1 /* 2 * z_Linux_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_lock.h" 19 #include "kmp_stats.h" 20 #include "kmp_str.h" 21 #include "kmp_wait_release.h" 22 #include "kmp_wrapper_getpid.h" 23 24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD 25 #include <alloca.h> 26 #endif 27 #include <math.h> // HUGE_VAL. 28 #if KMP_OS_LINUX 29 #include <semaphore.h> 30 #endif // KMP_OS_LINUX 31 #include <sys/resource.h> 32 #if !KMP_OS_AIX 33 #include <sys/syscall.h> 34 #endif 35 #include <sys/time.h> 36 #include <sys/times.h> 37 #include <unistd.h> 38 39 #if KMP_OS_LINUX 40 #include <sys/sysinfo.h> 41 #if KMP_USE_FUTEX 42 // We should really include <futex.h>, but that causes compatibility problems on 43 // different Linux* OS distributions that either require that you include (or 44 // break when you try to include) <pci/types.h>. Since all we need is the two 45 // macros below (which are part of the kernel ABI, so can't change) we just 46 // define the constants here and don't include <futex.h> 47 #ifndef FUTEX_WAIT 48 #define FUTEX_WAIT 0 49 #endif 50 #ifndef FUTEX_WAKE 51 #define FUTEX_WAKE 1 52 #endif 53 #endif 54 #elif KMP_OS_DARWIN 55 #include <mach/mach.h> 56 #include <sys/sysctl.h> 57 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD 58 #include <sys/types.h> 59 #include <sys/sysctl.h> 60 #include <sys/user.h> 61 #include <pthread_np.h> 62 #if KMP_OS_DRAGONFLY 63 #include <kvm.h> 64 #endif 65 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD 66 #include <sys/types.h> 67 #include <sys/sysctl.h> 68 #if KMP_OS_NETBSD 69 #include <sched.h> 70 #endif 71 #elif KMP_OS_SOLARIS 72 #include <libproc.h> 73 #include <procfs.h> 74 #include <thread.h> 75 #include <sys/loadavg.h> 76 #endif 77 78 #include <ctype.h> 79 #include <dirent.h> 80 #include <fcntl.h> 81 82 struct kmp_sys_timer { 83 struct timespec start; 84 }; 85 86 #ifndef TIMEVAL_TO_TIMESPEC 87 // Convert timeval to timespec. 88 #define TIMEVAL_TO_TIMESPEC(tv, ts) \ 89 do { \ 90 (ts)->tv_sec = (tv)->tv_sec; \ 91 (ts)->tv_nsec = (tv)->tv_usec * 1000; \ 92 } while (0) 93 #endif 94 95 // Convert timespec to nanoseconds. 96 #define TS2NS(timespec) \ 97 (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec) 98 99 static struct kmp_sys_timer __kmp_sys_timer_data; 100 101 #if KMP_HANDLE_SIGNALS 102 typedef void (*sig_func_t)(int); 103 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG]; 104 static sigset_t __kmp_sigset; 105 #endif 106 107 static int __kmp_init_runtime = FALSE; 108 109 static int __kmp_fork_count = 0; 110 111 static pthread_condattr_t __kmp_suspend_cond_attr; 112 static pthread_mutexattr_t __kmp_suspend_mutex_attr; 113 114 static kmp_cond_align_t __kmp_wait_cv; 115 static kmp_mutex_align_t __kmp_wait_mx; 116 117 kmp_uint64 __kmp_ticks_per_msec = 1000000; 118 kmp_uint64 __kmp_ticks_per_usec = 1000; 119 120 #ifdef DEBUG_SUSPEND 121 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) { 122 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))", 123 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock, 124 cond->c_cond.__c_waiting); 125 } 126 #endif 127 128 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \ 129 KMP_OS_AIX) && \ 130 KMP_AFFINITY_SUPPORTED) 131 132 /* Affinity support */ 133 134 void __kmp_affinity_bind_thread(int which) { 135 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(), 136 "Illegal set affinity operation when not capable"); 137 138 kmp_affin_mask_t *mask; 139 KMP_CPU_ALLOC_ON_STACK(mask); 140 KMP_CPU_ZERO(mask); 141 KMP_CPU_SET(which, mask); 142 __kmp_set_system_affinity(mask, TRUE); 143 KMP_CPU_FREE_FROM_STACK(mask); 144 } 145 146 #if KMP_OS_AIX 147 void __kmp_affinity_determine_capable(const char *env_var) { 148 // All versions of AIX support bindprocessor(). 149 150 size_t mask_size = __kmp_xproc / CHAR_BIT; 151 // Round up to byte boundary. 152 if (__kmp_xproc % CHAR_BIT) 153 ++mask_size; 154 155 // Round up to the mask_size_type boundary. 156 if (mask_size % sizeof(__kmp_affin_mask_size)) 157 mask_size += sizeof(__kmp_affin_mask_size) - 158 mask_size % sizeof(__kmp_affin_mask_size); 159 KMP_AFFINITY_ENABLE(mask_size); 160 KA_TRACE(10, 161 ("__kmp_affinity_determine_capable: " 162 "AIX OS affinity interface bindprocessor functional (mask size = " 163 "%" KMP_SIZE_T_SPEC ").\n", 164 __kmp_affin_mask_size)); 165 } 166 167 #else // !KMP_OS_AIX 168 169 /* Determine if we can access affinity functionality on this version of 170 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set 171 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */ 172 void __kmp_affinity_determine_capable(const char *env_var) { 173 // Check and see if the OS supports thread affinity. 174 175 #if KMP_OS_LINUX 176 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024) 177 #define KMP_CPU_SET_TRY_SIZE CACHE_LINE 178 #elif KMP_OS_FREEBSD || KMP_OS_DRAGONFLY 179 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t)) 180 #elif KMP_OS_NETBSD 181 #define KMP_CPU_SET_SIZE_LIMIT (256) 182 #endif 183 184 int verbose = __kmp_affinity.flags.verbose; 185 int warnings = __kmp_affinity.flags.warnings; 186 enum affinity_type type = __kmp_affinity.type; 187 188 #if KMP_OS_LINUX 189 long gCode; 190 unsigned char *buf; 191 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 192 193 // If the syscall returns a suggestion for the size, 194 // then we don't have to search for an appropriate size. 195 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_TRY_SIZE, buf); 196 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 197 "initial getaffinity call returned %ld errno = %d\n", 198 gCode, errno)); 199 200 if (gCode < 0 && errno != EINVAL) { 201 // System call not supported 202 if (verbose || 203 (warnings && (type != affinity_none) && (type != affinity_default) && 204 (type != affinity_disabled))) { 205 int error = errno; 206 kmp_msg_t err_code = KMP_ERR(error); 207 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 208 err_code, __kmp_msg_null); 209 if (__kmp_generate_warnings == kmp_warnings_off) { 210 __kmp_str_free(&err_code.str); 211 } 212 } 213 KMP_AFFINITY_DISABLE(); 214 KMP_INTERNAL_FREE(buf); 215 return; 216 } else if (gCode > 0) { 217 // The optimal situation: the OS returns the size of the buffer it expects. 218 KMP_AFFINITY_ENABLE(gCode); 219 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 220 "affinity supported (mask size %d)\n", 221 (int)__kmp_affin_mask_size)); 222 KMP_INTERNAL_FREE(buf); 223 return; 224 } 225 226 // Call the getaffinity system call repeatedly with increasing set sizes 227 // until we succeed, or reach an upper bound on the search. 228 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 229 "searching for proper set size\n")); 230 int size; 231 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) { 232 gCode = syscall(__NR_sched_getaffinity, 0, size, buf); 233 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 234 "getaffinity for mask size %ld returned %ld errno = %d\n", 235 size, gCode, errno)); 236 237 if (gCode < 0) { 238 if (errno == ENOSYS) { 239 // We shouldn't get here 240 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 241 "inconsistent OS call behavior: errno == ENOSYS for mask " 242 "size %d\n", 243 size)); 244 if (verbose || 245 (warnings && (type != affinity_none) && 246 (type != affinity_default) && (type != affinity_disabled))) { 247 int error = errno; 248 kmp_msg_t err_code = KMP_ERR(error); 249 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 250 err_code, __kmp_msg_null); 251 if (__kmp_generate_warnings == kmp_warnings_off) { 252 __kmp_str_free(&err_code.str); 253 } 254 } 255 KMP_AFFINITY_DISABLE(); 256 KMP_INTERNAL_FREE(buf); 257 return; 258 } 259 continue; 260 } 261 262 KMP_AFFINITY_ENABLE(gCode); 263 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 264 "affinity supported (mask size %d)\n", 265 (int)__kmp_affin_mask_size)); 266 KMP_INTERNAL_FREE(buf); 267 return; 268 } 269 #elif KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY 270 long gCode; 271 unsigned char *buf; 272 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 273 gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT, 274 reinterpret_cast<cpuset_t *>(buf)); 275 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 276 "initial getaffinity call returned %d errno = %d\n", 277 gCode, errno)); 278 if (gCode == 0) { 279 KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT); 280 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 281 "affinity supported (mask size %d)\n", 282 (int)__kmp_affin_mask_size)); 283 KMP_INTERNAL_FREE(buf); 284 return; 285 } 286 #endif 287 KMP_INTERNAL_FREE(buf); 288 289 // Affinity is not supported 290 KMP_AFFINITY_DISABLE(); 291 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 292 "cannot determine mask size - affinity not supported\n")); 293 if (verbose || (warnings && (type != affinity_none) && 294 (type != affinity_default) && (type != affinity_disabled))) { 295 KMP_WARNING(AffCantGetMaskSize, env_var); 296 } 297 } 298 #endif // KMP_OS_AIX 299 #endif // (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 300 KMP_OS_DRAGONFLY || KMP_OS_AIX) && KMP_AFFINITY_SUPPORTED 301 302 #if KMP_USE_FUTEX 303 304 int __kmp_futex_determine_capable() { 305 int loc = 0; 306 long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0); 307 int retval = (rc == 0) || (errno != ENOSYS); 308 309 KA_TRACE(10, 310 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno)); 311 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n", 312 retval ? "" : " not")); 313 314 return retval; 315 } 316 317 #endif // KMP_USE_FUTEX 318 319 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_WASM) && (!KMP_ASM_INTRINS) 320 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to 321 use compare_and_store for these routines */ 322 323 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) { 324 kmp_int8 old_value, new_value; 325 326 old_value = TCR_1(*p); 327 new_value = old_value | d; 328 329 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 330 KMP_CPU_PAUSE(); 331 old_value = TCR_1(*p); 332 new_value = old_value | d; 333 } 334 return old_value; 335 } 336 337 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) { 338 kmp_int8 old_value, new_value; 339 340 old_value = TCR_1(*p); 341 new_value = old_value & d; 342 343 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 344 KMP_CPU_PAUSE(); 345 old_value = TCR_1(*p); 346 new_value = old_value & d; 347 } 348 return old_value; 349 } 350 351 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) { 352 kmp_uint32 old_value, new_value; 353 354 old_value = TCR_4(*p); 355 new_value = old_value | d; 356 357 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 358 KMP_CPU_PAUSE(); 359 old_value = TCR_4(*p); 360 new_value = old_value | d; 361 } 362 return old_value; 363 } 364 365 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) { 366 kmp_uint32 old_value, new_value; 367 368 old_value = TCR_4(*p); 369 new_value = old_value & d; 370 371 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 372 KMP_CPU_PAUSE(); 373 old_value = TCR_4(*p); 374 new_value = old_value & d; 375 } 376 return old_value; 377 } 378 379 #if KMP_ARCH_X86 || KMP_ARCH_WASM 380 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) { 381 kmp_int8 old_value, new_value; 382 383 old_value = TCR_1(*p); 384 new_value = old_value + d; 385 386 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 387 KMP_CPU_PAUSE(); 388 old_value = TCR_1(*p); 389 new_value = old_value + d; 390 } 391 return old_value; 392 } 393 394 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) { 395 kmp_int64 old_value, new_value; 396 397 old_value = TCR_8(*p); 398 new_value = old_value + d; 399 400 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 401 KMP_CPU_PAUSE(); 402 old_value = TCR_8(*p); 403 new_value = old_value + d; 404 } 405 return old_value; 406 } 407 #endif /* KMP_ARCH_X86 */ 408 409 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) { 410 kmp_uint64 old_value, new_value; 411 412 old_value = TCR_8(*p); 413 new_value = old_value | d; 414 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 415 KMP_CPU_PAUSE(); 416 old_value = TCR_8(*p); 417 new_value = old_value | d; 418 } 419 return old_value; 420 } 421 422 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) { 423 kmp_uint64 old_value, new_value; 424 425 old_value = TCR_8(*p); 426 new_value = old_value & d; 427 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 428 KMP_CPU_PAUSE(); 429 old_value = TCR_8(*p); 430 new_value = old_value & d; 431 } 432 return old_value; 433 } 434 435 