xref: /llvm-project/openmp/runtime/src/z_Linux_util.cpp (revision 7b8130c2c38b54e93af6c9aeacd954f2085abd33)
1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_lock.h"
19 #include "kmp_stats.h"
20 #include "kmp_str.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23 
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25 #include <alloca.h>
26 #endif
27 #include <math.h> // HUGE_VAL.
28 #if KMP_OS_LINUX
29 #include <semaphore.h>
30 #endif // KMP_OS_LINUX
31 #include <sys/resource.h>
32 #include <sys/syscall.h>
33 #include <sys/time.h>
34 #include <sys/times.h>
35 #include <unistd.h>
36 
37 #if KMP_OS_LINUX
38 #include <sys/sysinfo.h>
39 #if KMP_USE_FUTEX
40 // We should really include <futex.h>, but that causes compatibility problems on
41 // different Linux* OS distributions that either require that you include (or
42 // break when you try to include) <pci/types.h>. Since all we need is the two
43 // macros below (which are part of the kernel ABI, so can't change) we just
44 // define the constants here and don't include <futex.h>
45 #ifndef FUTEX_WAIT
46 #define FUTEX_WAIT 0
47 #endif
48 #ifndef FUTEX_WAKE
49 #define FUTEX_WAKE 1
50 #endif
51 #endif
52 #elif KMP_OS_DARWIN
53 #include <mach/mach.h>
54 #include <sys/sysctl.h>
55 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
56 #include <sys/types.h>
57 #include <sys/sysctl.h>
58 #include <sys/user.h>
59 #include <pthread_np.h>
60 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD
61 #include <sys/types.h>
62 #include <sys/sysctl.h>
63 #endif
64 
65 #include <ctype.h>
66 #include <dirent.h>
67 #include <fcntl.h>
68 
69 struct kmp_sys_timer {
70   struct timespec start;
71 };
72 
73 // Convert timespec to nanoseconds.
74 #define TS2NS(timespec)                                                        \
75   (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec)
76 
77 static struct kmp_sys_timer __kmp_sys_timer_data;
78 
79 #if KMP_HANDLE_SIGNALS
80 typedef void (*sig_func_t)(int);
81 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
82 static sigset_t __kmp_sigset;
83 #endif
84 
85 static int __kmp_init_runtime = FALSE;
86 
87 static int __kmp_fork_count = 0;
88 
89 static pthread_condattr_t __kmp_suspend_cond_attr;
90 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
91 
92 static kmp_cond_align_t __kmp_wait_cv;
93 static kmp_mutex_align_t __kmp_wait_mx;
94 
95 kmp_uint64 __kmp_ticks_per_msec = 1000000;
96 kmp_uint64 __kmp_ticks_per_usec = 1000;
97 
98 #ifdef DEBUG_SUSPEND
99 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
100   KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
101                cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
102                cond->c_cond.__c_waiting);
103 }
104 #endif
105 
106 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED)
107 
108 /* Affinity support */
109 
110 void __kmp_affinity_bind_thread(int which) {
111   KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
112               "Illegal set affinity operation when not capable");
113 
114   kmp_affin_mask_t *mask;
115   KMP_CPU_ALLOC_ON_STACK(mask);
116   KMP_CPU_ZERO(mask);
117   KMP_CPU_SET(which, mask);
118   __kmp_set_system_affinity(mask, TRUE);
119   KMP_CPU_FREE_FROM_STACK(mask);
120 }
121 
122 /* Determine if we can access affinity functionality on this version of
123  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
124  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
125 void __kmp_affinity_determine_capable(const char *env_var) {
126   // Check and see if the OS supports thread affinity.
127 
128 #if KMP_OS_LINUX
129 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
130 #define KMP_CPU_SET_TRY_SIZE CACHE_LINE
131 #elif KMP_OS_FREEBSD
132 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t))
133 #endif
134 
135   int verbose = __kmp_affinity.flags.verbose;
136   int warnings = __kmp_affinity.flags.warnings;
137   enum affinity_type type = __kmp_affinity.type;
138 
139 #if KMP_OS_LINUX
140   long gCode;
141   unsigned char *buf;
142   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
143 
144   // If the syscall returns a suggestion for the size,
145   // then we don't have to search for an appropriate size.
146   gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_TRY_SIZE, buf);
147   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
148                 "initial getaffinity call returned %ld errno = %d\n",
149                 gCode, errno));
150 
151   if (gCode < 0 && errno != EINVAL) {
152     // System call not supported
153     if (verbose ||
154         (warnings && (type != affinity_none) && (type != affinity_default) &&
155          (type != affinity_disabled))) {
156       int error = errno;
157       kmp_msg_t err_code = KMP_ERR(error);
158       __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
159                 err_code, __kmp_msg_null);
160       if (__kmp_generate_warnings == kmp_warnings_off) {
161         __kmp_str_free(&err_code.str);
162       }
163     }
164     KMP_AFFINITY_DISABLE();
165     KMP_INTERNAL_FREE(buf);
166     return;
167   } else if (gCode > 0) {
168     // The optimal situation: the OS returns the size of the buffer it expects.
169     KMP_AFFINITY_ENABLE(gCode);
170     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
171                   "affinity supported (mask size %d)\n",
172                   (int)__kmp_affin_mask_size));
173     KMP_INTERNAL_FREE(buf);
174     return;
175   }
176 
177   // Call the getaffinity system call repeatedly with increasing set sizes
178   // until we succeed, or reach an upper bound on the search.
179   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
180                 "searching for proper set size\n"));
181   int size;
182   for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
183     gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
184     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
185                   "getaffinity for mask size %ld returned %ld errno = %d\n",
186                   size, gCode, errno));
187 
188     if (gCode < 0) {
189       if (errno == ENOSYS) {
190         // We shouldn't get here
191         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
192                       "inconsistent OS call behavior: errno == ENOSYS for mask "
193                       "size %d\n",
194                       size));
195         if (verbose ||
196             (warnings && (type != affinity_none) &&
197              (type != affinity_default) && (type != affinity_disabled))) {
198           int error = errno;
199           kmp_msg_t err_code = KMP_ERR(error);
200           __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
201                     err_code, __kmp_msg_null);
202           if (__kmp_generate_warnings == kmp_warnings_off) {
203             __kmp_str_free(&err_code.str);
204           }
205         }
206         KMP_AFFINITY_DISABLE();
207         KMP_INTERNAL_FREE(buf);
208         return;
209       }
210       continue;
211     }
212 
213     KMP_AFFINITY_ENABLE(gCode);
214     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
215                   "affinity supported (mask size %d)\n",
216                   (int)__kmp_affin_mask_size));
217     KMP_INTERNAL_FREE(buf);
218     return;
219   }
220 #elif KMP_OS_FREEBSD
221   long gCode;
222   unsigned char *buf;
223   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
224   gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT,
225                                  reinterpret_cast<cpuset_t *>(buf));
226   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
227                 "initial getaffinity call returned %d errno = %d\n",
228                 gCode, errno));
229   if (gCode == 0) {
230     KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT);
231     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
232                   "affinity supported (mask size %d)\n",
233                   (int)__kmp_affin_mask_size));
234     KMP_INTERNAL_FREE(buf);
235     return;
236   }
237 #endif
238   KMP_INTERNAL_FREE(buf);
239 
240   // Affinity is not supported
241   KMP_AFFINITY_DISABLE();
242   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
243                 "cannot determine mask size - affinity not supported\n"));
244   if (verbose || (warnings && (type != affinity_none) &&
245                   (type != affinity_default) && (type != affinity_disabled))) {
246     KMP_WARNING(AffCantGetMaskSize, env_var);
247   }
248 }
249 
250 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
251 
252 #if KMP_USE_FUTEX
253 
254 int __kmp_futex_determine_capable() {
255   int loc = 0;
256   long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
257   int retval = (rc == 0) || (errno != ENOSYS);
258 
259   KA_TRACE(10,
260            ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
261   KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
262                 retval ? "" : " not"));
263 
264   return retval;
265 }
266 
267 #endif // KMP_USE_FUTEX
268 
269 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
270 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
271    use compare_and_store for these routines */
272 
273 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
274   kmp_int8 old_value, new_value;
275 
276   old_value = TCR_1(*p);
277   new_value = old_value | d;
278 
279   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
280     KMP_CPU_PAUSE();
281     old_value = TCR_1(*p);
282     new_value = old_value | d;
283   }
284   return old_value;
285 }
286 
287 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
288   kmp_int8 old_value, new_value;
289 
290   old_value = TCR_1(*p);
291   new_value = old_value & d;
292 
293   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
294     KMP_CPU_PAUSE();
295     old_value = TCR_1(*p);
296     new_value = old_value & d;
297   }
298   return old_value;
299 }
300 
301 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
302   kmp_uint32 old_value, new_value;
303 
304   old_value = TCR_4(*p);
305   new_value = old_value | d;
306 
307   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
308     KMP_CPU_PAUSE();
309     old_value = TCR_4(*p);
310     new_value = old_value | d;
311   }
312   return old_value;
313 }
314 
315 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
316   kmp_uint32 old_value, new_value;
317 
318   old_value = TCR_4(*p);
319   new_value = old_value & d;
320 
321   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
322     KMP_CPU_PAUSE();
323     old_value = TCR_4(*p);
324     new_value = old_value & d;
325   }
326   return old_value;
327 }
328 
329 #if KMP_ARCH_X86
330 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
331   kmp_int8 old_value, new_value;
332 
333   old_value = TCR_1(*p);
334   new_value = old_value + d;
335 
336   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
337     KMP_CPU_PAUSE();
338     old_value = TCR_1(*p);
339     new_value = old_value + d;
340   }
341   return old_value;
342 }
343 
344 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
345   kmp_int64 old_value, new_value;
346 
347   old_value = TCR_8(*p);
348   new_value = old_value + d;
349 
350   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
351     KMP_CPU_PAUSE();
352     old_value = TCR_8(*p);
353     new_value = old_value + d;
354   }
355   return old_value;
356 }
357 #endif /* KMP_ARCH_X86 */
358 
359 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
360   kmp_uint64 old_value, new_value;
361 
362   old_value = TCR_8(*p);
363   new_value = old_value | d;
364   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
365     KMP_CPU_PAUSE();
366     old_value = TCR_8(*p);
367     new_value = old_value | d;
368   }
369   return old_value;
370 }
371 
372 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
373   kmp_uint64 old_value, new_value;
374 
375   old_value = TCR_8(*p);
376   new_value = old_value & d;
377   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
378     KMP_CPU_PAUSE();
379     old_value = TCR_8(*p);
380     new_value = old_value & d;
381   }
382   return old_value;
383 }
384 
385 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
386 
387 void __kmp_terminate_thread(int gtid) {
388   int status;
389   kmp_info_t *th = __kmp_threads[gtid];
390 
391   if (!th)
392     return;
393 
394 #ifdef KMP_CANCEL_THREADS
395   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
396   status = pthread_cancel(th->th.th_info.ds.ds_thread);
397   if (status != 0 && status != ESRCH) {
398     __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
399                 __kmp_msg_null);
400   }
401 #endif
402   KMP_YIELD(TRUE);
403 } //
404 
405 /* Set thread stack info according to values returned by pthread_getattr_np().
