1 /* 2 * z_Linux_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_lock.h" 19 #include "kmp_stats.h" 20 #include "kmp_str.h" 21 #include "kmp_wait_release.h" 22 #include "kmp_wrapper_getpid.h" 23 24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD 25 #include <alloca.h> 26 #endif 27 #include <math.h> // HUGE_VAL. 28 #if KMP_OS_LINUX 29 #include <semaphore.h> 30 #endif // KMP_OS_LINUX 31 #include <sys/resource.h> 32 #include <sys/syscall.h> 33 #include <sys/time.h> 34 #include <sys/times.h> 35 #include <unistd.h> 36 37 #if KMP_OS_LINUX 38 #include <sys/sysinfo.h> 39 #if KMP_USE_FUTEX 40 // We should really include <futex.h>, but that causes compatibility problems on 41 // different Linux* OS distributions that either require that you include (or 42 // break when you try to include) <pci/types.h>. Since all we need is the two 43 // macros below (which are part of the kernel ABI, so can't change) we just 44 // define the constants here and don't include <futex.h> 45 #ifndef FUTEX_WAIT 46 #define FUTEX_WAIT 0 47 #endif 48 #ifndef FUTEX_WAKE 49 #define FUTEX_WAKE 1 50 #endif 51 #endif 52 #elif KMP_OS_DARWIN 53 #include <mach/mach.h> 54 #include <sys/sysctl.h> 55 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD 56 #include <sys/types.h> 57 #include <sys/sysctl.h> 58 #include <sys/user.h> 59 #include <pthread_np.h> 60 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD 61 #include <sys/types.h> 62 #include <sys/sysctl.h> 63 #endif 64 65 #include <ctype.h> 66 #include <dirent.h> 67 #include <fcntl.h> 68 69 struct kmp_sys_timer { 70 struct timespec start; 71 }; 72 73 // Convert timespec to nanoseconds. 74 #define TS2NS(timespec) \ 75 (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec) 76 77 static struct kmp_sys_timer __kmp_sys_timer_data; 78 79 #if KMP_HANDLE_SIGNALS 80 typedef void (*sig_func_t)(int); 81 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG]; 82 static sigset_t __kmp_sigset; 83 #endif 84 85 static int __kmp_init_runtime = FALSE; 86 87 static int __kmp_fork_count = 0; 88 89 static pthread_condattr_t __kmp_suspend_cond_attr; 90 static pthread_mutexattr_t __kmp_suspend_mutex_attr; 91 92 static kmp_cond_align_t __kmp_wait_cv; 93 static kmp_mutex_align_t __kmp_wait_mx; 94 95 kmp_uint64 __kmp_ticks_per_msec = 1000000; 96 kmp_uint64 __kmp_ticks_per_usec = 1000; 97 98 #ifdef DEBUG_SUSPEND 99 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) { 100 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))", 101 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock, 102 cond->c_cond.__c_waiting); 103 } 104 #endif 105 106 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED) 107 108 /* Affinity support */ 109 110 void __kmp_affinity_bind_thread(int which) { 111 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(), 112 "Illegal set affinity operation when not capable"); 113 114 kmp_affin_mask_t *mask; 115 KMP_CPU_ALLOC_ON_STACK(mask); 116 KMP_CPU_ZERO(mask); 117 KMP_CPU_SET(which, mask); 118 __kmp_set_system_affinity(mask, TRUE); 119 KMP_CPU_FREE_FROM_STACK(mask); 120 } 121 122 /* Determine if we can access affinity functionality on this version of 123 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set 124 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */ 125 void __kmp_affinity_determine_capable(const char *env_var) { 126 // Check and see if the OS supports thread affinity. 127 128 #if KMP_OS_LINUX 129 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024) 130 #define KMP_CPU_SET_TRY_SIZE CACHE_LINE 131 #elif KMP_OS_FREEBSD 132 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t)) 133 #endif 134 135 int verbose = __kmp_affinity.flags.verbose; 136 int warnings = __kmp_affinity.flags.warnings; 137 enum affinity_type type = __kmp_affinity.type; 138 139 #if KMP_OS_LINUX 140 long gCode; 141 unsigned char *buf; 142 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 143 144 // If the syscall returns a suggestion for the size, 145 // then we don't have to search for an appropriate size. 146 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_TRY_SIZE, buf); 147 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 148 "initial getaffinity call returned %ld errno = %d\n", 149 gCode, errno)); 150 151 if (gCode < 0 && errno != EINVAL) { 152 // System call not supported 153 if (verbose || 154 (warnings && (type != affinity_none) && (type != affinity_default) && 155 (type != affinity_disabled))) { 156 int error = errno; 157 kmp_msg_t err_code = KMP_ERR(error); 158 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 159 err_code, __kmp_msg_null); 160 if (__kmp_generate_warnings == kmp_warnings_off) { 161 __kmp_str_free(&err_code.str); 162 } 163 } 164 KMP_AFFINITY_DISABLE(); 165 KMP_INTERNAL_FREE(buf); 166 return; 167 } else if (gCode > 0) { 168 // The optimal situation: the OS returns the size of the buffer it expects. 169 KMP_AFFINITY_ENABLE(gCode); 170 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 171 "affinity supported (mask size %d)\n", 172 (int)__kmp_affin_mask_size)); 173 KMP_INTERNAL_FREE(buf); 174 return; 175 } 176 177 // Call the getaffinity system call repeatedly with increasing set sizes 178 // until we succeed, or reach an upper bound on the search. 179 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 180 "searching for proper set size\n")); 181 int size; 182 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) { 183 gCode = syscall(__NR_sched_getaffinity, 0, size, buf); 184 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 185 "getaffinity for mask size %ld returned %ld errno = %d\n", 186 size, gCode, errno)); 187 188 if (gCode < 0) { 189 if (errno == ENOSYS) { 190 // We shouldn't get here 191 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 192 "inconsistent OS call behavior: errno == ENOSYS for mask " 193 "size %d\n", 194 size)); 195 if (verbose || 196 (warnings && (type != affinity_none) && 197 (type != affinity_default) && (type != affinity_disabled))) { 198 int error = errno; 199 kmp_msg_t err_code = KMP_ERR(error); 200 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 201 err_code, __kmp_msg_null); 202 if (__kmp_generate_warnings == kmp_warnings_off) { 203 __kmp_str_free(&err_code.str); 204 } 205 } 206 KMP_AFFINITY_DISABLE(); 207 KMP_INTERNAL_FREE(buf); 208 return; 209 } 210 continue; 211 } 212 213 KMP_AFFINITY_ENABLE(gCode); 214 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 215 "affinity supported (mask size %d)\n", 216 (int)__kmp_affin_mask_size)); 217 KMP_INTERNAL_FREE(buf); 218 return; 219 } 220 #elif KMP_OS_FREEBSD 221 long gCode; 222 unsigned char *buf; 223 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 224 gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT, 225 reinterpret_cast<cpuset_t *>(buf)); 226 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 227 "initial getaffinity call returned %d errno = %d\n", 228 gCode, errno)); 229 if (gCode == 0) { 230 KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT); 231 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 232 "affinity supported (mask size %d)\n", 233 (int)__kmp_affin_mask_size)); 234 KMP_INTERNAL_FREE(buf); 235 return; 236 } 237 #endif 238 KMP_INTERNAL_FREE(buf); 239 240 // Affinity is not supported 241 KMP_AFFINITY_DISABLE(); 242 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 243 "cannot determine mask size - affinity not supported\n")); 244 if (verbose || (warnings && (type != affinity_none) && 245 (type != affinity_default) && (type != affinity_disabled))) { 246 KMP_WARNING(AffCantGetMaskSize, env_var); 247 } 248 } 249 250 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 251 252 #if KMP_USE_FUTEX 253 254 int __kmp_futex_determine_capable() { 255 int loc = 0; 256 long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0); 257 int retval = (rc == 0) || (errno != ENOSYS); 258 259 KA_TRACE(10, 260 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno)); 261 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n", 262 retval ? "" : " not")); 263 264 return retval; 265 } 266 267 #endif // KMP_USE_FUTEX 268 269 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS) 270 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to 271 use compare_and_store for these routines */ 272 273 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) { 274 kmp_int8 old_value, new_value; 275 276 old_value = TCR_1(*p); 277 new_value = old_value | d; 278 279 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 280 KMP_CPU_PAUSE(); 281 