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */ 436 437 void __kmp_terminate_thread(int gtid) { 438 int status; 439 kmp_info_t *th = __kmp_threads[gtid]; 440 441 if (!th) 442 return; 443 444 #ifdef KMP_CANCEL_THREADS 445 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 446 status = pthread_cancel(th->th.th_info.ds.ds_thread); 447 if (status != 0 && status != ESRCH) { 448 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status), 449 __kmp_msg_null); 450 } 451 #endif 452 KMP_YIELD(TRUE); 453 } // 454 455 /* Set thread stack info. 456 If values are unreasonable, assume call failed and use incremental stack 457 refinement method instead. Returns TRUE if the stack parameters could be 458 determined exactly, FALSE if incremental refinement is necessary. */ 459 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) { 460 int stack_data; 461 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 462 KMP_OS_HURD || KMP_OS_SOLARIS || KMP_OS_AIX 463 int status; 464 size_t size = 0; 465 void *addr = 0; 466 467 /* Always do incremental stack refinement for ubermaster threads since the 468 initial thread stack range can be reduced by sibling thread creation so 469 pthread_attr_getstack may cause thread gtid aliasing */ 470 if (!KMP_UBER_GTID(gtid)) { 471 472 #if KMP_OS_SOLARIS 473 stack_t s; 474 if ((status = thr_stksegment(&s)) < 0) { 475 KMP_CHECK_SYSFAIL("thr_stksegment", status); 476 } 477 478 addr = s.ss_sp; 479 size = s.ss_size; 480 KA_TRACE(60, ("__kmp_set_stack_info: T#%d thr_stksegment returned size:" 481 " %lu, low addr: %p\n", 482 gtid, size, addr)); 483 #else 484 pthread_attr_t attr; 485 /* Fetch the real thread attributes */ 486 status = pthread_attr_init(&attr); 487 KMP_CHECK_SYSFAIL("pthread_attr_init", status); 488 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD 489 status = pthread_attr_get_np(pthread_self(), &attr); 490 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status); 491 #else 492 status = pthread_getattr_np(pthread_self(), &attr); 493 KMP_CHECK_SYSFAIL("pthread_getattr_np", status); 494 #endif 495 status = pthread_attr_getstack(&attr, &addr, &size); 496 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status); 497 KA_TRACE(60, 498 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:" 499 " %lu, low addr: %p\n", 500 gtid, size, addr)); 501 status = pthread_attr_destroy(&attr); 502 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status); 503 #endif 504 } 505 506 if (size != 0 && addr != 0) { // was stack parameter determination successful? 507 /* Store the correct base and size */ 508 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size)); 509 TCW_PTR(th->th.th_info.ds.ds_stacksize, size); 510 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 511 return TRUE; 512 } 513 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD \ 514 || KMP_OS_HURD || KMP_OS_SOLARIS */ 515 /* Use incremental refinement starting from initial conservative estimate */ 516 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 517 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 518 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 519 return FALSE; 520 } 521 522 static void *__kmp_launch_worker(void *thr) { 523 int status, old_type, old_state; 524 #ifdef KMP_BLOCK_SIGNALS 525 sigset_t new_set, old_set; 526 #endif /* KMP_BLOCK_SIGNALS */ 527 void *exit_val; 528 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 529 KMP_OS_OPENBSD || KMP_OS_HURD || KMP_OS_SOLARIS || KMP_OS_AIX 530 void *volatile padding = 0; 531 #endif 532 int gtid; 533 534 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid; 535 __kmp_gtid_set_specific(gtid); 536 #ifdef KMP_TDATA_GTID 537 __kmp_gtid = gtid; 538 #endif 539 #if KMP_STATS_ENABLED 540 // set thread local index to point to thread-specific stats 541 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats; 542 __kmp_stats_thread_ptr->startLife(); 543 KMP_SET_THREAD_STATE(IDLE); 544 KMP_INIT_PARTITIONED_TIMERS(OMP_idle); 545 #endif 546 547 #if USE_ITT_BUILD 548 __kmp_itt_thread_name(gtid); 549 #endif /* USE_ITT_BUILD */ 550 551 #if KMP_AFFINITY_SUPPORTED 552 __kmp_affinity_bind_init_mask(gtid); 553 #endif 554 555 #ifdef KMP_CANCEL_THREADS 556 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 557 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 558 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 559 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 560 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 561 #endif 562 563 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 564 // Set FP control regs to be a copy of the parallel initialization thread's. 565 __kmp_clear_x87_fpu_status_word(); 566 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 567 __kmp_load_mxcsr(&__kmp_init_mxcsr); 568 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 569 570 #ifdef KMP_BLOCK_SIGNALS 571 status = sigfillset(&new_set); 572 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 573 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set); 574 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 575 #endif /* KMP_BLOCK_SIGNALS */ 576 577 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 578 KMP_OS_OPENBSD || KMP_OS_HURD || KMP_OS_SOLARIS || KMP_OS_AIX 579 if (__kmp_stkoffset > 0 && gtid > 0) { 580 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 581 (void)padding; 582 } 583 #endif 584 585 KMP_MB(); 586 __kmp_set_stack_info(gtid, (kmp_info_t *)thr); 587 588 __kmp_check_stack_overlap((kmp_info_t *)thr); 589 590 exit_val = __kmp_launch_thread((kmp_info_t *)thr); 591 592 #ifdef KMP_BLOCK_SIGNALS 593 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL); 594 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 595 #endif /* KMP_BLOCK_SIGNALS */ 596 597 return exit_val; 598 } 599 600 #if KMP_USE_MONITOR 601 /* The monitor thread controls all of the threads in the complex */ 602 603 static void *__kmp_launch_monitor(void *thr) { 604 int status, old_type, old_state; 605 #ifdef KMP_BLOCK_SIGNALS 606 sigset_t new_set; 607 #endif /* KMP_BLOCK_SIGNALS */ 608 struct timespec interval; 609 610 KMP_MB(); /* Flush all pending memory write invalidates. */ 611 612 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n")); 613 614 /* register us as the monitor thread */ 615 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 616 #ifdef KMP_TDATA_GTID 617 __kmp_gtid = KMP_GTID_MONITOR; 618 #endif 619 620 KMP_MB(); 621 622 #if USE_ITT_BUILD 623 // Instruct Intel(R) Threading Tools to ignore monitor thread. 624 __kmp_itt_thread_ignore(); 625 #endif /* USE_ITT_BUILD */ 626 627 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid, 628 (kmp_info_t *)thr); 629 630 __kmp_check_stack_overlap((kmp_info_t *)thr); 631 632 #ifdef KMP_CANCEL_THREADS 633 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 634 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 635 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 636 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 637 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 638 #endif 639 640 #if KMP_REAL_TIME_FIX 641 // This is a potential fix which allows application with real-time scheduling 642 // policy work. However, decision about the fix is not made yet, so it is 643 // disabled by default. 644 { // Are program started with real-time scheduling policy? 645 int sched = sched_getscheduler(0); 646 if (sched == SCHED_FIFO || sched == SCHED_RR) { 647 // Yes, we are a part of real-time application. Try to increase the 648 // priority of the monitor. 649 struct sched_param param; 650 int max_priority = sched_get_priority_max(sched); 651 int rc; 652 KMP_WARNING(RealTimeSchedNotSupported); 653 sched_getparam(0, ¶m); 654 if (param.sched_priority < max_priority) { 655 param.sched_priority += 1; 656 rc = sched_setscheduler(0, sched, ¶m); 657 if (rc != 0) { 658 int error = errno; 659 kmp_msg_t err_code = KMP_ERR(error); 660 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority), 661 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null); 662 if (__kmp_generate_warnings == kmp_warnings_off) { 663 __kmp_str_free(&err_code.str); 664 } 665 } 666 } else { 667 // We cannot abort here, because number of CPUs may be enough for all 668 // the threads, including the monitor thread, so application could 669 // potentially work... 670 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority), 671 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority), 672 __kmp_msg_null); 673 } 674 } 675 // AC: free thread that waits for monitor started 676 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 677 } 678 #endif // KMP_REAL_TIME_FIX 679 680 KMP_MB(); /* Flush all pending memory write invalidates. */ 681 682 if (__kmp_monitor_wakeups == 1) { 683 interval.tv_sec = 1; 684 interval.tv_nsec = 0; 685 } else { 686 interval.tv_sec = 0; 687 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups); 688 } 689 690 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n")); 691 692 while (!TCR_4(__kmp_global.g.g_done)) { 693 struct timespec now; 694 struct timeval tval; 695 696 /* This thread monitors the state of the system */ 697 698 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 699 700 status = gettimeofday(&tval, NULL); 701 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 702 TIMEVAL_TO_TIMESPEC(&tval, &now); 703 704 now.tv_sec += interval.tv_sec; 705 now.tv_nsec += interval.tv_nsec; 706 707 if (now.tv_nsec >= KMP_NSEC_PER_SEC) { 708 now.tv_sec += 1; 709 now.tv_nsec -= KMP_NSEC_PER_SEC; 710 } 711 712 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 713 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 714 // AC: the monitor should not fall asleep if g_done has been set 715 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex 716 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond, 717 &__kmp_wait_mx.m_mutex, &now); 718 if (status != 0) { 719 if (status != ETIMEDOUT && status != EINTR) { 720 KMP_SYSFAIL("pthread_cond_timedwait", status); 721 } 722 } 723 } 724 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 725 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 726 727 TCW_4(__kmp_global.g.g_time.dt.t_value, 728 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 729 730 KMP_MB(); /* Flush all pending memory write invalidates. */ 731 } 732 733 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n")); 734 735 #ifdef KMP_BLOCK_SIGNALS 736 status = sigfillset(&new_set); 737 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 738 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL); 739 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 740 #endif /* KMP_BLOCK_SIGNALS */ 741 742 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n")); 743 744 if (__kmp_global.g.g_abort != 0) { 745 /* now we need to terminate the worker threads */ 746 /* the value of t_abort is the signal we caught */ 747 748 int gtid; 749 750 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", 751 __kmp_global.g.g_abort)); 752 753 /* terminate the OpenMP worker threads */ 754 /* TODO this is not valid for sibling threads!! 755 * the uber master might not be 0 anymore.. */ 756 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 757 __kmp_terminate_thread(gtid); 758 759 __kmp_cleanup(); 760 761 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n", 762 __kmp_global.g.g_abort)); 763 764 if (__kmp_global.g.g_abort > 0) 765 raise(__kmp_global.g.g_abort); 766 } 767 768 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n")); 769 770 return thr; 771 } 772 #endif // KMP_USE_MONITOR 773 774 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 775 pthread_t handle; 776 pthread_attr_t thread_attr; 777 int status; 778 779 th->th.th_info.ds.ds_gtid = gtid; 780 781 #if KMP_STATS_ENABLED 782 // sets up worker thread stats 783 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid); 784 785 // th->th.th_stats is used to transfer thread-specific stats-pointer to 786 // __kmp_launch_worker. So when thread is created (goes into 787 // __kmp_launch_worker) it will set its thread local pointer to 788 // th->th.th_stats 789 if (!KMP_UBER_GTID(gtid)) { 790 th->th.th_stats = __kmp_stats_list->push_back(gtid); 791 } else { 792 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(), 793 // so set the th->th.th_stats field to it. 794 th->th.th_stats = __kmp_stats_thread_ptr; 795 } 796 __kmp_release_tas_lock(&__kmp_stats_lock, gtid); 797 798 #endif // KMP_STATS_ENABLED 799 800 if (KMP_UBER_GTID(gtid)) { 801 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid)); 802 th->th.th_info.ds.ds_thread = pthread_self(); 803 __kmp_set_stack_info(gtid, th); 804 __kmp_check_stack_overlap(th); 805 return; 806 } 807 808 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 809 810 KMP_MB(); /* Flush all pending memory write invalidates. */ 811 812 #ifdef KMP_THREAD_ATTR 813 status = pthread_attr_init(&thread_attr); 814 if (status != 0) { 815 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 816 } 817 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 818 if (status != 0) { 819 __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null); 820 } 821 822 /* Set stack size for this thread now. 823 The multiple of 2 is there because on some machines, requesting an unusual 824 stacksize causes the thread to have an offset before the dummy alloca() 825 takes place to create the offset. Since we want the user to have a 826 sufficient stacksize AND support a stack offset, we alloca() twice the 827 offset so that the upcoming alloca() does not eliminate any premade offset, 828 and also gives the user the stack space they requested for all threads */ 829 stack_size += gtid * __kmp_stkoffset * 2; 830 831 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 832 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n", 833 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 834 835 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 836 status = pthread_attr_setstacksize(&thread_attr, stack_size); 837 #ifdef KMP_BACKUP_STKSIZE 838 if (status != 0) { 839 if (!