1 /* 2 * z_Linux_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_lock.h" 19 #include "kmp_stats.h" 20 #include "kmp_str.h" 21 #include "kmp_wait_release.h" 22 #include "kmp_wrapper_getpid.h" 23 24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD 25 #include <alloca.h> 26 #endif 27 #include <math.h> // HUGE_VAL. 28 #if KMP_OS_LINUX 29 #include <semaphore.h> 30 #endif // KMP_OS_LINUX 31 #include <sys/resource.h> 32 #include <sys/syscall.h> 33 #include <sys/time.h> 34 #include <sys/times.h> 35 #include <unistd.h> 36 37 #if KMP_OS_LINUX 38 #include <sys/sysinfo.h> 39 #if KMP_USE_FUTEX 40 // We should really include <futex.h>, but that causes compatibility problems on 41 // different Linux* OS distributions that either require that you include (or 42 // break when you try to include) <pci/types.h>. Since all we need is the two 43 // macros below (which are part of the kernel ABI, so can't change) we just 44 // define the constants here and don't include <futex.h> 45 #ifndef FUTEX_WAIT 46 #define FUTEX_WAIT 0 47 #endif 48 #ifndef FUTEX_WAKE 49 #define FUTEX_WAKE 1 50 #endif 51 #endif 52 #elif KMP_OS_DARWIN 53 #include <mach/mach.h> 54 #include <sys/sysctl.h> 55 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD 56 #include <sys/types.h> 57 #include <sys/sysctl.h> 58 #include <sys/user.h> 59 #include <pthread_np.h> 60 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD 61 #include <sys/types.h> 62 #include <sys/sysctl.h> 63 #elif KMP_OS_SOLARIS 64 #include <sys/loadavg.h> 65 #endif 66 67 #include <ctype.h> 68 #include <dirent.h> 69 #include <fcntl.h> 70 71 struct kmp_sys_timer { 72 struct timespec start; 73 }; 74 75 #ifndef TIMEVAL_TO_TIMESPEC 76 // Convert timeval to timespec. 77 #define TIMEVAL_TO_TIMESPEC(tv, ts) \ 78 do { \ 79 (ts)->tv_sec = (tv)->tv_sec; \ 80 (ts)->tv_nsec = (tv)->tv_usec * 1000; \ 81 } while (0) 82 #endif 83 84 // Convert timespec to nanoseconds. 85 #define TS2NS(timespec) \ 86 (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec) 87 88 static struct kmp_sys_timer __kmp_sys_timer_data; 89 90 #if KMP_HANDLE_SIGNALS 91 typedef void (*sig_func_t)(int); 92 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG]; 93 static sigset_t __kmp_sigset; 94 #endif 95 96 static int __kmp_init_runtime = FALSE; 97 98 static int __kmp_fork_count = 0; 99 100 static pthread_condattr_t __kmp_suspend_cond_attr; 101 static pthread_mutexattr_t __kmp_suspend_mutex_attr; 102 103 static kmp_cond_align_t __kmp_wait_cv; 104 static kmp_mutex_align_t __kmp_wait_mx; 105 106 kmp_uint64 __kmp_ticks_per_msec = 1000000; 107 kmp_uint64 __kmp_ticks_per_usec = 1000; 108 109 #ifdef DEBUG_SUSPEND 110 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) { 111 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))", 112 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock, 113 cond->c_cond.__c_waiting); 114 } 115 #endif 116 117 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED) 118 119 /* Affinity support */ 120 121 void __kmp_affinity_bind_thread(int which) { 122 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(), 123 "Illegal set affinity operation when not capable"); 124 125 kmp_affin_mask_t *mask; 126 KMP_CPU_ALLOC_ON_STACK(mask); 127 KMP_CPU_ZERO(mask); 128 KMP_CPU_SET(which, mask); 129 __kmp_set_system_affinity(mask, TRUE); 130 KMP_CPU_FREE_FROM_STACK(mask); 131 } 132 133 /* Determine if we can access affinity functionality on this version of 134 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set 135 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */ 136 void __kmp_affinity_determine_capable(const char *env_var) { 137 // Check and see if the OS supports thread affinity. 138 139 #if KMP_OS_LINUX 140 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024) 141 #define KMP_CPU_SET_TRY_SIZE CACHE_LINE 142 #elif KMP_OS_FREEBSD 143 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t)) 144 #endif 145 146 int verbose = __kmp_affinity.flags.verbose; 147 int warnings = __kmp_affinity.flags.warnings; 148 enum affinity_type type = __kmp_affinity.type; 149 150 #if KMP_OS_LINUX 151 long gCode; 152 unsigned char *buf; 153 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 154 155 // If the syscall returns a suggestion for the size, 156 // then we don't have to search for an appropriate size. 157 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_TRY_SIZE, buf); 158 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 159 "initial getaffinity call returned %ld errno = %d\n", 160 gCode, errno)); 161 162 if (gCode < 0 && errno != EINVAL) { 163 // System call not supported 164 if (verbose || 165 (warnings && (type != affinity_none) && (type != affinity_default) && 166 (type != affinity_disabled))) { 167 int error = errno; 168 kmp_msg_t err_code = KMP_ERR(error); 169 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 170 err_code, __kmp_msg_null); 171 if (__kmp_generate_warnings == kmp_warnings_off) { 172 __kmp_str_free(&err_code.str); 173 } 174 } 175 KMP_AFFINITY_DISABLE(); 176 KMP_INTERNAL_FREE(buf); 177 return; 178 } else if (gCode > 0) { 179 // The optimal situation: the OS returns the size of the buffer it expects. 180 KMP_AFFINITY_ENABLE(gCode); 181 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 182 "affinity supported (mask size %d)\n", 183 (int)__kmp_affin_mask_size)); 184 KMP_INTERNAL_FREE(buf); 185 return; 186 } 187 188 // Call the getaffinity system call repeatedly with increasing set sizes 189 // until we succeed, or reach an upper bound on the search. 190 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 191 "searching for proper set size\n")); 192 int size; 193 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) { 194 gCode = syscall(__NR_sched_getaffinity, 0, size, buf); 195 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 196 "getaffinity for mask size %ld returned %ld errno = %d\n", 197 size, gCode, errno)); 198 199 if (gCode < 0) { 200 if (errno == ENOSYS) { 201 // We shouldn't get here 202 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 203 "inconsistent OS call behavior: errno == ENOSYS for mask " 204 "size %d\n", 205 size)); 206 if (verbose || 207 (warnings && (type != affinity_none) && 208 (type != affinity_default) && (type != affinity_disabled))) { 209 int error = errno; 210 kmp_msg_t err_code = KMP_ERR(error); 211 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 212 err_code, __kmp_msg_null); 213 if (__kmp_generate_warnings == kmp_warnings_off) { 214 __kmp_str_free(&err_code.str); 215 } 216 } 217 KMP_AFFINITY_DISABLE(); 218 KMP_INTERNAL_FREE(buf); 219 return; 220 } 221 continue; 222 } 223 224 KMP_AFFINITY_ENABLE(gCode); 225 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 226 "affinity supported (mask size %d)\n", 227 (int)__kmp_affin_mask_size)); 228 KMP_INTERNAL_FREE(buf); 229 return; 230 } 231 #elif KMP_OS_FREEBSD 232 long gCode; 233 unsigned char *buf; 234 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 235 gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT, 236 reinterpret_cast<cpuset_t *>(buf)); 237 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 238 "initial getaffinity call returned %d errno = %d\n", 239 gCode, errno)); 240 if (gCode == 0) { 241 KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT); 242 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 243 "affinity supported (mask size %d)\n", 244 (int)__kmp_affin_mask_size)); 245 KMP_INTERNAL_FREE(buf); 246 return; 247 } 248 #endif 249 KMP_INTERNAL_FREE(buf); 250 251 // Affinity is not supported 252 KMP_AFFINITY_DISABLE(); 253 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 254 "cannot determine mask size - affinity not supported\n")); 255 if (verbose || (warnings && (type != affinity_none) && 256 (type != affinity_default) && (type != affinity_disabled))) { 257 KMP_WARNING(AffCantGetMaskSize, env_var); 258 } 259 } 260 261 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 262 263 #if KMP_USE_FUTEX 264 265 int __kmp_futex_determine_capable() { 266 int loc = 0; 267 long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0); 268 int retval = (rc == 0) || (errno != ENOSYS); 269 270 KA_TRACE(10, 271 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno)); 272 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n", 273 retval ? "" : " not")); 274 275 return retval; 276 } 277 278 #endif // KMP_USE_FUTEX 279 280 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS) 281 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to 282 use compare_and_store for these routines */ 283 284 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) { 285 kmp_int8 old_value, new_value; 286 287 old_value = TCR_1(*p); 288 new_value = old_value | d; 289 290 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 291 KMP_CPU_PAUSE(); 292 old_value = TCR_1(*p); 293 new_value = old_value | d; 294 } 295 return old_value; 296 } 297 298 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) { 299 kmp_int8 old_value, new_value; 300 301 old_value = TCR_1(*p); 302 new_value = old_value & d; 303 304 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 305 KMP_CPU_PAUSE(); 306 old_value = TCR_1(*p); 307 new_value = old_value & d; 308 } 309 return old_value; 310 } 311 312 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) { 313 kmp_uint32 old_value, new_value; 314 315 old_value = TCR_4(*p); 316 new_value = old_value | d; 317 318 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 319 KMP_CPU_PAUSE(); 320 old_value = TCR_4(*p); 321 new_value = old_value | d; 322 } 323 return old_value; 324 } 325 326 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) { 327 kmp_uint32 old_value, new_value; 328 329 old_value = TCR_4(*p); 330 new_value = old_value & d; 331 332 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 333 KMP_CPU_PAUSE(); 334 old_value = TCR_4(*p); 335 new_value = old_value & d; 336 } 337 return old_value; 338 } 339 340 #if KMP_ARCH_X86 341 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) { 342 kmp_int8 old_value, new_value; 343 344 old_value = TCR_1(*p); 345 new_value = old_value + d; 346 347 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 348 KMP_CPU_PAUSE(); 349 old_value = TCR_1(*p); 350 new_value = old_value + d; 351 } 352 return old_value; 353 } 354 355 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) { 356 kmp_int64 old_value, new_value; 357 358 old_value = TCR_8(*p); 359 new_value = old_value + d; 360 361 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 362 KMP_CPU_PAUSE(); 363 old_value = TCR_8(*p); 364 new_value = old_value + d; 365 } 366 return old_value; 367 } 368 #endif /* KMP_ARCH_X86 */ 369 370 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) { 371 kmp_uint64 old_value, new_value; 372 373 old_value = TCR_8(*p); 374 new_value = old_value | d; 375 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 376 KMP_CPU_PAUSE(); 377 old_value = TCR_8(*p); 378 new_value = old_value | d; 379 } 380 return old_value; 381 } 382 383 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) { 384 kmp_uint64 old_value, new_value; 385 386 old_value = TCR_8(*p); 387 new_value = old_value & d; 388 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 389 KMP_CPU_PAUSE(); 390 old_value = TCR_8(*p); 391 new_value = old_value & d; 392 } 393 return old_value; 394 } 395 396 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */ 397 398 void __kmp_terminate_thread(int gtid) { 399 int status; 400 kmp_info_t *th = __kmp_threads[gtid]; 401 402 if (!th) 403 return; 404 405 #ifdef KMP_CANCEL_THREADS 406 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 407 status = pthread_cancel(th->th.th_info.ds.ds_thread); 408 if (status != 0 && status != ESRCH) { 409 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status), 410 __kmp_msg_null); 411 } 412 #endif 413 KMP_YIELD(TRUE); 414 } // 415 416 /* Set thread stack info according to values returned by pthread_getattr_np(). 