminator->eraseFromParent();
82 }
83 } // namespace polly
84 
85 static void verifyGeneratedFunction(Scop &S, Function &F, IslAstInfo &AI) {
86   if (!Verify || !verifyFunction(F, &errs()))
87     return;
88 
89   LLVM_DEBUG({
90     errs() << "== ISL Codegen created an invalid function ==\n\n== The "
91               "SCoP ==\n";
92     errs() << S;
93     errs() << "\n== The isl AST ==\n";
94     AI.print(errs());
95     errs() << "\n== The invalid function ==\n";
96     F.print(errs());
97   });
98 
99   llvm_unreachable("Polly generated function could not be verified. Add "
100                    "-polly-codegen-verify=false to disable this assertion.");
101 }
102 
103 // CodeGeneration adds a lot of BBs without updating the RegionInfo
104 // We make all created BBs belong to the scop's parent region without any
105 // nested structure to keep the RegionInfo verifier happy.
106 static void fixRegionInfo(Function &F, Region &ParentRegion, RegionInfo &RI) {
107   for (BasicBlock &BB : F) {
108     if (RI.getRegionFor(&BB))
109       continue;
110 
111     RI.setRegionFor(&BB, &ParentRegion);
112   }
113 }
114 
115 /// Remove all lifetime markers (llvm.lifetime.start, llvm.lifetime.end) from
116 /// @R.
117 ///
118 /// CodeGeneration does not copy lifetime markers into the optimized SCoP,
119 /// which would leave the them only in the original path. This can transform
120 /// code such as
121 ///
122 ///     llvm.lifetime.start(%p)
123 ///     llvm.lifetime.end(%p)
124 ///
125 /// into
126 ///
127 ///     if (RTC) {
128 ///       // generated code
129 ///     } else {
130 ///       // original code
131 ///       llvm.lifetime.start(%p)
132 ///     }
133 ///     llvm.lifetime.end(%p)
134 ///
135 /// The current StackColoring algorithm cannot handle if some, but not all,
136 /// paths from the end marker to the entry block cross the start marker. Same
137 /// for start markers that do not always cross the end markers. We avoid any
138 /// issues by removing all lifetime markers, even from the original code.
139 ///
140 /// A better solution could be to hoist all llvm.lifetime.start to the split
141 /// node and all llvm.lifetime.end to the merge node, which should be
142 /// conservatively correct.
143 static void removeLifetimeMarkers(Region *R) {
144   for (auto *BB : R->blocks()) {
145     auto InstIt = BB->begin();
146     auto InstEnd = BB->end();
147 
148     while (InstIt != InstEnd) {
149       auto NextIt = InstIt;
150       ++NextIt;
151 
152       if (auto *IT = dyn_cast<IntrinsicInst>(&*InstIt)) {
153         switch (IT->getIntrinsicID()) {
154         case Intrinsic::lifetime_start:
155         case Intrinsic::lifetime_end:
156           IT->eraseFromParent();
157           break;
158         default:
159           break;
160         }
161       }
162 
163       InstIt = NextIt;
164     }
165   }
166 }
167 
168 static bool generateCode(Scop &S, IslAstInfo &AI, LoopInfo &LI,
169                          DominatorTree &DT, ScalarEvolution &SE,
170                          RegionInfo &RI) {
171   // Check whether IslAstInfo uses the same isl_ctx. Since -polly-codegen
172   // reports itself to preserve DependenceInfo and IslAstInfo, we might get
173   // those analysis that were computed by a different ScopInfo for a different
174   // Scop structure. When the ScopInfo/Scop object is freed, there is a high
175   // probability that the new ScopInfo/Scop object will be created at the same
176   // heap position with the same address. Comparing whether the Scop or ScopInfo
177   // address is the expected therefore is unreliable.
178   // Instead, we compare the address of the isl_ctx object. Both, DependenceInfo
179   // and IslAstInfo must hold a reference to the isl_ctx object to ensure it is
180   // not freed before the destruction of those analyses which might happen after
181   // the destruction of the Scop/ScopInfo they refer to.  Hence, the isl_ctx
182   // will not be freed and its space not reused as long there is a
183   // DependenceInfo or IslAstInfo around.