old_value = TCR_1(*p); 282 new_value = old_value | d; 283 } 284 return old_value; 285 } 286 287 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) { 288 kmp_int8 old_value, new_value; 289 290 old_value = TCR_1(*p); 291 new_value = old_value & d; 292 293 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 294 KMP_CPU_PAUSE(); 295 old_value = TCR_1(*p); 296 new_value = old_value & d; 297 } 298 return old_value; 299 } 300 301 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) { 302 kmp_uint32 old_value, new_value; 303 304 old_value = TCR_4(*p); 305 new_value = old_value | d; 306 307 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 308 KMP_CPU_PAUSE(); 309 old_value = TCR_4(*p); 310 new_value = old_value | d; 311 } 312 return old_value; 313 } 314 315 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) { 316 kmp_uint32 old_value, new_value; 317 318 old_value = TCR_4(*p); 319 new_value = old_value & d; 320 321 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 322 KMP_CPU_PAUSE(); 323 old_value = TCR_4(*p); 324 new_value = old_value & d; 325 } 326 return old_value; 327 } 328 329 #if KMP_ARCH_X86 330 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) { 331 kmp_int8 old_value, new_value; 332 333 old_value = TCR_1(*p); 334 new_value = old_value + d; 335 336 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 337 KMP_CPU_PAUSE(); 338 old_value = TCR_1(*p); 339 new_value = old_value + d; 340 } 341 return old_value; 342 } 343 344 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) { 345 kmp_int64 old_value, new_value; 346 347 old_value = TCR_8(*p); 348 new_value = old_value + d; 349 350 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 351 KMP_CPU_PAUSE(); 352 old_value = TCR_8(*p); 353 new_value = old_value + d; 354 } 355 return old_value; 356 } 357 #endif /* KMP_ARCH_X86 */ 358 359 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) { 360 kmp_uint64 old_value, new_value; 361 362 old_value = TCR_8(*p); 363 new_value = old_value | d; 364 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 365 KMP_CPU_PAUSE(); 366 old_value = TCR_8(*p); 367 new_value = old_value | d; 368 } 369 return old_value; 370 } 371 372 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) { 373 kmp_uint64 old_value, new_value; 374 375 old_value = TCR_8(*p); 376 new_value = old_value & d; 377 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 378 KMP_CPU_PAUSE(); 379 old_value = TCR_8(*p); 380 new_value = old_value & d; 381 } 382 return old_value; 383 } 384 385 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */ 386 387 void __kmp_terminate_thread(int gtid) { 388 int status; 389 kmp_info_t *th = __kmp_threads[gtid]; 390 391 if (!th) 392 return; 393 394 #ifdef KMP_CANCEL_THREADS 395 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 396 status = pthread_cancel(th->th.th_info.ds.ds_thread); 397 if (status != 0 && status != ESRCH) { 398 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status), 399 __kmp_msg_null); 400 } 401 #endif 402 KMP_YIELD(TRUE); 403 } // 404 405 /* Set thread stack info according to values returned by pthread_getattr_np(). 406 If values are unreasonable, assume call failed and use incremental stack 407 refinement method instead. Returns TRUE if the stack parameters could be 408 determined exactly, FALSE if incremental refinement is necessary. */ 409 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) { 410 int stack_data; 411 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 412 KMP_OS_HURD 413 pthread_attr_t attr; 414 int status; 415 size_t size = 0; 416 void *addr = 0; 417 418 /* Always do incremental stack refinement for ubermaster threads since the 419 initial thread stack range can be reduced by sibling thread creation so 420 pthread_attr_getstack may cause thread gtid aliasing */ 421 if (!KMP_UBER_GTID(gtid)) { 422 423 /* Fetch the real thread attributes */ 424 status = pthread_attr_init(&attr); 425 KMP_CHECK_SYSFAIL("pthread_attr_init", status); 426 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD 427 status = pthread_attr_get_np(pthread_self(), &attr); 428 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status); 429 #else 430 status = pthread_getattr_np(pthread_self(), &attr); 431 KMP_CHECK_SYSFAIL("pthread_getattr_np", status); 432 #endif 433 status = pthread_attr_getstack(&attr, &addr, &size); 434 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status); 435 KA_TRACE(60, 436 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:" 437 " %lu, low addr: %p\n", 438 gtid, size, addr)); 439 status = pthread_attr_destroy(&attr); 440 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status); 441 } 442 443 if (size != 0 && addr != 0) { // was stack parameter determination successful? 444 /* Store the correct base and size */ 445 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size)); 446 TCW_PTR(th->th.th_info.ds.ds_stacksize, size); 447 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 448 return TRUE; 449 } 450 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD \ 451 || KMP_OS_HURD */ 452 /* Use incremental refinement starting from initial conservative estimate */ 453 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 454 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 455 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 456 return FALSE; 457 } 458 459 static void *__kmp_launch_worker(void *thr) { 460 int status, old_type, old_state; 461 #ifdef KMP_BLOCK_SIGNALS 462 sigset_t new_set, old_set; 463 #endif /* KMP_BLOCK_SIGNALS */ 464 void *exit_val; 465 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 466 KMP_OS_OPENBSD || KMP_OS_HURD 467 void *volatile padding = 0; 468 #endif 469 int gtid; 470 471 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid; 472 __kmp_gtid_set_specific(gtid); 473 #ifdef KMP_TDATA_GTID 474 __kmp_gtid = gtid; 475 #endif 476 #if KMP_STATS_ENABLED 477 // set thread local index to point to thread-specific stats 478 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats; 479 __kmp_stats_thread_ptr->startLife(); 480 KMP_SET_THREAD_STATE(IDLE); 481 KMP_INIT_PARTITIONED_TIMERS(OMP_idle); 482 #endif 483 484 #if USE_ITT_BUILD 485 __kmp_itt_thread_name(gtid); 486 #endif /* USE_ITT_BUILD */ 487 488 #if KMP_AFFINITY_SUPPORTED 489 __kmp_affinity_bind_init_mask(gtid); 490 #endif 491 492 #ifdef KMP_CANCEL_THREADS 493 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 494 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 495 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 496 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 497 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 498 #endif 499 500 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 501 // Set FP control regs to be a copy of the parallel initialization thread's. 502 __kmp_clear_x87_fpu_status_word(); 503 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 504 __kmp_load_mxcsr(&__kmp_init_mxcsr); 505 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 506 507 #ifdef KMP_BLOCK_SIGNALS 508 status = sigfillset(&new_set); 509 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 510 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set); 511 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 512 #endif /* KMP_BLOCK_SIGNALS */ 513 514 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 515 KMP_OS_OPENBSD 516 if (__kmp_stkoffset > 0 && gtid > 0) { 517 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 518 (void)padding; 519 } 520 #endif 521 522 KMP_MB(); 523 __kmp_set_stack_info(gtid, (kmp_info_t *)thr); 524 525 __kmp_check_stack_overlap((kmp_info_t *)thr); 526 527 exit_val = __kmp_launch_thread((kmp_info_t *)thr); 528 529 #ifdef KMP_BLOCK_SIGNALS 530 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL); 531 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 532 #endif /* KMP_BLOCK_SIGNALS */ 533 534 return exit_val; 535 } 536 537 #if KMP_USE_MONITOR 538 /* The monitor thread controls all of the threads in the complex */ 539 540 static void *__kmp_launch_monitor(void *thr) { 541 int status, old_type, old_state; 542 #ifdef KMP_BLOCK_SIGNALS 543 sigset_t new_set; 544 #endif /* KMP_BLOCK_SIGNALS */ 545 struct timespec interval; 546 547 KMP_MB(); /* Flush all pending memory write invalidates. */ 548 549 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n")); 550 551 /* register us as the monitor thread */ 552 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 553 #ifdef KMP_TDATA_GTID 554 __kmp_gtid = KMP_GTID_MONITOR; 555 #endif 556 557 KMP_MB(); 558 559 #if USE_ITT_BUILD 560 // Instruct Intel(R) Threading Tools to ignore monitor thread. 