1 //===- CodeGeneration.cpp - Code generate the Scops using ISL. ---------======// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The CodeGeneration pass takes a Scop created by ScopInfo and translates it 11 // back to LLVM-IR using the ISL code generator. 12 // 13 // The Scop describes the high level memory behavior of a control flow region. 14 // Transformation passes can update the schedule (execution order) of statements 15 // in the Scop. ISL is used to generate an abstract syntax tree that reflects 16 // the updated execution order. This clast is used to create new LLVM-IR that is 17 // computationally equivalent to the original control flow region, but executes 18 // its code in the new execution order defined by the changed schedule. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "polly/CodeGen/CodeGeneration.h" 23 #include "polly/CodeGen/IRBuilder.h" 24 #include "polly/CodeGen/IslAst.h" 25 #include "polly/CodeGen/IslNodeBuilder.h" 26 #include "polly/CodeGen/PerfMonitor.h" 27 #include "polly/CodeGen/Utils.h" 28 #include "polly/DependenceInfo.h" 29 #include "polly/LinkAllPasses.h" 30 #include "polly/Options.h" 31 #include "polly/ScopDetectionDiagnostic.h" 32 #include "polly/ScopInfo.h" 33 #include "polly/Support/ScopHelper.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/BasicAliasAnalysis.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/RegionInfo.h" 40 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/Verifier.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "isl/ast.h" 57 #include <cassert> 58 #include <utility> 59 60 using namespace llvm; 61 using namespace polly; 62 63 #define DEBUG_TYPE "polly-codegen" 64 65 static cl::opt<bool> Verify("polly-codegen-verify", 66 cl::desc("Verify the function generated by Polly"), 67 cl::Hidden, cl::init(false), cl::ZeroOrMore, 68 cl::cat(PollyCategory)); 69 70 bool polly::PerfMonitoring; 71 72 static cl::opt<bool, true> 73 XPerfMonitoring("polly-codegen-perf-monitoring", 74 cl::desc("Add run-time performance monitoring"), cl::Hidden, 75 cl::location(polly::PerfMonitoring), cl::init(false), 76 cl::ZeroOrMore, cl::cat(PollyCategory)); 77 78 STATISTIC(ScopsProcessed, "Number of SCoP processed"); 79 STATISTIC(CodegenedScops, "Number of successfully generated SCoPs"); 80 STATISTIC(CodegenedAffineLoops, 81 "Number of original affine loops in SCoPs that have been generated"); 82 STATISTIC(CodegenedBoxedLoops, 83 "Number of original boxed loops in SCoPs that have been generated"); 84 85 namespace polly { 86 87 /// Mark a basic block unreachable. 88 /// 89 /// Marks the basic block @p Block unreachable by equipping it with an 90 /// UnreachableInst. 91 void markBlockUnreachable(BasicBlock &Block, PollyIRBuilder &Builder) { 92 auto *OrigTerminator = Block.getTerminator(); 93 Builder.SetInsertPoint(OrigTerminator); 94 Builder.CreateUnreachable(); 95 OrigTerminator->eraseFromParent(); 96 } 97 98 } // namespace polly 99 100 static void verifyGeneratedFunction(Scop &S, Function &F, IslAstInfo &AI) { 101 if (!Verify || !verifyFunction(F, &errs())) 102 return; 103 104 DEBUG({ 105 errs() << "== ISL Codegen created an invalid function ==\n\n== The " 106 "SCoP ==\n"; 107 errs() << S; 108 errs() << "\n== The isl AST ==\n"; 109 AI.print(errs()); 110 errs() << "\n== The invalid function ==\n"; 111 F.print(errs()); 112 }); 113 114 llvm_unreachable("Polly generated function could not be verified. Add " 115 "-polly-codegen-verify=false to disable this assertion."); 116 } 117 118 // CodeGeneration adds a lot of BBs without updating the RegionInfo 119 // We make all created BBs belong to the scop's parent region without any 120 // nested structure to keep the RegionInfo verifier happy. 