184   IslAst &Ast = AI.getIslAst();
185   if (Ast.getSharedIslCtx() != S.getSharedIslCtx()) {
186     LLVM_DEBUG(dbgs() << "Got an IstAst for a different Scop/isl_ctx\n");
187     return false;
188   }
189 
190   // Check if we created an isl_ast root node, otherwise exit.
191   isl::ast_node AstRoot = Ast.getAst();
192   if (AstRoot.is_null())
193     return false;
194 
195   // Collect statistics. Do it before we modify the IR to avoid having it any
196   // influence on the result.
197   auto ScopStats = S.getStatistics();
198   ScopsProcessed++;
199 
200   auto &DL = S.getFunction().getParent()->getDataLayout();
201   Region *R = &S.getRegion();
202   assert(!R->isTopLevelRegion() && "Top level regions are not supported");
203 
204   ScopAnnotator Annotator;
205 
206   simplifyRegion(R, &DT, &LI, &RI);
207   assert(R->isSimple());
208   BasicBlock *EnteringBB = S.getEnteringBlock();
209   assert(EnteringBB);
210   PollyIRBuilder Builder(EnteringBB->getContext(), ConstantFolder(),
211                          IRInserter(Annotator));
212   Builder.SetInsertPoint(EnteringBB->getTerminator());
213 
214   // Only build the run-time condition and parameters _after_ having
215   // introduced the conditional branch. This is important as the conditional
216   // branch will guard the original scop from new induction variables that
217   // the SCEVExpander may introduce while code generating the parameters and
218   // which may introduce scalar dependences that prevent us from correctly
219   // code generating this scop.
220   BBPair StartExitBlocks =
221       std::get<0>(executeScopConditionally(S, Builder.getTrue(), DT, RI, LI));
222   BasicBlock *StartBlock = std::get<0>(StartExitBlocks);
223   BasicBlock *ExitBlock = std::get<1>(StartExitBlocks);
224 
225   removeLifetimeMarkers(R);
226   auto *SplitBlock = StartBlock->getSinglePredecessor();
227 
228   IslNodeBuilder NodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock);
229 
230   // All arrays must have their base pointers known before
231   // ScopAnnotator::buildAliasScopes.
232   NodeBuilder.allocateNewArrays(StartExitBlocks);
233   Annotator.buildAliasScopes(S);
234 
235   if (PerfMonitoring) {
236     PerfMonitor P(S, EnteringBB->getParent()->getParent());
237     P.initialize();
238     P.insertRegionStart(SplitBlock->getTerminator());
239 
240     BasicBlock *MergeBlock = ExitBlock->getUniqueSuccessor();
241     P.insertRegionEnd(MergeBlock->getTerminator());
242   }
243 
244   // First generate code for the hoisted invariant loads and transitively the
245   // parameters they reference. Afterwards, for the remaining parameters that
246   // might reference the hoisted loads. Finally, build the runtime check
247   // that might reference both hoisted loads as well as parameters.
248   // If the hoisting fails we have to bail and execute the original code.
249   Builder.SetInsertPoint(SplitBlock->getTerminator());
250   if (!NodeBuilder.preloadInvariantLoads()) {
251     // Patch the introduced branch condition to ensure that we always execute
252     // the original SCoP.
253     auto *FalseI1 = Builder.getFalse();
254     auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator();
255     SplitBBTerm->setOperand(0, FalseI1);
256 
257     // Since the other branch is hence ignored we mark it as unreachable and
258     // adjust the dominator tree accordingly.
259     auto *ExitingBlock = StartBlock->getUniqueSuccessor();
260     assert(ExitingBlock);
261     auto *MergeBlock = ExitingBlock->getUniqueSuccessor();
262     assert(MergeBlock);
263     markBlockUnreachable(*StartBlock, Builder);
264     markBlockUnreachable(*ExitingBlock, Builder);
265     auto *ExitingBB = S.getExitingBlock();
266     assert(ExitingBB);
267     DT.changeImmediateDominator(MergeBlock, ExitingBB);
268     DT.eraseNode(ExitingBlock);
269   } else {
270     NodeBuilder.addParameters(S.getContext().release());
271     Value *RTC = NodeBuilder.createRTC(AI.getRunCondition().release());
272 
273     Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC);
274 
275     // Explicitly set the insert point to the end of the block to avoid that a
276     // split at the builder's current
277     // insert position would move the malloc calls to the wrong BasicBlock.