561 __kmp_itt_thread_ignore(); 562 #endif /* USE_ITT_BUILD */ 563 564 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid, 565 (kmp_info_t *)thr); 566 567 __kmp_check_stack_overlap((kmp_info_t *)thr); 568 569 #ifdef KMP_CANCEL_THREADS 570 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 571 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 572 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 573 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 574 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 575 #endif 576 577 #if KMP_REAL_TIME_FIX 578 // This is a potential fix which allows application with real-time scheduling 579 // policy work. However, decision about the fix is not made yet, so it is 580 // disabled by default. 581 { // Are program started with real-time scheduling policy? 582 int sched = sched_getscheduler(0); 583 if (sched == SCHED_FIFO || sched == SCHED_RR) { 584 // Yes, we are a part of real-time application. Try to increase the 585 // priority of the monitor. 586 struct sched_param param; 587 int max_priority = sched_get_priority_max(sched); 588 int rc; 589 KMP_WARNING(RealTimeSchedNotSupported); 590 sched_getparam(0, ¶m); 591 if (param.sched_priority < max_priority) { 592 param.sched_priority += 1; 593 rc = sched_setscheduler(0, sched, ¶m); 594 if (rc != 0) { 595 int error = errno; 596 kmp_msg_t err_code = KMP_ERR(error); 597 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority), 598 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null); 599 if (__kmp_generate_warnings == kmp_warnings_off) { 600 __kmp_str_free(&err_code.str); 601 } 602 } 603 } else { 604 // We cannot abort here, because number of CPUs may be enough for all 605 // the threads, including the monitor thread, so application could 606 // potentially work... 607 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority), 608 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority), 609 __kmp_msg_null); 610 } 611 } 612 // AC: free thread that waits for monitor started 613 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 614 } 615 #endif // KMP_REAL_TIME_FIX 616 617 KMP_MB(); /* Flush all pending memory write invalidates. */ 618 619 if (__kmp_monitor_wakeups == 1) { 620 interval.tv_sec = 1; 621 interval.tv_nsec = 0; 622 } else { 623 interval.tv_sec = 0; 624 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups); 625 } 626 627 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n")); 628 629 while (!TCR_4(__kmp_global.g.g_done)) { 630 struct timespec now; 631 struct timeval tval; 632 633 /* This thread monitors the state of the system */ 634 635 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 636 637 status = gettimeofday(&tval, NULL); 638 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 639 TIMEVAL_TO_TIMESPEC(&tval, &now); 640 641 now.tv_sec += interval.tv_sec; 642 now.tv_nsec += interval.tv_nsec; 643 644 if (now.tv_nsec >= KMP_NSEC_PER_SEC) { 645 now.tv_sec += 1; 646 now.tv_nsec -= KMP_NSEC_PER_SEC; 647 } 648 649 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 650 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 651 // AC: the monitor should not fall asleep if g_done has been set 652 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex 653 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond, 654 &__kmp_wait_mx.m_mutex, &now); 655 if (status != 0) { 656 if (status != ETIMEDOUT && status != EINTR) { 657 KMP_SYSFAIL("pthread_cond_timedwait", status); 658 } 659 } 660 } 661 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 662 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 663 664 TCW_4(__kmp_global.g.g_time.dt.t_value, 665 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 666 667 KMP_MB(); /* Flush all pending memory write invalidates. */ 668 } 669 670 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n")); 671 672 #ifdef KMP_BLOCK_SIGNALS 673 status = sigfillset(&new_set); 674 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 675 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL); 676 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 677 #endif /* KMP_BLOCK_SIGNALS */ 678 679 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n")); 680 681 if (__kmp_global.g.g_abort != 0) { 682 /* now we need to terminate the worker threads */ 683 /* the value of t_abort is the signal we caught */ 684 685 int gtid; 686 687 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", 688 __kmp_global.g.g_abort)); 689 690 /* terminate the OpenMP worker threads */ 691 /* TODO this is not valid for sibling threads!! 692 * the uber master might not be 0 anymore.. */ 693 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 694 __kmp_terminate_thread(gtid); 695 696 __kmp_cleanup(); 697 698 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n", 699 __kmp_global.g.g_abort)); 700 701 if (__kmp_global.g.g_abort > 0) 702 raise(__kmp_global.g.g_abort); 703 } 704 705 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n")); 706 707 return thr; 708 } 709 #endif // KMP_USE_MONITOR 710 711 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 712 pthread_t handle; 713 pthread_attr_t thread_attr; 714 int status; 715 716 th->th.th_info.ds.ds_gtid = gtid; 717 718 #if KMP_STATS_ENABLED 719 // sets up worker thread stats 720 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid); 721 722 // th->th.th_stats is used to transfer thread-specific stats-pointer to 723 // __kmp_launch_worker. So when thread is created (goes into 724 // __kmp_launch_worker) it will set its thread local pointer to 725 // th->th.th_stats 726 if (!KMP_UBER_GTID(gtid)) { 727 th->th.th_stats = __kmp_stats_list->push_back(gtid); 728 } else { 729 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(), 730 // so set the th->th.th_stats field to it. 731 th->th.th_stats = __kmp_stats_thread_ptr; 732 } 733 __kmp_release_tas_lock(&__kmp_stats_lock, gtid); 734 735 #endif // KMP_STATS_ENABLED 736 737 if (KMP_UBER_GTID(gtid)) { 738 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid)); 739 th->th.th_info.ds.ds_thread = pthread_self(); 740 __kmp_set_stack_info(gtid, th); 741 __kmp_check_stack_overlap(th); 742 return; 743 } 744 745 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 746 747 KMP_MB(); /* Flush all pending memory write invalidates. */ 748 749 #ifdef KMP_THREAD_ATTR 750 status = pthread_attr_init(&thread_attr); 751 if (status != 0) { 752 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 753 } 754 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 755 if (status != 0) { 756 __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null); 757 } 758 759 /* Set stack size for this thread now. 760 The multiple of 2 is there because on some machines, requesting an unusual 761 stacksize causes the thread to have an offset before the dummy alloca() 762 takes place to create the offset. Since we want the user to have a 763 sufficient stacksize AND support a stack offset, we alloca() twice the 764 offset so that the upcoming alloca() does not eliminate any premade offset, 765 and also gives the user the stack space they requested for all threads */ 766 stack_size += gtid * __kmp_stkoffset * 2; 767 768 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 769 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n", 770 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 771 772 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 773 status = pthread_attr_setstacksize(&thread_attr, stack_size); 774 #ifdef KMP_BACKUP_STKSIZE 775 if (status != 0) { 776 if (!__kmp_env_stksize) { 777 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset; 778 __kmp_stksize = KMP_BACKUP_STKSIZE; 779 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 780 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu " 781 "bytes\n", 782 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 783 status = pthread_attr_setstacksize(&thread_attr, stack_size); 784 } 785 } 786 #endif /* KMP_BACKUP_STKSIZE */ 787 if (status != 0) { 788 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 789 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null); 790 } 791 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 792 793 #endif /* KMP_THREAD_ATTR */ 794 795 status = 796 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th); 797 if (status != 0 || !handle) { // ??? Why do we check handle?? 