121 static void fixRegionInfo(Function &F, Region &ParentRegion, RegionInfo &RI) { 122 for (BasicBlock &BB : F) { 123 if (RI.getRegionFor(&BB)) 124 continue; 125 126 RI.setRegionFor(&BB, &ParentRegion); 127 } 128 } 129 130 /// Remove all lifetime markers (llvm.lifetime.start, llvm.lifetime.end) from 131 /// @R. 132 /// 133 /// CodeGeneration does not copy lifetime markers into the optimized SCoP, 134 /// which would leave the them only in the original path. This can transform 135 /// code such as 136 /// 137 /// llvm.lifetime.start(%p) 138 /// llvm.lifetime.end(%p) 139 /// 140 /// into 141 /// 142 /// if (RTC) { 143 /// // generated code 144 /// } else { 145 /// // original code 146 /// llvm.lifetime.start(%p) 147 /// } 148 /// llvm.lifetime.end(%p) 149 /// 150 /// The current StackColoring algorithm cannot handle if some, but not all, 151 /// paths from the end marker to the entry block cross the start marker. Same 152 /// for start markers that do not always cross the end markers. We avoid any 153 /// issues by removing all lifetime markers, even from the original code. 154 /// 155 /// A better solution could be to hoist all llvm.lifetime.start to the split 156 /// node and all llvm.lifetime.end to the merge node, which should be 157 /// conservatively correct. 158 static void removeLifetimeMarkers(Region *R) { 159 for (auto *BB : R->blocks()) { 160 auto InstIt = BB->begin(); 161 auto InstEnd = BB->end(); 162 163 while (InstIt != InstEnd) { 164 auto NextIt = InstIt; 165 ++NextIt; 166 167 if (auto *IT = dyn_cast<IntrinsicInst>(&*InstIt)) { 168 switch (IT->getIntrinsicID()) { 169 case Intrinsic::lifetime_start: 170 case Intrinsic::lifetime_end: 171 BB->getInstList().erase(InstIt); 172 break; 173 default: 174 break; 175 } 176 } 177 178 InstIt = NextIt; 179 } 180 } 181 } 182 183 static bool CodeGen(Scop &S, IslAstInfo &AI, LoopInfo &LI, DominatorTree &DT, 184 ScalarEvolution &SE, RegionInfo &RI) { 185 // Check whether IslAstInfo uses the same isl_ctx. Since -polly-codegen 186 // reports itself to preserve DependenceInfo and IslAstInfo, we might get 187 // those analysis that were computed by a different ScopInfo for a different 188 // Scop structure. When the ScopInfo/Scop object is freed, there is a high 189 // probability that the new ScopInfo/Scop object will be created at the same 190 // heap position with the same address. Comparing whether the Scop or ScopInfo 191 // address is the expected therefore is unreliable. 192 // Instead, we compare the address of the isl_ctx object. Both, DependenceInfo 193 // and IslAstInfo must hold a reference to the isl_ctx object to ensure it is 194 // not freed before the destruction of those analyses which might happen after 195 // the destruction of the Scop/ScopInfo they refer to. Hence, the isl_ctx 196 // will not be freed and its space not reused as long there is a 197 // DependenceInfo or IslAstInfo around. 198 IslAst &Ast = AI.getIslAst(); 199 if (Ast.getSharedIslCtx() != S.getSharedIslCtx()) { 200 DEBUG(dbgs() << "Got an IstAst for a different Scop/isl_ctx\n"); 201 return false; 202 } 203 204 // Check if we created an isl_ast root node, otherwise exit. 205 isl_ast_node *AstRoot = Ast.getAst(); 206 if (!AstRoot) 207 return false; 208 209 // Collect statistics. Do it before we modify the IR to avoid having it any 210 // influence on the result. 