278     // Ideally we would just split the block during allocation of the new
279     // arrays, but this would break the assumption that there are no blocks
280     // between polly.start and polly.exiting (at this point).
281     Builder.SetInsertPoint(StartBlock->getTerminator());
282 
283     NodeBuilder.create(AstRoot.release());
284     NodeBuilder.finalize();
285     fixRegionInfo(*EnteringBB->getParent(), *R->getParent(), RI);
286 
287     CodegenedScops++;
288     CodegenedAffineLoops += ScopStats.NumAffineLoops;
289     CodegenedBoxedLoops += ScopStats.NumBoxedLoops;
290   }
291 
292   Function *F = EnteringBB->getParent();
293   verifyGeneratedFunction(S, *F, AI);
294   for (auto *SubF : NodeBuilder.getParallelSubfunctions())
295     verifyGeneratedFunction(S, *SubF, AI);
296 
297   // Mark the function such that we run additional cleanup passes on this
298   // function (e.g. mem2reg to rediscover phi nodes).
299   F->addFnAttr("polly-optimized");
300   return true;
301 }
302 
303 namespace {
304 
305 class CodeGeneration final : public ScopPass {
306 public:
307   static char ID;
308 
309   /// The data layout used.
310   const DataLayout *DL;
311 
312   /// @name The analysis passes we need to generate code.
313   ///
314   ///{
315   LoopInfo *LI;
316   IslAstInfo *AI;
317   DominatorTree *DT;
318   ScalarEvolution *SE;
319   RegionInfo *RI;
320   ///}
321 
322   CodeGeneration() : ScopPass(ID) {}
323 
324   /// Generate LLVM-IR for the SCoP @p S.
325   bool runOnScop(Scop &S) override {
326     AI = &getAnalysis<IslAstInfoWrapperPass>().getAI();
327     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
328     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
329     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
330     DL = &S.getFunction().getParent()->getDataLayout();
331     RI = &getAnalysis<RegionInfoPass>().getRegionInfo();
332     return generateCode(S, *AI, *LI, *DT, *SE, *RI);
333   }
334 
335   /// Register all analyses and transformation required.
336   void getAnalysisUsage(AnalysisUsage &AU) const override {
337     ScopPass::getAnalysisUsage(AU);
338 
339     AU.addRequired<DominatorTreeWrapperPass>();
340     AU.addRequired<IslAstInfoWrapperPass>();
341     AU.addRequired<RegionInfoPass>();
342     AU.addRequired<ScalarEvolutionWrapperPass>();
343     AU.addRequired<ScopDetectionWrapperPass>();
344     AU.addRequired<ScopInfoRegionPass>();
345     AU.addRequired<LoopInfoWrapperPass>();
346 
347     AU.addPreserved<DependenceInfo>();
348     AU.addPreserved<IslAstInfoWrapperPass>();
349 
350     // FIXME: We do not yet add regions for the newly generated code to the
351     //        region tree.
352   }
353 };
354 } // namespace
355 
356 PreservedAnalyses CodeGenerationPass::run(Scop &S, ScopAnalysisManager &SAM,
357                                           ScopStandardAnalysisResults &AR,
358                                           SPMUpdater &U) {
359   auto &AI = SAM.getResult<IslAstAnalysis>(S, AR);
360   if (generateCode(S, AI, AR.LI, AR.DT, AR.SE, AR.RI)) {
361     U.invalidateScop(S);
362     return PreservedAnalyses::none();
363   }
364 
365   return PreservedAnalyses::all();
366 }
367 
368 char CodeGeneration::ID = 1;
369 
370 Pass *polly::createCodeGenerationPass() { return new CodeGeneration(); }
371 
372 INITIALIZE_PASS_BEGIN(CodeGeneration, "polly-codegen",
373                       "Polly - Create LLVM-IR from SCoPs", false, false);
374 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
375 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
376 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
377 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
378 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
379 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
380 INITIALIZE_PASS_END(CodeGeneration, "polly-codegen",
381                     "Polly - Create LLVM-IR from SCoPs", false, false)
382