__kmp_env_stksize) { 840 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset; 841 __kmp_stksize = KMP_BACKUP_STKSIZE; 842 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 843 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu " 844 "bytes\n", 845 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 846 status = pthread_attr_setstacksize(&thread_attr, stack_size); 847 } 848 } 849 #endif /* KMP_BACKUP_STKSIZE */ 850 if (status != 0) { 851 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 852 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null); 853 } 854 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 855 856 #endif /* KMP_THREAD_ATTR */ 857 858 status = 859 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th); 860 if (status != 0 || !handle) { // ??? Why do we check handle?? 861 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 862 if (status == EINVAL) { 863 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 864 KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null); 865 } 866 if (status == ENOMEM) { 867 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 868 KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null); 869 } 870 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 871 if (status == EAGAIN) { 872 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status), 873 KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null); 874 } 875 KMP_SYSFAIL("pthread_create", status); 876 } 877 878 th->th.th_info.ds.ds_thread = handle; 879 880 #ifdef KMP_THREAD_ATTR 881 status = pthread_attr_destroy(&thread_attr); 882 if (status) { 883 kmp_msg_t err_code = KMP_ERR(status); 884 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 885 __kmp_msg_null); 886 if (__kmp_generate_warnings == kmp_warnings_off) { 887 __kmp_str_free(&err_code.str); 888 } 889 } 890 #endif /* KMP_THREAD_ATTR */ 891 892 KMP_MB(); /* Flush all pending memory write invalidates. */ 893 894 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 895 896 } // __kmp_create_worker 897 898 #if KMP_USE_MONITOR 899 void __kmp_create_monitor(kmp_info_t *th) { 900 pthread_t handle; 901 pthread_attr_t thread_attr; 902 size_t size; 903 int status; 904 int auto_adj_size = FALSE; 905 906 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 907 // We don't need monitor thread in case of MAX_BLOCKTIME 908 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 909 "MAX blocktime\n")); 910 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 911 th->th.th_info.ds.ds_gtid = 0; 912 return; 913 } 914 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 915 916 KMP_MB(); /* Flush all pending memory write invalidates. */ 917 918 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 919 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 920 #if KMP_REAL_TIME_FIX 921 TCW_4(__kmp_global.g.g_time.dt.t_value, 922 -1); // Will use it for synchronization a bit later. 923 #else 924 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 925 #endif // KMP_REAL_TIME_FIX 926 927 #ifdef KMP_THREAD_ATTR 928 if (__kmp_monitor_stksize == 0) { 929 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 930 auto_adj_size = TRUE; 931 } 932 status = pthread_attr_init(&thread_attr); 933 if (status != 0) { 934 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 935 } 936 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 937 if (status != 0) { 938 __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null); 939 } 940 941 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 942 status = pthread_attr_getstacksize(&thread_attr, &size); 943 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status); 944 #else 945 size = __kmp_sys_min_stksize; 946 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 947 #endif /* KMP_THREAD_ATTR */ 948 949 if (__kmp_monitor_stksize == 0) { 950 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 951 } 952 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 953 __kmp_monitor_stksize = __kmp_sys_min_stksize; 954 } 955 956 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes," 957 "requested stacksize = %lu bytes\n", 958 size, __kmp_monitor_stksize)); 959 960 retry: 961 962 /* Set stack size for this thread now. */ 963 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 964 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,", 965 __kmp_monitor_stksize)); 966 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize); 967 if (status != 0) { 968 if (auto_adj_size) { 969 __kmp_monitor_stksize *= 2; 970 goto retry; 971 } 972 kmp_msg_t err_code = KMP_ERR(status); 973 __kmp_msg(kmp_ms_warning, // should this be fatal? BB 974 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize), 975 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null); 976 if (__kmp_generate_warnings == kmp_warnings_off) { 977 __kmp_str_free(&err_code.str); 978 } 979 } 980 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 981 982 status = 983 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th); 984 985 if (status != 0) { 986 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 987 if (status == EINVAL) { 988 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) { 989 __kmp_monitor_stksize *= 2; 990 goto retry; 991 } 992 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 993 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), 994 __kmp_msg_null); 995 } 996 if (status == ENOMEM) { 997 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 998 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), 999 __kmp_msg_null); 1000 } 1001 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 1002 if (status == EAGAIN) { 1003 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status), 1004 KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null); 1005 } 1006 KMP_SYSFAIL("pthread_create", status); 1007 } 1008 1009 th->th.th_info.ds.ds_thread = handle; 1010 1011 #if KMP_REAL_TIME_FIX 1012 // Wait for the monitor thread is really started and set its *priority*. 1013 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 1014 sizeof(__kmp_global.g.g_time.dt.t_value)); 1015 __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1, 1016 &__kmp_neq_4, NULL); 1017 #endif // KMP_REAL_TIME_FIX 1018 1019 #ifdef KMP_THREAD_ATTR 1020 status = pthread_attr_destroy(&thread_attr); 1021 if (status != 0) { 1022 kmp_msg_t err_code = KMP_ERR(status); 1023 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 1024 __kmp_msg_null); 1025 if (__kmp_generate_warnings == kmp_warnings_off) { 1026 __kmp_str_free(&err_code.str); 1027 } 1028 } 1029 #endif 1030 1031 KMP_MB(); /* Flush all pending memory write invalidates. */ 1032 1033 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n", 1034 th->th.th_info.ds.ds_thread)); 1035 1036 } // __kmp_create_monitor 1037 #endif // KMP_USE_MONITOR 1038 1039 void __kmp_exit_thread(int exit_status) { 1040 #if KMP_OS_WASI 1041 // TODO: the wasm32-wasi-threads target does not yet support pthread_exit. 1042 #else 1043 pthread_exit((void *)(intptr_t)exit_status); 1044 #endif 1045 } // __kmp_exit_thread 1046 1047 #if KMP_USE_MONITOR 1048 void __kmp_resume_monitor(); 1049 1050 extern "C" void __kmp_reap_monitor(kmp_info_t *th) { 1051 int status; 1052 void *exit_val; 1053 1054 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle" 1055 " %#.8lx\n", 1056 th->th.th_info.ds.ds_thread)); 1057 1058 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1059 // If both tid and gtid are 0, it means the monitor did not ever start. 1060 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1061 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1062 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1063 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1064 return; 1065 } 1066 1067 KMP_MB(); /* Flush all pending memory write invalidates. */ 1068 1069 /* First, check to see whether the monitor thread exists to wake it up. This 1070 is to avoid performance problem when the monitor sleeps during 1071 blocktime-size interval */ 1072 1073 status = pthread_kill(th->th.th_info.ds.ds_thread, 0); 1074 if (status != ESRCH) { 1075 __kmp_resume_monitor(); // Wake up the monitor thread 1076 } 1077 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n")); 1078 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1079 if (exit_val != th) { 1080 __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null); 1081 } 1082 1083 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1084 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1085 1086 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle" 1087 " %#.8lx\n", 1088 th->th.th_info.ds.ds_thread)); 1089 1090 KMP_MB(); /* Flush all pending memory write invalidates. */ 1091 } 1092 #else 1093 // Empty symbol to export (see exports_so.txt) when 1094 // monitor thread feature is disabled 1095 extern "C" void __kmp_reap_monitor(kmp_info_t *th) { (void)th; } 1096 #endif // KMP_USE_MONITOR 1097 1098 void __kmp_reap_worker(kmp_info_t *th) { 1099 int status; 1100 void *exit_val; 1101 1102 KMP_MB(); /* Flush all pending memory write invalidates. */ 1103 1104 KA_TRACE( 1105 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid)); 1106 1107 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1108 #ifdef KMP_DEBUG 1109 /* Don't expose these to the user until we understand when they trigger */ 1110 if (status != 0) { 1111 __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null); 1112 } 1113 if (exit_val != th) { 1114 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, " 1115 "exit_val = %p\n", 1116 th->th.th_info.ds.ds_gtid, exit_val)); 1117 } 1118 #else 1119 (void)status; // unused variable 1120 #endif /* KMP_DEBUG */ 1121 1122 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n", 1123 th->th.th_info.ds.ds_gtid)); 1124 1125 KMP_MB(); /* Flush all pending memory write invalidates. */ 1126 } 1127 1128 #if KMP_HANDLE_SIGNALS 1129 1130 static void __kmp_null_handler(int signo) { 1131 // Do nothing, for doing SIG_IGN-type actions. 1132 } // __kmp_null_handler 1133 1134 static void __kmp_team_handler(int signo) { 1135 if (__kmp_global.g.g_abort == 0) { 1136 /* Stage 1 signal handler, let's shut down all of the threads */ 1137 #ifdef KMP_DEBUG 1138 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo); 1139 #endif 1140 switch (signo) { 1141 case SIGHUP: 1142 case SIGINT: 1143 case SIGQUIT: 1144 case SIGILL: 1145 case SIGABRT: 1146 case SIGFPE: 1147 case SIGBUS: 1148 case SIGSEGV: 1149 #ifdef SIGSYS 1150 case SIGSYS: 1151 #endif 1152 case SIGTERM: 1153 if (__kmp_debug_buf) { 1154 __kmp_dump_debug_buffer(); 1155 } 1156 __kmp_unregister_library(); // cleanup shared memory 1157 KMP_MB(); // Flush all pending memory write invalidates. 1158 TCW_4(__kmp_global.g.g_abort, signo); 1159 KMP_MB(); // Flush all pending memory write invalidates. 1160 TCW_4(__kmp_global.g.g_done, TRUE); 1161 KMP_MB(); // Flush all pending memory write invalidates. 