798 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 799 if (status == EINVAL) { 800 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 801 KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null); 802 } 803 if (status == ENOMEM) { 804 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 805 KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null); 806 } 807 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 808 if (status == EAGAIN) { 809 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status), 810 KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null); 811 } 812 KMP_SYSFAIL("pthread_create", status); 813 } 814 815 th->th.th_info.ds.ds_thread = handle; 816 817 #ifdef KMP_THREAD_ATTR 818 status = pthread_attr_destroy(&thread_attr); 819 if (status) { 820 kmp_msg_t err_code = KMP_ERR(status); 821 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 822 __kmp_msg_null); 823 if (__kmp_generate_warnings == kmp_warnings_off) { 824 __kmp_str_free(&err_code.str); 825 } 826 } 827 #endif /* KMP_THREAD_ATTR */ 828 829 KMP_MB(); /* Flush all pending memory write invalidates. */ 830 831 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 832 833 } // __kmp_create_worker 834 835 #if KMP_USE_MONITOR 836 void __kmp_create_monitor(kmp_info_t *th) { 837 pthread_t handle; 838 pthread_attr_t thread_attr; 839 size_t size; 840 int status; 841 int auto_adj_size = FALSE; 842 843 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 844 // We don't need monitor thread in case of MAX_BLOCKTIME 845 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 846 "MAX blocktime\n")); 847 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 848 th->th.th_info.ds.ds_gtid = 0; 849 return; 850 } 851 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 852 853 KMP_MB(); /* Flush all pending memory write invalidates. */ 854 855 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 856 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 857 #if KMP_REAL_TIME_FIX 858 TCW_4(__kmp_global.g.g_time.dt.t_value, 859 -1); // Will use it for synchronization a bit later. 860 #else 861 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 862 #endif // KMP_REAL_TIME_FIX 863 864 #ifdef KMP_THREAD_ATTR 865 if (__kmp_monitor_stksize == 0) { 866 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 867 auto_adj_size = TRUE; 868 } 869 status = pthread_attr_init(&thread_attr); 870 if (status != 0) { 871 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 872 } 873 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 874 if (status != 0) { 875 __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null); 876 } 877 878 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 879 status = pthread_attr_getstacksize(&thread_attr, &size); 880 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status); 881 #else 882 size = __kmp_sys_min_stksize; 883 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 884 #endif /* KMP_THREAD_ATTR */ 885 886 if (__kmp_monitor_stksize == 0) { 887 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 888 } 889 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 890 __kmp_monitor_stksize = __kmp_sys_min_stksize; 891 } 892 893 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes," 894 "requested stacksize = %lu bytes\n", 895 size, __kmp_monitor_stksize)); 896 897 retry: 898 899 /* Set stack size for this thread now. */ 900 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 901 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,", 902 __kmp_monitor_stksize)); 903 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize); 904 if (status != 0) { 905 if (auto_adj_size) { 906 __kmp_monitor_stksize *= 2; 907 goto retry; 908 } 909 kmp_msg_t err_code = KMP_ERR(status); 910 __kmp_msg(kmp_ms_warning, // should this be fatal? BB 911 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize), 912 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null); 913 if (__kmp_generate_warnings == kmp_warnings_off) { 914 __kmp_str_free(&err_code.str); 915 } 916 } 917 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 918 919 status = 920 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th); 921 922 if (status != 0) { 923 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 924 if (status == EINVAL) { 925 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) { 926 __kmp_monitor_stksize *= 2; 927 goto retry; 928 } 929 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 930 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), 931 __kmp_msg_null); 932 } 933 if (status == ENOMEM) { 934 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 935 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), 936 __kmp_msg_null); 937 } 938 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 939 if (status == EAGAIN) { 940 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status), 941 KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null); 942 } 943 KMP_SYSFAIL("pthread_create", status); 944 } 945 946 th->th.th_info.ds.ds_thread = handle; 947 948 #if KMP_REAL_TIME_FIX 949 // Wait for the monitor thread is really started and set its *priority*. 950 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 951 sizeof(__kmp_global.g.g_time.dt.t_value)); 952 __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1, 953 &__kmp_neq_4, NULL); 954 #endif // KMP_REAL_TIME_FIX 955 956 #ifdef KMP_THREAD_ATTR 957 status = pthread_attr_destroy(&thread_attr); 958 if (status != 0) { 959 kmp_msg_t err_code = KMP_ERR(status); 960 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 961 __kmp_msg_null); 962 if (__kmp_generate_warnings == kmp_warnings_off) { 963 __kmp_str_free(&err_code.str); 964 } 965 } 966 #endif 967 968 KMP_MB(); /* Flush all pending memory write invalidates. */ 969 970 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n", 971 th->th.th_info.ds.ds_thread)); 972 973 } // __kmp_create_monitor 974 #endif // KMP_USE_MONITOR 975 976 void __kmp_exit_thread(int exit_status) { 977 pthread_exit((void *)(intptr_t)exit_status); 978 } // __kmp_exit_thread 979 980 #if KMP_USE_MONITOR 981 void __kmp_resume_monitor(); 982 983 extern "C" void __kmp_reap_monitor(kmp_info_t *th) { 984 int status; 985 void *exit_val; 986 987 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle" 988 " %#.8lx\n", 989 th->th.th_info.ds.ds_thread)); 990 991 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 992 // If both tid and gtid are 0, it means the monitor did not ever start. 993 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 994 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 995 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 996 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 997 return; 998 } 999 1000 KMP_MB(); /* Flush all pending memory write invalidates. */ 1001 1002 /* First, check to see whether the monitor thread exists to wake it up. This 1003 is to avoid performance problem when the monitor sleeps during 1004 blocktime-size interval */ 1005 1006 status = pthread_kill(th->th.th_info.ds.ds_thread, 0); 1007 if (status != ESRCH) { 1008 __kmp_resume_monitor(); // Wake up the monitor thread 1009 } 1010 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n")); 1011 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1012 if (exit_val != th) { 1013 __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null); 1014 } 1015 1016 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1017 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1018 1019 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle" 1020 " %#.8lx\n", 1021 th->th.th_info.ds.ds_thread)); 1022 1023 KMP_MB(); /* Flush all pending memory write invalidates. */ 1024 } 1025 #else 1026 // Empty symbol to export (see exports_so.txt) when 1027 // monitor thread feature is disabled 1028 extern "C" void __kmp_reap_monitor(kmp_info_t *th) { 1029 (void)th; 1030 } 1031 #endif // KMP_USE_MONITOR 1032 1033 void __kmp_reap_worker(kmp_info_t *th) { 1034 int status; 1035 void *exit_val; 1036 1037 KMP_MB(); /* Flush all pending memory write invalidates. */ 1038 1039 KA_TRACE( 1040 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid)); 1041 1042 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1043 #ifdef KMP_DEBUG 1044 /* Don't expose these to the user until we understand when they trigger */ 1045 if (status != 0) { 1046 __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null); 1047 } 1048 if (exit_val != th) { 1049 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, " 1050 "exit_val = %p\n", 1051 th->th.th_info.ds.ds_gtid, exit_val)); 1052 } 1053 #else 1054 (void)status; // unused variable 1055 #endif /* KMP_DEBUG */ 1056 1057 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n", 1058 th->th.th_info.ds.ds_gtid)); 1059 1060 KMP_MB(); /* Flush all pending memory write invalidates. */ 1061 } 1062 1063 #if KMP_HANDLE_SIGNALS 1064 1065 static void __kmp_null_handler(int signo) { 1066 // Do nothing, for doing SIG_IGN-type actions. 