417 If values are unreasonable, assume call failed and use incremental stack 418 refinement method instead. Returns TRUE if the stack parameters could be 419 determined exactly, FALSE if incremental refinement is necessary. */ 420 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) { 421 int stack_data; 422 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 423 KMP_OS_HURD || KMP_OS_SOLARIS 424 pthread_attr_t attr; 425 int status; 426 size_t size = 0; 427 void *addr = 0; 428 429 /* Always do incremental stack refinement for ubermaster threads since the 430 initial thread stack range can be reduced by sibling thread creation so 431 pthread_attr_getstack may cause thread gtid aliasing */ 432 if (!KMP_UBER_GTID(gtid)) { 433 434 /* Fetch the real thread attributes */ 435 status = pthread_attr_init(&attr); 436 KMP_CHECK_SYSFAIL("pthread_attr_init", status); 437 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD 438 status = pthread_attr_get_np(pthread_self(), &attr); 439 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status); 440 #else 441 status = pthread_getattr_np(pthread_self(), &attr); 442 KMP_CHECK_SYSFAIL("pthread_getattr_np", status); 443 #endif 444 status = pthread_attr_getstack(&attr, &addr, &size); 445 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status); 446 KA_TRACE(60, 447 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:" 448 " %lu, low addr: %p\n", 449 gtid, size, addr)); 450 status = pthread_attr_destroy(&attr); 451 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status); 452 } 453 454 if (size != 0 && addr != 0) { // was stack parameter determination successful? 455 /* Store the correct base and size */ 456 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size)); 457 TCW_PTR(th->th.th_info.ds.ds_stacksize, size); 458 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 459 return TRUE; 460 } 461 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD \ 462 || KMP_OS_HURD || KMP_OS_SOLARIS */ 463 /* Use incremental refinement starting from initial conservative estimate */ 464 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 465 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 466 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 467 return FALSE; 468 } 469 470 static void *__kmp_launch_worker(void *thr) { 471 int status, old_type, old_state; 472 #ifdef KMP_BLOCK_SIGNALS 473 sigset_t new_set, old_set; 474 #endif /* KMP_BLOCK_SIGNALS */ 475 void *exit_val; 476 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 477 KMP_OS_OPENBSD || KMP_OS_HURD || KMP_OS_SOLARIS 478 void *volatile padding = 0; 479 #endif 480 int gtid; 481 482 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid; 483 __kmp_gtid_set_specific(gtid); 484 #ifdef KMP_TDATA_GTID 485 __kmp_gtid = gtid; 486 #endif 487 #if KMP_STATS_ENABLED 488 // set thread local index to point to thread-specific stats 489 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats; 490 __kmp_stats_thread_ptr->startLife(); 491 KMP_SET_THREAD_STATE(IDLE); 492 KMP_INIT_PARTITIONED_TIMERS(OMP_idle); 493 #endif 494 495 #if USE_ITT_BUILD 496 __kmp_itt_thread_name(gtid); 497 #endif /* USE_ITT_BUILD */ 498 499 #if KMP_AFFINITY_SUPPORTED 500 __kmp_affinity_bind_init_mask(gtid); 501 #endif 502 503 #ifdef KMP_CANCEL_THREADS 504 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 505 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 506 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 507 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 508 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 509 #endif 510 511 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 512 // Set FP control regs to be a copy of the parallel initialization thread's. 513 __kmp_clear_x87_fpu_status_word(); 514 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 515 __kmp_load_mxcsr(&__kmp_init_mxcsr); 516 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 517 518 #ifdef KMP_BLOCK_SIGNALS 519 status = sigfillset(&new_set); 520 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 521 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set); 522 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 523 #endif /* KMP_BLOCK_SIGNALS */ 524 525 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 526 KMP_OS_OPENBSD || KMP_OS_HURD || KMP_OS_SOLARIS 527 if (__kmp_stkoffset > 0 && gtid > 0) { 528 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 529 (void)padding; 530 } 531 #endif 532 533 KMP_MB(); 534 __kmp_set_stack_info(gtid, (kmp_info_t *)thr); 535 536 __kmp_check_stack_overlap((kmp_info_t *)thr); 537 538 exit_val = __kmp_launch_thread((kmp_info_t *)thr); 539 540 #ifdef KMP_BLOCK_SIGNALS 541 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL); 542 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 543 #endif /* KMP_BLOCK_SIGNALS */ 544 545 return exit_val; 546 } 547 548 #if KMP_USE_MONITOR 549 /* The monitor thread controls all of the threads in the complex */ 550 551 static void *__kmp_launch_monitor(void *thr) { 552 int status, old_type, old_state; 553 #ifdef KMP_BLOCK_SIGNALS 554 sigset_t new_set; 555 #endif /* KMP_BLOCK_SIGNALS */ 556 struct timespec interval; 557 558 KMP_MB(); /* Flush all pending memory write invalidates. */ 559 560 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n")); 561 562 /* register us as the monitor thread */ 563 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 564 #ifdef KMP_TDATA_GTID 565 __kmp_gtid = KMP_GTID_MONITOR; 566 #endif 567 568 KMP_MB(); 569 570 #if USE_ITT_BUILD 571 // Instruct Intel(R) Threading Tools to ignore monitor thread. 572 __kmp_itt_thread_ignore(); 573 #endif /* USE_ITT_BUILD */ 574 575 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid, 576 (kmp_info_t *)thr); 577 578 __kmp_check_stack_overlap((kmp_info_t *)thr); 579 580 #ifdef KMP_CANCEL_THREADS 581 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 582 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 583 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 584 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 585 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 586 #endif 587 588 #if KMP_REAL_TIME_FIX 589 // This is a potential fix which allows application with real-time scheduling 590 // policy work. However, decision about the fix is not made yet, so it is 591 // disabled by default. 592 { // Are program started with real-time scheduling policy? 593 int sched = sched_getscheduler(0); 594 if (sched == SCHED_FIFO || sched == SCHED_RR) { 595 // Yes, we are a part of real-time application. Try to increase the 596 // priority of the monitor. 597 struct sched_param param; 598 int max_priority = sched_get_priority_max(sched); 599 int rc; 600 KMP_WARNING(RealTimeSchedNotSupported); 601 sched_getparam(0, ¶m); 602 if (param.sched_priority < max_priority) { 603 param.sched_priority += 1; 604 rc = sched_setscheduler(0, sched, ¶m); 605 if (rc != 0) { 606 int error = errno; 607 kmp_msg_t err_code = KMP_ERR(error); 608 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority), 609 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null); 610 if (__kmp_generate_warnings == kmp_warnings_off) { 611 __kmp_str_free(&err_code.str); 612 } 613 } 614 } else { 615 // We cannot abort here, because number of CPUs may be enough for all 616 // the threads, including the monitor thread, so application could 617 // potentially work... 618 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority), 619 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority), 620 __kmp_msg_null); 621 } 622 } 623 // AC: free thread that waits for monitor started 624 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 625 } 626 #endif // KMP_REAL_TIME_FIX 627 628 KMP_MB(); /* Flush all pending memory write invalidates. */ 629 630 if (__kmp_monitor_wakeups == 1) { 631 interval.tv_sec = 1; 632 interval.tv_nsec = 0; 633 } else { 634 interval.tv_sec = 0; 635 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups); 636 } 637 638 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n")); 639 640 while (!TCR_4(__kmp_global.g.g_done)) { 641 struct timespec now; 642 struct timeval tval; 643 644 /* This thread monitors the state of the system */ 645 646 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 647 648 status = gettimeofday(&tval, NULL); 649 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 650 TIMEVAL_TO_TIMESPEC(&tval, &now); 651 652 now.tv_sec += interval.tv_sec; 653 now.tv_nsec += interval.tv_nsec; 654 655 if (now.tv_nsec >= KMP_NSEC_PER_SEC) { 656 now.tv_sec += 1; 657 now.tv_nsec -= KMP_NSEC_PER_SEC; 658 } 659 660 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 661 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 662 // AC: the monitor should not fall asleep if g_done has been set 663 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex 664 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond, 665 &__kmp_wait_mx.m_mutex, &now); 666 if (status != 0) { 667 if (status != ETIMEDOUT && status != EINTR) { 668 KMP_SYSFAIL("pthread_cond_timedwait", status); 669 } 670 } 671 } 672 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 673 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 674 675 TCW_4(__kmp_global.g.g_time.dt.t_value, 676 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 677 678 KMP_MB(); /* Flush all pending memory write invalidates. */ 679 } 680 681 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n")); 682 683 #ifdef KMP_BLOCK_SIGNALS 684 status = sigfillset(&new_set); 685 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 686 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL); 687 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 688 #endif /* KMP_BLOCK_SIGNALS */ 689 690 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n")); 691 692 if (__kmp_global.g.g_abort != 0) { 693 /* now we need to terminate the worker threads */ 694 /* the value of t_abort is the signal we caught */ 695 696 int gtid; 697 698 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", 699 __kmp_global.g.g_abort)); 700 701 /* terminate the OpenMP worker threads */ 702 /* TODO this is not valid for sibling threads!! 