1162 break; 1163 default: 1164 #ifdef KMP_DEBUG 1165 __kmp_debug_printf("__kmp_team_handler: unknown signal type"); 1166 #endif 1167 break; 1168 } 1169 } 1170 } // __kmp_team_handler 1171 1172 static void __kmp_sigaction(int signum, const struct sigaction *act, 1173 struct sigaction *oldact) { 1174 int rc = sigaction(signum, act, oldact); 1175 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc); 1176 } 1177 1178 static void __kmp_install_one_handler(int sig, sig_func_t handler_func, 1179 int parallel_init) { 1180 KMP_MB(); // Flush all pending memory write invalidates. 1181 KB_TRACE(60, 1182 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init)); 1183 if (parallel_init) { 1184 struct sigaction new_action; 1185 struct sigaction old_action; 1186 new_action.sa_handler = handler_func; 1187 new_action.sa_flags = 0; 1188 sigfillset(&new_action.sa_mask); 1189 __kmp_sigaction(sig, &new_action, &old_action); 1190 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) { 1191 sigaddset(&__kmp_sigset, sig); 1192 } else { 1193 // Restore/keep user's handler if one previously installed. 1194 __kmp_sigaction(sig, &old_action, NULL); 1195 } 1196 } else { 1197 // Save initial/system signal handlers to see if user handlers installed. 1198 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]); 1199 } 1200 KMP_MB(); // Flush all pending memory write invalidates. 1201 } // __kmp_install_one_handler 1202 1203 static void __kmp_remove_one_handler(int sig) { 1204 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig)); 1205 if (sigismember(&__kmp_sigset, sig)) { 1206 struct sigaction old; 1207 KMP_MB(); // Flush all pending memory write invalidates. 1208 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old); 1209 if ((old.sa_handler != __kmp_team_handler) && 1210 (old.sa_handler != __kmp_null_handler)) { 1211 // Restore the users signal handler. 1212 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1213 "restoring: sig=%d\n", 1214 sig)); 1215 __kmp_sigaction(sig, &old, NULL); 1216 } 1217 sigdelset(&__kmp_sigset, sig); 1218 KMP_MB(); // Flush all pending memory write invalidates. 1219 } 1220 } // __kmp_remove_one_handler 1221 1222 void __kmp_install_signals(int parallel_init) { 1223 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init)); 1224 if (__kmp_handle_signals || !parallel_init) { 1225 // If ! parallel_init, we do not install handlers, just save original 1226 // handlers. Let us do it even __handle_signals is 0. 1227 sigemptyset(&__kmp_sigset); 1228 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init); 1229 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1230 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init); 1231 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1232 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1233 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1234 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init); 1235 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1236 #ifdef SIGSYS 1237 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init); 1238 #endif // SIGSYS 1239 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1240 #ifdef SIGPIPE 1241 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init); 1242 #endif // SIGPIPE 1243 } 1244 } // __kmp_install_signals 1245 1246 void __kmp_remove_signals(void) { 1247 int sig; 1248 KB_TRACE(10, ("__kmp_remove_signals()\n")); 1249 for (sig = 1; sig < NSIG; ++sig) { 1250 __kmp_remove_one_handler(sig); 1251 } 1252 } // __kmp_remove_signals 1253 1254 #endif // KMP_HANDLE_SIGNALS 1255 1256 void __kmp_enable(int new_state) { 1257 #ifdef KMP_CANCEL_THREADS 1258 int status, old_state; 1259 status = pthread_setcancelstate(new_state, &old_state); 1260 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1261 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE); 1262 #endif 1263 } 1264 1265 void __kmp_disable(int *old_state) { 1266 #ifdef KMP_CANCEL_THREADS 1267 int status; 1268 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state); 1269 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1270 #endif 1271 } 1272 1273 static void __kmp_atfork_prepare(void) { 1274 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 1275 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1276 } 1277 1278 static void __kmp_atfork_parent(void) { 1279 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1280 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1281 } 1282 1283 /* Reset the library so execution in the child starts "all over again" with 1284 clean data structures in initial states. Don't worry about freeing memory 1285 allocated by parent, just abandon it to be safe. */ 1286 static void __kmp_atfork_child(void) { 1287 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1288 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1289 /* TODO make sure this is done right for nested/sibling */ 1290 // ATT: Memory leaks are here? TODO: Check it and fix. 1291 /* KMP_ASSERT( 0 ); */ 1292 1293 ++__kmp_fork_count; 1294 1295 #if KMP_AFFINITY_SUPPORTED 1296 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \ 1297 KMP_OS_AIX 1298 // reset the affinity in the child to the initial thread 1299 // affinity in the parent 1300 kmp_set_thread_affinity_mask_initial(); 1301 #endif 1302 // Set default not to bind threads tightly in the child (we're expecting 1303 // over-subscription after the fork and this can improve things for 1304 // scripting languages that use OpenMP inside process-parallel code). 1305 if (__kmp_nested_proc_bind.bind_types != NULL) { 1306 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; 1307 } 1308 for (kmp_affinity_t *affinity : __kmp_affinities) 1309 *affinity = KMP_AFFINITY_INIT(affinity->env_var); 1310 __kmp_affin_fullMask = nullptr; 1311 __kmp_affin_origMask = nullptr; 1312 __kmp_topology = nullptr; 1313 #endif // KMP_AFFINITY_SUPPORTED 1314 1315 #if KMP_USE_MONITOR 1316 __kmp_init_monitor = 0; 1317 #endif 1318 __kmp_init_parallel = FALSE; 1319 __kmp_init_middle = FALSE; 1320 __kmp_init_serial = FALSE; 1321 TCW_4(__kmp_init_gtid, FALSE); 1322 __kmp_init_common = FALSE; 1323 1324 TCW_4(__kmp_init_user_locks, FALSE); 1325 #if !KMP_USE_DYNAMIC_LOCK 1326 __kmp_user_lock_table.used = 1; 1327 __kmp_user_lock_table.allocated = 0; 1328 __kmp_user_lock_table.table = NULL; 1329 __kmp_lock_blocks = NULL; 1330 #endif 1331 1332 __kmp_all_nth = 0; 1333 TCW_4(__kmp_nth, 0); 1334 1335 __kmp_thread_pool = NULL; 1336 __kmp_thread_pool_insert_pt = NULL; 1337 __kmp_team_pool = NULL; 1338 1339 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate 1340 here so threadprivate doesn't use stale data */ 1341 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n", 1342 __kmp_threadpriv_cache_list)); 1343 1344 while (__kmp_threadpriv_cache_list != NULL) { 1345 1346 if (*__kmp_threadpriv_cache_list->addr != NULL) { 1347 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n", 1348 &(*__kmp_threadpriv_cache_list->addr))); 1349 1350 *__kmp_threadpriv_cache_list->addr = NULL; 1351 } 1352 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next; 1353 } 1354 1355 __kmp_init_runtime = FALSE; 1356 1357 /* reset statically initialized locks */ 1358 __kmp_init_bootstrap_lock(&__kmp_initz_lock); 1359 __kmp_init_bootstrap_lock(&__kmp_stdio_lock); 1360 __kmp_init_bootstrap_lock(&__kmp_console_lock); 1361 __kmp_init_bootstrap_lock(&__kmp_task_team_lock); 1362 1363 #if USE_ITT_BUILD 1364 __kmp_itt_reset(); // reset ITT's global state 1365 #endif /* USE_ITT_BUILD */ 1366 1367 { 1368 // Child process often get terminated without any use of OpenMP. That might 1369 // cause mapped shared memory file to be left unattended. Thus we postpone 1370 // library registration till middle initialization in the child process. 1371 __kmp_need_register_serial = FALSE; 1372 __kmp_serial_initialize(); 1373 } 1374 1375 /* This is necessary to make sure no stale data is left around */ 1376 /* AC: customers complain that we use unsafe routines in the atfork 1377 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen 1378 in dynamic_link when check the presence of shared tbbmalloc library. 1379 Suggestion is to make the library initialization lazier, similar 1380 to what done for __kmpc_begin(). */ 1381 // TODO: synchronize all static initializations with regular library 1382 // startup; look at kmp_global.cpp and etc. 1383 //__kmp_internal_begin (); 1384 } 1385 1386 void __kmp_register_atfork(void) { 1387 if (__kmp_need_register_atfork) { 1388 #if !KMP_OS_WASI 1389 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent, 1390 __kmp_atfork_child); 1391 KMP_CHECK_SYSFAIL("pthread_atfork", status); 1392 #endif 1393 __kmp_need_register_atfork = FALSE; 1394 } 1395 } 1396 1397 void __kmp_suspend_initialize(void) { 1398 int status; 1399 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr); 1400 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1401 status = pthread_condattr_init(&__kmp_suspend_cond_attr); 1402 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1403 } 1404 1405 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 1406 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count); 1407 int new_value = __kmp_fork_count + 1; 1408 // Return if already initialized 1409 if (old_value == new_value) 1410 return; 1411 // Wait, then return if being initialized 1412 if (old_value == -1 || !__kmp_atomic_compare_store( 1413 &th->th.th_suspend_init_count, old_value, -1)) { 1414 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) { 1415 KMP_CPU_PAUSE(); 1416 } 1417 } else { 1418 // Claim to be the initializer and do initializations 1419 int status; 1420 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond, 1421 &__kmp_suspend_cond_attr); 1422 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1423 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex, 1424 &__kmp_suspend_mutex_attr); 1425 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1426 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value); 1427 } 1428 } 1429 1430 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 1431 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) { 1432 /* this means we have initialize the suspension pthread objects for this 1433 thread in this instance of the process */ 1434 int status; 1435 1436 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond); 1437 if (status != 0 && status != EBUSY) { 1438 KMP_SYSFAIL("pthread_cond_destroy", status); 1439 } 1440 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex); 1441 if (status != 0 && status != EBUSY) { 1442 KMP_SYSFAIL("pthread_mutex_destroy", status); 1443 } 1444 --th->th.th_suspend_init_count; 1445 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) == 1446 __kmp_fork_count); 1447 } 1448 } 1449 1450 // return true if lock obtained, false otherwise 1451 int __kmp_try_suspend_mx(kmp_info_t *th) { 1452 return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0); 1453 } 1454 1455 void __kmp_lock_suspend_mx(kmp_info_t *th) { 1456 int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1457 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1458 } 1459 1460 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 1461 int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1462 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1463 } 1464 1465 /* This routine puts the calling thread to sleep after setting the 1466 sleep bit for the indicated flag variable to true. */ 1467 template <class C> 1468 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 1469 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend); 1470 kmp_info_t *th = __kmp_threads[th_gtid]; 1471 int status; 1472 typename C::flag_t old_spin; 1473 1474 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid, 1475 flag->get())); 1476 1477 __kmp_suspend_initialize_thread(th); 1478 1479 __kmp_lock_suspend_mx(th); 1480 1481 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n", 1482 th_gtid, flag->get())); 1483 1484 /* TODO: shouldn't this use release semantics to ensure that 1485 __kmp_suspend_initialize_thread gets called first? */ 1486 old_spin = flag->set_sleeping(); 1487 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 1488 th->th.th_sleep_loc_type = flag->get_type(); 1489 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 1490 __kmp_pause_status != kmp_soft_paused) { 1491 flag->unset_sleeping(); 1492 TCW_PTR(th->th.th_sleep_loc, NULL); 1493 th->th.th_sleep_loc_type = flag_unset; 1494 __kmp_unlock_suspend_mx(th); 1495 return; 1496 } 1497 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x," 1498 " was %x\n", 1499 th_gtid, flag->get(), flag->load(), old_spin)); 1500 1501 if (flag->done_check_val(old_spin) || flag->done_check()) { 1502 flag->unset_sleeping(); 1503 TCW_PTR(th->th.th_sleep_loc, NULL); 1504 th->th.th_sleep_loc_type = flag_unset; 1505 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 1506 "for spin(%p)\n", 1507 th_gtid, flag->get())); 1508 } else { 1509 /* Encapsulate in a loop as the documentation states that this may 1510 "with low probability" return when the condition variable has 1511 not been signaled or broadcast */ 1512 int deactivated = FALSE; 1513 1514 while (flag->is_sleeping()) { 1515 #ifdef DEBUG_SUSPEND 1516 char buffer[128]; 1517 __kmp_suspend_count++; 1518 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1519 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid, 1520 buffer); 1521 #endif 1522 // Mark the thread as no longer active (only in the first iteration of the 1523 // loop). 