406    If values are unreasonable, assume call failed and use incremental stack
407    refinement method instead. Returns TRUE if the stack parameters could be
408    determined exactly, FALSE if incremental refinement is necessary. */
409 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
410   int stack_data;
411 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
412     KMP_OS_HURD
413   pthread_attr_t attr;
414   int status;
415   size_t size = 0;
416   void *addr = 0;
417 
418   /* Always do incremental stack refinement for ubermaster threads since the
419      initial thread stack range can be reduced by sibling thread creation so
420      pthread_attr_getstack may cause thread gtid aliasing */
421   if (!KMP_UBER_GTID(gtid)) {
422 
423     /* Fetch the real thread attributes */
424     status = pthread_attr_init(&attr);
425     KMP_CHECK_SYSFAIL("pthread_attr_init", status);
426 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
427     status = pthread_attr_get_np(pthread_self(), &attr);
428     KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
429 #else
430     status = pthread_getattr_np(pthread_self(), &attr);
431     KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
432 #endif
433     status = pthread_attr_getstack(&attr, &addr, &size);
434     KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
435     KA_TRACE(60,
436              ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
437               " %lu, low addr: %p\n",
438               gtid, size, addr));
439     status = pthread_attr_destroy(&attr);
440     KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
441   }
442 
443   if (size != 0 && addr != 0) { // was stack parameter determination successful?
444     /* Store the correct base and size */
445     TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
446     TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
447     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
448     return TRUE;
449   }
450 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD  \
451           || KMP_OS_HURD */
452   /* Use incremental refinement starting from initial conservative estimate */
453   TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
454   TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
455   TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
456   return FALSE;
457 }
458 
459 static void *__kmp_launch_worker(void *thr) {
460   int status, old_type, old_state;
461 #ifdef KMP_BLOCK_SIGNALS
462   sigset_t new_set, old_set;
463 #endif /* KMP_BLOCK_SIGNALS */
464   void *exit_val;
465 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
466     KMP_OS_OPENBSD || KMP_OS_HURD
467   void *volatile padding = 0;
468 #endif
469   int gtid;
470 
471   gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
472   __kmp_gtid_set_specific(gtid);
473 #ifdef KMP_TDATA_GTID
474   __kmp_gtid = gtid;
475 #endif
476 #if KMP_STATS_ENABLED
477   // set thread local index to point to thread-specific stats
478   __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
479   __kmp_stats_thread_ptr->startLife();
480   KMP_SET_THREAD_STATE(IDLE);
481   KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
482 #endif
483 
484 #if USE_ITT_BUILD
485   __kmp_itt_thread_name(gtid);
486 #endif /* USE_ITT_BUILD */
487 
488 #if KMP_AFFINITY_SUPPORTED
489   __kmp_affinity_bind_init_mask(gtid);
490 #endif
491 
492 #ifdef KMP_CANCEL_THREADS
493   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
494   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
495   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
496   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
497   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
498 #endif
499 
500 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
501   // Set FP control regs to be a copy of the parallel initialization thread's.
502   __kmp_clear_x87_fpu_status_word();
503   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
504   __kmp_load_mxcsr(&__kmp_init_mxcsr);
505 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
506 
507 #ifdef KMP_BLOCK_SIGNALS
508   status = sigfillset(&new_set);
509   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
510   status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
511   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
512 #endif /* KMP_BLOCK_SIGNALS */
513 
514 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
515     KMP_OS_OPENBSD
516   if (__kmp_stkoffset > 0 && gtid > 0) {
517     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
518     (void)padding;
519   }
520 #endif
521 
522   KMP_MB();
523   __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
524 
525   __kmp_check_stack_overlap((kmp_info_t *)thr);
526 
527   exit_val = __kmp_launch_thread((kmp_info_t *)thr);
528 
529 #ifdef KMP_BLOCK_SIGNALS
530   status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
531   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
532 #endif /* KMP_BLOCK_SIGNALS */
533 
534   return exit_val;
535 }
536 
537 #if KMP_USE_MONITOR
538 /* The monitor thread controls all of the threads in the complex */
539 
540 static void *__kmp_launch_monitor(void *thr) {
541   int status, old_type, old_state;
542 #ifdef KMP_BLOCK_SIGNALS
543   sigset_t new_set;
544 #endif /* KMP_BLOCK_SIGNALS */
545   struct timespec interval;
546 
547   KMP_MB(); /* Flush all pending memory write invalidates.  */
548 
549   KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
550 
551   /* register us as the monitor thread */
552   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
553 #ifdef KMP_TDATA_GTID
554   __kmp_gtid = KMP_GTID_MONITOR;
555 #endif
556 
557   KMP_MB();
558 
559 #if USE_ITT_BUILD
560   // Instruct Intel(R) Threading Tools to ignore monitor thread.
561   __kmp_itt_thread_ignore();
562 #endif /* USE_ITT_BUILD */
563 
564   __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
565                        (kmp_info_t *)thr);
566 
567   __kmp_check_stack_overlap((kmp_info_t *)thr);
568 
569 #ifdef KMP_CANCEL_THREADS
570   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
571   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
572   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
573   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
574   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
575 #endif
576 
577 #if KMP_REAL_TIME_FIX
578   // This is a potential fix which allows application with real-time scheduling
579   // policy work. However, decision about the fix is not made yet, so it is
580   // disabled by default.
581   { // Are program started with real-time scheduling policy?
582     int sched = sched_getscheduler(0);
583     if (sched == SCHED_FIFO || sched == SCHED_RR) {
584       // Yes, we are a part of real-time application. Try to increase the
585       // priority of the monitor.
586       struct sched_param param;
587       int max_priority = sched_get_priority_max(sched);
588       int rc;
589       KMP_WARNING(RealTimeSchedNotSupported);
590       sched_getparam(0, &param);
591       if (param.sched_priority < max_priority) {
592         param.sched_priority += 1;
593         rc = sched_setscheduler(0, sched, &param);
594         if (rc != 0) {
595           int error = errno;
596           kmp_msg_t err_code = KMP_ERR(error);
597           __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
598                     err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
599           if (__kmp_generate_warnings == kmp_warnings_off) {
600             __kmp_str_free(&err_code.str);
601           }
602         }
603       } else {
604         // We cannot abort here, because number of CPUs may be enough for all
605         // the threads, including the monitor thread, so application could
606         // potentially work...
607         __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
608                   KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
609                   __kmp_msg_null);
610       }
611     }
612     // AC: free thread that waits for monitor started
613     TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
614   }
615 #endif // KMP_REAL_TIME_FIX
616 
617   KMP_MB(); /* Flush all pending memory write invalidates.  */
618 
619   if (__kmp_monitor_wakeups == 1) {
620     interval.tv_sec = 1;
621     interval.tv_nsec = 0;
622   } else {
623     interval.tv_sec = 0;
624     interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
625   }
626 
627   KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
628 
629   while (!TCR_4(__kmp_global.g.g_done)) {
630     struct timespec now;
631     struct timeval tval;
632 
633     /*  This thread monitors the state of the system */
634 
635     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
636 
637     status = gettimeofday(&tval, NULL);
638     KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
639     TIMEVAL_TO_TIMESPEC(&tval, &now);
640 
641     now.tv_sec += interval.tv_sec;
642     now.tv_nsec += interval.tv_nsec;
643 
644     if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
645       now.tv_sec += 1;
646       now.tv_nsec -= KMP_NSEC_PER_SEC;
647     }
648 
649     status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
650     KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
651     // AC: the monitor should not fall asleep if g_done has been set
652     if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
653       status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
654                                       &__kmp_wait_mx.m_mutex, &now);
655       if (status != 0) {
656         if (status != ETIMEDOUT && status != EINTR) {
657           KMP_SYSFAIL("pthread_cond_timedwait", status);
658         }
659       }
660     }
661     status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
662     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
663 
664     TCW_4(__kmp_global.g.g_time.dt.t_value,
665           TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
666 
667     KMP_MB(); /* Flush all pending memory write invalidates.  */
668   }
669 
670   KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
671 
672 #ifdef KMP_BLOCK_SIGNALS
673   status = sigfillset(&new_set);
674   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
675   status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
676   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
677 #endif /* KMP_BLOCK_SIGNALS */
678 
679   KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
680 
681   if (__kmp_global.g.g_abort != 0) {
682     /* now we need to terminate the worker threads  */
683     /* the value of t_abort is the signal we caught */
684 
685     int gtid;
686 
687     KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
688                   __kmp_global.g.g_abort));
689 
690     /* terminate the OpenMP worker threads */
691     /* TODO this is not valid for sibling threads!!
692      * the uber master might not be 0 anymore.. */
693     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
694       __kmp_terminate_thread(gtid);
695 
696     __kmp_cleanup();
697 
698     KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
699                   __kmp_global.g.g_abort));
700 
701     if (__kmp_global.g.g_abort > 0)
702       raise(__kmp_global.g.g_abort);
703   }
704 
705   KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
706 
707   return thr;
708 }
709 #endif // KMP_USE_MONITOR
710 
711 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
712   pthread_t handle;
713   pthread_attr_t thread_attr;
714   int status;
715 
716   th->th.th_info.ds.ds_gtid = gtid;
717 
718 #if KMP_STATS_ENABLED
719   // sets up worker thread stats
720   __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
721 
722   // th->th.th_stats is used to transfer thread-specific stats-pointer to
723   // __kmp_launch_worker. So when thread is created (goes into
724   // __kmp_launch_worker) it will set its thread local pointer to
725   // th->th.th_stats
726   if (!KMP_UBER_GTID(gtid)) {
727     th->th.th_stats = __kmp_stats_list->push_back(gtid);
728   } else {
729     // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
730     // so set the th->th.th_stats field to it.
731     th->th.th_stats = __kmp_stats_thread_ptr;
732   }
733   __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
734 
735 #endif // KMP_STATS_ENABLED
736 
737   if (KMP_UBER_GTID(gtid)) {
738     KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
739     th->th.th_info.ds.ds_thread = pthread_self();
740     __kmp_set_stack_info(gtid, th);
741     __kmp_check_stack_overlap(th);
742     return;
743   }
744 
745   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
746 
747   KMP_MB(); /* Flush all pending memory write invalidates.  */
748 
749 #ifdef KMP_THREAD_ATTR
750   status = pthread_attr_init(&thread_attr);
751   if (status != 0) {
752     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
753   }
754   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
755   if (status != 0) {
756     __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
757   }
758 
759   /* Set stack size for this thread now.