1067 } // __kmp_null_handler 1068 1069 static void __kmp_team_handler(int signo) { 1070 if (__kmp_global.g.g_abort == 0) { 1071 /* Stage 1 signal handler, let's shut down all of the threads */ 1072 #ifdef KMP_DEBUG 1073 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo); 1074 #endif 1075 switch (signo) { 1076 case SIGHUP: 1077 case SIGINT: 1078 case SIGQUIT: 1079 case SIGILL: 1080 case SIGABRT: 1081 case SIGFPE: 1082 case SIGBUS: 1083 case SIGSEGV: 1084 #ifdef SIGSYS 1085 case SIGSYS: 1086 #endif 1087 case SIGTERM: 1088 if (__kmp_debug_buf) { 1089 __kmp_dump_debug_buffer(); 1090 } 1091 __kmp_unregister_library(); // cleanup shared memory 1092 KMP_MB(); // Flush all pending memory write invalidates. 1093 TCW_4(__kmp_global.g.g_abort, signo); 1094 KMP_MB(); // Flush all pending memory write invalidates. 1095 TCW_4(__kmp_global.g.g_done, TRUE); 1096 KMP_MB(); // Flush all pending memory write invalidates. 1097 break; 1098 default: 1099 #ifdef KMP_DEBUG 1100 __kmp_debug_printf("__kmp_team_handler: unknown signal type"); 1101 #endif 1102 break; 1103 } 1104 } 1105 } // __kmp_team_handler 1106 1107 static void __kmp_sigaction(int signum, const struct sigaction *act, 1108 struct sigaction *oldact) { 1109 int rc = sigaction(signum, act, oldact); 1110 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc); 1111 } 1112 1113 static void __kmp_install_one_handler(int sig, sig_func_t handler_func, 1114 int parallel_init) { 1115 KMP_MB(); // Flush all pending memory write invalidates. 1116 KB_TRACE(60, 1117 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init)); 1118 if (parallel_init) { 1119 struct sigaction new_action; 1120 struct sigaction old_action; 1121 new_action.sa_handler = handler_func; 1122 new_action.sa_flags = 0; 1123 sigfillset(&new_action.sa_mask); 1124 __kmp_sigaction(sig, &new_action, &old_action); 1125 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) { 1126 sigaddset(&__kmp_sigset, sig); 1127 } else { 1128 // Restore/keep user's handler if one previously installed. 1129 __kmp_sigaction(sig, &old_action, NULL); 1130 } 1131 } else { 1132 // Save initial/system signal handlers to see if user handlers installed. 1133 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]); 1134 } 1135 KMP_MB(); // Flush all pending memory write invalidates. 1136 } // __kmp_install_one_handler 1137 1138 static void __kmp_remove_one_handler(int sig) { 1139 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig)); 1140 if (sigismember(&__kmp_sigset, sig)) { 1141 struct sigaction old; 1142 KMP_MB(); // Flush all pending memory write invalidates. 1143 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old); 1144 if ((old.sa_handler != __kmp_team_handler) && 1145 (old.sa_handler != __kmp_null_handler)) { 1146 // Restore the users signal handler. 1147 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1148 "restoring: sig=%d\n", 1149 sig)); 1150 __kmp_sigaction(sig, &old, NULL); 1151 } 1152 sigdelset(&__kmp_sigset, sig); 1153 KMP_MB(); // Flush all pending memory write invalidates. 1154 } 1155 } // __kmp_remove_one_handler 1156 1157 void __kmp_install_signals(int parallel_init) { 1158 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init)); 1159 if (__kmp_handle_signals || !parallel_init) { 1160 // If ! parallel_init, we do not install handlers, just save original 1161 // handlers. Let us do it even __handle_signals is 0. 1162 sigemptyset(&__kmp_sigset); 1163 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init); 1164 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1165 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init); 1166 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1167 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1168 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1169 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init); 1170 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1171 #ifdef SIGSYS 1172 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init); 1173 #endif // SIGSYS 1174 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1175 #ifdef SIGPIPE 1176 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init); 1177 #endif // SIGPIPE 1178 } 1179 } // __kmp_install_signals 1180 1181 void __kmp_remove_signals(void) { 1182 int sig; 1183 KB_TRACE(10, ("__kmp_remove_signals()\n")); 1184 for (sig = 1; sig < NSIG; ++sig) { 1185 __kmp_remove_one_handler(sig); 1186 } 1187 } // __kmp_remove_signals 1188 1189 #endif // KMP_HANDLE_SIGNALS 1190 1191 void __kmp_enable(int new_state) { 1192 #ifdef KMP_CANCEL_THREADS 1193 int status, old_state; 1194 status = pthread_setcancelstate(new_state, &old_state); 1195 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1196 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE); 1197 #endif 1198 } 1199 1200 void __kmp_disable(int *old_state) { 1201 #ifdef KMP_CANCEL_THREADS 1202 int status; 1203 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state); 1204 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1205 #endif 1206 } 1207 1208 static void __kmp_atfork_prepare(void) { 1209 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 1210 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1211 } 1212 1213 static void __kmp_atfork_parent(void) { 1214 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1215 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1216 } 1217 1218 /* Reset the library so execution in the child starts "all over again" with 1219 clean data structures in initial states. Don't worry about freeing memory 1220 allocated by parent, just abandon it to be safe. */ 1221 static void __kmp_atfork_child(void) { 1222 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1223 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1224 /* TODO make sure this is done right for nested/sibling */ 1225 // ATT: Memory leaks are here? TODO: Check it and fix. 1226 /* KMP_ASSERT( 0 ); */ 1227 1228 ++__kmp_fork_count; 1229 1230 #if KMP_AFFINITY_SUPPORTED 1231 #if KMP_OS_LINUX || KMP_OS_FREEBSD 1232 // reset the affinity in the child to the initial thread 1233 // affinity in the parent 1234 kmp_set_thread_affinity_mask_initial(); 1235 #endif 1236 // Set default not to bind threads tightly in the child (we're expecting 1237 // over-subscription after the fork and this can improve things for 1238 // scripting languages that use OpenMP inside process-parallel code). 1239 if (__kmp_nested_proc_bind.bind_types != NULL) { 1240 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; 1241 } 1242 for (kmp_affinity_t *affinity : __kmp_affinities) 1243 *affinity = KMP_AFFINITY_INIT(affinity->env_var); 1244 __kmp_affin_fullMask = nullptr; 1245 __kmp_affin_origMask = nullptr; 1246 __kmp_topology = nullptr; 1247 #endif // KMP_AFFINITY_SUPPORTED 1248 1249 #if KMP_USE_MONITOR 1250 __kmp_init_monitor = 0; 1251 #endif 1252 __kmp_init_parallel = FALSE; 1253 __kmp_init_middle = FALSE; 1254 __kmp_init_serial = FALSE; 1255 TCW_4(__kmp_init_gtid, FALSE); 1256 __kmp_init_common = FALSE; 1257 1258 TCW_4(__kmp_init_user_locks, FALSE); 1259 #if !KMP_USE_DYNAMIC_LOCK 1260 __kmp_user_lock_table.used = 1; 1261 __kmp_user_lock_table.allocated = 0; 1262 __kmp_user_lock_table.table = NULL; 1263 __kmp_lock_blocks = NULL; 1264 #endif 1265 1266 __kmp_all_nth = 0; 1267 TCW_4(__kmp_nth, 0); 1268 1269 __kmp_thread_pool = NULL; 1270 __kmp_thread_pool_insert_pt = NULL; 1271 __kmp_team_pool = NULL; 1272 1273 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate 1274 here so threadprivate doesn't use stale data */ 1275 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n", 1276 __kmp_threadpriv_cache_list)); 1277 1278 while (__kmp_threadpriv_cache_list != NULL) { 1279 1280 if (*__kmp_threadpriv_cache_list->addr != NULL) { 1281 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n", 1282 &(*__kmp_threadpriv_cache_list->addr))); 1283 1284 *__kmp_threadpriv_cache_list->addr = NULL; 1285 } 1286 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next; 1287 } 1288 1289 __kmp_init_runtime = FALSE; 1290 1291 /* reset statically initialized locks */ 1292 __kmp_init_bootstrap_lock(&__kmp_initz_lock); 1293 __kmp_init_bootstrap_lock(&__kmp_stdio_lock); 1294 __kmp_init_bootstrap_lock(&__kmp_console_lock); 1295 __kmp_init_bootstrap_lock(&__kmp_task_team_lock); 1296 1297 #if USE_ITT_BUILD 1298 __kmp_itt_reset(); // reset ITT's global state 1299 #endif /* USE_ITT_BUILD */ 1300 1301 { 1302 // Child process often get terminated without any use of OpenMP. That might 1303 // cause mapped shared memory file to be left unattended. Thus we postpone 1304 // library registration till middle initialization in the child process. 