1524 if (!deactivated) { 1525 th->th.th_active = FALSE; 1526 if (th->th.th_active_in_pool) { 1527 th->th.th_active_in_pool = FALSE; 1528 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 1529 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 1530 } 1531 deactivated = TRUE; 1532 } 1533 1534 KMP_DEBUG_ASSERT(th->th.th_sleep_loc); 1535 KMP_DEBUG_ASSERT(flag->get_type() == th->th.th_sleep_loc_type); 1536 1537 #if USE_SUSPEND_TIMEOUT 1538 struct timespec now; 1539 struct timeval tval; 1540 int msecs; 1541 1542 status = gettimeofday(&tval, NULL); 1543 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1544 TIMEVAL_TO_TIMESPEC(&tval, &now); 1545 1546 msecs = (4 * __kmp_dflt_blocktime) + 200; 1547 now.tv_sec += msecs / 1000; 1548 now.tv_nsec += (msecs % 1000) * 1000; 1549 1550 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 1551 "pthread_cond_timedwait\n", 1552 th_gtid)); 1553 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond, 1554 &th->th.th_suspend_mx.m_mutex, &now); 1555 #else 1556 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform" 1557 " pthread_cond_wait\n", 1558 th_gtid)); 1559 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond, 1560 &th->th.th_suspend_mx.m_mutex); 1561 #endif // USE_SUSPEND_TIMEOUT 1562 1563 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) { 1564 KMP_SYSFAIL("pthread_cond_wait", status); 1565 } 1566 1567 KMP_DEBUG_ASSERT(flag->get_type() == flag->get_ptr_type()); 1568 1569 if (!flag->is_sleeping() && 1570 ((status == EINTR) || (status == ETIMEDOUT))) { 1571 // if interrupt or timeout, and thread is no longer sleeping, we need to 1572 // make sure sleep_loc gets reset; however, this shouldn't be needed if 1573 // we woke up with resume 1574 flag->unset_sleeping(); 1575 TCW_PTR(th->th.th_sleep_loc, NULL); 1576 th->th.th_sleep_loc_type = flag_unset; 1577 } 1578 #ifdef KMP_DEBUG 1579 if (status == ETIMEDOUT) { 1580 if (flag->is_sleeping()) { 1581 KF_TRACE(100, 1582 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid)); 1583 } else { 1584 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit " 1585 "not set!\n", 1586 th_gtid)); 1587 TCW_PTR(th->th.th_sleep_loc, NULL); 1588 th->th.th_sleep_loc_type = flag_unset; 1589 } 1590 } else if (flag->is_sleeping()) { 1591 KF_TRACE(100, 1592 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 1593 } 1594 #endif 1595 } // while 1596 1597 // Mark the thread as active again (if it was previous marked as inactive) 1598 if (deactivated) { 1599 th->th.th_active = TRUE; 1600 if (TCR_4(th->th.th_in_pool)) { 1601 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 1602 th->th.th_active_in_pool = TRUE; 1603 } 1604 } 1605 } 1606 // We may have had the loop variable set before entering the loop body; 1607 // so we need to reset sleep_loc. 1608 TCW_PTR(th->th.th_sleep_loc, NULL); 1609 th->th.th_sleep_loc_type = flag_unset; 1610 1611 KMP_DEBUG_ASSERT(!flag->is_sleeping()); 1612 KMP_DEBUG_ASSERT(!th->th.th_sleep_loc); 1613 #ifdef DEBUG_SUSPEND 1614 { 1615 char buffer[128]; 1616 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1617 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid, 1618 buffer); 1619 } 1620 #endif 1621 1622 __kmp_unlock_suspend_mx(th); 1623 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 1624 } 1625 1626 template <bool C, bool S> 1627 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) { 1628 __kmp_suspend_template(th_gtid, flag); 1629 } 1630 template <bool C, bool S> 1631 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) { 1632 __kmp_suspend_template(th_gtid, flag); 1633 } 1634 template <bool C, bool S> 1635 void __kmp_atomic_suspend_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag) { 1636 __kmp_suspend_template(th_gtid, flag); 1637 } 1638 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 1639 __kmp_suspend_template(th_gtid, flag); 1640 } 1641 1642 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *); 1643 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *); 1644 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *); 1645 template void 1646 __kmp_atomic_suspend_64<false, true>(int, kmp_atomic_flag_64<false, true> *); 1647 template void 1648 __kmp_atomic_suspend_64<true, false>(int, kmp_atomic_flag_64<true, false> *); 1649 1650 /* This routine signals the thread specified by target_gtid to wake up 1651 after setting the sleep bit indicated by the flag argument to FALSE. 1652 The target thread must already have called __kmp_suspend_template() */ 1653 template <class C> 1654 static inline void __kmp_resume_template(int target_gtid, C *flag) { 1655 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1656 kmp_info_t *th = __kmp_threads[target_gtid]; 1657 int status; 1658 1659 #ifdef KMP_DEBUG 1660 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1661 #endif 1662 1663 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 1664 gtid, target_gtid)); 1665 KMP_DEBUG_ASSERT(gtid != target_gtid); 1666 1667 __kmp_suspend_initialize_thread(th); 1668 1669 __kmp_lock_suspend_mx(th); 1670 1671 if (!flag || flag != th->th.th_sleep_loc) { 1672 // coming from __kmp_null_resume_wrapper, or thread is now sleeping on a 1673 // different location; wake up at new location 1674 flag = (C *)CCAST(void *, th->th.th_sleep_loc); 1675 } 1676 1677 // First, check if the flag is null or its type has changed. If so, someone 1678 // else woke it up. 1679 if (!flag) { // Thread doesn't appear to be sleeping on anything 1680 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1681 "awake: flag(%p)\n", 1682 gtid, target_gtid, (void *)NULL)); 1683 __kmp_unlock_suspend_mx(th); 1684 return; 1685 } else if (flag->get_type() != th->th.th_sleep_loc_type) { 1686 // Flag type does not appear to match this function template; possibly the 1687 // thread is sleeping on something else. Try null resume again. 1688 KF_TRACE( 1689 5, 1690 ("__kmp_resume_template: T#%d retrying, thread T#%d Mismatch flag(%p), " 1691 "spin(%p) type=%d ptr_type=%d\n", 1692 gtid, target_gtid, flag, flag->get(), flag->get_type(), 1693 th->th.th_sleep_loc_type)); 1694 __kmp_unlock_suspend_mx(th); 1695 __kmp_null_resume_wrapper(th); 1696 return; 1697 } else { // if multiple threads are sleeping, flag should be internally 1698 // referring to a specific thread here 1699 if (!flag->is_sleeping()) { 1700 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1701 "awake: flag(%p): %u\n", 1702 gtid, target_gtid, flag->get(), (unsigned int)flag->load())); 1703 __kmp_unlock_suspend_mx(th); 1704 return; 1705 } 1706 } 1707 KMP_DEBUG_ASSERT(flag); 1708 flag->unset_sleeping(); 1709 TCW_PTR(th->th.th_sleep_loc, NULL); 1710 th->th.th_sleep_loc_type = flag_unset; 1711 1712 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset " 1713 "sleep bit for flag's loc(%p): %u\n", 1714 gtid, target_gtid, flag->get(), (unsigned int)flag->load())); 1715 1716 #ifdef DEBUG_SUSPEND 1717 { 1718 char buffer[128]; 1719 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1720 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid, 1721 target_gtid, buffer); 1722 } 1723 #endif 1724 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond); 1725 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1726 __kmp_unlock_suspend_mx(th); 1727 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 1728 " for T#%d\n", 1729 gtid, target_gtid)); 1730 } 1731 1732 template <bool C, bool S> 1733 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) { 1734 __kmp_resume_template(target_gtid, flag); 1735 } 1736 template <bool C, bool S> 1737 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) { 1738 __kmp_resume_template(target_gtid, flag); 1739 } 1740 template <bool C, bool S> 1741 void __kmp_atomic_resume_64(int target_gtid, kmp_atomic_flag_64<C, S> *flag) { 1742 __kmp_resume_template(target_gtid, flag); 1743 } 1744 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 1745 __kmp_resume_template(target_gtid, flag); 1746 } 1747 1748 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *); 1749 template void __kmp_resume_32<false, false>(int, kmp_flag_32<false, false> *); 1750 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *); 1751 template void 1752 __kmp_atomic_resume_64<false, true>(int, kmp_atomic_flag_64<false, true> *); 1753 1754 #if KMP_USE_MONITOR 1755 void __kmp_resume_monitor() { 1756 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1757 int status; 1758 #ifdef KMP_DEBUG 1759 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1760 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid, 1761 KMP_GTID_MONITOR)); 1762 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR); 1763 #endif 1764 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 1765 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1766 #ifdef DEBUG_SUSPEND 1767 { 1768 char buffer[128]; 1769 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond); 1770 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid, 1771 KMP_GTID_MONITOR, buffer); 1772 } 1773 #endif 1774 status = pthread_cond_signal(&__kmp_wait_cv.c_cond); 1775 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1776 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 1777 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1778 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up" 1779 " for T#%d\n", 1780 gtid, KMP_GTID_MONITOR)); 1781 } 1782 #endif // KMP_USE_MONITOR 1783 1784 void __kmp_yield() { sched_yield(); } 1785 1786 void __kmp_gtid_set_specific(int gtid) { 1787 if (__kmp_init_gtid) { 1788 int status; 1789 status = pthread_setspecific(__kmp_gtid_threadprivate_key, 1790 (void *)(intptr_t)(gtid + 1)); 1791 KMP_CHECK_SYSFAIL("pthread_setspecific", status); 1792 } else { 1793 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 1794 } 1795 } 1796 1797 int __kmp_gtid_get_specific() { 1798 int gtid; 1799 if (!__kmp_init_gtid) { 1800 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 1801 "KMP_GTID_SHUTDOWN\n")); 1802 return KMP_GTID_SHUTDOWN; 1803 } 1804 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key); 1805 if (gtid == 0) { 1806 gtid = KMP_GTID_DNE; 1807 } else { 1808 gtid--; 1809 } 1810 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 1811 __kmp_gtid_threadprivate_key, gtid)); 1812 return gtid; 1813 } 1814 1815 double __kmp_read_cpu_time(void) { 1816 /*clock_t t;*/ 1817 struct tms buffer; 1818 1819 /*t =*/times(&buffer); 1820 1821 return (double)(buffer.tms_utime + buffer.tms_cutime) / 1822 (double)CLOCKS_PER_SEC; 1823 } 1824 1825 int __kmp_read_system_info(struct kmp_sys_info *info) { 1826 int status; 1827 struct rusage r_usage; 1828 1829 memset(info, 0, sizeof(*info)); 1830 1831 status = getrusage(RUSAGE_SELF, &r_usage); 1832 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status); 1833 1834 #if !KMP_OS_WASI 1835 // The maximum resident set size utilized (in kilobytes) 1836 info->maxrss = r_usage.ru_maxrss; 1837 // The number of page faults serviced without any I/O 1838 info->minflt = r_usage.ru_minflt; 1839 // The number of page faults serviced that required I/O 1840 info->majflt = r_usage.ru_majflt; 1841 // The number of times a process was "swapped" out of memory 1842 info->nswap = r_usage.ru_nswap; 1843 // The number of times the file system had to perform input 1844 info->inblock = r_usage.ru_inblock; 1845 // The number of times the file system had to perform output 1846 info->oublock = r_usage.ru_oublock; 1847 // The number of times a context switch was voluntarily 1848 info->nvcsw = r_usage.ru_nvcsw; 1849 // The number of times a context switch was forced 1850 info->nivcsw = r_usage.ru_nivcsw; 1851 #endif 1852 1853 return (status != 0); 1854 } 1855 1856 void __kmp_read_system_time(double *delta) { 1857 double t_ns; 1858 struct timeval tval; 1859 struct timespec stop; 1860 int status; 1861 1862 status = gettimeofday(&tval, NULL); 1863 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1864 TIMEVAL_TO_TIMESPEC(&tval, &stop); 1865 t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start)); 1866 *delta = (t_ns * 1e-9); 1867 } 1868 1869 void __kmp_clear_system_time(void) { 1870 struct timeval tval; 1871 int status; 1872 status = gettimeofday(&tval, NULL); 1873 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1874 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start); 1875 } 1876 1877 static int __kmp_get_xproc(void) { 1878 1879 int r = 0; 1880 1881 #if KMP_OS_LINUX 1882 1883 __kmp_type_convert(sysconf(_SC_NPROCESSORS_CONF), &(r)); 1884 1885 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_OPENBSD || \ 1886 KMP_OS_HURD || KMP_OS_SOLARIS || KMP_OS_WASI || KMP_OS_AIX 1887 1888 __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r)); 1889 1890 #elif KMP_OS_DARWIN 1891 1892 // Bug C77011 High "OpenMP Threads and number of active cores". 