703 * the uber master might not be 0 anymore.. */ 704 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 705 __kmp_terminate_thread(gtid); 706 707 __kmp_cleanup(); 708 709 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n", 710 __kmp_global.g.g_abort)); 711 712 if (__kmp_global.g.g_abort > 0) 713 raise(__kmp_global.g.g_abort); 714 } 715 716 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n")); 717 718 return thr; 719 } 720 #endif // KMP_USE_MONITOR 721 722 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 723 pthread_t handle; 724 pthread_attr_t thread_attr; 725 int status; 726 727 th->th.th_info.ds.ds_gtid = gtid; 728 729 #if KMP_STATS_ENABLED 730 // sets up worker thread stats 731 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid); 732 733 // th->th.th_stats is used to transfer thread-specific stats-pointer to 734 // __kmp_launch_worker. So when thread is created (goes into 735 // __kmp_launch_worker) it will set its thread local pointer to 736 // th->th.th_stats 737 if (!KMP_UBER_GTID(gtid)) { 738 th->th.th_stats = __kmp_stats_list->push_back(gtid); 739 } else { 740 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(), 741 // so set the th->th.th_stats field to it. 742 th->th.th_stats = __kmp_stats_thread_ptr; 743 } 744 __kmp_release_tas_lock(&__kmp_stats_lock, gtid); 745 746 #endif // KMP_STATS_ENABLED 747 748 if (KMP_UBER_GTID(gtid)) { 749 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid)); 750 th->th.th_info.ds.ds_thread = pthread_self(); 751 __kmp_set_stack_info(gtid, th); 752 __kmp_check_stack_overlap(th); 753 return; 754 } 755 756 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 757 758 KMP_MB(); /* Flush all pending memory write invalidates. */ 759 760 #ifdef KMP_THREAD_ATTR 761 status = pthread_attr_init(&thread_attr); 762 if (status != 0) { 763 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 764 } 765 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 766 if (status != 0) { 767 __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null); 768 } 769 770 /* Set stack size for this thread now. 771 The multiple of 2 is there because on some machines, requesting an unusual 772 stacksize causes the thread to have an offset before the dummy alloca() 773 takes place to create the offset. Since we want the user to have a 774 sufficient stacksize AND support a stack offset, we alloca() twice the 775 offset so that the upcoming alloca() does not eliminate any premade offset, 776 and also gives the user the stack space they requested for all threads */ 777 stack_size += gtid * __kmp_stkoffset * 2; 778 779 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 780 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n", 781 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 782 783 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 784 status = pthread_attr_setstacksize(&thread_attr, stack_size); 785 #ifdef KMP_BACKUP_STKSIZE 786 if (status != 0) { 787 if (!__kmp_env_stksize) { 788 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset; 789 __kmp_stksize = KMP_BACKUP_STKSIZE; 790 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 791 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu " 792 "bytes\n", 793 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 794 status = pthread_attr_setstacksize(&thread_attr, stack_size); 795 } 796 } 797 #endif /* KMP_BACKUP_STKSIZE */ 798 if (status != 0) { 799 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 800 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null); 801 } 802 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 803 804 #endif /* KMP_THREAD_ATTR */ 805 806 status = 807 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th); 808 if (status != 0 || !handle) { // ??? Why do we check handle?? 809 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 810 if (status == EINVAL) { 811 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 812 KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null); 813 } 814 if (status == ENOMEM) { 815 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 816 KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null); 817 } 818 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 819 if (status == EAGAIN) { 820 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status), 821 KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null); 822 } 823 KMP_SYSFAIL("pthread_create", status); 824 } 825 826 th->th.th_info.ds.ds_thread = handle; 827 828 #ifdef KMP_THREAD_ATTR 829 status = pthread_attr_destroy(&thread_attr); 830 if (status) { 831 kmp_msg_t err_code = KMP_ERR(status); 832 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 833 __kmp_msg_null); 834 if (__kmp_generate_warnings == kmp_warnings_off) { 835 __kmp_str_free(&err_code.str); 836 } 837 } 838 #endif /* KMP_THREAD_ATTR */ 839 840 KMP_MB(); /* Flush all pending memory write invalidates. */ 841 842 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 843 844 } // __kmp_create_worker 845 846 #if KMP_USE_MONITOR 847 void __kmp_create_monitor(kmp_info_t *th) { 848 pthread_t handle; 849 pthread_attr_t thread_attr; 850 size_t size; 851 int status; 852 int auto_adj_size = FALSE; 853 854 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 855 // We don't need monitor thread in case of MAX_BLOCKTIME 856 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 857 "MAX blocktime\n")); 858 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 859 th->th.th_info.ds.ds_gtid = 0; 860 return; 861 } 862 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 863 864 KMP_MB(); /* Flush all pending memory write invalidates. */ 865 866 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 867 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 868 #if KMP_REAL_TIME_FIX 869 TCW_4(__kmp_global.g.g_time.dt.t_value, 870 -1); // Will use it for synchronization a bit later. 871 #else 872 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 873 #endif // KMP_REAL_TIME_FIX 874 875 #ifdef KMP_THREAD_ATTR 876 if (__kmp_monitor_stksize == 0) { 877 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 878 auto_adj_size = TRUE; 879 } 880 status = pthread_attr_init(&thread_attr); 881 if (status != 0) { 882 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 883 } 884 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 885 if (status != 0) { 886 __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null); 887 } 888 889 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 890 status = pthread_attr_getstacksize(&thread_attr, &size); 891 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status); 892 #else 893 size = __kmp_sys_min_stksize; 894 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 895 #endif /* KMP_THREAD_ATTR */ 896 897 if (__kmp_monitor_stksize == 0) { 898 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 899 } 900 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 901 __kmp_monitor_stksize = __kmp_sys_min_stksize; 902 } 903 904 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes," 905 "requested stacksize = %lu bytes\n", 906 size, __kmp_monitor_stksize)); 907 908 retry: 909 910 /* Set stack size for this thread now. */ 911 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 912 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,", 913 __kmp_monitor_stksize)); 914 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize); 915 if (status != 0) { 916 if (auto_adj_size) { 917 __kmp_monitor_stksize *= 2; 918 goto retry; 919 } 920 kmp_msg_t err_code = KMP_ERR(status); 921 __kmp_msg(kmp_ms_warning, // should this be fatal? BB 922 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize), 923 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null); 924 if (__kmp_generate_warnings == kmp_warnings_off) { 925 __kmp_str_free(&err_code.str); 926 } 927 } 928 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 929 930 status = 931 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th); 932 933 if (status != 0) { 934 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 935 if (status == EINVAL) { 936 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) { 937 __kmp_monitor_stksize *= 2; 938 goto retry; 939 } 940 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 941 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), 942 __kmp_msg_null); 943 } 944 if (status == ENOMEM) { 945 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 946 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), 947 __kmp_msg_null); 948 } 949 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 950 if (status == EAGAIN) { 951 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status), 952 KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null); 953 } 954 KMP_SYSFAIL("pthread_create", status); 955 } 956 957 th->th.th_info.ds.ds_thread = handle; 958 959 #if KMP_REAL_TIME_FIX 960 // Wait for the monitor thread is really started and set its *priority*. 961 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 962 sizeof(__kmp_global.g.g_time.dt.t_value)); 963 __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1, 964 &__kmp_neq_4, NULL); 965 #endif // KMP_REAL_TIME_FIX 966 967 #ifdef KMP_THREAD_ATTR 968 status = pthread_attr_destroy(&thread_attr); 969 if (status != 0) { 970 kmp_msg_t err_code = KMP_ERR(status); 971 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 972 __kmp_msg_null); 973 if (__kmp_generate_warnings == kmp_warnings_off) { 974 __kmp_str_free(&err_code.str); 975 } 976 } 977 #endif 978 979 KMP_MB(); /* Flush all pending memory write invalidates. */ 980 981 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n", 982 th->th.th_info.ds.ds_thread)); 983 984 } // __kmp_create_monitor 985 #endif // KMP_USE_MONITOR 986 987 void __kmp_exit_thread(int exit_status) { 988 pthread_exit((void *)(intptr_t)exit_status); 989 } // __kmp_exit_thread 990 991 #if KMP_USE_MONITOR 992 void __kmp_resume_monitor(); 993 994 extern "C" void __kmp_reap_monitor(kmp_info_t *th) { 995 int status; 996 void *exit_val; 997 998 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle" 999 " %#.8lx\n", 1000 th->th.th_info.ds.ds_thread)); 1001 1002 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1003 // If both tid and gtid are 0, it means the monitor did not ever start. 1004 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1005 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1006 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1007 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1008 return; 1009 } 1010 1011 KMP_MB(); /* Flush all pending memory write invalidates. */ 1012 1013 /* First, check to see whether the monitor thread exists to wake it up. This 1014 is to avoid performance problem when the monitor sleeps during 1015 blocktime-size interval */ 1016 1017 status = pthread_kill(th->th.th_info.ds.ds_thread, 0); 1018 if (status != ESRCH) { 1019 __kmp_resume_monitor(); // Wake up the monitor thread 1020 } 1021 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n")); 1022 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1023 if (exit_val != th) { 1024 __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null); 1025 } 1026 1027 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1028 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1029 1030 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle" 1031 " %#.8lx\n", 1032 th->th.th_info.ds.ds_thread)); 1033 1034 KMP_MB(); /* Flush all pending memory write invalidates. */ 1035 } 1036 #else 1037 // Empty symbol to export (see exports_so.txt) when 1038 // monitor thread feature is disabled 1039 extern "C" void __kmp_reap_monitor(kmp_info_t *th) { 1040 (void)th; 1041 } 1042 #endif // KMP_USE_MONITOR 1043 1044 void __kmp_reap_worker(kmp_info_t *th) { 1045 int status; 1046 void *exit_val; 1047 1048 KMP_MB(); /* Flush all pending memory write invalidates. */ 1049 1050 KA_TRACE( 1051 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid)); 1052 1053 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1054 #ifdef KMP_DEBUG 1055 /* Don't expose these to the user until we understand when they trigger */ 1056 if (status != 0) { 1057 __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null); 1058 } 1059 if (exit_val != th) { 1060 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, " 1061 "exit_val = %p\n", 1062 th->th.th_info.ds.ds_gtid, exit_val)); 1063 } 1064 #else 1065 (void)status; // unused variable 1066 #endif /* KMP_DEBUG */ 1067 1068 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n", 1069 th->th.th_info.ds.ds_gtid)); 1070 1071 KMP_MB(); /* Flush all pending memory write invalidates. */ 1072 } 1073 1074 #if KMP_HANDLE_SIGNALS 1075 1076 static void __kmp_null_handler(int signo) { 1077 // Do nothing, for doing SIG_IGN-type actions. 