1305 __kmp_need_register_serial = FALSE; 1306 __kmp_serial_initialize(); 1307 } 1308 1309 /* This is necessary to make sure no stale data is left around */ 1310 /* AC: customers complain that we use unsafe routines in the atfork 1311 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen 1312 in dynamic_link when check the presence of shared tbbmalloc library. 1313 Suggestion is to make the library initialization lazier, similar 1314 to what done for __kmpc_begin(). */ 1315 // TODO: synchronize all static initializations with regular library 1316 // startup; look at kmp_global.cpp and etc. 1317 //__kmp_internal_begin (); 1318 } 1319 1320 void __kmp_register_atfork(void) { 1321 if (__kmp_need_register_atfork) { 1322 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent, 1323 __kmp_atfork_child); 1324 KMP_CHECK_SYSFAIL("pthread_atfork", status); 1325 __kmp_need_register_atfork = FALSE; 1326 } 1327 } 1328 1329 void __kmp_suspend_initialize(void) { 1330 int status; 1331 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr); 1332 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1333 status = pthread_condattr_init(&__kmp_suspend_cond_attr); 1334 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1335 } 1336 1337 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 1338 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count); 1339 int new_value = __kmp_fork_count + 1; 1340 // Return if already initialized 1341 if (old_value == new_value) 1342 return; 1343 // Wait, then return if being initialized 1344 if (old_value == -1 || !__kmp_atomic_compare_store( 1345 &th->th.th_suspend_init_count, old_value, -1)) { 1346 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) { 1347 KMP_CPU_PAUSE(); 1348 } 1349 } else { 1350 // Claim to be the initializer and do initializations 1351 int status; 1352 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond, 1353 &__kmp_suspend_cond_attr); 1354 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1355 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex, 1356 &__kmp_suspend_mutex_attr); 1357 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1358 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value); 1359 } 1360 } 1361 1362 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 1363 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) { 1364 /* this means we have initialize the suspension pthread objects for this 1365 thread in this instance of the process */ 1366 int status; 1367 1368 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond); 1369 if (status != 0 && status != EBUSY) { 1370 KMP_SYSFAIL("pthread_cond_destroy", status); 1371 } 1372 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex); 1373 if (status != 0 && status != EBUSY) { 1374 KMP_SYSFAIL("pthread_mutex_destroy", status); 1375 } 1376 --th->th.th_suspend_init_count; 1377 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) == 1378 __kmp_fork_count); 1379 } 1380 } 1381 1382 // return true if lock obtained, false otherwise 1383 int __kmp_try_suspend_mx(kmp_info_t *th) { 1384 return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0); 1385 } 1386 1387 void __kmp_lock_suspend_mx(kmp_info_t *th) { 1388 int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1389 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1390 } 1391 1392 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 1393 int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1394 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1395 } 1396 1397 /* This routine puts the calling thread to sleep after setting the 1398 sleep bit for the indicated flag variable to true. */ 1399 template <class C> 1400 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 1401 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend); 1402 kmp_info_t *th = __kmp_threads[th_gtid]; 1403 int status; 1404 typename C::flag_t old_spin; 1405 1406 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid, 1407 flag->get())); 1408 1409 __kmp_suspend_initialize_thread(th); 1410 1411 __kmp_lock_suspend_mx(th); 1412 1413 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n", 1414 th_gtid, flag->get())); 1415 1416 /* TODO: shouldn't this use release semantics to ensure that 1417 __kmp_suspend_initialize_thread gets called first? */ 1418 old_spin = flag->set_sleeping(); 1419 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 1420 th->th.th_sleep_loc_type = flag->get_type(); 1421 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 1422 __kmp_pause_status != kmp_soft_paused) { 1423 flag->unset_sleeping(); 1424 TCW_PTR(th->th.th_sleep_loc, NULL); 1425 th->th.th_sleep_loc_type = flag_unset; 1426 __kmp_unlock_suspend_mx(th); 1427 return; 1428 } 1429 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x," 1430 " was %x\n", 1431 th_gtid, flag->get(), flag->load(), old_spin)); 1432 1433 if (flag->done_check_val(old_spin) || flag->done_check()) { 1434 flag->unset_sleeping(); 1435 TCW_PTR(th->th.th_sleep_loc, NULL); 1436 th->th.th_sleep_loc_type = flag_unset; 1437 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 1438 "for spin(%p)\n", 1439 th_gtid, flag->get())); 1440 } else { 1441 /* Encapsulate in a loop as the documentation states that this may 1442 "with low probability" return when the condition variable has 1443 not been signaled or broadcast */ 1444 int deactivated = FALSE; 1445 1446 while (flag->is_sleeping()) { 1447 #ifdef DEBUG_SUSPEND 1448 char buffer[128]; 1449 __kmp_suspend_count++; 1450 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1451 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid, 1452 buffer); 1453 #endif 1454 // Mark the thread as no longer active (only in the first iteration of the 1455 // loop). 1456 if (!deactivated) { 1457 th->th.th_active = FALSE; 1458 if (th->th.th_active_in_pool) { 1459 th->th.th_active_in_pool = FALSE; 1460 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 1461 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 1462 } 1463 deactivated = TRUE; 1464 } 1465 1466 KMP_DEBUG_ASSERT(th->th.th_sleep_loc); 1467 KMP_DEBUG_ASSERT(flag->get_type() == th->th.th_sleep_loc_type); 1468 1469 #if USE_SUSPEND_TIMEOUT 1470 struct timespec now; 1471 struct timeval tval; 1472 int msecs; 1473 1474 status = gettimeofday(&tval, NULL); 1475 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1476 TIMEVAL_TO_TIMESPEC(&tval, &now); 1477 1478 msecs = (4 * __kmp_dflt_blocktime) + 200; 1479 now.tv_sec += msecs / 1000; 1480 now.tv_nsec += (msecs % 1000) * 1000; 1481 1482 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 1483 "pthread_cond_timedwait\n", 1484 th_gtid)); 1485 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond, 1486 &th->th.th_suspend_mx.m_mutex, &now); 1487 #else 1488 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform" 1489 " pthread_cond_wait\n", 1490 th_gtid)); 1491 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond, 1492 &th->th.th_suspend_mx.m_mutex); 1493 #endif // USE_SUSPEND_TIMEOUT 1494 1495 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) { 1496 KMP_SYSFAIL("pthread_cond_wait", status); 1497 } 1498 1499 KMP_DEBUG_ASSERT(flag->get_type() == flag->get_ptr_type()); 1500 1501 if (!flag->is_sleeping() && 1502 ((status == EINTR) || (status == ETIMEDOUT))) { 1503 // if interrupt or timeout, and thread is no longer sleeping, we need to 1504 // make sure sleep_loc gets reset; however, this shouldn't be needed if 1505 // we woke up with resume 1506 flag->unset_sleeping(); 1507 TCW_PTR(th->th.th_sleep_loc, NULL); 1508 th->th.th_sleep_loc_type = flag_unset; 1509 } 1510 #ifdef KMP_DEBUG 1511 if (status == ETIMEDOUT) { 1512 if (flag->is_sleeping()) { 1513 KF_TRACE(100, 1514 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid)); 1515 } else { 1516 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit " 1517 "not set!