1893 1894 // Find the number of available CPUs. 1895 kern_return_t rc; 1896 host_basic_info_data_t info; 1897 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT; 1898 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num); 1899 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) { 1900 // Cannot use KA_TRACE() here because this code works before trace support 1901 // is initialized. 1902 r = info.avail_cpus; 1903 } else { 1904 KMP_WARNING(CantGetNumAvailCPU); 1905 KMP_INFORM(AssumedNumCPU); 1906 } 1907 1908 #else 1909 1910 #error "Unknown or unsupported OS." 1911 1912 #endif 1913 1914 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */ 1915 1916 } // __kmp_get_xproc 1917 1918 int __kmp_read_from_file(char const *path, char const *format, ...) { 1919 int result; 1920 va_list args; 1921 1922 va_start(args, format); 1923 FILE *f = fopen(path, "rb"); 1924 if (f == NULL) { 1925 va_end(args); 1926 return 0; 1927 } 1928 result = vfscanf(f, format, args); 1929 fclose(f); 1930 va_end(args); 1931 1932 return result; 1933 } 1934 1935 void __kmp_runtime_initialize(void) { 1936 int status; 1937 pthread_mutexattr_t mutex_attr; 1938 pthread_condattr_t cond_attr; 1939 1940 if (__kmp_init_runtime) { 1941 return; 1942 } 1943 1944 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1945 if (!__kmp_cpuinfo.initialized) { 1946 __kmp_query_cpuid(&__kmp_cpuinfo); 1947 } 1948 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1949 1950 __kmp_xproc = __kmp_get_xproc(); 1951 1952 #if !KMP_32_BIT_ARCH 1953 struct rlimit rlim; 1954 // read stack size of calling thread, save it as default for worker threads; 1955 // this should be done before reading environment variables 1956 status = getrlimit(RLIMIT_STACK, &rlim); 1957 if (status == 0) { // success? 1958 __kmp_stksize = rlim.rlim_cur; 1959 __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed 1960 } 1961 #endif /* KMP_32_BIT_ARCH */ 1962 1963 if (sysconf(_SC_THREADS)) { 1964 1965 /* Query the maximum number of threads */ 1966 __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth)); 1967 #ifdef __ve__ 1968 if (__kmp_sys_max_nth == -1) { 1969 // VE's pthread supports only up to 64 threads per a VE process. 1970 // So we use that KMP_MAX_NTH (predefined as 64) here. 1971 __kmp_sys_max_nth = KMP_MAX_NTH; 1972 } 1973 #else 1974 if (__kmp_sys_max_nth == -1) { 1975 /* Unlimited threads for NPTL */ 1976 __kmp_sys_max_nth = INT_MAX; 1977 } else if (__kmp_sys_max_nth <= 1) { 1978 /* Can't tell, just use PTHREAD_THREADS_MAX */ 1979 __kmp_sys_max_nth = KMP_MAX_NTH; 1980 } 1981 #endif 1982 1983 /* Query the minimum stack size */ 1984 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN); 1985 if (__kmp_sys_min_stksize <= 1) { 1986 __kmp_sys_min_stksize = KMP_MIN_STKSIZE; 1987 } 1988 } 1989 1990 /* Set up minimum number of threads to switch to TLS gtid */ 1991 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 1992 1993 status = pthread_key_create(&__kmp_gtid_threadprivate_key, 1994 __kmp_internal_end_dest); 1995 KMP_CHECK_SYSFAIL("pthread_key_create", status); 1996 status = pthread_mutexattr_init(&mutex_attr); 1997 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1998 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr); 1999 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2000 status = pthread_mutexattr_destroy(&mutex_attr); 2001 KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status); 2002 status = pthread_condattr_init(&cond_attr); 2003 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 2004 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr); 2005 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2006 status = pthread_condattr_destroy(&cond_attr); 2007 KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status); 2008 #if USE_ITT_BUILD 2009 __kmp_itt_initialize(); 2010 #endif /* USE_ITT_BUILD */ 2011 2012 __kmp_init_runtime = TRUE; 2013 } 2014 2015 void __kmp_runtime_destroy(void) { 2016 int status; 2017 2018 if (!__kmp_init_runtime) { 2019 return; // Nothing to do. 2020 } 2021 2022 #if USE_ITT_BUILD 2023 __kmp_itt_destroy(); 2024 #endif /* USE_ITT_BUILD */ 2025 2026 status = pthread_key_delete(__kmp_gtid_threadprivate_key); 2027 KMP_CHECK_SYSFAIL("pthread_key_delete", status); 2028 2029 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex); 2030 if (status != 0 && status != EBUSY) { 2031 KMP_SYSFAIL("pthread_mutex_destroy", status); 2032 } 2033 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond); 2034 if (status != 0 && status != EBUSY) { 2035 KMP_SYSFAIL("pthread_cond_destroy", status); 2036 } 2037 #if KMP_AFFINITY_SUPPORTED 2038 __kmp_affinity_uninitialize(); 2039 #endif 2040 2041 __kmp_init_runtime = FALSE; 2042 } 2043 2044 /* Put the thread to sleep for a time period */ 2045 /* NOTE: not currently used anywhere */ 2046 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); } 2047 2048 /* Calculate the elapsed wall clock time for the user */ 2049 void __kmp_elapsed(double *t) { 2050 int status; 2051 #ifdef FIX_SGI_CLOCK 2052 struct timespec ts; 2053 2054 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); 2055 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status); 2056 *t = 2057 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec; 2058 #else 2059 struct timeval tv; 2060 2061 status = gettimeofday(&tv, NULL); 2062 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 2063 *t = 2064 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec; 2065 #endif 2066 } 2067 2068 /* Calculate the elapsed wall clock tick for the user */ 2069 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; } 2070 2071 /* Return the current time stamp in nsec */ 2072 kmp_uint64 __kmp_now_nsec() { 2073 struct timeval t; 2074 gettimeofday(&t, NULL); 2075 kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec + 2076 (kmp_uint64)1000 * (kmp_uint64)t.tv_usec; 2077 return nsec; 2078 } 2079 2080 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2081 /* Measure clock ticks per millisecond */ 2082 void __kmp_initialize_system_tick() { 2083 kmp_uint64 now, nsec2, diff; 2084 kmp_uint64 delay = 1000000; // ~450 usec on most machines. 2085 kmp_uint64 nsec = __kmp_now_nsec(); 2086 kmp_uint64 goal = __kmp_hardware_timestamp() + delay; 2087 while ((now = __kmp_hardware_timestamp()) < goal) 2088 ; 2089 nsec2 = __kmp_now_nsec(); 2090 diff = nsec2 - nsec; 2091 if (diff > 0) { 2092 double tpus = 1000.0 * (double)(delay + (now - goal)) / (double)diff; 2093 if (tpus > 0.0) { 2094 __kmp_ticks_per_msec = (kmp_uint64)(tpus * 1000.0); 2095 __kmp_ticks_per_usec = (kmp_uint64)tpus; 2096 } 2097 } 2098 } 2099 #endif 2100 2101 /* Determine whether the given address is mapped into the current address 2102 space. */ 2103 2104 int __kmp_is_address_mapped(void *addr) { 2105 2106 int found = 0; 2107 int rc; 2108 2109 #if KMP_OS_LINUX || KMP_OS_HURD 2110 2111 /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the 2112 address ranges mapped into the address space. */ 2113 2114 char *name = __kmp_str_format("/proc/%d/maps", getpid()); 2115 FILE *file = NULL; 2116 2117 file = fopen(name, "r"); 2118 KMP_ASSERT(file != NULL); 2119 2120 for (;;) { 2121 2122 void *beginning = NULL; 2123 void *ending = NULL; 2124 char perms[5]; 2125 2126 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms); 2127 if (rc == EOF) { 2128 break; 2129 } 2130 KMP_ASSERT(rc == 3 && 2131 KMP_STRLEN(perms) == 4); // Make sure all fields are read. 2132 2133 // Ending address is not included in the region, but beginning is. 2134 if ((addr >= beginning) && (addr < ending)) { 2135 perms[2] = 0; // 3th and 4th character does not matter. 2136 if (strcmp(perms, "rw") == 0) { 2137 // Memory we are looking for should be readable and writable. 2138 found = 1; 2139 } 2140 break; 2141 } 2142 } 2143 2144 // Free resources. 2145 fclose(file); 2146 KMP_INTERNAL_FREE(name); 2147 #elif KMP_OS_FREEBSD 2148 char *buf; 2149 size_t lstsz; 2150 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()}; 2151 rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0); 2152 if (rc < 0) 2153 return 0; 2154 // We pass from number of vm entry's semantic 2155 // to size of whole entry map list. 2156 lstsz = lstsz * 4 / 3; 2157 buf = reinterpret_cast<char *>(kmpc_malloc(lstsz)); 2158 rc = sysctl(mib, 4, buf, &lstsz, NULL, 0); 2159 if (rc < 0) { 2160 kmpc_free(buf); 2161 return 0; 2162 } 2163 2164 char *lw = buf; 2165 char *up = buf + lstsz; 2166 2167 while (lw < up) { 2168 struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw); 2169 size_t cursz = cur->kve_structsize; 2170 if (cursz == 0) 2171 break; 2172 void *start = reinterpret_cast<void *>(cur->kve_start); 2173 void *end = reinterpret_cast<void *>(cur->kve_end); 2174 // Readable/Writable addresses within current map entry 2175 if ((addr >= start) && (addr < end)) { 2176 if ((cur->kve_protection & KVME_PROT_READ) != 0 && 2177 (cur->kve_protection & KVME_PROT_WRITE) != 0) { 2178 found = 1; 2179 break; 2180 } 2181 } 2182 lw += cursz; 2183 } 2184 kmpc_free(buf); 2185 #elif KMP_OS_DRAGONFLY 2186 char err[_POSIX2_LINE_MAX]; 2187 kinfo_proc *proc; 2188 vmspace sp; 2189 vm_map *cur; 2190 vm_map_entry entry, *c; 2191 struct proc p; 2192 kvm_t *fd; 2193 uintptr_t uaddr; 2194 int num; 2195 2196 fd = kvm_openfiles(nullptr, nullptr, nullptr, O_RDONLY, err); 2197 if (!fd) { 2198 return 0; 2199 } 2200 2201 proc = kvm_getprocs(fd, KERN_PROC_PID, getpid(), &num); 2202 2203 if (kvm_read(fd, static_cast<uintptr_t>(proc->kp_paddr), &p, sizeof(p)) != 2204 sizeof(p) || 2205 kvm_read(fd, reinterpret_cast<uintptr_t>(p.p_vmspace), &sp, sizeof(sp)) != 2206 sizeof(sp)) { 2207 kvm_close(fd); 2208 return 0; 2209 } 2210 2211 (void)rc; 2212 cur = &sp.vm_map; 2213 uaddr = reinterpret_cast<uintptr_t>(addr); 2214 for (c = kvm_vm_map_entry_first(fd, cur, &entry); c; 2215 c = kvm_vm_map_entry_next(fd, c, &entry)) { 2216 if ((uaddr >= entry.ba.start) && (uaddr <= entry.ba.end)) { 2217 if ((entry.protection & VM_PROT_READ) != 0 && 2218 (entry.protection & VM_PROT_WRITE) != 0) { 2219 found = 1; 2220 break; 2221 } 2222 } 2223 } 2224 2225 kvm_close(fd); 2226 #elif KMP_OS_SOLARIS 2227 prmap_t *cur, *map; 2228 void *buf; 2229 uintptr_t uaddr; 2230 ssize_t rd; 2231 int err; 2232 int file; 2233 2234 pid_t pid = getpid(); 2235 struct ps_prochandle *fd = Pgrab(pid, PGRAB_RDONLY, &err); 2236 ; 2237 2238 if (!fd) { 2239 return 0; 2240 } 2241 2242 char *name = __kmp_str_format("/proc/%d/map", pid); 2243 size_t sz = (1 << 20); 2244 file = open(name, O_RDONLY); 2245 if (file == -1) { 2246 KMP_INTERNAL_FREE(name); 2247 return 0; 2248 } 2249 2250 buf = kmpc_malloc(sz); 2251 2252 while (sz > 0 && (rd = pread(file, buf, sz, 0)) == sz) { 2253 void *newbuf; 2254 sz <<= 1; 2255 newbuf = kmpc_realloc(buf, sz); 2256 buf = newbuf; 2257 } 2258 2259 map = reinterpret_cast<prmap_t *>(buf); 2260 uaddr = reinterpret_cast<uintptr_t>(addr); 2261 2262 for (cur = map; rd > 0; cur++, rd = -sizeof(*map)) { 2263 if ((uaddr >= cur->pr_vaddr) && (uaddr < cur->pr_vaddr)) { 2264 if ((cur->pr_mflags & MA_READ) != 0 && (cur->pr_mflags & MA_WRITE) != 0) { 2265 found = 1; 2266 break; 2267 } 2268 } 2269 } 2270 2271 kmpc_free(map); 2272 close(file); 2273 KMP_INTERNAL_FREE(name); 2274 #elif KMP_OS_DARWIN 2275 2276 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory 2277 using vm interface. */ 2278 2279 int buffer; 2280 vm_size_t count; 2281 rc = vm_read_overwrite( 2282 mach_task_self(), // Task to read memory of. 2283 (vm_address_t)(addr), // Address to read from. 2284 1, // Number of bytes to be read. 2285 (vm_address_t)(&buffer), // Address of buffer to save read bytes in. 2286 &count // Address of var to save number of read bytes