760      The multiple of 2 is there because on some machines, requesting an unusual
761      stacksize causes the thread to have an offset before the dummy alloca()
762      takes place to create the offset.  Since we want the user to have a
763      sufficient stacksize AND support a stack offset, we alloca() twice the
764      offset so that the upcoming alloca() does not eliminate any premade offset,
765      and also gives the user the stack space they requested for all threads */
766   stack_size += gtid * __kmp_stkoffset * 2;
767 
768   KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
769                 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
770                 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
771 
772 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
773   status = pthread_attr_setstacksize(&thread_attr, stack_size);
774 #ifdef KMP_BACKUP_STKSIZE
775   if (status != 0) {
776     if (!__kmp_env_stksize) {
777       stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
778       __kmp_stksize = KMP_BACKUP_STKSIZE;
779       KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
780                     "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
781                     "bytes\n",
782                     gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
783       status = pthread_attr_setstacksize(&thread_attr, stack_size);
784     }
785   }
786 #endif /* KMP_BACKUP_STKSIZE */
787   if (status != 0) {
788     __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
789                 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
790   }
791 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
792 
793 #endif /* KMP_THREAD_ATTR */
794 
795   status =
796       pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
797   if (status != 0 || !handle) { // ??? Why do we check handle??
798 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
799     if (status == EINVAL) {
800       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
801                   KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
802     }
803     if (status == ENOMEM) {
804       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
805                   KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
806     }
807 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
808     if (status == EAGAIN) {
809       __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
810                   KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
811     }
812     KMP_SYSFAIL("pthread_create", status);
813   }
814 
815   th->th.th_info.ds.ds_thread = handle;
816 
817 #ifdef KMP_THREAD_ATTR
818   status = pthread_attr_destroy(&thread_attr);
819   if (status) {
820     kmp_msg_t err_code = KMP_ERR(status);
821     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
822               __kmp_msg_null);
823     if (__kmp_generate_warnings == kmp_warnings_off) {
824       __kmp_str_free(&err_code.str);
825     }
826   }
827 #endif /* KMP_THREAD_ATTR */
828 
829   KMP_MB(); /* Flush all pending memory write invalidates.  */
830 
831   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
832 
833 } // __kmp_create_worker
834 
835 #if KMP_USE_MONITOR
836 void __kmp_create_monitor(kmp_info_t *th) {
837   pthread_t handle;
838   pthread_attr_t thread_attr;
839   size_t size;
840   int status;
841   int auto_adj_size = FALSE;
842 
843   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
844     // We don't need monitor thread in case of MAX_BLOCKTIME
845     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
846                   "MAX blocktime\n"));
847     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
848     th->th.th_info.ds.ds_gtid = 0;
849     return;
850   }
851   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
852 
853   KMP_MB(); /* Flush all pending memory write invalidates.  */
854 
855   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
856   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
857 #if KMP_REAL_TIME_FIX
858   TCW_4(__kmp_global.g.g_time.dt.t_value,
859         -1); // Will use it for synchronization a bit later.
860 #else
861   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
862 #endif // KMP_REAL_TIME_FIX
863 
864 #ifdef KMP_THREAD_ATTR
865   if (__kmp_monitor_stksize == 0) {
866     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
867     auto_adj_size = TRUE;
868   }
869   status = pthread_attr_init(&thread_attr);
870   if (status != 0) {
871     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
872   }
873   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
874   if (status != 0) {
875     __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
876   }
877 
878 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
879   status = pthread_attr_getstacksize(&thread_attr, &size);
880   KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
881 #else
882   size = __kmp_sys_min_stksize;
883 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
884 #endif /* KMP_THREAD_ATTR */
885 
886   if (__kmp_monitor_stksize == 0) {
887     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
888   }
889   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
890     __kmp_monitor_stksize = __kmp_sys_min_stksize;
891   }
892 
893   KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
894                 "requested stacksize = %lu bytes\n",
895                 size, __kmp_monitor_stksize));
896 
897 retry:
898 
899 /* Set stack size for this thread now. */
900 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
901   KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
902                 __kmp_monitor_stksize));
903   status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
904   if (status != 0) {
905     if (auto_adj_size) {
906       __kmp_monitor_stksize *= 2;
907       goto retry;
908     }
909     kmp_msg_t err_code = KMP_ERR(status);
910     __kmp_msg(kmp_ms_warning, // should this be fatal?  BB
911               KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
912               err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
913     if (__kmp_generate_warnings == kmp_warnings_off) {
914       __kmp_str_free(&err_code.str);
915     }
916   }
917 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
918 
919   status =
920       pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
921 
922   if (status != 0) {
923 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
924     if (status == EINVAL) {
925       if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
926         __kmp_monitor_stksize *= 2;
927         goto retry;
928       }
929       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
930                   KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
931                   __kmp_msg_null);
932     }
933     if (status == ENOMEM) {
934       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
935                   KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
936                   __kmp_msg_null);
937     }
938 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
939     if (status == EAGAIN) {
940       __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
941                   KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
942     }
943     KMP_SYSFAIL("pthread_create", status);
944   }
945 
946   th->th.th_info.ds.ds_thread = handle;
947 
948 #if KMP_REAL_TIME_FIX
949   // Wait for the monitor thread is really started and set its *priority*.
950   KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
951                    sizeof(__kmp_global.g.g_time.dt.t_value));
952   __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
953                &__kmp_neq_4, NULL);
954 #endif // KMP_REAL_TIME_FIX
955 
956 #ifdef KMP_THREAD_ATTR
957   status = pthread_attr_destroy(&thread_attr);
958   if (status != 0) {
959     kmp_msg_t err_code = KMP_ERR(status);
960     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
961               __kmp_msg_null);
962     if (__kmp_generate_warnings == kmp_warnings_off) {
963       __kmp_str_free(&err_code.str);
964     }
965   }
966 #endif
967 
968   KMP_MB(); /* Flush all pending memory write invalidates.  */
969 
970   KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
971                 th->th.th_info.ds.ds_thread));
972 
973 } // __kmp_create_monitor
974 #endif // KMP_USE_MONITOR
975 
976 void __kmp_exit_thread(int exit_status) {
977   pthread_exit((void *)(intptr_t)exit_status);
978 } // __kmp_exit_thread
979 
980 #if KMP_USE_MONITOR
981 void __kmp_resume_monitor();
982 
983 extern "C" void __kmp_reap_monitor(kmp_info_t *th) {
984   int status;
985   void *exit_val;
986 
987   KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
988                 " %#.8lx\n",
989                 th->th.th_info.ds.ds_thread));
990 
991   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
992   // If both tid and gtid are 0, it means the monitor did not ever start.
993   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
994   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
995   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
996     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
997     return;
998   }
999 
1000   KMP_MB(); /* Flush all pending memory write invalidates.  */
1001 
1002   /* First, check to see whether the monitor thread exists to wake it up. This
1003      is to avoid performance problem when the monitor sleeps during
1004      blocktime-size interval */
1005 
1006   status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1007   if (status != ESRCH) {
1008     __kmp_resume_monitor(); // Wake up the monitor thread
1009   }
1010   KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1011   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1012   if (exit_val != th) {
1013     __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1014   }
1015 
1016   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1017   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1018 
1019   KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1020                 " %#.8lx\n",
1021                 th->th.th_info.ds.ds_thread));
1022 
1023   KMP_MB(); /* Flush all pending memory write invalidates.  */
1024 }
1025 #else
1026 // Empty symbol to export (see exports_so.txt) when
1027 // monitor thread feature is disabled
1028 extern "C" void __kmp_reap_monitor(kmp_info_t *th) {
1029   (void)th;
1030 }
1031 #endif // KMP_USE_MONITOR
1032 
1033 void __kmp_reap_worker(kmp_info_t *th) {
1034   int status;
1035   void *exit_val;
1036 
1037   KMP_MB(); /* Flush all pending memory write invalidates.  */
1038 
1039   KA_TRACE(
1040       10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1041 
1042   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1043 #ifdef KMP_DEBUG
1044   /* Don't expose these to the user until we understand when they trigger */
1045   if (status != 0) {
1046     __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1047   }
1048   if (exit_val != th) {
1049     KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1050                   "exit_val = %p\n",
1051                   th->th.th_info.ds.ds_gtid, exit_val));
1052   }
1053 #else
1054   (void)status; // unused variable
1055 #endif /* KMP_DEBUG */
1056 
1057   KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1058                 th->th.th_info.ds.ds_gtid));
1059 
1060   KMP_MB(); /* Flush all pending memory write invalidates.  */
1061 }
1062 
1063 #if KMP_HANDLE_SIGNALS
1064 
1065 static void __kmp_null_handler(int signo) {
1066   //  Do nothing, for doing SIG_IGN-type actions.
1067 } // __kmp_null_handler
1068 
1069 static void __kmp_team_handler(int signo) {
1070   if (__kmp_global.g.g_abort == 0) {
1071 /* Stage 1 signal handler, let's shut down all of the threads */
1072 #ifdef KMP_DEBUG
1073     __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1074 #endif
1075     switch (signo) {
1076     case SIGHUP:
1077     case SIGINT:
1078     case SIGQUIT:
1079     case SIGILL:
1080     case SIGABRT:
1081     case SIGFPE:
1082     case SIGBUS:
1083     case SIGSEGV:
1084 #ifdef SIGSYS
1085     case SIGSYS:
1086 #endif
1087     case SIGTERM:
1088       if (__kmp_debug_buf) {
1089         __kmp_dump_debug_buffer();
1090       }
1091       __kmp_unregister_library(); // cleanup shared memory
1092       KMP_MB(); // Flush all pending memory write invalidates.
1093       TCW_4(__kmp_global.g.g_abort, signo);
1094       KMP_MB(); // Flush all pending memory write invalidates.
1095       TCW_4(__kmp_global.g.g_done, TRUE);
1096       KMP_MB(); // Flush all pending memory write invalidates.
1097       break;
1098     default:
1099 #ifdef KMP_DEBUG
1100       __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1101 #endif
1102       break;
1103     }
1104   }
1105 } // __kmp_team_handler
1106 
1107 static void __kmp_sigaction(int signum, const struct sigaction *act,
1108                             struct sigaction *oldact) {
1109   int rc = sigaction(signum, act, oldact);
1110   KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1111 }
1112 
1113 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1114                                       int parallel_init) {
1115   KMP_MB(); // Flush all pending memory write invalidates.
1116   KB_TRACE(60,
1117            ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1118   if (parallel_init) {
1119     struct sigaction new_action;
1120     struct sigaction old_action;
1121     new_action.sa_handler = handler_func;
1122     new_action.sa_flags = 0;
1123     sigfillset(&new_action.sa_mask);
1124     __kmp_sigaction(sig, &new_action, &old_action);
1125     if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1126       sigaddset(&__kmp_sigset, sig);
1127     } else {
1128       // Restore/keep user's handler if one previously installed.