\n", 1518 th_gtid)); 1519 TCW_PTR(th->th.th_sleep_loc, NULL); 1520 th->th.th_sleep_loc_type = flag_unset; 1521 } 1522 } else if (flag->is_sleeping()) { 1523 KF_TRACE(100, 1524 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 1525 } 1526 #endif 1527 } // while 1528 1529 // Mark the thread as active again (if it was previous marked as inactive) 1530 if (deactivated) { 1531 th->th.th_active = TRUE; 1532 if (TCR_4(th->th.th_in_pool)) { 1533 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 1534 th->th.th_active_in_pool = TRUE; 1535 } 1536 } 1537 } 1538 // We may have had the loop variable set before entering the loop body; 1539 // so we need to reset sleep_loc. 1540 TCW_PTR(th->th.th_sleep_loc, NULL); 1541 th->th.th_sleep_loc_type = flag_unset; 1542 1543 KMP_DEBUG_ASSERT(!flag->is_sleeping()); 1544 KMP_DEBUG_ASSERT(!th->th.th_sleep_loc); 1545 #ifdef DEBUG_SUSPEND 1546 { 1547 char buffer[128]; 1548 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1549 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid, 1550 buffer); 1551 } 1552 #endif 1553 1554 __kmp_unlock_suspend_mx(th); 1555 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 1556 } 1557 1558 template <bool C, bool S> 1559 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) { 1560 __kmp_suspend_template(th_gtid, flag); 1561 } 1562 template <bool C, bool S> 1563 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) { 1564 __kmp_suspend_template(th_gtid, flag); 1565 } 1566 template <bool C, bool S> 1567 void __kmp_atomic_suspend_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag) { 1568 __kmp_suspend_template(th_gtid, flag); 1569 } 1570 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 1571 __kmp_suspend_template(th_gtid, flag); 1572 } 1573 1574 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *); 1575 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *); 1576 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *); 1577 template void 1578 __kmp_atomic_suspend_64<false, true>(int, kmp_atomic_flag_64<false, true> *); 1579 template void 1580 __kmp_atomic_suspend_64<true, false>(int, kmp_atomic_flag_64<true, false> *); 1581 1582 /* This routine signals the thread specified by target_gtid to wake up 1583 after setting the sleep bit indicated by the flag argument to FALSE. 1584 The target thread must already have called __kmp_suspend_template() */ 1585 template <class C> 1586 static inline void __kmp_resume_template(int target_gtid, C *flag) { 1587 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1588 kmp_info_t *th = __kmp_threads[target_gtid]; 1589 int status; 1590 1591 #ifdef KMP_DEBUG 1592 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1593 #endif 1594 1595 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 1596 gtid, target_gtid)); 1597 KMP_DEBUG_ASSERT(gtid != target_gtid); 1598 1599 __kmp_suspend_initialize_thread(th); 1600 1601 __kmp_lock_suspend_mx(th); 1602 1603 if (!flag || flag != th->th.th_sleep_loc) { 1604 // coming from __kmp_null_resume_wrapper, or thread is now sleeping on a 1605 // different location; wake up at new location 1606 flag = (C *)CCAST(void *, th->th.th_sleep_loc); 1607 } 1608 1609 // First, check if the flag is null or its type has changed. If so, someone 1610 // else woke it up. 1611 if (!flag) { // Thread doesn't appear to be sleeping on anything 1612 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1613 "awake: flag(%p)\n", 1614 gtid, target_gtid, (void *)NULL)); 1615 __kmp_unlock_suspend_mx(th); 1616 return; 1617 } else if (flag->get_type() != th->th.th_sleep_loc_type) { 1618 // Flag type does not appear to match this function template; possibly the 1619 // thread is sleeping on something else. Try null resume again. 1620 KF_TRACE( 1621 5, 1622 ("__kmp_resume_template: T#%d retrying, thread T#%d Mismatch flag(%p), " 1623 "spin(%p) type=%d ptr_type=%d\n", 1624 gtid, target_gtid, flag, flag->get(), flag->get_type(), 1625 th->th.th_sleep_loc_type)); 1626 __kmp_unlock_suspend_mx(th); 1627 __kmp_null_resume_wrapper(th); 1628 return; 1629 } else { // if multiple threads are sleeping, flag should be internally 1630 // referring to a specific thread here 1631 if (!flag->is_sleeping()) { 1632 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1633 "awake: flag(%p): %u\n", 1634 gtid, target_gtid, flag->get(), (unsigned int)flag->load())); 1635 __kmp_unlock_suspend_mx(th); 1636 return; 1637 } 1638 } 1639 KMP_DEBUG_ASSERT(flag); 1640 flag->unset_sleeping(); 1641 TCW_PTR(th->th.th_sleep_loc, NULL); 1642 th->th.th_sleep_loc_type = flag_unset; 1643 1644 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset " 1645 "sleep bit for flag's loc(%p): %u\n", 1646 gtid, target_gtid, flag->get(), (unsigned int)flag->load())); 1647 1648 #ifdef DEBUG_SUSPEND 1649 { 1650 char buffer[128]; 1651 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1652 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid, 1653 target_gtid, buffer); 1654 } 1655 #endif 1656 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond); 1657 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1658 __kmp_unlock_suspend_mx(th); 1659 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 1660 " for T#%d\n", 1661 gtid, target_gtid)); 1662 } 1663 1664 template <bool C, bool S> 1665 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) { 1666 __kmp_resume_template(target_gtid, flag); 1667 } 1668 template <bool C, bool S> 1669 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) { 1670 __kmp_resume_template(target_gtid, flag); 1671 } 1672 template <bool C, bool S> 1673 void __kmp_atomic_resume_64(int target_gtid, kmp_atomic_flag_64<C, S> *flag) { 1674 __kmp_resume_template(target_gtid, flag); 1675 } 1676 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 1677 __kmp_resume_template(target_gtid, flag); 1678 } 1679 1680 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *); 1681 template void __kmp_resume_32<false, false>(int, kmp_flag_32<false, false> *); 1682 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *); 1683 template void 1684 __kmp_atomic_resume_64<false, true>(int, kmp_atomic_flag_64<false, true> *); 1685 1686 #if KMP_USE_MONITOR 1687 void __kmp_resume_monitor() { 1688 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1689 int status; 1690 #ifdef KMP_DEBUG 1691 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1692 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid, 1693 KMP_GTID_MONITOR)); 1694 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR); 1695 #endif 1696 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 1697 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1698 #ifdef DEBUG_SUSPEND 1699 { 1700 char buffer[128]; 1701 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond); 1702 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid, 1703 KMP_GTID_MONITOR, buffer); 1704 } 1705 #endif 1706 status = pthread_cond_signal(&__kmp_wait_cv.c_cond); 1707 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1708 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 1709 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1710 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up" 1711 " for T#%d\n", 1712 gtid, KMP_GTID_MONITOR)); 1713 } 1714 #endif // KMP_USE_MONITOR 1715 1716 void __kmp_yield() { sched_yield(); } 1717 1718 void __kmp_gtid_set_specific(int gtid) { 1719 if (__kmp_init_gtid) { 1720 int status; 1721 status = pthread_setspecific(__kmp_gtid_threadprivate_key, 1722 (void *)(intptr_t)(gtid + 1)); 1723 KMP_CHECK_SYSFAIL("pthread_setspecific", status); 1724 } else { 1725 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 1726 } 1727 } 1728 1729 int __kmp_gtid_get_specific() { 1730 int gtid; 1731 if (!