1078 } // __kmp_null_handler 1079 1080 static void __kmp_team_handler(int signo) { 1081 if (__kmp_global.g.g_abort == 0) { 1082 /* Stage 1 signal handler, let's shut down all of the threads */ 1083 #ifdef KMP_DEBUG 1084 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo); 1085 #endif 1086 switch (signo) { 1087 case SIGHUP: 1088 case SIGINT: 1089 case SIGQUIT: 1090 case SIGILL: 1091 case SIGABRT: 1092 case SIGFPE: 1093 case SIGBUS: 1094 case SIGSEGV: 1095 #ifdef SIGSYS 1096 case SIGSYS: 1097 #endif 1098 case SIGTERM: 1099 if (__kmp_debug_buf) { 1100 __kmp_dump_debug_buffer(); 1101 } 1102 __kmp_unregister_library(); // cleanup shared memory 1103 KMP_MB(); // Flush all pending memory write invalidates. 1104 TCW_4(__kmp_global.g.g_abort, signo); 1105 KMP_MB(); // Flush all pending memory write invalidates. 1106 TCW_4(__kmp_global.g.g_done, TRUE); 1107 KMP_MB(); // Flush all pending memory write invalidates. 1108 break; 1109 default: 1110 #ifdef KMP_DEBUG 1111 __kmp_debug_printf("__kmp_team_handler: unknown signal type"); 1112 #endif 1113 break; 1114 } 1115 } 1116 } // __kmp_team_handler 1117 1118 static void __kmp_sigaction(int signum, const struct sigaction *act, 1119 struct sigaction *oldact) { 1120 int rc = sigaction(signum, act, oldact); 1121 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc); 1122 } 1123 1124 static void __kmp_install_one_handler(int sig, sig_func_t handler_func, 1125 int parallel_init) { 1126 KMP_MB(); // Flush all pending memory write invalidates. 1127 KB_TRACE(60, 1128 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init)); 1129 if (parallel_init) { 1130 struct sigaction new_action; 1131 struct sigaction old_action; 1132 new_action.sa_handler = handler_func; 1133 new_action.sa_flags = 0; 1134 sigfillset(&new_action.sa_mask); 1135 __kmp_sigaction(sig, &new_action, &old_action); 1136 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) { 1137 sigaddset(&__kmp_sigset, sig); 1138 } else { 1139 // Restore/keep user's handler if one previously installed. 1140 __kmp_sigaction(sig, &old_action, NULL); 1141 } 1142 } else { 1143 // Save initial/system signal handlers to see if user handlers installed. 1144 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]); 1145 } 1146 KMP_MB(); // Flush all pending memory write invalidates. 1147 } // __kmp_install_one_handler 1148 1149 static void __kmp_remove_one_handler(int sig) { 1150 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig)); 1151 if (sigismember(&__kmp_sigset, sig)) { 1152 struct sigaction old; 1153 KMP_MB(); // Flush all pending memory write invalidates. 1154 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old); 1155 if ((old.sa_handler != __kmp_team_handler) && 1156 (old.sa_handler != __kmp_null_handler)) { 1157 // Restore the users signal handler. 1158 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1159 "restoring: sig=%d\n", 1160 sig)); 1161 __kmp_sigaction(sig, &old, NULL); 1162 } 1163 sigdelset(&__kmp_sigset, sig); 1164 KMP_MB(); // Flush all pending memory write invalidates. 1165 } 1166 } // __kmp_remove_one_handler 1167 1168 void __kmp_install_signals(int parallel_init) { 1169 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init)); 1170 if (__kmp_handle_signals || !parallel_init) { 1171 // If ! parallel_init, we do not install handlers, just save original 1172 // handlers. Let us do it even __handle_signals is 0. 1173 sigemptyset(&__kmp_sigset); 1174 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init); 1175 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1176 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init); 1177 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1178 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1179 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1180 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init); 1181 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1182 #ifdef SIGSYS 1183 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init); 1184 #endif // SIGSYS 1185 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1186 #ifdef SIGPIPE 1187 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init); 1188 #endif // SIGPIPE 1189 } 1190 } // __kmp_install_signals 1191 1192 void __kmp_remove_signals(void) { 1193 int sig; 1194 KB_TRACE(10, ("__kmp_remove_signals()\n")); 1195 for (sig = 1; sig < NSIG; ++sig) { 1196 __kmp_remove_one_handler(sig); 1197 } 1198 } // __kmp_remove_signals 1199 1200 #endif // KMP_HANDLE_SIGNALS 1201 1202 void __kmp_enable(int new_state) { 1203 #ifdef KMP_CANCEL_THREADS 1204 int status, old_state; 1205 status = pthread_setcancelstate(new_state, &old_state); 1206 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1207 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE); 1208 #endif 1209 } 1210 1211 void __kmp_disable(int *old_state) { 1212 #ifdef KMP_CANCEL_THREADS 1213 int status; 1214 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state); 1215 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1216 #endif 1217 } 1218 1219 static void __kmp_atfork_prepare(void) { 1220 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 1221 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1222 } 1223 1224 static void __kmp_atfork_parent(void) { 1225 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1226 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1227 } 1228 1229 /* Reset the library so execution in the child starts "all over again" with 1230 clean data structures in initial states. Don't worry about freeing memory 1231 allocated by parent, just abandon it to be safe. */ 1232 static void __kmp_atfork_child(void) { 1233 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1234 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1235 /* TODO make sure this is done right for nested/sibling */ 1236 // ATT: Memory leaks are here? TODO: Check it and fix. 1237 /* KMP_ASSERT( 0 ); */ 1238 1239 ++__kmp_fork_count; 1240 1241 #if KMP_AFFINITY_SUPPORTED 1242 #if KMP_OS_LINUX || KMP_OS_FREEBSD 1243 // reset the affinity in the child to the initial thread 1244 // affinity in the parent 1245 kmp_set_thread_affinity_mask_initial(); 1246 #endif 1247 // Set default not to bind threads tightly in the child (we're expecting 1248 // over-subscription after the fork and this can improve things for 1249 // scripting languages that use OpenMP inside process-parallel code). 1250 if (__kmp_nested_proc_bind.bind_types != NULL) { 1251 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; 1252 } 1253 for (kmp_affinity_t *affinity : __kmp_affinities) 1254 *affinity = KMP_AFFINITY_INIT(affinity->env_var); 1255 __kmp_affin_fullMask = nullptr; 1256 __kmp_affin_origMask = nullptr; 1257 __kmp_topology = nullptr; 1258 #endif // KMP_AFFINITY_SUPPORTED 1259 1260 #if KMP_USE_MONITOR 1261 __kmp_init_monitor = 0; 1262 #endif 1263 __kmp_init_parallel = FALSE; 1264 __kmp_init_middle = FALSE; 1265 __kmp_init_serial = FALSE; 1266 TCW_4(__kmp_init_gtid, FALSE); 1267 __kmp_init_common = FALSE; 1268 1269 TCW_4(__kmp_init_user_locks, FALSE); 1270 #if !KMP_USE_DYNAMIC_LOCK 1271 __kmp_user_lock_table.used = 1; 1272 __kmp_user_lock_table.allocated = 0; 1273 __kmp_user_lock_table.table = NULL; 1274 __kmp_lock_blocks = NULL; 1275 #endif 1276 1277 __kmp_all_nth = 0; 1278 TCW_4(__kmp_nth, 0); 1279 1280 __kmp_thread_pool = NULL; 1281 __kmp_thread_pool_insert_pt = NULL; 1282 __kmp_team_pool = NULL; 1283 1284 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate 1285 here so threadprivate doesn't use stale data */ 1286 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n", 1287 __kmp_threadpriv_cache_list)); 1288 1289 while (__kmp_threadpriv_cache_list != NULL) { 1290 1291 if (*__kmp_threadpriv_cache_list->addr != NULL) { 1292 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n", 1293 &(*__kmp_threadpriv_cache_list->addr))); 1294 1295 *__kmp_threadpriv_cache_list->addr = NULL; 1296 } 1297 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next; 1298 } 1299 1300 __kmp_init_runtime = FALSE; 1301 1302 /* reset statically initialized locks */ 1303 __kmp_init_bootstrap_lock(&__kmp_initz_lock); 1304 __kmp_init_bootstrap_lock(&__kmp_stdio_lock); 1305 __kmp_init_bootstrap_lock(&__kmp_console_lock); 1306 __kmp_init_bootstrap_lock(&__kmp_task_team_lock); 1307 1308 #if USE_ITT_BUILD 1309 __kmp_itt_reset(); // reset ITT's global state 1310 #endif /* USE_ITT_BUILD */ 1311 1312 { 1313 // Child process often get terminated without any use of OpenMP. That might 1314 // cause mapped shared memory file to be left unattended. Thus we postpone 1315 // library registration till middle initialization in the child process. 1316 __kmp_need_register_serial = FALSE; 1317 __kmp_serial_initialize(); 1318 } 1319 1320 /* This is necessary to make sure no stale data is left around */ 1321 /* AC: customers complain that we use unsafe routines in the atfork 1322 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen 1323 in dynamic_link when check the presence of shared tbbmalloc library. 1324 Suggestion is to make the library initialization lazier, similar 1325 to what done for __kmpc_begin(). */ 1326 // TODO: synchronize all static initializations with regular library 1327 // startup; look at kmp_global.cpp and etc. 1328 //__kmp_internal_begin (); 1329 } 1330 1331 void __kmp_register_atfork(void) { 1332 if (__kmp_need_register_atfork) { 1333 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent, 1334 __kmp_atfork_child); 1335 KMP_CHECK_SYSFAIL("pthread_atfork", status); 1336 __kmp_need_register_atfork = FALSE; 1337 } 1338 } 1339 1340 void __kmp_suspend_initialize(void) { 1341 int status; 1342 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr); 1343 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1344 status = pthread_condattr_init(&__kmp_suspend_cond_attr); 1345 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1346 } 1347 1348 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 1349 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count); 1350 int new_value = __kmp_fork_count + 1; 1351 // Return if already initialized 1352 if (old_value == new_value) 1353 return; 1354 // Wait, then return if being initialized 1355 if (old_value == -1 || !