1129       __kmp_sigaction(sig, &old_action, NULL);
1130     }
1131   } else {
1132     // Save initial/system signal handlers to see if user handlers installed.
1133     __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1134   }
1135   KMP_MB(); // Flush all pending memory write invalidates.
1136 } // __kmp_install_one_handler
1137 
1138 static void __kmp_remove_one_handler(int sig) {
1139   KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1140   if (sigismember(&__kmp_sigset, sig)) {
1141     struct sigaction old;
1142     KMP_MB(); // Flush all pending memory write invalidates.
1143     __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1144     if ((old.sa_handler != __kmp_team_handler) &&
1145         (old.sa_handler != __kmp_null_handler)) {
1146       // Restore the users signal handler.
1147       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1148                     "restoring: sig=%d\n",
1149                     sig));
1150       __kmp_sigaction(sig, &old, NULL);
1151     }
1152     sigdelset(&__kmp_sigset, sig);
1153     KMP_MB(); // Flush all pending memory write invalidates.
1154   }
1155 } // __kmp_remove_one_handler
1156 
1157 void __kmp_install_signals(int parallel_init) {
1158   KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1159   if (__kmp_handle_signals || !parallel_init) {
1160     // If ! parallel_init, we do not install handlers, just save original
1161     // handlers. Let us do it even __handle_signals is 0.
1162     sigemptyset(&__kmp_sigset);
1163     __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1164     __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1165     __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1166     __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1167     __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1168     __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1169     __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1170     __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1171 #ifdef SIGSYS
1172     __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1173 #endif // SIGSYS
1174     __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1175 #ifdef SIGPIPE
1176     __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1177 #endif // SIGPIPE
1178   }
1179 } // __kmp_install_signals
1180 
1181 void __kmp_remove_signals(void) {
1182   int sig;
1183   KB_TRACE(10, ("__kmp_remove_signals()\n"));
1184   for (sig = 1; sig < NSIG; ++sig) {
1185     __kmp_remove_one_handler(sig);
1186   }
1187 } // __kmp_remove_signals
1188 
1189 #endif // KMP_HANDLE_SIGNALS
1190 
1191 void __kmp_enable(int new_state) {
1192 #ifdef KMP_CANCEL_THREADS
1193   int status, old_state;
1194   status = pthread_setcancelstate(new_state, &old_state);
1195   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1196   KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1197 #endif
1198 }
1199 
1200 void __kmp_disable(int *old_state) {
1201 #ifdef KMP_CANCEL_THREADS
1202   int status;
1203   status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1204   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1205 #endif
1206 }
1207 
1208 static void __kmp_atfork_prepare(void) {
1209   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1210   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1211 }
1212 
1213 static void __kmp_atfork_parent(void) {
1214   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1215   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1216 }
1217 
1218 /* Reset the library so execution in the child starts "all over again" with
1219    clean data structures in initial states.  Don't worry about freeing memory
1220    allocated by parent, just abandon it to be safe. */
1221 static void __kmp_atfork_child(void) {
1222   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1223   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1224   /* TODO make sure this is done right for nested/sibling */
1225   // ATT:  Memory leaks are here? TODO: Check it and fix.
1226   /* KMP_ASSERT( 0 ); */
1227 
1228   ++__kmp_fork_count;
1229 
1230 #if KMP_AFFINITY_SUPPORTED
1231 #if KMP_OS_LINUX || KMP_OS_FREEBSD
1232   // reset the affinity in the child to the initial thread
1233   // affinity in the parent
1234   kmp_set_thread_affinity_mask_initial();
1235 #endif
1236   // Set default not to bind threads tightly in the child (we're expecting
1237   // over-subscription after the fork and this can improve things for
1238   // scripting languages that use OpenMP inside process-parallel code).
1239   if (__kmp_nested_proc_bind.bind_types != NULL) {
1240     __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1241   }
1242   for (kmp_affinity_t *affinity : __kmp_affinities)
1243     *affinity = KMP_AFFINITY_INIT(affinity->env_var);
1244   __kmp_affin_fullMask = nullptr;
1245   __kmp_affin_origMask = nullptr;
1246   __kmp_topology = nullptr;
1247 #endif // KMP_AFFINITY_SUPPORTED
1248 
1249 #if KMP_USE_MONITOR
1250   __kmp_init_monitor = 0;
1251 #endif
1252   __kmp_init_parallel = FALSE;
1253   __kmp_init_middle = FALSE;
1254   __kmp_init_serial = FALSE;
1255   TCW_4(__kmp_init_gtid, FALSE);
1256   __kmp_init_common = FALSE;
1257 
1258   TCW_4(__kmp_init_user_locks, FALSE);
1259 #if !KMP_USE_DYNAMIC_LOCK
1260   __kmp_user_lock_table.used = 1;
1261   __kmp_user_lock_table.allocated = 0;
1262   __kmp_user_lock_table.table = NULL;
1263   __kmp_lock_blocks = NULL;
1264 #endif
1265 
1266   __kmp_all_nth = 0;
1267   TCW_4(__kmp_nth, 0);
1268 
1269   __kmp_thread_pool = NULL;
1270   __kmp_thread_pool_insert_pt = NULL;
1271   __kmp_team_pool = NULL;
1272 
1273   /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1274      here so threadprivate doesn't use stale data */
1275   KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1276                 __kmp_threadpriv_cache_list));
1277 
1278   while (__kmp_threadpriv_cache_list != NULL) {
1279 
1280     if (*__kmp_threadpriv_cache_list->addr != NULL) {
1281       KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1282                     &(*__kmp_threadpriv_cache_list->addr)));
1283 
1284       *__kmp_threadpriv_cache_list->addr = NULL;
1285     }
1286     __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1287   }
1288 
1289   __kmp_init_runtime = FALSE;
1290 
1291   /* reset statically initialized locks */
1292   __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1293   __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1294   __kmp_init_bootstrap_lock(&__kmp_console_lock);
1295   __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1296 
1297 #if USE_ITT_BUILD
1298   __kmp_itt_reset(); // reset ITT's global state
1299 #endif /* USE_ITT_BUILD */
1300 
1301   {
1302     // Child process often get terminated without any use of OpenMP. That might
1303     // cause mapped shared memory file to be left unattended. Thus we postpone
1304     // library registration till middle initialization in the child process.
1305     __kmp_need_register_serial = FALSE;
1306     __kmp_serial_initialize();
1307   }
1308 
1309   /* This is necessary to make sure no stale data is left around */
1310   /* AC: customers complain that we use unsafe routines in the atfork
1311      handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1312      in dynamic_link when check the presence of shared tbbmalloc library.
1313      Suggestion is to make the library initialization lazier, similar
1314      to what done for __kmpc_begin(). */
1315   // TODO: synchronize all static initializations with regular library
1316   //       startup; look at kmp_global.cpp and etc.
1317   //__kmp_internal_begin ();
1318 }
1319 
1320 void __kmp_register_atfork(void) {
1321   if (__kmp_need_register_atfork) {
1322     int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1323                                 __kmp_atfork_child);
1324     KMP_CHECK_SYSFAIL("pthread_atfork", status);
1325     __kmp_need_register_atfork = FALSE;
1326   }
1327 }
1328 
1329 void __kmp_suspend_initialize(void) {
1330   int status;
1331   status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1332   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1333   status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1334   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1335 }
1336 
1337 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1338   int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
1339   int new_value = __kmp_fork_count + 1;
1340   // Return if already initialized
1341   if (old_value == new_value)
1342     return;
1343   // Wait, then return if being initialized
1344   if (old_value == -1 || !__kmp_atomic_compare_store(
1345                              &th->th.th_suspend_init_count, old_value, -1)) {
1346     while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
1347       KMP_CPU_PAUSE();
1348     }
1349   } else {
1350     // Claim to be the initializer and do initializations
1351     int status;
1352     status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1353                                &__kmp_suspend_cond_attr);
1354     KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1355     status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1356                                 &__kmp_suspend_mutex_attr);
1357     KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1358     KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
1359   }
1360 }
1361 
1362 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1363   if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
1364     /* this means we have initialize the suspension pthread objects for this
1365        thread in this instance of the process */
1366     int status;
1367 
1368     status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1369     if (status != 0 && status != EBUSY) {
1370       KMP_SYSFAIL("pthread_cond_destroy", status);
1371     }
1372     status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1373     if (status != 0 && status != EBUSY) {
1374       KMP_SYSFAIL("pthread_mutex_destroy", status);
1375     }
1376     --th->th.th_suspend_init_count;
1377     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
1378                      __kmp_fork_count);
1379   }
1380 }
1381 
1382 // return true if lock obtained, false otherwise
1383 int __kmp_try_suspend_mx(kmp_info_t *th) {
1384   return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1385 }
1386 
1387 void __kmp_lock_suspend_mx(kmp_info_t *th) {
1388   int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1389   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1390 }
1391 
1392 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1393   int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1394   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1395 }
1396 
1397 /* This routine puts the calling thread to sleep after setting the
1398    sleep bit for the indicated flag variable to true. */
1399 template <class C>
1400 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1401   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1402   kmp_info_t *th = __kmp_threads[th_gtid];
1403   int status;
1404   typename C::flag_t old_spin;
1405 
1406   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1407                 flag->get()));
1408 
1409   __kmp_suspend_initialize_thread(th);
1410 
1411   __kmp_lock_suspend_mx(th);
1412 
1413   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1414                 th_gtid, flag->get()));
1415 
1416   /* TODO: shouldn't this use release semantics to ensure that
1417      __kmp_suspend_initialize_thread gets called first? */
1418   old_spin = flag->set_sleeping();
1419   TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1420   th->th.th_sleep_loc_type = flag->get_type();
1421   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1422       __kmp_pause_status != kmp_soft_paused) {
1423     flag->unset_sleeping();
1424     TCW_PTR(th->th.th_sleep_loc, NULL);
1425     th->th.th_sleep_loc_type = flag_unset;
1426     __kmp_unlock_suspend_mx(th);
1427     return;
1428   }
1429   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1430                " was %x\n",
1431                th_gtid, flag->get(), flag->load(), old_spin));
1432 
1433   if (flag->done_check_val(old_spin) || flag->done_check()) {
1434     flag->unset_sleeping();
1435     TCW_PTR(th->th.th_sleep_loc, NULL);
1436     th->th.th_sleep_loc_type = flag_unset;
1437     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1438                  "for spin(%p)\n",
1439                  th_gtid, flag->get()));
1440   } else {
1441     /* Encapsulate in a loop as the documentation states that this may
1442        "with low probability" return when the condition variable has
1443        not been signaled or broadcast */
1444     int deactivated = FALSE;
1445 
1446     while (flag->is_sleeping()) {
1447 #ifdef DEBUG_SUSPEND
1448       char buffer[128];
1449       __kmp_suspend_count++;
1450       __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1451       __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1452                    buffer);
1453 #endif
1454       // Mark the thread as no longer active (only in the first iteration of the
1455       // loop).