in. 2287 ); 2288 if (rc == 0) { 2289 // Memory successfully read. 2290 found = 1; 2291 } 2292 2293 #elif KMP_OS_NETBSD 2294 2295 int mib[5]; 2296 mib[0] = CTL_VM; 2297 mib[1] = VM_PROC; 2298 mib[2] = VM_PROC_MAP; 2299 mib[3] = getpid(); 2300 mib[4] = sizeof(struct kinfo_vmentry); 2301 2302 size_t size; 2303 rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0); 2304 KMP_ASSERT(!rc); 2305 KMP_ASSERT(size); 2306 2307 size = size * 4 / 3; 2308 struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size); 2309 KMP_ASSERT(kiv); 2310 2311 rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0); 2312 KMP_ASSERT(!rc); 2313 KMP_ASSERT(size); 2314 2315 for (size_t i = 0; i < size; i++) { 2316 if (kiv[i].kve_start >= (uint64_t)addr && 2317 kiv[i].kve_end <= (uint64_t)addr) { 2318 found = 1; 2319 break; 2320 } 2321 } 2322 KMP_INTERNAL_FREE(kiv); 2323 #elif KMP_OS_OPENBSD 2324 2325 int mib[3]; 2326 mib[0] = CTL_KERN; 2327 mib[1] = KERN_PROC_VMMAP; 2328 mib[2] = getpid(); 2329 2330 size_t size; 2331 uint64_t end; 2332 rc = sysctl(mib, 3, NULL, &size, NULL, 0); 2333 KMP_ASSERT(!rc); 2334 KMP_ASSERT(size); 2335 end = size; 2336 2337 struct kinfo_vmentry kiv = {.kve_start = 0}; 2338 2339 while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) { 2340 KMP_ASSERT(size); 2341 if (kiv.kve_end == end) 2342 break; 2343 2344 if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) { 2345 found = 1; 2346 break; 2347 } 2348 kiv.kve_start += 1; 2349 } 2350 #elif KMP_OS_WASI 2351 found = (int)addr < (__builtin_wasm_memory_size(0) * PAGESIZE); 2352 #elif KMP_OS_AIX 2353 2354 (void)rc; 2355 // FIXME(AIX): Implement this 2356 found = 1; 2357 2358 #else 2359 2360 #error "Unknown or unsupported OS" 2361 2362 #endif 2363 2364 return found; 2365 2366 } // __kmp_is_address_mapped 2367 2368 #ifdef USE_LOAD_BALANCE 2369 2370 #if KMP_OS_DARWIN || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 2371 KMP_OS_OPENBSD || KMP_OS_SOLARIS 2372 2373 // The function returns the rounded value of the system load average 2374 // during given time interval which depends on the value of 2375 // __kmp_load_balance_interval variable (default is 60 sec, other values 2376 // may be 300 sec or 900 sec). 2377 // It returns -1 in case of error. 2378 int __kmp_get_load_balance(int max) { 2379 double averages[3]; 2380 int ret_avg = 0; 2381 2382 int res = getloadavg(averages, 3); 2383 2384 // Check __kmp_load_balance_interval to determine which of averages to use. 2385 // getloadavg() may return the number of samples less than requested that is 2386 // less than 3. 2387 if (__kmp_load_balance_interval < 180 && (res >= 1)) { 2388 ret_avg = (int)averages[0]; // 1 min 2389 } else if ((__kmp_load_balance_interval >= 180 && 2390 __kmp_load_balance_interval < 600) && 2391 (res >= 2)) { 2392 ret_avg = (int)averages[1]; // 5 min 2393 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) { 2394 ret_avg = (int)averages[2]; // 15 min 2395 } else { // Error occurred 2396 return -1; 2397 } 2398 2399 return ret_avg; 2400 } 2401 2402 #else // Linux* OS 2403 2404 // The function returns number of running (not sleeping) threads, or -1 in case 2405 // of error. Error could be reported if Linux* OS kernel too old (without 2406 // "/proc" support). Counting running threads stops if max running threads 2407 // encountered. 2408 int __kmp_get_load_balance(int max) { 2409 static int permanent_error = 0; 2410 static int glb_running_threads = 0; // Saved count of the running threads for 2411 // the thread balance algorithm 2412 static double glb_call_time = 0; /* Thread balance algorithm call time */ 2413 2414 int running_threads = 0; // Number of running threads in the system. 2415 2416 DIR *proc_dir = NULL; // Handle of "/proc/" directory. 2417 struct dirent *proc_entry = NULL; 2418 2419 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path. 2420 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory. 2421 struct dirent *task_entry = NULL; 2422 int task_path_fixed_len; 2423 2424 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path. 2425 int stat_file = -1; 2426 int stat_path_fixed_len; 2427 2428 #ifdef KMP_DEBUG 2429 int total_processes = 0; // Total number of processes in system. 2430 #endif 2431 2432 double call_time = 0.0; 2433 2434 __kmp_str_buf_init(&task_path); 2435 __kmp_str_buf_init(&stat_path); 2436 2437 __kmp_elapsed(&call_time); 2438 2439 if (glb_call_time && 2440 (call_time - glb_call_time < __kmp_load_balance_interval)) { 2441 running_threads = glb_running_threads; 2442 goto finish; 2443 } 2444 2445 glb_call_time = call_time; 2446 2447 // Do not spend time on scanning "/proc/" if we have a permanent error. 2448 if (permanent_error) { 2449 running_threads = -1; 2450 goto finish; 2451 } 2452 2453 if (max <= 0) { 2454 max = INT_MAX; 2455 } 2456 2457 // Open "/proc/" directory. 2458 proc_dir = opendir("/proc"); 2459 if (proc_dir == NULL) { 2460 // Cannot open "/proc/". Probably the kernel does not support it. Return an 2461 // error now and in subsequent calls. 2462 running_threads = -1; 2463 permanent_error = 1; 2464 goto finish; 2465 } 2466 2467 // Initialize fixed part of task_path. This part will not change. 2468 __kmp_str_buf_cat(&task_path, "/proc/", 6); 2469 task_path_fixed_len = task_path.used; // Remember number of used characters. 2470 2471 proc_entry = readdir(proc_dir); 2472 while (proc_entry != NULL) { 2473 #if KMP_OS_AIX 2474 // Proc entry name starts with a digit. Assume it is a process' directory. 2475 if (isdigit(proc_entry->d_name[0])) { 2476 #else 2477 // Proc entry is a directory and name starts with a digit. Assume it is a 2478 // process' directory. 2479 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) { 2480 #endif 2481 2482 #ifdef KMP_DEBUG 2483 ++total_processes; 2484 #endif 2485 // Make sure init process is the very first in "/proc", so we can replace 2486 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == 2487 // 1. We are going to check that total_processes == 1 => d_name == "1" is 2488 // true (where "=>" is implication). Since C++ does not have => operator, 2489 // let us replace it with its equivalent: a => b == ! a || b. 2490 KMP_DEBUG_ASSERT(total_processes != 1 || 2491 strcmp(proc_entry->d_name, "1") == 0); 2492 2493 // Construct task_path. 2494 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/". 2495 __kmp_str_buf_cat(&task_path, proc_entry->d_name, 2496 KMP_STRLEN(proc_entry->d_name)); 2497 __kmp_str_buf_cat(&task_path, "/task", 5); 2498 2499 task_dir = opendir(task_path.str); 2500 if (task_dir == NULL) { 2501 // Process can finish between reading "/proc/" directory entry and 2502 // opening process' "task/" directory. So, in general case we should not 2503 // complain, but have to skip this process and read the next one. But on 2504 // systems with no "task/" support we will spend lot of time to scan 2505 // "/proc/" tree again and again without any benefit. "init" process 2506 // (its pid is 1) should exist always, so, if we cannot open 2507 // "/proc/1/task/" directory, it means "task/" is not supported by 2508 // kernel. Report an error now and in the future. 2509 if (strcmp(proc_entry->d_name, "1") == 0) { 2510 running_threads = -1; 2511 permanent_error = 1; 2512 goto finish; 2513 } 2514 } else { 2515 // Construct fixed part of stat file path. 2516 __kmp_str_buf_clear(&stat_path); 2517 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used); 2518 __kmp_str_buf_cat(&stat_path, "/", 1); 2519 stat_path_fixed_len = stat_path.used; 2520 2521 task_entry = readdir(task_dir); 2522 while (task_entry != NULL) { 2523 // It is a directory and name starts with a digit. 2524 #if KMP_OS_AIX 2525 if (isdigit(task_entry->d_name[0])) { 2526 #else 2527 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) { 2528 #endif 2529 2530 // Construct complete stat file path. Easiest way would be: 2531 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, 2532 // task_entry->d_name ); 2533 // but seriae of __kmp_str_buf_cat works a bit faster. 2534 stat_path.used = 2535 stat_path_fixed_len; // Reset stat path to its fixed part. 2536 __kmp_str_buf_cat(&stat_path, task_entry->d_name, 2537 KMP_STRLEN(task_entry->d_name)); 2538 __kmp_str_buf_cat(&stat_path, "/stat", 5); 2539 2540 // Note: Low-level API (open/read/close) is used. High-level API 2541 // (fopen/fclose) works ~ 30 % slower. 2542 stat_file = open(stat_path.str, O_RDONLY); 2543 if (stat_file == -1) { 2544 // We cannot report an error because task (thread) can terminate 2545 // just before reading this file. 2546 } else { 2547 /* Content of "stat" file looks like: 2548 24285 (program) S ... 2549 2550 It is a single line (if program name does not include funny 2551 symbols). First number is a thread id, then name of executable 2552 file name in paretheses, then state of the thread. We need just 2553 thread state. 2554 2555 Good news: Length of program name is 15 characters max. Longer 2556 names are truncated. 2557 2558 Thus, we need rather short buffer: 15 chars for program name + 2559 2 parenthesis, + 3 spaces + ~7 digits of pid = 37. 2560 2561 Bad news: Program name may contain special symbols like space, 2562 closing parenthesis, or even new line. This makes parsing 2563 "stat" file not 100 % reliable. In case of fanny program names 2564 parsing may fail (report incorrect thread state). 2565 2566 Parsing "status" file looks more promissing (due to different 2567 file structure and escaping special symbols) but reading and 2568 parsing of "status" file works slower. 2569 -- ln 2570 */ 2571 char buffer[65]; 2572 ssize_t len; 2573 len = read(stat_file, buffer, sizeof(buffer) - 1); 2574 if (len >= 0) { 2575 buffer[len] = 0; 2576 // Using scanf: 2577 // sscanf( buffer, "%*d (%*s) %c ", & state ); 2578 // looks very nice, but searching for a closing parenthesis 2579 // works a bit faster. 2580 char *close_parent = strstr(buffer, ") "); 2581 if (close_parent != NULL) { 2582 char state = *(close_parent + 2); 2583 if (state == 'R') { 2584 ++running_threads; 2585 if (running_threads >= max) { 2586 goto finish; 2587 } 2588 } 2589 } 2590 } 2591 close(stat_file); 2592 stat_file = -1; 2593 } 2594 } 2595 task_entry = readdir(task_dir); 2596 } 2597 closedir(task_dir); 2598 task_dir = NULL; 2599 } 2600 } 2601 proc_entry = readdir(proc_dir); 2602 } 2603 2604 // There _might_ be a timing hole where the thread executing this 2605 // code get skipped in the load balance, and running_threads is 0. 2606 // Assert in the debug builds only!!! 2607 KMP_DEBUG_ASSERT(running_threads > 0); 2608 if (running_threads <= 0) { 2609 running_threads = 1; 2610 } 2611 2612 finish: // Clean up and exit. 2613 if (proc_dir != NULL) { 2614 closedir(proc_dir); 2615 } 2616 __kmp_str_buf_free(&task_path); 2617 if (task_dir != NULL) { 2618 closedir(task_dir); 2619 } 2620 __kmp_str_buf_free(&stat_path); 2621 if (stat_file != -1) { 2622 close(stat_file); 2623 } 2624 2625 glb_running_threads = running_threads; 2626 2627 return running_threads; 2628 2629 } // __kmp_get_load_balance 2630 2631 #endif // KMP_OS_DARWIN 2632 2633 #endif // USE_LOAD_BALANCE 2634 2635 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \ 2636 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \ 2637 KMP_ARCH_PPC64 || KMP_ARCH_RISCV64 || KMP_ARCH_LOONGARCH64 || \ 2638 KMP_ARCH_ARM || KMP_ARCH_VE || KMP_ARCH_S390X || KMP_ARCH_PPC_XCOFF || \ 2639 KMP_ARCH_AARCH64_32) 2640 2641 // Because WebAssembly will use `call_indirect` to invoke the microtask and 2642 // WebAssembly indirect calls check that the called signature is a precise 2643 // match, we need to cast each microtask function pointer back from `void *` to 2644 // its original type. 2645 typedef void (*microtask_t0)(int *, int *); 2646 typedef void (*microtask_t1)(int *, int *, void *); 2647 typedef void (*microtask_t2)(int *, int *, void *, void *); 2648 typedef void (*microtask_t3)(int *, int *, void *, void *, void *); 2649 typedef void (*microtask_t4)(int *, int *, void *, void *, void *, void *); 2650 typedef void (*microtask_t5)(int *, int *, void *, void *, void *, void *, 2651 void *); 2652 typedef void (*microtask_t6)(int *, int *, void *, void *, void *, void *, 2653 void *, void *); 2654 typedef void (*microtask_t7)(int *, int *, void *, void *, void *, void *, 2655 void *, void *, void *); 2656 typedef void (*microtask_t8)(int *, int *, void *, void *, void *, void *, 2657 void *, void *, void *, void *); 2658 typedef void (*microtask_t9)(int *, int *, void *, void *, void *, void *, 2659 void *, void *, void *, void *, void *); 2660 typedef void (*microtask_t10)(int *, int *, void *, void *, void *, void *, 2661 void *, void *, void *, void *, void *, void *); 2662 typedef void (*microtask_t11)(int *, int *, void *, void *, void *, void *, 2663 void *, void *, void *, void *, void *, void *, 2664 void *); 2665 typedef void (*microtask_t12)(int *, int *, void *, void *, void *, void *, 2666 void *, void *, void *, void *, void *, void *, 2667 void *, void *); 2668 typedef void (*microtask_t13)(int *, int *, void *, void *, void *, void *, 2669 void *, void *, void *, void *, void *, void *, 2670 void *, void *, void *); 2671 typedef void (*microtask_t14)(int *, int *, void *, void *, void *, void *, 2672 void *, void *, void *, void *, void *, void *, 2673 void *, void *, void *, void *); 2674 typedef void (*microtask_t15)(int *, int *, void *, void *, void *, void *, 2675 void *, void *, void *, void *, void *, void *, 2676 void *, void *, void *, void *, void *); 2677 2678 // we really only need the case with 1 argument, because CLANG always build 2679 // a struct of pointers to shared variables referenced in the outlined function 2680 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc, 2681 void *p_argv[] 2682 #if OMPT_SUPPORT 2683 , 2684 void **exit_frame_ptr 2685 #endif 2686 ) { 2687 #if OMPT_SUPPORT 2688 *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0); 2689 #endif 2690 2691 switch (argc) { 2692 default: 2693 fprintf(stderr, "Too many args to microtask: %d!