__kmp_atomic_compare_store( 1356 &th->th.th_suspend_init_count, old_value, -1)) { 1357 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) { 1358 KMP_CPU_PAUSE(); 1359 } 1360 } else { 1361 // Claim to be the initializer and do initializations 1362 int status; 1363 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond, 1364 &__kmp_suspend_cond_attr); 1365 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1366 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex, 1367 &__kmp_suspend_mutex_attr); 1368 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1369 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value); 1370 } 1371 } 1372 1373 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 1374 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) { 1375 /* this means we have initialize the suspension pthread objects for this 1376 thread in this instance of the process */ 1377 int status; 1378 1379 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond); 1380 if (status != 0 && status != EBUSY) { 1381 KMP_SYSFAIL("pthread_cond_destroy", status); 1382 } 1383 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex); 1384 if (status != 0 && status != EBUSY) { 1385 KMP_SYSFAIL("pthread_mutex_destroy", status); 1386 } 1387 --th->th.th_suspend_init_count; 1388 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) == 1389 __kmp_fork_count); 1390 } 1391 } 1392 1393 // return true if lock obtained, false otherwise 1394 int __kmp_try_suspend_mx(kmp_info_t *th) { 1395 return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0); 1396 } 1397 1398 void __kmp_lock_suspend_mx(kmp_info_t *th) { 1399 int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1400 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1401 } 1402 1403 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 1404 int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1405 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1406 } 1407 1408 /* This routine puts the calling thread to sleep after setting the 1409 sleep bit for the indicated flag variable to true. */ 1410 template <class C> 1411 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 1412 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend); 1413 kmp_info_t *th = __kmp_threads[th_gtid]; 1414 int status; 1415 typename C::flag_t old_spin; 1416 1417 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid, 1418 flag->get())); 1419 1420 __kmp_suspend_initialize_thread(th); 1421 1422 __kmp_lock_suspend_mx(th); 1423 1424 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n", 1425 th_gtid, flag->get())); 1426 1427 /* TODO: shouldn't this use release semantics to ensure that 1428 __kmp_suspend_initialize_thread gets called first? */ 1429 old_spin = flag->set_sleeping(); 1430 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 1431 th->th.th_sleep_loc_type = flag->get_type(); 1432 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 1433 __kmp_pause_status != kmp_soft_paused) { 1434 flag->unset_sleeping(); 1435 TCW_PTR(th->th.th_sleep_loc, NULL); 1436 th->th.th_sleep_loc_type = flag_unset; 1437 __kmp_unlock_suspend_mx(th); 1438 return; 1439 } 1440 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x," 1441 " was %x\n", 1442 th_gtid, flag->get(), flag->load(), old_spin)); 1443 1444 if (flag->done_check_val(old_spin) || flag->done_check()) { 1445 flag->unset_sleeping(); 1446 TCW_PTR(th->th.th_sleep_loc, NULL); 1447 th->th.th_sleep_loc_type = flag_unset; 1448 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 1449 "for spin(%p)\n", 1450 th_gtid, flag->get())); 1451 } else { 1452 /* Encapsulate in a loop as the documentation states that this may 1453 "with low probability" return when the condition variable has 1454 not been signaled or broadcast */ 1455 int deactivated = FALSE; 1456 1457 while (flag->is_sleeping()) { 1458 #ifdef DEBUG_SUSPEND 1459 char buffer[128]; 1460 __kmp_suspend_count++; 1461 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1462 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid, 1463 buffer); 1464 #endif 1465 // Mark the thread as no longer active (only in the first iteration of the 1466 // loop). 1467 if (!deactivated) { 1468 th->th.th_active = FALSE; 1469 if (th->th.th_active_in_pool) { 1470 th->th.th_active_in_pool = FALSE; 1471 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 1472 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 1473 } 1474 deactivated = TRUE; 1475 } 1476 1477 KMP_DEBUG_ASSERT(th->th.th_sleep_loc); 1478 KMP_DEBUG_ASSERT(flag->get_type() == th->th.th_sleep_loc_type); 1479 1480 #if USE_SUSPEND_TIMEOUT 1481 struct timespec now; 1482 struct timeval tval; 1483 int msecs; 1484 1485 status = gettimeofday(&tval, NULL); 1486 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1487 TIMEVAL_TO_TIMESPEC(&tval, &now); 1488 1489 msecs = (4 * __kmp_dflt_blocktime) + 200; 1490 now.tv_sec += msecs / 1000; 1491 now.tv_nsec += (msecs % 1000) * 1000; 1492 1493 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 1494 "pthread_cond_timedwait\n", 1495 th_gtid)); 1496 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond, 1497 &th->th.th_suspend_mx.m_mutex, &now); 1498 #else 1499 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform" 1500 " pthread_cond_wait\n", 1501 th_gtid)); 1502 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond, 1503 &th->th.th_suspend_mx.m_mutex); 1504 #endif // USE_SUSPEND_TIMEOUT 1505 1506 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) { 1507 KMP_SYSFAIL("pthread_cond_wait", status); 1508 } 1509 1510 KMP_DEBUG_ASSERT(flag->get_type() == flag->get_ptr_type()); 1511 1512 if (!flag->is_sleeping() && 1513 ((status == EINTR) || (status == ETIMEDOUT))) { 1514 // if interrupt or timeout, and thread is no longer sleeping, we need to 1515 // make sure sleep_loc gets reset; however, this shouldn't be needed if 1516 // we woke up with resume 1517 flag->unset_sleeping(); 1518 TCW_PTR(th->th.th_sleep_loc, NULL); 1519 th->th.th_sleep_loc_type = flag_unset; 1520 } 1521 #ifdef KMP_DEBUG 1522 if (status == ETIMEDOUT) { 1523 if (flag->is_sleeping()) { 1524 KF_TRACE(100, 1525 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid)); 1526 } else { 1527 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit " 1528 "not set!\n", 1529 th_gtid)); 1530 TCW_PTR(th->th.th_sleep_loc, NULL); 1531 th->th.th_sleep_loc_type = flag_unset; 1532 } 1533 } else if (flag->is_sleeping()) { 1534 KF_TRACE(100, 1535 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 1536 } 1537 #endif 1538 } // while 1539 1540 // Mark the thread as active again (if it was previous marked as inactive) 1541 if (deactivated) { 1542 th->th.th_active = TRUE; 1543 if (TCR_4(th->th.th_in_pool)) { 1544 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 1545 th->th.th_active_in_pool = TRUE; 1546 } 1547 } 1548 } 1549 // We may have had the loop variable set before entering the loop body; 1550 // so we need to reset sleep_loc. 1551 TCW_PTR(th->th.th_sleep_loc, NULL); 1552 th->th.th_sleep_loc_type = flag_unset; 1553 1554 KMP_DEBUG_ASSERT(!flag->is_sleeping()); 1555 KMP_DEBUG_ASSERT(!th->th.th_sleep_loc); 1556 #ifdef DEBUG_SUSPEND 1557 { 1558 char buffer[128]; 1559 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1560 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid, 1561 buffer); 1562 } 1563 #endif 1564 1565 __kmp_unlock_suspend_mx(th); 1566 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 1567 } 1568 1569 template <bool C, bool S> 1570 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) { 1571 __kmp_suspend_template(th_gtid, flag); 1572 } 1573 template <bool C, bool S> 1574 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) { 1575 __kmp_suspend_template(th_gtid, flag); 1576 } 1577 template <bool C, bool S> 1578 void __kmp_atomic_suspend_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag) { 1579 __kmp_suspend_template(th_gtid, flag); 1580 } 1581 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 1582 __kmp_suspend_template(th_gtid, flag); 1583 } 1584 1585 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *); 1586 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *); 1587 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *); 1588 template void 1589 __kmp_atomic_suspend_64<false, true>(int, kmp_atomic_flag_64<false, true> *); 1590 template void 1591 __kmp_atomic_suspend_64<true, false>(int, kmp_atomic_flag_64<true, false> *); 1592 1593 /* This routine signals the thread specified by target_gtid to wake up 1594 after setting the sleep bit indicated by the flag argument to FALSE. 1595 The target thread must already have called __kmp_suspend_template() */ 1596 template <class C> 1597 static inline void __kmp_resume_template(int target_gtid, C *flag) { 1598 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1599 kmp_info_t *th = __kmp_threads[target_gtid]; 1600 int status; 1601 1602 #ifdef KMP_DEBUG 1603 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1604 #endif 1605 1606 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 1607 gtid, target_gtid)); 1608 KMP_DEBUG_ASSERT(gtid != target_gtid); 1609 1610 __kmp_suspend_initialize_thread(th); 1611 1612 __kmp_lock_suspend_mx(th); 1613 1614 if (!flag || flag != th->th.th_sleep_loc) { 1615 // coming from __kmp_null_resume_wrapper, or thread is now sleeping on a 1616 // different location; wake up at new location 1617 flag = (C *)CCAST(void *, th->th.th_sleep_loc); 1618 } 1619 1620 // First, check if the flag is null or its type has changed. If so, someone 1621 // else woke it up. 1622 if (!flag) { // Thread doesn't appear to be sleeping on anything 1623 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1624 "awake: flag(%p)\n", 1625 gtid, target_gtid, (void *)NULL)); 1626 __kmp_unlock_suspend_mx(th); 1627 return; 1628 } else if (flag->get_type() != th->th.th_sleep_loc_type) { 1629 // Flag type does not appear to match this function template; possibly the 1630 // thread is sleeping on something else. Try null resume again. 1631 KF_TRACE( 1632 5, 1633 ("__kmp_resume_template: T#%d retrying, thread T#%d Mismatch flag(%p), " 1634 "spin(%p) type=%d ptr_type=%d\n", 1635 gtid, target_gtid, flag, flag->get(), flag->get_type(), 1636 th->th.th_sleep_loc_type)); 1637 __kmp_unlock_suspend_mx(th); 1638 __kmp_null_resume_wrapper(th); 1639 return; 1640 } else { // if multiple threads are sleeping, flag should be internally 1641 // referring to a specific thread here 1642 if (!flag->is_sleeping()) { 1643 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1644 "awake: flag(%p): %u\n", 1645 gtid, target_gtid, flag->get(), (unsigned int)flag->load())); 1646 __kmp_unlock_suspend_mx(th); 1647 return; 1648 } 1649 } 1650 KMP_DEBUG_ASSERT(flag); 1651 flag->unset_sleeping(); 1652 TCW_PTR(th->th.th_sleep_loc, NULL); 1653 th->th.th_sleep_loc_type = flag_unset; 1654 1655 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset " 1656 "sleep bit for flag's loc(%p): %u\n", 1657 gtid, target_gtid, flag->get(), (unsigned int)flag->load())); 1658 1659 #ifdef DEBUG_SUSPEND 1660 { 1661 char buffer[128]; 1662 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1663 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid, 1664 target_gtid, buffer); 1665 } 1666 #endif 1667 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond); 1668 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1669 __kmp_unlock_suspend_mx(th); 1670 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 1671 " for T#%d\n", 1672 gtid, target_gtid)); 1673 } 1674 1675 template <bool C, bool S> 1676 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) { 1677 __kmp_resume_template(target_gtid, flag); 1678 } 1679 template <bool C, bool S> 1680 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) { 1681 __kmp_resume_template(target_gtid, flag); 1682 } 1683 template <bool C, bool S> 1684 void __kmp_atomic_resume_64(int target_gtid, kmp_atomic_flag_64<C, S> *flag) { 1685 __kmp_resume_template(target_gtid, flag); 1686 } 1687 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 1688 __kmp_resume_template(target_gtid, flag); 1689 } 1690 1691 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *); 1692 template void __kmp_resume_32<false, false>(int, kmp_flag_32<false, false> *); 1693 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *); 1694 template void 1695 __kmp_atomic_resume_64<false, true>(int, kmp_atomic_flag_64<false, true> *); 1696 1697 #if KMP_USE_MONITOR 1698 void __kmp_resume_monitor() { 1699 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1700 int status; 1701 #ifdef KMP_DEBUG 1702 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1703 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid, 1704 KMP_GTID_MONITOR)); 1705 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR); 1706 #endif 1707 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 1708 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1709 #ifdef DEBUG_SUSPEND 1710 { 1711 char buffer[128]; 1712 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond); 1713 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid, 1714 KMP_GTID_MONITOR, buffer); 1715 } 1716 #endif 1717 status = pthread_cond_signal(&__kmp_wait_cv.c_cond); 1718 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1719 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 1720 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1721 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up" 1722 " for T#%d\n", 1723 gtid, KMP_GTID_MONITOR)); 1724 } 1725 #endif // KMP_USE_MONITOR 1726 1727 void __kmp_yield() { sched_yield(); } 1728 1729 void __kmp_gtid_set_specific(int gtid) { 1730 if (__kmp_init_gtid) { 1731 int status; 1732 status = pthread_setspecific(__kmp_gtid_threadprivate_key, 1733 (void *)(intptr_t)(gtid + 1)); 1734 KMP_CHECK_SYSFAIL("pthread_setspecific", status); 1735 } else { 1736 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 1737 } 1738 } 1739 1740 int __kmp_gtid_get_specific() { 1741 int gtid; 1742 if (!