1456       if (!deactivated) {
1457         th->th.th_active = FALSE;
1458         if (th->th.th_active_in_pool) {
1459           th->th.th_active_in_pool = FALSE;
1460           KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1461           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1462         }
1463         deactivated = TRUE;
1464       }
1465 
1466       KMP_DEBUG_ASSERT(th->th.th_sleep_loc);
1467       KMP_DEBUG_ASSERT(flag->get_type() == th->th.th_sleep_loc_type);
1468 
1469 #if USE_SUSPEND_TIMEOUT
1470       struct timespec now;
1471       struct timeval tval;
1472       int msecs;
1473 
1474       status = gettimeofday(&tval, NULL);
1475       KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1476       TIMEVAL_TO_TIMESPEC(&tval, &now);
1477 
1478       msecs = (4 * __kmp_dflt_blocktime) + 200;
1479       now.tv_sec += msecs / 1000;
1480       now.tv_nsec += (msecs % 1000) * 1000;
1481 
1482       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1483                     "pthread_cond_timedwait\n",
1484                     th_gtid));
1485       status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1486                                       &th->th.th_suspend_mx.m_mutex, &now);
1487 #else
1488       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1489                     " pthread_cond_wait\n",
1490                     th_gtid));
1491       status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1492                                  &th->th.th_suspend_mx.m_mutex);
1493 #endif // USE_SUSPEND_TIMEOUT
1494 
1495       if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1496         KMP_SYSFAIL("pthread_cond_wait", status);
1497       }
1498 
1499       KMP_DEBUG_ASSERT(flag->get_type() == flag->get_ptr_type());
1500 
1501       if (!flag->is_sleeping() &&
1502           ((status == EINTR) || (status == ETIMEDOUT))) {
1503         // if interrupt or timeout, and thread is no longer sleeping, we need to
1504         // make sure sleep_loc gets reset; however, this shouldn't be needed if
1505         // we woke up with resume
1506         flag->unset_sleeping();
1507         TCW_PTR(th->th.th_sleep_loc, NULL);
1508         th->th.th_sleep_loc_type = flag_unset;
1509       }
1510 #ifdef KMP_DEBUG
1511       if (status == ETIMEDOUT) {
1512         if (flag->is_sleeping()) {
1513           KF_TRACE(100,
1514                    ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1515         } else {
1516           KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1517                        "not set!\n",
1518                        th_gtid));
1519           TCW_PTR(th->th.th_sleep_loc, NULL);
1520           th->th.th_sleep_loc_type = flag_unset;
1521         }
1522       } else if (flag->is_sleeping()) {
1523         KF_TRACE(100,
1524                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1525       }
1526 #endif
1527     } // while
1528 
1529     // Mark the thread as active again (if it was previous marked as inactive)
1530     if (deactivated) {
1531       th->th.th_active = TRUE;
1532       if (TCR_4(th->th.th_in_pool)) {
1533         KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1534         th->th.th_active_in_pool = TRUE;
1535       }
1536     }
1537   }
1538   // We may have had the loop variable set before entering the loop body;
1539   // so we need to reset sleep_loc.
1540   TCW_PTR(th->th.th_sleep_loc, NULL);
1541   th->th.th_sleep_loc_type = flag_unset;
1542 
1543   KMP_DEBUG_ASSERT(!flag->is_sleeping());
1544   KMP_DEBUG_ASSERT(!th->th.th_sleep_loc);
1545 #ifdef DEBUG_SUSPEND
1546   {
1547     char buffer[128];
1548     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1549     __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1550                  buffer);
1551   }
1552 #endif
1553 
1554   __kmp_unlock_suspend_mx(th);
1555   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1556 }
1557 
1558 template <bool C, bool S>
1559 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
1560   __kmp_suspend_template(th_gtid, flag);
1561 }
1562 template <bool C, bool S>
1563 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
1564   __kmp_suspend_template(th_gtid, flag);
1565 }
1566 template <bool C, bool S>
1567 void __kmp_atomic_suspend_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag) {
1568   __kmp_suspend_template(th_gtid, flag);
1569 }
1570 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1571   __kmp_suspend_template(th_gtid, flag);
1572 }
1573 
1574 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
1575 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
1576 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
1577 template void
1578 __kmp_atomic_suspend_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
1579 template void
1580 __kmp_atomic_suspend_64<true, false>(int, kmp_atomic_flag_64<true, false> *);
1581 
1582 /* This routine signals the thread specified by target_gtid to wake up
1583    after setting the sleep bit indicated by the flag argument to FALSE.
1584    The target thread must already have called __kmp_suspend_template() */
1585 template <class C>
1586 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1587   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1588   kmp_info_t *th = __kmp_threads[target_gtid];
1589   int status;
1590 
1591 #ifdef KMP_DEBUG
1592   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1593 #endif
1594 
1595   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1596                 gtid, target_gtid));
1597   KMP_DEBUG_ASSERT(gtid != target_gtid);
1598 
1599   __kmp_suspend_initialize_thread(th);
1600 
1601   __kmp_lock_suspend_mx(th);
1602 
1603   if (!flag || flag != th->th.th_sleep_loc) {
1604     // coming from __kmp_null_resume_wrapper, or thread is now sleeping on a
1605     // different location; wake up at new location
1606     flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1607   }
1608 
1609   // First, check if the flag is null or its type has changed. If so, someone
1610   // else woke it up.
1611   if (!flag) { // Thread doesn't appear to be sleeping on anything
1612     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1613                  "awake: flag(%p)\n",
1614                  gtid, target_gtid, (void *)NULL));
1615     __kmp_unlock_suspend_mx(th);
1616     return;
1617   } else if (flag->get_type() != th->th.th_sleep_loc_type) {
1618     // Flag type does not appear to match this function template; possibly the
1619     // thread is sleeping on something else. Try null resume again.
1620     KF_TRACE(
1621         5,
1622         ("__kmp_resume_template: T#%d retrying, thread T#%d Mismatch flag(%p), "
1623          "spin(%p) type=%d ptr_type=%d\n",
1624          gtid, target_gtid, flag, flag->get(), flag->get_type(),
1625          th->th.th_sleep_loc_type));
1626     __kmp_unlock_suspend_mx(th);
1627     __kmp_null_resume_wrapper(th);
1628     return;
1629   } else { // if multiple threads are sleeping, flag should be internally
1630     // referring to a specific thread here
1631     if (!flag->is_sleeping()) {
1632       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1633                    "awake: flag(%p): %u\n",
1634                    gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
1635       __kmp_unlock_suspend_mx(th);
1636       return;
1637     }
1638   }
1639   KMP_DEBUG_ASSERT(flag);
1640   flag->unset_sleeping();
1641   TCW_PTR(th->th.th_sleep_loc, NULL);
1642   th->th.th_sleep_loc_type = flag_unset;
1643 
1644   KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1645                "sleep bit for flag's loc(%p): %u\n",
1646                gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
1647 
1648 #ifdef DEBUG_SUSPEND
1649   {
1650     char buffer[128];
1651     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1652     __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1653                  target_gtid, buffer);
1654   }
1655 #endif
1656   status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1657   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1658   __kmp_unlock_suspend_mx(th);
1659   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1660                 " for T#%d\n",
1661                 gtid, target_gtid));
1662 }
1663 
1664 template <bool C, bool S>
1665 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
1666   __kmp_resume_template(target_gtid, flag);
1667 }
1668 template <bool C, bool S>
1669 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
1670   __kmp_resume_template(target_gtid, flag);
1671 }
1672 template <bool C, bool S>
1673 void __kmp_atomic_resume_64(int target_gtid, kmp_atomic_flag_64<C, S> *flag) {
1674   __kmp_resume_template(target_gtid, flag);
1675 }
1676 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1677   __kmp_resume_template(target_gtid, flag);
1678 }
1679 
1680 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
1681 template void __kmp_resume_32<false, false>(int, kmp_flag_32<false, false> *);
1682 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
1683 template void
1684 __kmp_atomic_resume_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
1685 
1686 #if KMP_USE_MONITOR
1687 void __kmp_resume_monitor() {
1688   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1689   int status;
1690 #ifdef KMP_DEBUG
1691   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1692   KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1693                 KMP_GTID_MONITOR));
1694   KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1695 #endif
1696   status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1697   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1698 #ifdef DEBUG_SUSPEND
1699   {
1700     char buffer[128];
1701     __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1702     __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1703                  KMP_GTID_MONITOR, buffer);
1704   }
1705 #endif
1706   status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1707   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1708   status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1709   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1710   KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1711                 " for T#%d\n",
1712                 gtid, KMP_GTID_MONITOR));
1713 }
1714 #endif // KMP_USE_MONITOR
1715 
1716 void __kmp_yield() { sched_yield(); }
1717 
1718 void __kmp_gtid_set_specific(int gtid) {
1719   if (__kmp_init_gtid) {
1720     int status;
1721     status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1722                                  (void *)(intptr_t)(gtid + 1));
1723     KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1724   } else {
1725     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1726   }
1727 }
1728 
1729 int __kmp_gtid_get_specific() {
1730   int gtid;
1731   if (!__kmp_init_gtid) {
1732     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1733                   "KMP_GTID_SHUTDOWN\n"));
1734     return KMP_GTID_SHUTDOWN;
1735   }
1736   gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1737   if (gtid == 0) {
1738     gtid = KMP_GTID_DNE;
1739   } else {
1740     gtid--;
1741   }
1742   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1743                 __kmp_gtid_threadprivate_key, gtid));
1744   return gtid;
1745 }
1746 
1747 double __kmp_read_cpu_time(void) {
1748   /*clock_t   t;*/
1749   struct tms buffer;
1750 
1751   /*t =*/times(&buffer);
1752 
1753   return (double)(buffer.tms_utime + buffer.tms_cutime) /
1754          (double)CLOCKS_PER_SEC;
1755 }
1756 
1757 int __kmp_read_system_info(struct kmp_sys_info *info) {
1758   int status;
1759   struct rusage r_usage;
1760 
1761   memset(info, 0, sizeof(*info));
1762 
1763   status = getrusage(RUSAGE_SELF, &r_usage);
1764   KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1765 
1766   // The maximum resident set size utilized (in kilobytes)
1767   info->maxrss = r_usage.ru_maxrss;
1768   // The number of page faults serviced without any I/O
1769   info->minflt = r_usage.ru_minflt;
1770   // The number of page faults serviced that required I/O
1771   info->majflt = r_usage.ru_majflt;
1772   // The number of times a process was "swapped" out of memory
1773   info->nswap = r_usage.ru_nswap;
1774   // The number of times the file system had to perform input
1775   info->inblock = r_usage.ru_inblock;
1776   // The number of times the file system had to perform output
1777   info->oublock = r_usage.ru_oublock;
1778   // The number of times a context switch was voluntarily
1779   info->nvcsw = r_usage.ru_nvcsw;
1780   // The number of times a context switch was forced
1781   info->nivcsw = r_usage.ru_nivcsw;
1782 
1783   return (status != 0);
1784 }
1785 
1786 void __kmp_read_system_time(double *delta) {
1787   double t_ns;
1788   struct timeval tval;
1789   struct timespec stop;
1790   int status;
1791 
1792   status = gettimeofday(&tval, NULL);
1793   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1794   TIMEVAL_TO_TIMESPEC(&tval, &stop);
1795   t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start));
1796   *delta = (t_ns * 1e-9);
1797 }
1798 
1799 void __kmp_clear_system_time(void) {
1800   struct timeval tval;
1801   int status;
1802   status = gettimeofday(&tval, NULL);
1803   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1804   TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1805 }
1806 
1807 static int __kmp_get_xproc(void) {
1808 
1809   int r = 0;
1810 
1811 #if KMP_OS_LINUX
1812 
1813   __kmp_type_convert(sysconf(_SC_NPROCESSORS_CONF), &(r));
1814 
1815 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_OPENBSD || \
1816     KMP_OS_HURD
1817 
1818   __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r));
1819 
1820 #elif KMP_OS_DARWIN
1821 
1822   // Bug C77011 High "OpenMP Threads and number of active cores".