\n", argc); 2694 fflush(stderr); 2695 exit(-1); 2696 case 0: 2697 (*(microtask_t0)pkfn)(>id, &tid); 2698 break; 2699 case 1: 2700 (*(microtask_t1)pkfn)(>id, &tid, p_argv[0]); 2701 break; 2702 case 2: 2703 (*(microtask_t2)pkfn)(>id, &tid, p_argv[0], p_argv[1]); 2704 break; 2705 case 3: 2706 (*(microtask_t3)pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]); 2707 break; 2708 case 4: 2709 (*(microtask_t4)pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], 2710 p_argv[3]); 2711 break; 2712 case 5: 2713 (*(microtask_t5)pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], 2714 p_argv[3], p_argv[4]); 2715 break; 2716 case 6: 2717 (*(microtask_t6)pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], 2718 p_argv[3], p_argv[4], p_argv[5]); 2719 break; 2720 case 7: 2721 (*(microtask_t7)pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], 2722 p_argv[3], p_argv[4], p_argv[5], p_argv[6]); 2723 break; 2724 case 8: 2725 (*(microtask_t8)pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], 2726 p_argv[3], p_argv[4], p_argv[5], p_argv[6], 2727 p_argv[7]); 2728 break; 2729 case 9: 2730 (*(microtask_t9)pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], 2731 p_argv[3], p_argv[4], p_argv[5], p_argv[6], p_argv[7], 2732 p_argv[8]); 2733 break; 2734 case 10: 2735 (*(microtask_t10)pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], 2736 p_argv[3], p_argv[4], p_argv[5], p_argv[6], 2737 p_argv[7], p_argv[8], p_argv[9]); 2738 break; 2739 case 11: 2740 (*(microtask_t11)pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], 2741 p_argv[3], p_argv[4], p_argv[5], p_argv[6], 2742 p_argv[7], p_argv[8], p_argv[9], p_argv[10]); 2743 break; 2744 case 12: 2745 (*(microtask_t12)pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], 2746 p_argv[3], p_argv[4], p_argv[5], p_argv[6], 2747 p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2748 p_argv[11]); 2749 break; 2750 case 13: 2751 (*(microtask_t13)pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], 2752 p_argv[3], p_argv[4], p_argv[5], p_argv[6], 2753 p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2754 p_argv[11], p_argv[12]); 2755 break; 2756 case 14: 2757 (*(microtask_t14)pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], 2758 p_argv[3], p_argv[4], p_argv[5], p_argv[6], 2759 p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2760 p_argv[11], p_argv[12], p_argv[13]); 2761 break; 2762 case 15: 2763 (*(microtask_t15)pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], 2764 p_argv[3], p_argv[4], p_argv[5], p_argv[6], 2765 p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2766 p_argv[11], p_argv[12], p_argv[13], p_argv[14]); 2767 break; 2768 } 2769 2770 return 1; 2771 } 2772 2773 #endif 2774 2775 #if KMP_OS_LINUX 2776 // Functions for hidden helper task 2777 namespace { 2778 // Condition variable for initializing hidden helper team 2779 pthread_cond_t hidden_helper_threads_initz_cond_var; 2780 pthread_mutex_t hidden_helper_threads_initz_lock; 2781 volatile int hidden_helper_initz_signaled = FALSE; 2782 2783 // Condition variable for deinitializing hidden helper team 2784 pthread_cond_t hidden_helper_threads_deinitz_cond_var; 2785 pthread_mutex_t hidden_helper_threads_deinitz_lock; 2786 volatile int hidden_helper_deinitz_signaled = FALSE; 2787 2788 // Condition variable for the wrapper function of main thread 2789 pthread_cond_t hidden_helper_main_thread_cond_var; 2790 pthread_mutex_t hidden_helper_main_thread_lock; 2791 volatile int hidden_helper_main_thread_signaled = FALSE; 2792 2793 // Semaphore for worker threads. We don't use condition variable here in case 2794 // that when multiple signals are sent at the same time, only one thread might 2795 // be waken. 2796 sem_t hidden_helper_task_sem; 2797 } // namespace 2798 2799 void __kmp_hidden_helper_worker_thread_wait() { 2800 int status = sem_wait(&hidden_helper_task_sem); 2801 KMP_CHECK_SYSFAIL("sem_wait", status); 2802 } 2803 2804 void __kmp_do_initialize_hidden_helper_threads() { 2805 // Initialize condition variable 2806 int status = 2807 pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr); 2808 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2809 2810 status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr); 2811 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2812 2813 status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr); 2814 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2815 2816 status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr); 2817 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2818 2819 status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr); 2820 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2821 2822 status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr); 2823 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2824 2825 // Initialize the semaphore 2826 status = sem_init(&hidden_helper_task_sem, 0, 0); 2827 KMP_CHECK_SYSFAIL("sem_init", status); 2828 2829 // Create a new thread to finish initialization 2830 pthread_t handle; 2831 status = pthread_create( 2832 &handle, nullptr, 2833 [](void *) -> void * { 2834 __kmp_hidden_helper_threads_initz_routine(); 2835 return nullptr; 2836 }, 2837 nullptr); 2838 KMP_CHECK_SYSFAIL("pthread_create", status); 2839 } 2840 2841 void __kmp_hidden_helper_threads_initz_wait() { 2842 // Initial thread waits here for the completion of the initialization. The 2843 // condition variable will be notified by main thread of hidden helper teams. 2844 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock); 2845 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2846 2847 if (!TCR_4(hidden_helper_initz_signaled)) { 2848 status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var, 2849 &hidden_helper_threads_initz_lock); 2850 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2851 } 2852 2853 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock); 2854 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2855 } 2856 2857 void __kmp_hidden_helper_initz_release() { 2858 // After all initialization, reset __kmp_init_hidden_helper_threads to false. 2859 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock); 2860 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2861 2862 status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var); 2863 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2864 2865 TCW_SYNC_4(hidden_helper_initz_signaled, TRUE); 2866 2867 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock); 2868 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2869 } 2870 2871 void __kmp_hidden_helper_main_thread_wait() { 2872 // The main thread of hidden helper team will be blocked here. The 2873 // condition variable can only be signal in the destructor of RTL. 2874 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock); 2875 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2876 2877 if (!TCR_4(hidden_helper_main_thread_signaled)) { 2878 status = pthread_cond_wait(&hidden_helper_main_thread_cond_var, 2879 &hidden_helper_main_thread_lock); 2880 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2881 } 2882 2883 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock); 2884 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2885 } 2886 2887 void __kmp_hidden_helper_main_thread_release() { 2888 // The initial thread of OpenMP RTL should call this function to wake up the 2889 // main thread of hidden helper team. 2890 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock); 2891 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2892 2893 status = pthread_cond_signal(&hidden_helper_main_thread_cond_var); 2894 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 2895 2896 // The hidden helper team is done here 2897 TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE); 2898 2899 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock); 2900 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2901 } 2902 2903 void __kmp_hidden_helper_worker_thread_signal() { 2904 int status = sem_post(&hidden_helper_task_sem); 2905 KMP_CHECK_SYSFAIL("sem_post", status); 2906 } 2907 2908 void __kmp_hidden_helper_threads_deinitz_wait() { 2909 // Initial thread waits here for the completion of the deinitialization. The 2910 // condition variable will be notified by main thread of hidden helper teams. 2911 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock); 2912 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2913 2914 if (!TCR_4(hidden_helper_deinitz_signaled)) { 2915 status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var, 2916 &hidden_helper_threads_deinitz_lock); 2917 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2918 } 2919 2920 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock); 2921 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2922 } 2923 2924 void __kmp_hidden_helper_threads_deinitz_release() { 2925 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock); 2926 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2927 2928 status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var); 2929 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2930 2931 TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE); 2932 2933 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock); 2934 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2935 } 2936 #else // KMP_OS_LINUX 2937 void __kmp_hidden_helper_worker_thread_wait() { 2938 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2939 } 2940 2941 void __kmp_do_initialize_hidden_helper_threads() { 2942 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2943 } 2944 2945 void __kmp_hidden_helper_threads_initz_wait() { 2946 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2947 } 2948 2949 void __kmp_hidden_helper_initz_release() { 2950 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2951 } 2952 2953 void __kmp_hidden_helper_main_thread_wait() { 2954 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2955 } 2956 2957 void __kmp_hidden_helper_main_thread_release() { 2958 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2959 } 2960 2961 void __kmp_hidden_helper_worker_thread_signal() { 2962 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2963 } 2964 2965 void __kmp_hidden_helper_threads_deinitz_wait() { 2966 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2967 } 2968 2969 void __kmp_hidden_helper_threads_deinitz_release() { 2970 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2971 } 2972 #endif // KMP_OS_LINUX 2973 2974 bool __kmp_detect_shm() { 2975 DIR *dir = opendir("/dev/shm"); 2976 if (dir) { // /dev/shm exists 2977 closedir(dir); 2978 return true; 2979 } else if (ENOENT == errno) { // /dev/shm does not exist 2980 return false; 2981 } else { // opendir() failed 2982 return false; 2983 } 2984 } 2985 2986 bool __kmp_detect_tmp() { 2987 DIR *dir = opendir("/tmp"); 2988 if (dir) { // /tmp exists 2989 closedir(dir); 2990 return true; 2991 } else if (ENOENT == errno) { // /tmp does not exist 2992 return false; 2993 } else { // opendir() failed 2994 return false; 2995 } 2996 } 2997 2998 // end of file // 2999