__kmp_init_gtid) { 1743 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 1744 "KMP_GTID_SHUTDOWN\n")); 1745 return KMP_GTID_SHUTDOWN; 1746 } 1747 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key); 1748 if (gtid == 0) { 1749 gtid = KMP_GTID_DNE; 1750 } else { 1751 gtid--; 1752 } 1753 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 1754 __kmp_gtid_threadprivate_key, gtid)); 1755 return gtid; 1756 } 1757 1758 double __kmp_read_cpu_time(void) { 1759 /*clock_t t;*/ 1760 struct tms buffer; 1761 1762 /*t =*/times(&buffer); 1763 1764 return (double)(buffer.tms_utime + buffer.tms_cutime) / 1765 (double)CLOCKS_PER_SEC; 1766 } 1767 1768 int __kmp_read_system_info(struct kmp_sys_info *info) { 1769 int status; 1770 struct rusage r_usage; 1771 1772 memset(info, 0, sizeof(*info)); 1773 1774 status = getrusage(RUSAGE_SELF, &r_usage); 1775 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status); 1776 1777 // The maximum resident set size utilized (in kilobytes) 1778 info->maxrss = r_usage.ru_maxrss; 1779 // The number of page faults serviced without any I/O 1780 info->minflt = r_usage.ru_minflt; 1781 // The number of page faults serviced that required I/O 1782 info->majflt = r_usage.ru_majflt; 1783 // The number of times a process was "swapped" out of memory 1784 info->nswap = r_usage.ru_nswap; 1785 // The number of times the file system had to perform input 1786 info->inblock = r_usage.ru_inblock; 1787 // The number of times the file system had to perform output 1788 info->oublock = r_usage.ru_oublock; 1789 // The number of times a context switch was voluntarily 1790 info->nvcsw = r_usage.ru_nvcsw; 1791 // The number of times a context switch was forced 1792 info->nivcsw = r_usage.ru_nivcsw; 1793 1794 return (status != 0); 1795 } 1796 1797 void __kmp_read_system_time(double *delta) { 1798 double t_ns; 1799 struct timeval tval; 1800 struct timespec stop; 1801 int status; 1802 1803 status = gettimeofday(&tval, NULL); 1804 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1805 TIMEVAL_TO_TIMESPEC(&tval, &stop); 1806 t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start)); 1807 *delta = (t_ns * 1e-9); 1808 } 1809 1810 void __kmp_clear_system_time(void) { 1811 struct timeval tval; 1812 int status; 1813 status = gettimeofday(&tval, NULL); 1814 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1815 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start); 1816 } 1817 1818 static int __kmp_get_xproc(void) { 1819 1820 int r = 0; 1821 1822 #if KMP_OS_LINUX 1823 1824 __kmp_type_convert(sysconf(_SC_NPROCESSORS_CONF), &(r)); 1825 1826 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_OPENBSD || \ 1827 KMP_OS_HURD || KMP_OS_SOLARIS 1828 1829 __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r)); 1830 1831 #elif KMP_OS_DARWIN 1832 1833 // Bug C77011 High "OpenMP Threads and number of active cores". 1834 1835 // Find the number of available CPUs. 1836 kern_return_t rc; 1837 host_basic_info_data_t info; 1838 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT; 1839 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num); 1840 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) { 1841 // Cannot use KA_TRACE() here because this code works before trace support 1842 // is initialized. 1843 r = info.avail_cpus; 1844 } else { 1845 KMP_WARNING(CantGetNumAvailCPU); 1846 KMP_INFORM(AssumedNumCPU); 1847 } 1848 1849 #else 1850 1851 #error "Unknown or unsupported OS." 1852 1853 #endif 1854 1855 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */ 1856 1857 } // __kmp_get_xproc 1858 1859 int __kmp_read_from_file(char const *path, char const *format, ...) { 1860 int result; 1861 va_list args; 1862 1863 va_start(args, format); 1864 FILE *f = fopen(path, "rb"); 1865 if (f == NULL) { 1866 va_end(args); 1867 return 0; 1868 } 1869 result = vfscanf(f, format, args); 1870 fclose(f); 1871 va_end(args); 1872 1873 return result; 1874 } 1875 1876 void __kmp_runtime_initialize(void) { 1877 int status; 1878 pthread_mutexattr_t mutex_attr; 1879 pthread_condattr_t cond_attr; 1880 1881 if (__kmp_init_runtime) { 1882 return; 1883 } 1884 1885 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1886 if (!__kmp_cpuinfo.initialized) { 1887 __kmp_query_cpuid(&__kmp_cpuinfo); 1888 } 1889 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1890 1891 __kmp_xproc = __kmp_get_xproc(); 1892 1893 #if !KMP_32_BIT_ARCH 1894 struct rlimit rlim; 1895 // read stack size of calling thread, save it as default for worker threads; 1896 // this should be done before reading environment variables 1897 status = getrlimit(RLIMIT_STACK, &rlim); 1898 if (status == 0) { // success? 1899 __kmp_stksize = rlim.rlim_cur; 1900 __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed 1901 } 1902 #endif /* KMP_32_BIT_ARCH */ 1903 1904 if (sysconf(_SC_THREADS)) { 1905 1906 /* Query the maximum number of threads */ 1907 __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth)); 1908 #ifdef __ve__ 1909 if (__kmp_sys_max_nth == -1) { 1910 // VE's pthread supports only up to 64 threads per a VE process. 1911 // So we use that KMP_MAX_NTH (predefined as 64) here. 1912 __kmp_sys_max_nth = KMP_MAX_NTH; 1913 } 1914 #else 1915 if (__kmp_sys_max_nth == -1) { 1916 /* Unlimited threads for NPTL */ 1917 __kmp_sys_max_nth = INT_MAX; 1918 } else if (__kmp_sys_max_nth <= 1) { 1919 /* Can't tell, just use PTHREAD_THREADS_MAX */ 1920 __kmp_sys_max_nth = KMP_MAX_NTH; 1921 } 1922 #endif 1923 1924 /* Query the minimum stack size */ 1925 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN); 1926 if (__kmp_sys_min_stksize <= 1) { 1927 __kmp_sys_min_stksize = KMP_MIN_STKSIZE; 1928 } 1929 } 1930 1931 /* Set up minimum number of threads to switch to TLS gtid */ 1932 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 1933 1934 status = pthread_key_create(&__kmp_gtid_threadprivate_key, 1935 __kmp_internal_end_dest); 1936 KMP_CHECK_SYSFAIL("pthread_key_create", status); 1937 status = pthread_mutexattr_init(&mutex_attr); 1938 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1939 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr); 1940 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1941 status = pthread_mutexattr_destroy(&mutex_attr); 1942 KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status); 1943 status = pthread_condattr_init(&cond_attr); 1944 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1945 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr); 1946 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1947 status = pthread_condattr_destroy(&cond_attr); 1948 KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status); 1949 #if USE_ITT_BUILD 1950 __kmp_itt_initialize(); 1951 #endif /* USE_ITT_BUILD */ 1952 1953 __kmp_init_runtime = TRUE; 1954 } 1955 1956 void __kmp_runtime_destroy(void) { 1957 int status; 1958 1959 if (!__kmp_init_runtime) { 1960 return; // Nothing to do. 1961 } 1962 1963 #if USE_ITT_BUILD 1964 __kmp_itt_destroy(); 1965 #endif /* USE_ITT_BUILD */ 1966 1967 status = pthread_key_delete(__kmp_gtid_threadprivate_key); 1968 KMP_CHECK_SYSFAIL("pthread_key_delete", status); 1969 1970 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex); 1971 if (status != 0 && status != EBUSY) { 1972 KMP_SYSFAIL("pthread_mutex_destroy", status); 1973 } 1974 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond); 1975 if (status != 0 && status != EBUSY) { 1976 KMP_SYSFAIL("pthread_cond_destroy", status); 1977 } 1978 #if KMP_AFFINITY_SUPPORTED 1979 __kmp_affinity_uninitialize(); 1980 #endif 1981 1982 __kmp_init_runtime = FALSE; 1983 } 1984 1985 /* Put the thread to sleep for a time period */ 1986 /* NOTE: not currently used anywhere */ 1987 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); } 1988 1989 /* Calculate the elapsed wall clock time for the user */ 1990 void __kmp_elapsed(double *t) { 1991 int status; 1992 #ifdef FIX_SGI_CLOCK 1993 struct timespec ts; 1994 1995 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); 1996 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status); 1997 *t = 1998 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec; 1999 #else 2000 struct timeval tv; 2001 2002 status = gettimeofday(&tv, NULL); 2003 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 2004 *t = 2005 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec; 2006 #endif 2007 } 2008 2009 /* Calculate the elapsed wall clock tick for the user */ 2010 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; } 2011 2012 /* Return the current time stamp in nsec */ 2013 kmp_uint64 __kmp_now_nsec() { 2014 struct timeval t; 2015 gettimeofday(&t, NULL); 2016 kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec + 2017 (kmp_uint64)1000 * (kmp_uint64)t.tv_usec; 2018 return nsec; 2019 } 2020 2021 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2022 /* Measure clock ticks per millisecond */ 2023 void __kmp_initialize_system_tick() { 2024 kmp_uint64 now, nsec2, diff; 2025 kmp_uint64 delay = 1000000; // ~450 usec on most machines. 2026 kmp_uint64 nsec = __kmp_now_nsec(); 2027 kmp_uint64 goal = __kmp_hardware_timestamp() + delay; 2028 while ((now = __kmp_hardware_timestamp()) < goal) 2029 ; 2030 nsec2 = __kmp_now_nsec(); 2031 diff = nsec2 - nsec; 2032 if (diff > 0) { 2033 double tpus = 1000.0 * (double)(delay + (now - goal)) / (double)diff; 2034 if (tpus > 0.0) { 2035 __kmp_ticks_per_msec = (kmp_uint64)(tpus * 1000.0); 2036 __kmp_ticks_per_usec = (kmp_uint64)tpus; 2037 } 2038 } 2039 } 2040 #endif 2041 2042 /* Determine whether the given address is mapped into the current address 2043 space. */ 2044 2045 int __kmp_is_address_mapped(void *addr) { 2046 2047 int found = 0; 2048 int rc; 2049 2050 #if KMP_OS_LINUX || KMP_OS_HURD 2051 2052 /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the 2053 address ranges mapped into the address space. */ 2054 2055 char *name = __kmp_str_format("/proc/%d/maps", getpid()); 2056 FILE *file = NULL; 2057 2058 file = fopen(name, "r"); 2059 KMP_ASSERT(file != NULL); 2060 2061 for (;;) { 2062 2063 void *beginning = NULL; 2064 void *ending = NULL; 2065 char perms[5]; 2066 2067 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms); 2068 if (rc == EOF) { 2069 break; 2070 } 2071 KMP_ASSERT(rc == 3 && 2072 KMP_STRLEN(perms) == 4); // Make sure all fields are read. 2073 2074 // Ending address is not included in the region, but beginning is. 2075 if ((addr >= beginning) && (addr < ending)) { 2076 perms[2] = 0; // 3th and 4th character does not matter. 2077 if (strcmp(perms, "rw") == 0) { 2078 // Memory we are looking for should be readable and writable. 2079 found = 1; 2080 } 2081 break; 2082 } 2083 } 2084 2085 // Free resources. 