211 auto ScopStats = S.getStatistics(); 212 ScopsProcessed++; 213 214 auto &DL = S.getFunction().getParent()->getDataLayout(); 215 Region *R = &S.getRegion(); 216 assert(!R->isTopLevelRegion() && "Top level regions are not supported"); 217 218 ScopAnnotator Annotator; 219 220 simplifyRegion(R, &DT, &LI, &RI); 221 assert(R->isSimple()); 222 BasicBlock *EnteringBB = S.getEnteringBlock(); 223 assert(EnteringBB); 224 PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator); 225 226 // Only build the run-time condition and parameters _after_ having 227 // introduced the conditional branch. This is important as the conditional 228 // branch will guard the original scop from new induction variables that 229 // the SCEVExpander may introduce while code generating the parameters and 230 // which may introduce scalar dependences that prevent us from correctly 231 // code generating this scop. 232 BBPair StartExitBlocks = 233 std::get<0>(executeScopConditionally(S, Builder.getTrue(), DT, RI, LI)); 234 BasicBlock *StartBlock = std::get<0>(StartExitBlocks); 235 BasicBlock *ExitBlock = std::get<1>(StartExitBlocks); 236 237 removeLifetimeMarkers(R); 238 auto *SplitBlock = StartBlock->getSinglePredecessor(); 239 240 IslNodeBuilder NodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock); 241 242 // All arrays must have their base pointers known before 243 // ScopAnnotator::buildAliasScopes. 244 NodeBuilder.allocateNewArrays(StartExitBlocks); 245 Annotator.buildAliasScopes(S); 246 247 if (PerfMonitoring) { 248 PerfMonitor P(S, EnteringBB->getParent()->getParent()); 249 P.initialize(); 250 P.insertRegionStart(SplitBlock->getTerminator()); 251 252 BasicBlock *MergeBlock = ExitBlock->getUniqueSuccessor(); 253 P.insertRegionEnd(MergeBlock->getTerminator()); 254 } 255 256 // First generate code for the hoisted invariant loads and transitively the 257 // parameters they reference. Afterwards, for the remaining parameters that 258 // might reference the hoisted loads. Finally, build the runtime check 259 // that might reference both hoisted loads as well as parameters. 260 // If the hoisting fails we have to bail and execute the original code. 261 Builder.SetInsertPoint(SplitBlock->getTerminator()); 262 if (!NodeBuilder.preloadInvariantLoads()) { 263 // Patch the introduced branch condition to ensure that we always execute 264 // the original SCoP. 265 auto *FalseI1 = Builder.getFalse(); 266 auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator(); 267 SplitBBTerm->setOperand(0, FalseI1); 268 269 // Since the other branch is hence ignored we mark it as unreachable and 270 // adjust the dominator tree accordingly. 271 auto *ExitingBlock = StartBlock->getUniqueSuccessor(); 272 assert(ExitingBlock); 273 auto *MergeBlock = ExitingBlock->getUniqueSuccessor(); 274 assert(MergeBlock); 275 markBlockUnreachable(*StartBlock, Builder); 276 markBlockUnreachable(*ExitingBlock, Builder); 277 auto *ExitingBB = S.getExitingBlock(); 278 assert(ExitingBB); 279 DT.changeImmediateDominator(MergeBlock, ExitingBB); 280 DT.eraseNode(ExitingBlock); 281 282 isl_ast_node_free(AstRoot); 283 } else { 284 NodeBuilder.addParameters(S.getContext().release()); 285 Value *RTC = NodeBuilder.createRTC(AI.getRunCondition()); 286 287 Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC); 288 289 // Explicitly set the insert point to the end of the block to avoid that a 290 // split at the builder's current 291 // insert position would move the malloc calls to the wrong BasicBlock. 292 // Ideally we would just split the block during allocation of the new 293 // arrays, but this would break the assumption that there are no blocks 294 // between polly.start and polly.exiting (at this point). 