1823 
1824   // Find the number of available CPUs.
1825   kern_return_t rc;
1826   host_basic_info_data_t info;
1827   mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1828   rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1829   if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1830     // Cannot use KA_TRACE() here because this code works before trace support
1831     // is initialized.
1832     r = info.avail_cpus;
1833   } else {
1834     KMP_WARNING(CantGetNumAvailCPU);
1835     KMP_INFORM(AssumedNumCPU);
1836   }
1837 
1838 #else
1839 
1840 #error "Unknown or unsupported OS."
1841 
1842 #endif
1843 
1844   return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1845 
1846 } // __kmp_get_xproc
1847 
1848 int __kmp_read_from_file(char const *path, char const *format, ...) {
1849   int result;
1850   va_list args;
1851 
1852   va_start(args, format);
1853   FILE *f = fopen(path, "rb");
1854   if (f == NULL) {
1855     va_end(args);
1856     return 0;
1857   }
1858   result = vfscanf(f, format, args);
1859   fclose(f);
1860   va_end(args);
1861 
1862   return result;
1863 }
1864 
1865 void __kmp_runtime_initialize(void) {
1866   int status;
1867   pthread_mutexattr_t mutex_attr;
1868   pthread_condattr_t cond_attr;
1869 
1870   if (__kmp_init_runtime) {
1871     return;
1872   }
1873 
1874 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1875   if (!__kmp_cpuinfo.initialized) {
1876     __kmp_query_cpuid(&__kmp_cpuinfo);
1877   }
1878 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1879 
1880   __kmp_xproc = __kmp_get_xproc();
1881 
1882 #if !KMP_32_BIT_ARCH
1883   struct rlimit rlim;
1884   // read stack size of calling thread, save it as default for worker threads;
1885   // this should be done before reading environment variables
1886   status = getrlimit(RLIMIT_STACK, &rlim);
1887   if (status == 0) { // success?
1888     __kmp_stksize = rlim.rlim_cur;
1889     __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed
1890   }
1891 #endif /* KMP_32_BIT_ARCH */
1892 
1893   if (sysconf(_SC_THREADS)) {
1894 
1895     /* Query the maximum number of threads */
1896     __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth));
1897 #ifdef __ve__
1898     if (__kmp_sys_max_nth == -1) {
1899       // VE's pthread supports only up to 64 threads per a VE process.
1900       // So we use that KMP_MAX_NTH (predefined as 64) here.
1901       __kmp_sys_max_nth = KMP_MAX_NTH;
1902     }
1903 #else
1904     if (__kmp_sys_max_nth == -1) {
1905       /* Unlimited threads for NPTL */
1906       __kmp_sys_max_nth = INT_MAX;
1907     } else if (__kmp_sys_max_nth <= 1) {
1908       /* Can't tell, just use PTHREAD_THREADS_MAX */
1909       __kmp_sys_max_nth = KMP_MAX_NTH;
1910     }
1911 #endif
1912 
1913     /* Query the minimum stack size */
1914     __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1915     if (__kmp_sys_min_stksize <= 1) {
1916       __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1917     }
1918   }
1919 
1920   /* Set up minimum number of threads to switch to TLS gtid */
1921   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1922 
1923   status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1924                               __kmp_internal_end_dest);
1925   KMP_CHECK_SYSFAIL("pthread_key_create", status);
1926   status = pthread_mutexattr_init(&mutex_attr);
1927   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1928   status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1929   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1930   status = pthread_mutexattr_destroy(&mutex_attr);
1931   KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status);
1932   status = pthread_condattr_init(&cond_attr);
1933   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1934   status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1935   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1936   status = pthread_condattr_destroy(&cond_attr);
1937   KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status);
1938 #if USE_ITT_BUILD
1939   __kmp_itt_initialize();
1940 #endif /* USE_ITT_BUILD */
1941 
1942   __kmp_init_runtime = TRUE;
1943 }
1944 
1945 void __kmp_runtime_destroy(void) {
1946   int status;
1947 
1948   if (!__kmp_init_runtime) {
1949     return; // Nothing to do.
1950   }
1951 
1952 #if USE_ITT_BUILD
1953   __kmp_itt_destroy();
1954 #endif /* USE_ITT_BUILD */
1955 
1956   status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1957   KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1958 
1959   status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1960   if (status != 0 && status != EBUSY) {
1961     KMP_SYSFAIL("pthread_mutex_destroy", status);
1962   }
1963   status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1964   if (status != 0 && status != EBUSY) {
1965     KMP_SYSFAIL("pthread_cond_destroy", status);
1966   }
1967 #if KMP_AFFINITY_SUPPORTED
1968   __kmp_affinity_uninitialize();
1969 #endif
1970 
1971   __kmp_init_runtime = FALSE;
1972 }
1973 
1974 /* Put the thread to sleep for a time period */
1975 /* NOTE: not currently used anywhere */
1976 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1977 
1978 /* Calculate the elapsed wall clock time for the user */
1979 void __kmp_elapsed(double *t) {
1980   int status;
1981 #ifdef FIX_SGI_CLOCK
1982   struct timespec ts;
1983 
1984   status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1985   KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1986   *t =
1987       (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1988 #else
1989   struct timeval tv;
1990 
1991   status = gettimeofday(&tv, NULL);
1992   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1993   *t =
1994       (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1995 #endif
1996 }
1997 
1998 /* Calculate the elapsed wall clock tick for the user */
1999 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
2000 
2001 /* Return the current time stamp in nsec */
2002 kmp_uint64 __kmp_now_nsec() {
2003   struct timeval t;
2004   gettimeofday(&t, NULL);
2005   kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
2006                     (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
2007   return nsec;
2008 }
2009 
2010 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2011 /* Measure clock ticks per millisecond */
2012 void __kmp_initialize_system_tick() {
2013   kmp_uint64 now, nsec2, diff;
2014   kmp_uint64 delay = 1000000; // ~450 usec on most machines.
2015   kmp_uint64 nsec = __kmp_now_nsec();
2016   kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
2017   while ((now = __kmp_hardware_timestamp()) < goal)
2018     ;
2019   nsec2 = __kmp_now_nsec();
2020   diff = nsec2 - nsec;
2021   if (diff > 0) {
2022     double tpus = 1000.0 * (double)(delay + (now - goal)) / (double)diff;
2023     if (tpus > 0.0) {
2024       __kmp_ticks_per_msec = (kmp_uint64)(tpus * 1000.0);
2025       __kmp_ticks_per_usec = (kmp_uint64)tpus;
2026     }
2027   }
2028 }
2029 #endif
2030 
2031 /* Determine whether the given address is mapped into the current address
2032    space. */
2033 
2034 int __kmp_is_address_mapped(void *addr) {
2035 
2036   int found = 0;
2037   int rc;
2038 
2039 #if KMP_OS_LINUX || KMP_OS_HURD
2040 
2041   /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the
2042      address ranges mapped into the address space. */
2043 
2044   char *name = __kmp_str_format("/proc/%d/maps", getpid());
2045   FILE *file = NULL;
2046 
2047   file = fopen(name, "r");
2048   KMP_ASSERT(file != NULL);
2049 
2050   for (;;) {
2051 
2052     void *beginning = NULL;
2053     void *ending = NULL;
2054     char perms[5];
2055 
2056     rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
2057     if (rc == EOF) {
2058       break;
2059     }
2060     KMP_ASSERT(rc == 3 &&
2061                KMP_STRLEN(perms) == 4); // Make sure all fields are read.
2062 
2063     // Ending address is not included in the region, but beginning is.
2064     if ((addr >= beginning) && (addr < ending)) {
2065       perms[2] = 0; // 3th and 4th character does not matter.
2066       if (strcmp(perms, "rw") == 0) {
2067         // Memory we are looking for should be readable and writable.
2068         found = 1;
2069       }
2070       break;
2071     }
2072   }
2073 
2074   // Free resources.
2075   fclose(file);
2076   KMP_INTERNAL_FREE(name);
2077 #elif KMP_OS_FREEBSD
2078   char *buf;
2079   size_t lstsz;
2080   int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()};
2081   rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0);
2082   if (rc < 0)
2083     return 0;
2084   // We pass from number of vm entry's semantic
2085   // to size of whole entry map list.