2086 fclose(file); 2087 KMP_INTERNAL_FREE(name); 2088 #elif KMP_OS_FREEBSD 2089 char *buf; 2090 size_t lstsz; 2091 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()}; 2092 rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0); 2093 if (rc < 0) 2094 return 0; 2095 // We pass from number of vm entry's semantic 2096 // to size of whole entry map list. 2097 lstsz = lstsz * 4 / 3; 2098 buf = reinterpret_cast<char *>(kmpc_malloc(lstsz)); 2099 rc = sysctl(mib, 4, buf, &lstsz, NULL, 0); 2100 if (rc < 0) { 2101 kmpc_free(buf); 2102 return 0; 2103 } 2104 2105 char *lw = buf; 2106 char *up = buf + lstsz; 2107 2108 while (lw < up) { 2109 struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw); 2110 size_t cursz = cur->kve_structsize; 2111 if (cursz == 0) 2112 break; 2113 void *start = reinterpret_cast<void *>(cur->kve_start); 2114 void *end = reinterpret_cast<void *>(cur->kve_end); 2115 // Readable/Writable addresses within current map entry 2116 if ((addr >= start) && (addr < end)) { 2117 if ((cur->kve_protection & KVME_PROT_READ) != 0 && 2118 (cur->kve_protection & KVME_PROT_WRITE) != 0) { 2119 found = 1; 2120 break; 2121 } 2122 } 2123 lw += cursz; 2124 } 2125 kmpc_free(buf); 2126 2127 #elif KMP_OS_DARWIN 2128 2129 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory 2130 using vm interface. */ 2131 2132 int buffer; 2133 vm_size_t count; 2134 rc = vm_read_overwrite( 2135 mach_task_self(), // Task to read memory of. 2136 (vm_address_t)(addr), // Address to read from. 2137 1, // Number of bytes to be read. 2138 (vm_address_t)(&buffer), // Address of buffer to save read bytes in. 2139 &count // Address of var to save number of read bytes in. 2140 ); 2141 if (rc == 0) { 2142 // Memory successfully read. 2143 found = 1; 2144 } 2145 2146 #elif KMP_OS_NETBSD 2147 2148 int mib[5]; 2149 mib[0] = CTL_VM; 2150 mib[1] = VM_PROC; 2151 mib[2] = VM_PROC_MAP; 2152 mib[3] = getpid(); 2153 mib[4] = sizeof(struct kinfo_vmentry); 2154 2155 size_t size; 2156 rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0); 2157 KMP_ASSERT(!rc); 2158 KMP_ASSERT(size); 2159 2160 size = size * 4 / 3; 2161 struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size); 2162 KMP_ASSERT(kiv); 2163 2164 rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0); 2165 KMP_ASSERT(!rc); 2166 KMP_ASSERT(size); 2167 2168 for (size_t i = 0; i < size; i++) { 2169 if (kiv[i].kve_start >= (uint64_t)addr && 2170 kiv[i].kve_end <= (uint64_t)addr) { 2171 found = 1; 2172 break; 2173 } 2174 } 2175 KMP_INTERNAL_FREE(kiv); 2176 #elif KMP_OS_OPENBSD 2177 2178 int mib[3]; 2179 mib[0] = CTL_KERN; 2180 mib[1] = KERN_PROC_VMMAP; 2181 mib[2] = getpid(); 2182 2183 size_t size; 2184 uint64_t end; 2185 rc = sysctl(mib, 3, NULL, &size, NULL, 0); 2186 KMP_ASSERT(!rc); 2187 KMP_ASSERT(size); 2188 end = size; 2189 2190 struct kinfo_vmentry kiv = {.kve_start = 0}; 2191 2192 while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) { 2193 KMP_ASSERT(size); 2194 if (kiv.kve_end == end) 2195 break; 2196 2197 if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) { 2198 found = 1; 2199 break; 2200 } 2201 kiv.kve_start += 1; 2202 } 2203 #elif KMP_OS_DRAGONFLY || KMP_OS_SOLARIS 2204 2205 // FIXME(DragonFly, Solaris): Implement this 2206 found = 1; 2207 2208 #else 2209 2210 #error "Unknown or unsupported OS" 2211 2212 #endif 2213 2214 return found; 2215 2216 } // __kmp_is_address_mapped 2217 2218 #ifdef USE_LOAD_BALANCE 2219 2220 #if KMP_OS_DARWIN || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 2221 KMP_OS_OPENBSD || KMP_OS_SOLARIS 2222 2223 // The function returns the rounded value of the system load average 2224 // during given time interval which depends on the value of 2225 // __kmp_load_balance_interval variable (default is 60 sec, other values 2226 // may be 300 sec or 900 sec). 2227 // It returns -1 in case of error. 2228 int __kmp_get_load_balance(int max) { 2229 double averages[3]; 2230 int ret_avg = 0; 2231 2232 int res = getloadavg(averages, 3); 2233 2234 // Check __kmp_load_balance_interval to determine which of averages to use. 2235 // getloadavg() may return the number of samples less than requested that is 2236 // less than 3. 2237 if (__kmp_load_balance_interval < 180 && (res >= 1)) { 2238 ret_avg = (int)averages[0]; // 1 min 2239 } else if ((__kmp_load_balance_interval >= 180 && 2240 __kmp_load_balance_interval < 600) && 2241 (res >= 2)) { 2242 ret_avg = (int)averages[1]; // 5 min 2243 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) { 2244 ret_avg = (int)averages[2]; // 15 min 2245 } else { // Error occurred 2246 return -1; 2247 } 2248 2249 return ret_avg; 2250 } 2251 2252 #else // Linux* OS 2253 2254 // The function returns number of running (not sleeping) threads, or -1 in case 2255 // of error. Error could be reported if Linux* OS kernel too old (without 2256 // "/proc" support). Counting running threads stops if max running threads 2257 // encountered. 2258 int __kmp_get_load_balance(int max) { 2259 static int permanent_error = 0; 2260 static int glb_running_threads = 0; // Saved count of the running threads for 2261 // the thread balance algorithm 2262 static double glb_call_time = 0; /* Thread balance algorithm call time */ 2263 2264 int running_threads = 0; // Number of running threads in the system. 2265 2266 DIR *proc_dir = NULL; // Handle of "/proc/" directory. 2267 struct dirent *proc_entry = NULL; 2268 2269 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path. 2270 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory. 2271 struct dirent *task_entry = NULL; 2272 int task_path_fixed_len; 2273 2274 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path. 2275 int stat_file = -1; 2276 int stat_path_fixed_len; 2277 2278 #ifdef KMP_DEBUG 2279 int total_processes = 0; // Total number of processes in system. 2280 #endif 2281 2282 double call_time = 0.0; 2283 2284 __kmp_str_buf_init(&task_path); 2285 __kmp_str_buf_init(&stat_path); 2286 2287 __kmp_elapsed(&call_time); 2288 2289 if (glb_call_time && 2290 (call_time - glb_call_time < __kmp_load_balance_interval)) { 2291 running_threads = glb_running_threads; 2292 goto finish; 2293 } 2294 2295 glb_call_time = call_time; 2296 2297 // Do not spend time on scanning "/proc/" if we have a permanent error. 2298 if (permanent_error) { 2299 running_threads = -1; 2300 goto finish; 2301 } 2302 2303 if (max <= 0) { 2304 max = INT_MAX; 2305 } 2306 2307 // Open "/proc/" directory. 2308 proc_dir = opendir("/proc"); 2309 if (proc_dir == NULL) { 2310 // Cannot open "/prroc/". Probably the kernel does not support it. Return an 2311 // error now and in subsequent calls. 2312 running_threads = -1; 2313 permanent_error = 1; 2314 goto finish; 2315 } 2316 2317 // Initialize fixed part of task_path. This part will not change. 2318 __kmp_str_buf_cat(&task_path, "/proc/", 6); 2319 task_path_fixed_len = task_path.used; // Remember number of used characters. 2320 2321 proc_entry = readdir(proc_dir); 2322 while (proc_entry != NULL) { 2323 // Proc entry is a directory and name starts with a digit. Assume it is a 2324 // process' directory. 2325 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) { 2326 2327 #ifdef KMP_DEBUG 2328 ++total_processes; 2329 #endif 2330 // Make sure init process is the very first in "/proc", so we can replace 2331 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == 2332 // 1. We are going to check that total_processes == 1 => d_name == "1" is 2333 // true (where "=>" is implication). Since C++ does not have => operator, 2334 // let us replace it with its equivalent: a => b == ! a || b. 2335 KMP_DEBUG_ASSERT(total_processes != 1 || 2336 strcmp(proc_entry->d_name, "1") == 0); 2337 2338 // Construct task_path. 2339 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/". 2340 __kmp_str_buf_cat(&task_path, proc_entry->d_name, 2341 KMP_STRLEN(proc_entry->d_name)); 2342 __kmp_str_buf_cat(&task_path, "/task", 5); 2343 2344 task_dir = opendir(task_path.str); 2345 if (task_dir == NULL) { 2346 // Process can finish between reading "/proc/" directory entry and 2347 // opening process' "task/" directory. So, in general case we should not 2348 // complain, but have to skip this process and read the next one. But on 2349 // systems with no "task/" support we will spend lot of time to scan 2350 // "/proc/" tree again and again without any benefit. "init" process 2351 // (its pid is 1) should exist always, so, if we cannot open 2352 // "/proc/1/task/" directory, it means "task/" is not supported by 2353 // kernel. Report an error now and in the future. 2354 if (strcmp(proc_entry->d_name, "1") == 0) { 2355 running_threads = -1; 2356 permanent_error = 1; 2357 goto finish; 2358 } 2359 } else { 2360 // Construct fixed part of stat file path. 2361 __kmp_str_buf_clear(&stat_path); 2362 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used); 2363 __kmp_str_buf_cat(&stat_path, "/", 1); 2364 stat_path_fixed_len = stat_path.used; 2365 2366 task_entry = readdir(task_dir); 2367 while (task_entry != NULL) { 2368 // It is a directory and name starts with a digit. 2369 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) { 2370 2371 // Construct complete stat file path. Easiest way would be: 2372 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, 2373 // task_entry->d_name ); 2374 // but seriae of __kmp_str_buf_cat works a bit faster. 2375 stat_path.used = 2376 stat_path_fixed_len; // Reset stat path to its fixed part. 2377 __kmp_str_buf_cat(&stat_path, task_entry->d_name, 2378 KMP_STRLEN(task_entry->d_name)); 2379 __kmp_str_buf_cat(&stat_path, "/stat", 5); 2380 2381 // Note: Low-level API (open/read/close) is used. High-level API 2382 // (fopen/fclose) works ~ 30 % slower. 2383 stat_file = open(stat_path.str, O_RDONLY); 2384 if (stat_file == -1) { 2385 // We cannot report an error because task (thread) can terminate 2386 // just before reading this file. 2387 } else { 2388 /* Content of "stat" file looks like: 2389 24285 (program) S ... 2390 2391 It is a single line (if program name does not include funny 2392 symbols). First number is a thread id, then name of executable 2393 file name in paretheses, then state of the thread. We need just 2394 thread state. 2395 2396 Good news: Length of program name is 15 characters max. Longer 2397 names are truncated. 2398 2399 Thus, we need rather short buffer: 15 chars for program name + 2400 2 parenthesis, + 3 spaces + ~7 digits of pid = 37. 2401 2402 Bad news: Program name may contain special symbols like space, 2403 closing parenthesis, or even new line. This makes parsing 2404 "stat" file not 100 % reliable. In case of fanny program names 2405 parsing may fail (report incorrect thread state). 2406 2407 Parsing "status" file looks more promissing (due to different 2408 file structure and escaping special symbols) but reading and 2409 parsing of "status" file works slower. 2410 -- ln 2411 */ 2412 char buffer[65]; 2413 ssize_t len; 2414 len = read(stat_file, buffer, sizeof(buffer) - 1); 2415 if (len >= 0) { 2416 buffer[len] = 0; 2417 // Using scanf: 2418 // sscanf( buffer, "%*d (%*s) %c ", & state ); 2419 // looks very nice, but searching for a closing parenthesis 2420 // works a bit faster. 2421 char *close_parent = strstr(buffer, ") "); 2422 if (close_parent != NULL) { 2423 char state = *(close_parent + 2); 2424 if (state == 'R') { 2425 ++running_threads; 2426 if (running_threads >= max) { 2427 goto finish; 2428 } 2429 } 2430 } 2431 } 2432 close(stat_file); 2433 stat_file = -1; 2434 } 2435 } 2436 task_entry = readdir(task_dir); 2437 } 2438 closedir(task_dir); 2439 task_dir = NULL; 2440 } 2441 } 2442 proc_entry = readdir(proc_dir); 2443 } 2444 2445 // There _might_ be a timing hole where the thread executing this 2446 // code get skipped in the load balance, and running_threads is 0. 