295 Builder.SetInsertPoint(StartBlock->getTerminator()); 296 297 NodeBuilder.create(AstRoot); 298 NodeBuilder.finalize(); 299 fixRegionInfo(*EnteringBB->getParent(), *R->getParent(), RI); 300 301 CodegenedScops++; 302 CodegenedAffineLoops += ScopStats.NumAffineLoops; 303 CodegenedBoxedLoops += ScopStats.NumBoxedLoops; 304 } 305 306 Function *F = EnteringBB->getParent(); 307 verifyGeneratedFunction(S, *F, AI); 308 for (auto *SubF : NodeBuilder.getParallelSubfunctions()) 309 verifyGeneratedFunction(S, *SubF, AI); 310 311 // Mark the function such that we run additional cleanup passes on this 312 // function (e.g. mem2reg to rediscover phi nodes). 313 F->addFnAttr("polly-optimized"); 314 return true; 315 } 316 317 namespace { 318 319 class CodeGeneration : public ScopPass { 320 public: 321 static char ID; 322 323 /// The data layout used. 324 const DataLayout *DL; 325 326 /// @name The analysis passes we need to generate code. 327 /// 328 ///{ 329 LoopInfo *LI; 330 IslAstInfo *AI; 331 DominatorTree *DT; 332 ScalarEvolution *SE; 333 RegionInfo *RI; 334 ///} 335 336 CodeGeneration() : ScopPass(ID) {} 337 338 /// Generate LLVM-IR for the SCoP @p S. 339 bool runOnScop(Scop &S) override { 340 // Skip SCoPs in case they're already code-generated by PPCGCodeGeneration. 341 if (S.isToBeSkipped()) 342 return false; 343 344 AI = &getAnalysis<IslAstInfoWrapperPass>().getAI(); 345 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 346 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 347 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 348 DL = &S.getFunction().getParent()->getDataLayout(); 349 RI = &getAnalysis<RegionInfoPass>().getRegionInfo(); 350 return CodeGen(S, *AI, *LI, *DT, *SE, *RI); 351 } 352 353 /// Register all analyses and transformation required. 354 void getAnalysisUsage(AnalysisUsage &AU) const override { 355 ScopPass::getAnalysisUsage(AU); 356 357 AU.addRequired<DominatorTreeWrapperPass>(); 358 AU.addRequired<IslAstInfoWrapperPass>(); 359 AU.addRequired<RegionInfoPass>(); 360 AU.addRequired<ScalarEvolutionWrapperPass>(); 361 AU.addRequired<ScopDetectionWrapperPass>(); 362 AU.addRequired<ScopInfoRegionPass>(); 363 AU.addRequired<LoopInfoWrapperPass>(); 364 365 AU.addPreserved<DependenceInfo>(); 366 AU.addPreserved<IslAstInfoWrapperPass>(); 367 368 // FIXME: We do not yet add regions for the newly generated code to the 369 // region tree. 370 } 371 }; 372 373 } // namespace 374 375 PreservedAnalyses CodeGenerationPass::run(Scop &S, ScopAnalysisManager &SAM, 376 ScopStandardAnalysisResults &AR, 377 SPMUpdater &U) { 378 auto &AI = SAM.getResult<IslAstAnalysis>(S, AR); 379 if (CodeGen(S, AI, AR.LI, AR.DT, AR.SE, AR.RI)) { 380 U.invalidateScop(S); 381 return PreservedAnalyses::none(); 382 } 383 384 return PreservedAnalyses::all(); 385 } 386 387 char CodeGeneration::ID = 1; 388 389 Pass *polly::createCodeGenerationPass() { return new CodeGeneration(); } 390 391 INITIALIZE_PASS_BEGIN(CodeGeneration, "polly-codegen", 392 "Polly - Create LLVM-IR from SCoPs", false, false); 393 INITIALIZE_PASS_DEPENDENCY(DependenceInfo); 394 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); 395 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); 396 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); 397 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); 398 INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); 399 INITIALIZE_PASS_END(CodeGeneration, "polly-codegen", 400 "Polly - Create LLVM-IR from SCoPs", false, false) 401