2086   lstsz = lstsz * 4 / 3;
2087   buf = reinterpret_cast<char *>(kmpc_malloc(lstsz));
2088   rc = sysctl(mib, 4, buf, &lstsz, NULL, 0);
2089   if (rc < 0) {
2090     kmpc_free(buf);
2091     return 0;
2092   }
2093 
2094   char *lw = buf;
2095   char *up = buf + lstsz;
2096 
2097   while (lw < up) {
2098     struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw);
2099     size_t cursz = cur->kve_structsize;
2100     if (cursz == 0)
2101       break;
2102     void *start = reinterpret_cast<void *>(cur->kve_start);
2103     void *end = reinterpret_cast<void *>(cur->kve_end);
2104     // Readable/Writable addresses within current map entry
2105     if ((addr >= start) && (addr < end)) {
2106       if ((cur->kve_protection & KVME_PROT_READ) != 0 &&
2107           (cur->kve_protection & KVME_PROT_WRITE) != 0) {
2108         found = 1;
2109         break;
2110       }
2111     }
2112     lw += cursz;
2113   }
2114   kmpc_free(buf);
2115 
2116 #elif KMP_OS_DARWIN
2117 
2118   /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2119      using vm interface. */
2120 
2121   int buffer;
2122   vm_size_t count;
2123   rc = vm_read_overwrite(
2124       mach_task_self(), // Task to read memory of.
2125       (vm_address_t)(addr), // Address to read from.
2126       1, // Number of bytes to be read.
2127       (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2128       &count // Address of var to save number of read bytes in.
2129   );
2130   if (rc == 0) {
2131     // Memory successfully read.
2132     found = 1;
2133   }
2134 
2135 #elif KMP_OS_NETBSD
2136 
2137   int mib[5];
2138   mib[0] = CTL_VM;
2139   mib[1] = VM_PROC;
2140   mib[2] = VM_PROC_MAP;
2141   mib[3] = getpid();
2142   mib[4] = sizeof(struct kinfo_vmentry);
2143 
2144   size_t size;
2145   rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2146   KMP_ASSERT(!rc);
2147   KMP_ASSERT(size);
2148 
2149   size = size * 4 / 3;
2150   struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2151   KMP_ASSERT(kiv);
2152 
2153   rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2154   KMP_ASSERT(!rc);
2155   KMP_ASSERT(size);
2156 
2157   for (size_t i = 0; i < size; i++) {
2158     if (kiv[i].kve_start >= (uint64_t)addr &&
2159         kiv[i].kve_end <= (uint64_t)addr) {
2160       found = 1;
2161       break;
2162     }
2163   }
2164   KMP_INTERNAL_FREE(kiv);
2165 #elif KMP_OS_OPENBSD
2166 
2167   int mib[3];
2168   mib[0] = CTL_KERN;
2169   mib[1] = KERN_PROC_VMMAP;
2170   mib[2] = getpid();
2171 
2172   size_t size;
2173   uint64_t end;
2174   rc = sysctl(mib, 3, NULL, &size, NULL, 0);
2175   KMP_ASSERT(!rc);
2176   KMP_ASSERT(size);
2177   end = size;
2178 
2179   struct kinfo_vmentry kiv = {.kve_start = 0};
2180 
2181   while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) {
2182     KMP_ASSERT(size);
2183     if (kiv.kve_end == end)
2184       break;
2185 
2186     if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) {
2187       found = 1;
2188       break;
2189     }
2190     kiv.kve_start += 1;
2191   }
2192 #elif KMP_OS_DRAGONFLY
2193 
2194   // FIXME(DragonFly): Implement this
2195   found = 1;
2196 
2197 #else
2198 
2199 #error "Unknown or unsupported OS"
2200 
2201 #endif
2202 
2203   return found;
2204 
2205 } // __kmp_is_address_mapped
2206 
2207 #ifdef USE_LOAD_BALANCE
2208 
2209 #if KMP_OS_DARWIN || KMP_OS_NETBSD
2210 
2211 // The function returns the rounded value of the system load average
2212 // during given time interval which depends on the value of
2213 // __kmp_load_balance_interval variable (default is 60 sec, other values
2214 // may be 300 sec or 900 sec).
2215 // It returns -1 in case of error.
2216 int __kmp_get_load_balance(int max) {
2217   double averages[3];
2218   int ret_avg = 0;
2219 
2220   int res = getloadavg(averages, 3);
2221 
2222   // Check __kmp_load_balance_interval to determine which of averages to use.
2223   // getloadavg() may return the number of samples less than requested that is
2224   // less than 3.
2225   if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2226     ret_avg = (int)averages[0]; // 1 min
2227   } else if ((__kmp_load_balance_interval >= 180 &&
2228               __kmp_load_balance_interval < 600) &&
2229              (res >= 2)) {
2230     ret_avg = (int)averages[1]; // 5 min
2231   } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2232     ret_avg = (int)averages[2]; // 15 min
2233   } else { // Error occurred
2234     return -1;
2235   }
2236 
2237   return ret_avg;
2238 }
2239 
2240 #else // Linux* OS
2241 
2242 // The function returns number of running (not sleeping) threads, or -1 in case
2243 // of error. Error could be reported if Linux* OS kernel too old (without
2244 // "/proc" support). Counting running threads stops if max running threads
2245 // encountered.
2246 int __kmp_get_load_balance(int max) {
2247   static int permanent_error = 0;
2248   static int glb_running_threads = 0; // Saved count of the running threads for
2249   // the thread balance algorithm
2250   static double glb_call_time = 0; /* Thread balance algorithm call time */
2251 
2252   int running_threads = 0; // Number of running threads in the system.
2253 
2254   DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2255   struct dirent *proc_entry = NULL;
2256 
2257   kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2258   DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2259   struct dirent *task_entry = NULL;
2260   int task_path_fixed_len;
2261 
2262   kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2263   int stat_file = -1;
2264   int stat_path_fixed_len;
2265 
2266 #ifdef KMP_DEBUG
2267   int total_processes = 0; // Total number of processes in system.
2268 #endif
2269 
2270   double call_time = 0.0;
2271 
2272   __kmp_str_buf_init(&task_path);
2273   __kmp_str_buf_init(&stat_path);
2274 
2275   __kmp_elapsed(&call_time);
2276 
2277   if (glb_call_time &&
2278       (call_time - glb_call_time < __kmp_load_balance_interval)) {
2279     running_threads = glb_running_threads;
2280     goto finish;
2281   }
2282 
2283   glb_call_time = call_time;
2284 
2285   // Do not spend time on scanning "/proc/" if we have a permanent error.
2286   if (permanent_error) {
2287     running_threads = -1;
2288     goto finish;
2289   }
2290 
2291   if (max <= 0) {
2292     max = INT_MAX;
2293   }
2294 
2295   // Open "/proc/" directory.
2296   proc_dir = opendir("/proc");
2297   if (proc_dir == NULL) {
2298     // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2299     // error now and in subsequent calls.
2300     running_threads = -1;
2301     permanent_error = 1;
2302     goto finish;
2303   }
2304 
2305   // Initialize fixed part of task_path. This part will not change.
2306   __kmp_str_buf_cat(&task_path, "/proc/", 6);
2307   task_path_fixed_len = task_path.used; // Remember number of used characters.
2308 
2309   proc_entry = readdir(proc_dir);
2310   while (proc_entry != NULL) {
2311     // Proc entry is a directory and name starts with a digit. Assume it is a
2312     // process' directory.
2313     if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2314 
2315 #ifdef KMP_DEBUG
2316       ++total_processes;
2317 #endif
2318       // Make sure init process is the very first in "/proc", so we can replace
2319       // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2320       // 1. We are going to check that total_processes == 1 => d_name == "1" is
2321       // true (where "=>" is implication). Since C++ does not have => operator,
2322       // let us replace it with its equivalent: a => b == ! a || b.
2323       KMP_DEBUG_ASSERT(total_processes != 1 ||
2324                        strcmp(proc_entry->d_name, "1") == 0);
2325 
2326       // Construct task_path.
2327       task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2328       __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2329                         KMP_STRLEN(proc_entry->d_name));
2330       __kmp_str_buf_cat(&task_path, "/task", 5);
2331 
2332       task_dir = opendir(task_path.str);
2333       if (task_dir == NULL) {
2334         // Process can finish between reading "/proc/" directory entry and
2335         // opening process' "task/" directory. So, in general case we should not
2336         // complain, but have to skip this process and read the next one. But on
2337         // systems with no "task/" support we will spend lot of time to scan
2338         // "/proc/" tree again and again without any benefit. "init" process
2339         // (its pid is 1) should exist always, so, if we cannot open
2340         // "/proc/1/task/" directory, it means "task/" is not supported by
2341         // kernel. Report an error now and in the future.
2342         if (strcmp(proc_entry->d_name, "1") == 0) {
2343           running_threads = -1;
2344           permanent_error = 1;
2345           goto finish;
2346         }
2347       } else {
2348         // Construct fixed part of stat file path.
2349         __kmp_str_buf_clear(&stat_path);
2350         __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2351         __kmp_str_buf_cat(&stat_path, "/", 1);
2352         stat_path_fixed_len = stat_path.used;
2353 
2354         task_entry = readdir(task_dir);
2355         while (task_entry != NULL) {
2356           // It is a directory and name starts with a digit.
2357           if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2358 
2359             // Construct complete stat file path. Easiest way would be:
2360             //  __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2361             //  task_entry->d_name );
2362             // but seriae of __kmp_str_buf_cat works a bit faster.
2363             stat_path.used =
2364                 stat_path_fixed_len; // Reset stat path to its fixed part.
2365             __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2366                               KMP_STRLEN(task_entry->d_name));
2367             __kmp_str_buf_cat(&stat_path, "/stat", 5);
2368 
2369             // Note: Low-level API (open/read/close) is used. High-level API
2370             // (fopen/fclose)  works ~ 30 % slower.
2371             stat_file = open(stat_path.str, O_RDONLY);
2372             if (stat_file == -1) {
2373               // We cannot report an error because task (thread) can terminate
2374               // just before reading this file.
2375             } else {
2376               /* Content of "stat" file looks like:
2377                  24285 (program) S ...
2378 
2379                  It is a single line (if program name does not include funny
2380                  symbols). First number is a thread id, then name of executable
2381                  file name in paretheses, then state of the thread. We need just
2382                  thread state.
2383 
2384                  Good news: Length of program name is 15 characters max. Longer
2385                  names are truncated.
2386 
2387                  Thus, we need rather short buffer: 15 chars for program name +
2388                  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2389 
2390                  Bad news: Program name may contain special symbols like space,
2391                  closing parenthesis, or even new line. This makes parsing
2392                  "stat" file not 100 % reliable. In case of fanny program names
2393                  parsing may fail (report incorrect thread state).
2394 
2395                  Parsing "status" file looks more promissing (due to different
2396                  file structure and escaping special symbols) but reading and
2397                  parsing of "status" file works slower.