2447 // Assert in the debug builds only!!! 2448 KMP_DEBUG_ASSERT(running_threads > 0); 2449 if (running_threads <= 0) { 2450 running_threads = 1; 2451 } 2452 2453 finish: // Clean up and exit. 2454 if (proc_dir != NULL) { 2455 closedir(proc_dir); 2456 } 2457 __kmp_str_buf_free(&task_path); 2458 if (task_dir != NULL) { 2459 closedir(task_dir); 2460 } 2461 __kmp_str_buf_free(&stat_path); 2462 if (stat_file != -1) { 2463 close(stat_file); 2464 } 2465 2466 glb_running_threads = running_threads; 2467 2468 return running_threads; 2469 2470 } // __kmp_get_load_balance 2471 2472 #endif // KMP_OS_DARWIN 2473 2474 #endif // USE_LOAD_BALANCE 2475 2476 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \ 2477 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \ 2478 KMP_ARCH_PPC64 || KMP_ARCH_RISCV64 || KMP_ARCH_LOONGARCH64 || \ 2479 KMP_ARCH_ARM || KMP_ARCH_VE || KMP_ARCH_S390X) 2480 2481 // we really only need the case with 1 argument, because CLANG always build 2482 // a struct of pointers to shared variables referenced in the outlined function 2483 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc, 2484 void *p_argv[] 2485 #if OMPT_SUPPORT 2486 , 2487 void **exit_frame_ptr 2488 #endif 2489 ) { 2490 #if OMPT_SUPPORT 2491 *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0); 2492 #endif 2493 2494 switch (argc) { 2495 default: 2496 fprintf(stderr, "Too many args to microtask: %d!\n", argc); 2497 fflush(stderr); 2498 exit(-1); 2499 case 0: 2500 (*pkfn)(>id, &tid); 2501 break; 2502 case 1: 2503 (*pkfn)(>id, &tid, p_argv[0]); 2504 break; 2505 case 2: 2506 (*pkfn)(>id, &tid, p_argv[0], p_argv[1]); 2507 break; 2508 case 3: 2509 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]); 2510 break; 2511 case 4: 2512 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]); 2513 break; 2514 case 5: 2515 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]); 2516 break; 2517 case 6: 2518 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2519 p_argv[5]); 2520 break; 2521 case 7: 2522 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2523 p_argv[5], p_argv[6]); 2524 break; 2525 case 8: 2526 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2527 p_argv[5], p_argv[6], p_argv[7]); 2528 break; 2529 case 9: 2530 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2531 p_argv[5], p_argv[6], p_argv[7], p_argv[8]); 2532 break; 2533 case 10: 2534 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2535 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]); 2536 break; 2537 case 11: 2538 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2539 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]); 2540 break; 2541 case 12: 2542 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2543 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2544 p_argv[11]); 2545 break; 2546 case 13: 2547 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2548 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2549 p_argv[11], p_argv[12]); 2550 break; 2551 case 14: 2552 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2553 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2554 p_argv[11], p_argv[12], p_argv[13]); 2555 break; 2556 case 15: 2557 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2558 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2559 p_argv[11], p_argv[12], p_argv[13], p_argv[14]); 2560 break; 2561 } 2562 2563 return 1; 2564 } 2565 2566 #endif 2567 2568 #if KMP_OS_LINUX 2569 // Functions for hidden helper task 2570 namespace { 2571 // Condition variable for initializing hidden helper team 2572 pthread_cond_t hidden_helper_threads_initz_cond_var; 2573 pthread_mutex_t hidden_helper_threads_initz_lock; 2574 volatile int hidden_helper_initz_signaled = FALSE; 2575 2576 // Condition variable for deinitializing hidden helper team 2577 pthread_cond_t hidden_helper_threads_deinitz_cond_var; 2578 pthread_mutex_t hidden_helper_threads_deinitz_lock; 2579 volatile int hidden_helper_deinitz_signaled = FALSE; 2580 2581 // Condition variable for the wrapper function of main thread 2582 pthread_cond_t hidden_helper_main_thread_cond_var; 2583 pthread_mutex_t hidden_helper_main_thread_lock; 2584 volatile int hidden_helper_main_thread_signaled = FALSE; 2585 2586 // Semaphore for worker threads. We don't use condition variable here in case 2587 // that when multiple signals are sent at the same time, only one thread might 2588 // be waken. 2589 sem_t hidden_helper_task_sem; 2590 } // namespace 2591 2592 void __kmp_hidden_helper_worker_thread_wait() { 2593 int status = sem_wait(&hidden_helper_task_sem); 2594 KMP_CHECK_SYSFAIL("sem_wait", status); 2595 } 2596 2597 void __kmp_do_initialize_hidden_helper_threads() { 2598 // Initialize condition variable 2599 int status = 2600 pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr); 2601 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2602 2603 status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr); 2604 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2605 2606 status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr); 2607 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2608 2609 status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr); 2610 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2611 2612 status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr); 2613 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2614 2615 status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr); 2616 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2617 2618 // Initialize the semaphore 2619 status = sem_init(&hidden_helper_task_sem, 0, 0); 2620 KMP_CHECK_SYSFAIL("sem_init", status); 2621 2622 // Create a new thread to finish initialization 2623 pthread_t handle; 2624 status = pthread_create( 2625 &handle, nullptr, 2626 [](void *) -> void * { 2627 __kmp_hidden_helper_threads_initz_routine(); 2628 return nullptr; 2629 }, 2630 nullptr); 2631 KMP_CHECK_SYSFAIL("pthread_create", status); 2632 } 2633 2634 void __kmp_hidden_helper_threads_initz_wait() { 2635 // Initial thread waits here for the completion of the initialization. The 2636 // condition variable will be notified by main thread of hidden helper teams. 2637 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock); 2638 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2639 2640 if (!TCR_4(hidden_helper_initz_signaled)) { 2641 status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var, 2642 &hidden_helper_threads_initz_lock); 2643 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2644 } 2645 2646 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock); 2647 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2648 } 2649 2650 void __kmp_hidden_helper_initz_release() { 2651 // After all initialization, reset __kmp_init_hidden_helper_threads to false. 2652 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock); 2653 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2654 2655 status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var); 2656 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2657 2658 TCW_SYNC_4(hidden_helper_initz_signaled, TRUE); 2659 2660 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock); 2661 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2662 } 2663 2664 void __kmp_hidden_helper_main_thread_wait() { 2665 // The main thread of hidden helper team will be blocked here. The 2666 // condition variable can only be signal in the destructor of RTL. 2667 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock); 2668 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2669 2670 if (!TCR_4(hidden_helper_main_thread_signaled)) { 2671 status = pthread_cond_wait(&hidden_helper_main_thread_cond_var, 2672 &hidden_helper_main_thread_lock); 2673 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2674 } 2675 2676 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock); 2677 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2678 } 2679 2680 void __kmp_hidden_helper_main_thread_release() { 2681 // The initial thread of OpenMP RTL should call this function to wake up the 2682 // main thread of hidden helper team. 2683 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock); 2684 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2685 2686 status = pthread_cond_signal(&hidden_helper_main_thread_cond_var); 2687 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 2688 2689 // The hidden helper team is done here 2690 TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE); 2691 2692 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock); 2693 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2694 } 2695 2696 void __kmp_hidden_helper_worker_thread_signal() { 2697 int status = sem_post(&hidden_helper_task_sem); 2698 KMP_CHECK_SYSFAIL("sem_post", status); 2699 } 2700 2701 void __kmp_hidden_helper_threads_deinitz_wait() { 2702 // Initial thread waits here for the completion of the deinitialization. The 2703 // condition variable will be notified by main thread of hidden helper teams. 2704 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock); 2705 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2706 2707 if (!TCR_4(hidden_helper_deinitz_signaled)) { 2708 status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var, 2709 &hidden_helper_threads_deinitz_lock); 2710 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2711 } 2712 2713 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock); 2714 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2715 } 2716 2717 void __kmp_hidden_helper_threads_deinitz_release() { 2718 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock); 2719 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2720 2721 status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var); 2722 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2723 2724 TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE); 2725 2726 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock); 2727 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2728 } 2729 #else // KMP_OS_LINUX 2730 void __kmp_hidden_helper_worker_thread_wait() { 2731 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2732 } 2733 2734 void __kmp_do_initialize_hidden_helper_threads() { 2735 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2736 } 2737 2738 void __kmp_hidden_helper_threads_initz_wait() { 2739 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2740 } 2741 2742 void __kmp_hidden_helper_initz_release() { 2743 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2744 } 2745 2746 void __kmp_hidden_helper_main_thread_wait() { 2747 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2748 } 2749 2750 void __kmp_hidden_helper_main_thread_release() { 2751 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2752 } 2753 2754 void __kmp_hidden_helper_worker_thread_signal() { 2755 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2756 } 2757 2758 void __kmp_hidden_helper_threads_deinitz_wait() { 2759 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2760 } 2761 2762 void __kmp_hidden_helper_threads_deinitz_release() { 2763 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2764 } 2765 #endif // KMP_OS_LINUX 2766 2767 bool __kmp_detect_shm() { 2768 DIR *dir = opendir("/dev/shm"); 2769 if (dir) { // /dev/shm exists 2770 closedir(dir); 2771 return true; 2772 } else if (ENOENT == errno) { // /dev/shm does not exist 2773 return false; 2774 } else { // opendir() failed 2775 return false; 2776 } 2777 } 2778 2779 bool __kmp_detect_tmp() { 2780 DIR *dir = opendir("/tmp"); 2781 if (dir) { // /tmp exists 2782 closedir(dir); 2783 return true; 2784 } else if (ENOENT == errno) { // /tmp does not exist 2785 return false; 2786 } else { // opendir() failed 2787 return false; 2788 } 2789 } 2790 2791 // end of file // 2792