2398                   -- ln
2399               */
2400               char buffer[65];
2401               ssize_t len;
2402               len = read(stat_file, buffer, sizeof(buffer) - 1);
2403               if (len >= 0) {
2404                 buffer[len] = 0;
2405                 // Using scanf:
2406                 //     sscanf( buffer, "%*d (%*s) %c ", & state );
2407                 // looks very nice, but searching for a closing parenthesis
2408                 // works a bit faster.
2409                 char *close_parent = strstr(buffer, ") ");
2410                 if (close_parent != NULL) {
2411                   char state = *(close_parent + 2);
2412                   if (state == 'R') {
2413                     ++running_threads;
2414                     if (running_threads >= max) {
2415                       goto finish;
2416                     }
2417                   }
2418                 }
2419               }
2420               close(stat_file);
2421               stat_file = -1;
2422             }
2423           }
2424           task_entry = readdir(task_dir);
2425         }
2426         closedir(task_dir);
2427         task_dir = NULL;
2428       }
2429     }
2430     proc_entry = readdir(proc_dir);
2431   }
2432 
2433   // There _might_ be a timing hole where the thread executing this
2434   // code get skipped in the load balance, and running_threads is 0.
2435   // Assert in the debug builds only!!!
2436   KMP_DEBUG_ASSERT(running_threads > 0);
2437   if (running_threads <= 0) {
2438     running_threads = 1;
2439   }
2440 
2441 finish: // Clean up and exit.
2442   if (proc_dir != NULL) {
2443     closedir(proc_dir);
2444   }
2445   __kmp_str_buf_free(&task_path);
2446   if (task_dir != NULL) {
2447     closedir(task_dir);
2448   }
2449   __kmp_str_buf_free(&stat_path);
2450   if (stat_file != -1) {
2451     close(stat_file);
2452   }
2453 
2454   glb_running_threads = running_threads;
2455 
2456   return running_threads;
2457 
2458 } // __kmp_get_load_balance
2459 
2460 #endif // KMP_OS_DARWIN
2461 
2462 #endif // USE_LOAD_BALANCE
2463 
2464 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC ||                            \
2465       ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) ||                 \
2466       KMP_ARCH_PPC64 || KMP_ARCH_RISCV64 || KMP_ARCH_LOONGARCH64 ||            \
2467       KMP_ARCH_ARM || KMP_ARCH_VE)
2468 
2469 // we really only need the case with 1 argument, because CLANG always build
2470 // a struct of pointers to shared variables referenced in the outlined function
2471 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2472                            void *p_argv[]
2473 #if OMPT_SUPPORT
2474                            ,
2475                            void **exit_frame_ptr
2476 #endif
2477 ) {
2478 #if OMPT_SUPPORT
2479   *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2480 #endif
2481 
2482   switch (argc) {
2483   default:
2484     fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2485     fflush(stderr);
2486     exit(-1);
2487   case 0:
2488     (*pkfn)(&gtid, &tid);
2489     break;
2490   case 1:
2491     (*pkfn)(&gtid, &tid, p_argv[0]);
2492     break;
2493   case 2:
2494     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2495     break;
2496   case 3:
2497     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2498     break;
2499   case 4:
2500     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2501     break;
2502   case 5:
2503     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2504     break;
2505   case 6:
2506     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2507             p_argv[5]);
2508     break;
2509   case 7:
2510     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2511             p_argv[5], p_argv[6]);
2512     break;
2513   case 8:
2514     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2515             p_argv[5], p_argv[6], p_argv[7]);
2516     break;
2517   case 9:
2518     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2519             p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2520     break;
2521   case 10:
2522     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2523             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2524     break;
2525   case 11:
2526     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2527             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2528     break;
2529   case 12:
2530     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2531             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2532             p_argv[11]);
2533     break;
2534   case 13:
2535     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2536             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2537             p_argv[11], p_argv[12]);
2538     break;
2539   case 14:
2540     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2541             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2542             p_argv[11], p_argv[12], p_argv[13]);
2543     break;
2544   case 15:
2545     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2546             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2547             p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2548     break;
2549   }
2550 
2551   return 1;
2552 }
2553 
2554 #endif
2555 
2556 #if KMP_OS_LINUX
2557 // Functions for hidden helper task
2558 namespace {
2559 // Condition variable for initializing hidden helper team
2560 pthread_cond_t hidden_helper_threads_initz_cond_var;
2561 pthread_mutex_t hidden_helper_threads_initz_lock;
2562 volatile int hidden_helper_initz_signaled = FALSE;
2563 
2564 // Condition variable for deinitializing hidden helper team
2565 pthread_cond_t hidden_helper_threads_deinitz_cond_var;
2566 pthread_mutex_t hidden_helper_threads_deinitz_lock;
2567 volatile int hidden_helper_deinitz_signaled = FALSE;
2568 
2569 // Condition variable for the wrapper function of main thread
2570 pthread_cond_t hidden_helper_main_thread_cond_var;
2571 pthread_mutex_t hidden_helper_main_thread_lock;
2572 volatile int hidden_helper_main_thread_signaled = FALSE;
2573 
2574 // Semaphore for worker threads. We don't use condition variable here in case
2575 // that when multiple signals are sent at the same time, only one thread might
2576 // be waken.
2577 sem_t hidden_helper_task_sem;
2578 } // namespace
2579 
2580 void __kmp_hidden_helper_worker_thread_wait() {
2581   int status = sem_wait(&hidden_helper_task_sem);
2582   KMP_CHECK_SYSFAIL("sem_wait", status);
2583 }
2584 
2585 void __kmp_do_initialize_hidden_helper_threads() {
2586   // Initialize condition variable
2587   int status =
2588       pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr);
2589   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2590 
2591   status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr);
2592   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2593 
2594   status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr);
2595   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2596 
2597   status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr);
2598   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2599 
2600   status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr);
2601   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2602 
2603   status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr);
2604   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2605 
2606   // Initialize the semaphore
2607   status = sem_init(&hidden_helper_task_sem, 0, 0);
2608   KMP_CHECK_SYSFAIL("sem_init", status);
2609 
2610   // Create a new thread to finish initialization
2611   pthread_t handle;
2612   status = pthread_create(
2613       &handle, nullptr,
2614       [](void *) -> void * {
2615         __kmp_hidden_helper_threads_initz_routine();
2616         return nullptr;
2617       },
2618       nullptr);
2619   KMP_CHECK_SYSFAIL("pthread_create", status);
2620 }
2621 
2622 void __kmp_hidden_helper_threads_initz_wait() {
2623   // Initial thread waits here for the completion of the initialization. The
2624   // condition variable will be notified by main thread of hidden helper teams.
2625   int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2626   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2627 
2628   if (!TCR_4(hidden_helper_initz_signaled)) {
2629     status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var,
2630                                &hidden_helper_threads_initz_lock);
2631     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2632   }
2633 
2634   status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2635   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2636 }
2637 
2638 void __kmp_hidden_helper_initz_release() {
2639   // After all initialization, reset __kmp_init_hidden_helper_threads to false.
2640   int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2641   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2642 
2643   status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var);
2644   KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2645 
2646   TCW_SYNC_4(hidden_helper_initz_signaled, TRUE);
2647 
2648   status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2649   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2650 }
2651 
2652 void __kmp_hidden_helper_main_thread_wait() {
2653   // The main thread of hidden helper team will be blocked here. The
2654   // condition variable can only be signal in the destructor of RTL.
2655   int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2656   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2657 
2658   if (!TCR_4(hidden_helper_main_thread_signaled)) {
2659     status = pthread_cond_wait(&hidden_helper_main_thread_cond_var,
2660                                &hidden_helper_main_thread_lock);
2661     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2662   }
2663 
2664   status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2665   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2666 }
2667 
2668 void __kmp_hidden_helper_main_thread_release() {
2669   // The initial thread of OpenMP RTL should call this function to wake up the
2670   // main thread of hidden helper team.
2671   int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2672   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2673 
2674   status = pthread_cond_signal(&hidden_helper_main_thread_cond_var);
2675   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
2676 
2677   // The hidden helper team is done here
2678   TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE);
2679 
2680   status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2681   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2682 }
2683 
2684 void __kmp_hidden_helper_worker_thread_signal() {
2685   int status = sem_post(&hidden_helper_task_sem);
2686   KMP_CHECK_SYSFAIL("sem_post", status);
2687 }
2688 
2689 void __kmp_hidden_helper_threads_deinitz_wait() {
2690   // Initial thread waits here for the completion of the deinitialization. The
2691   // condition variable will be notified by main thread of hidden helper teams.
2692   int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2693   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2694 
2695   if (!TCR_4(hidden_helper_deinitz_signaled)) {
2696     status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var,
2697                                &hidden_helper_threads_deinitz_lock);
2698     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2699   }
2700 
2701   status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2702   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2703 }
2704 
2705 void __kmp_hidden_helper_threads_deinitz_release() {
2706   int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2707   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2708 
2709   status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var);
2710   KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2711 
2712   TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE);
2713 
2714   status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2715   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2716 }
2717 #else // KMP_OS_LINUX
2718 void __kmp_hidden_helper_worker_thread_wait() {
2719   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2720 }
2721 
2722 void __kmp_do_initialize_hidden_helper_threads() {
2723   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2724 }
2725 
2726 void __kmp_hidden_helper_threads_initz_wait() {
2727   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2728 }
2729 
2730 void __kmp_hidden_helper_initz_release() {
2731   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2732 }
2733 
2734 void __kmp_hidden_helper_main_thread_wait() {
2735   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2736 }
2737 
2738 void __kmp_hidden_helper_main_thread_release() {
2739   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2740 }
2741 
2742 void __kmp_hidden_helper_worker_thread_signal() {
2743   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2744 }
2745 
2746 void __kmp_hidden_helper_threads_deinitz_wait() {
2747   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2748 }
2749 
2750 void __kmp_hidden_helper_threads_deinitz_release() {
2751   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2752 }
2753 #endif // KMP_OS_LINUX
2754 
2755 bool __kmp_detect_shm() {
2756   DIR *dir = opendir("/dev/shm");
2757   if (dir) { // /dev/shm exists
2758     closedir(dir);
2759     return true;
2760   } else if (ENOENT == errno) { // /dev/shm does not exist
2761     return false;
2762   } else { // opendir() failed
2763     return false;
2764   }
2765 }
2766 
2767 bool __kmp_detect_tmp() {
2768   DIR *dir = opendir("/tmp");
2769   if (dir) { // /tmp exists
2770     closedir(dir);
2771     return true;
2772   } else if (ENOENT == errno) { // /tmp does not exist
2773     return false;
2774   } else { // opendir() failed
2775     return false;
2776   }
2777 }
2778 
2779 // end of file //
2780