__kmp_init_gtid) { 1732 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 1733 "KMP_GTID_SHUTDOWN\n")); 1734 return KMP_GTID_SHUTDOWN; 1735 } 1736 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key); 1737 if (gtid == 0) { 1738 gtid = KMP_GTID_DNE; 1739 } else { 1740 gtid--; 1741 } 1742 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 1743 __kmp_gtid_threadprivate_key, gtid)); 1744 return gtid; 1745 } 1746 1747 double __kmp_read_cpu_time(void) { 1748 /*clock_t t;*/ 1749 struct tms buffer; 1750 1751 /*t =*/times(&buffer); 1752 1753 return (double)(buffer.tms_utime + buffer.tms_cutime) / 1754 (double)CLOCKS_PER_SEC; 1755 } 1756 1757 int __kmp_read_system_info(struct kmp_sys_info *info) { 1758 int status; 1759 struct rusage r_usage; 1760 1761 memset(info, 0, sizeof(*info)); 1762 1763 status = getrusage(RUSAGE_SELF, &r_usage); 1764 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status); 1765 1766 // The maximum resident set size utilized (in kilobytes) 1767 info->maxrss = r_usage.ru_maxrss; 1768 // The number of page faults serviced without any I/O 1769 info->minflt = r_usage.ru_minflt; 1770 // The number of page faults serviced that required I/O 1771 info->majflt = r_usage.ru_majflt; 1772 // The number of times a process was "swapped" out of memory 1773 info->nswap = r_usage.ru_nswap; 1774 // The number of times the file system had to perform input 1775 info->inblock = r_usage.ru_inblock; 1776 // The number of times the file system had to perform output 1777 info->oublock = r_usage.ru_oublock; 1778 // The number of times a context switch was voluntarily 1779 info->nvcsw = r_usage.ru_nvcsw; 1780 // The number of times a context switch was forced 1781 info->nivcsw = r_usage.ru_nivcsw; 1782 1783 return (status != 0); 1784 } 1785 1786 void __kmp_read_system_time(double *delta) { 1787 double t_ns; 1788 struct timeval tval; 1789 struct timespec stop; 1790 int status; 1791 1792 status = gettimeofday(&tval, NULL); 1793 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1794 TIMEVAL_TO_TIMESPEC(&tval, &stop); 1795 t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start)); 1796 *delta = (t_ns * 1e-9); 1797 } 1798 1799 void __kmp_clear_system_time(void) { 1800 struct timeval tval; 1801 int status; 1802 status = gettimeofday(&tval, NULL); 1803 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1804 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start); 1805 } 1806 1807 static int __kmp_get_xproc(void) { 1808 1809 int r = 0; 1810 1811 #if KMP_OS_LINUX 1812 1813 __kmp_type_convert(sysconf(_SC_NPROCESSORS_CONF), &(r)); 1814 1815 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_OPENBSD || \ 1816 KMP_OS_HURD 1817 1818 __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r)); 1819 1820 #elif KMP_OS_DARWIN 1821 1822 // Bug C77011 High "OpenMP Threads and number of active cores". 1823 1824 // Find the number of available CPUs. 1825 kern_return_t rc; 1826 host_basic_info_data_t info; 1827 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT; 1828 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num); 1829 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) { 1830 // Cannot use KA_TRACE() here because this code works before trace support 1831 // is initialized. 1832 r = info.avail_cpus; 1833 } else { 1834 KMP_WARNING(CantGetNumAvailCPU); 1835 KMP_INFORM(AssumedNumCPU); 1836 } 1837 1838 #else 1839 1840 #error "Unknown or unsupported OS." 1841 1842 #endif 1843 1844 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */ 1845 1846 } // __kmp_get_xproc 1847 1848 int __kmp_read_from_file(char const *path, char const *format, ...) { 1849 int result; 1850 va_list args; 1851 1852 va_start(args, format); 1853 FILE *f = fopen(path, "rb"); 1854 if (f == NULL) { 1855 va_end(args); 1856 return 0; 1857 } 1858 result = vfscanf(f, format, args); 1859 fclose(f); 1860 va_end(args); 1861 1862 return result; 1863 } 1864 1865 void __kmp_runtime_initialize(void) { 1866 int status; 1867 pthread_mutexattr_t mutex_attr; 1868 pthread_condattr_t cond_attr; 1869 1870 if (__kmp_init_runtime) { 1871 return; 1872 } 1873 1874 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1875 if (!__kmp_cpuinfo.initialized) { 1876 __kmp_query_cpuid(&__kmp_cpuinfo); 1877 } 1878 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1879 1880 __kmp_xproc = __kmp_get_xproc(); 1881 1882 #if !KMP_32_BIT_ARCH 1883 struct rlimit rlim; 1884 // read stack size of calling thread, save it as default for worker threads; 1885 // this should be done before reading environment variables 1886 status = getrlimit(RLIMIT_STACK, &rlim); 1887 if (status == 0) { // success? 1888 __kmp_stksize = rlim.rlim_cur; 1889 __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed 1890 } 1891 #endif /* KMP_32_BIT_ARCH */ 1892 1893 if (sysconf(_SC_THREADS)) { 1894 1895 /* Query the maximum number of threads */ 1896 __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth)); 1897 #ifdef __ve__ 1898 if (__kmp_sys_max_nth == -1) { 1899 // VE's pthread supports only up to 64 threads per a VE process. 1900 // So we use that KMP_MAX_NTH (predefined as 64) here. 1901 __kmp_sys_max_nth = KMP_MAX_NTH; 1902 } 1903 #else 1904 if (__kmp_sys_max_nth == -1) { 1905 /* Unlimited threads for NPTL */ 1906 __kmp_sys_max_nth = INT_MAX; 1907 } else if (__kmp_sys_max_nth <= 1) { 1908 /* Can't tell, just use PTHREAD_THREADS_MAX */ 1909 __kmp_sys_max_nth = KMP_MAX_NTH; 1910 } 1911 #endif 1912 1913 /* Query the minimum stack size */ 1914 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN); 1915 if (__kmp_sys_min_stksize <= 1) { 1916 __kmp_sys_min_stksize = KMP_MIN_STKSIZE; 1917 } 1918 } 1919 1920 /* Set up minimum number of threads to switch to TLS gtid */ 1921 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 1922 1923 status = pthread_key_create(&__kmp_gtid_threadprivate_key, 1924 __kmp_internal_end_dest); 1925 KMP_CHECK_SYSFAIL("pthread_key_create", status); 1926 status = pthread_mutexattr_init(&mutex_attr); 1927 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1928 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr); 1929 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1930 status = pthread_mutexattr_destroy(&mutex_attr); 1931 KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status); 1932 status = pthread_condattr_init(&cond_attr); 1933 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1934 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr); 1935 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1936 status = pthread_condattr_destroy(&cond_attr); 1937 KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status); 1938 #if USE_ITT_BUILD 1939 __kmp_itt_initialize(); 1940 #endif /* USE_ITT_BUILD */ 1941 1942 __kmp_init_runtime = TRUE; 1943 } 1944 1945 void __kmp_runtime_destroy(void) { 1946 int status; 1947 1948 if (!__kmp_init_runtime) { 1949 return; // Nothing to do. 1950 } 1951 1952 #if USE_ITT_BUILD 1953 __kmp_itt_destroy(); 1954 #endif /* USE_ITT_BUILD */ 1955 1956 status = pthread_key_delete(__kmp_gtid_threadprivate_key); 1957 KMP_CHECK_SYSFAIL("pthread_key_delete", status); 1958 1959 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex); 1960 if (status != 0 && status != EBUSY) { 1961 KMP_SYSFAIL("pthread_mutex_destroy", status); 1962 } 1963 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond); 1964 if (status != 0 && status != EBUSY) { 1965 KMP_SYSFAIL("pthread_cond_destroy", status); 1966 } 1967 #if KMP_AFFINITY_SUPPORTED 1968 __kmp_affinity_uninitialize(); 1969 #endif 1970 1971 __kmp_init_runtime = FALSE; 1972 } 1973 1974 /* Put the thread to sleep for a time period */ 1975 /* NOTE: not currently used anywhere */ 1976 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); } 1977 1978 /* Calculate the elapsed wall clock time for the user */ 1979 void __kmp_elapsed(double *t) { 1980 int status; 1981 #ifdef FIX_SGI_CLOCK 1982 struct timespec ts; 1983 1984 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); 1985 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status); 1986 *t = 1987 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec; 1988 #else 1989 struct timeval tv; 1990 1991 status = gettimeofday(&tv, NULL); 1992 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1993 *t = 1994 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec; 1995 #endif 1996 } 1997 1998 /* Calculate the elapsed wall clock tick for the user */ 1999 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; } 2000 2001 /* Return the current time stamp in nsec */ 2002 kmp_uint64 __kmp_now_nsec() { 2003 struct timeval t; 2004 gettimeofday(&t, NULL); 2005 kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec + 2006 (kmp_uint64)1000 * (kmp_uint64)t.tv_usec; 2007 return nsec; 2008 } 2009 2010 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2011 /* Measure clock ticks per millisecond */ 2012 void __kmp_initialize_system_tick() { 2013 kmp_uint64 now, nsec2, diff; 2014 kmp_uint64 delay = 1000000; // ~450 usec on most machines. 2015 kmp_uint64 nsec = __kmp_now_nsec(); 2016 kmp_uint64 goal = __kmp_hardware_timestamp() + delay; 2017 while ((now = __kmp_hardware_timestamp()) < goal) 2018 ; 2019 nsec2 = __kmp_now_nsec(); 2020 diff = nsec2 - nsec; 2021 if (diff > 0) { 2022 double tpus = 1000.0 * (double)(delay + (now - goal)) / (double)diff; 2023 if (tpus > 0.0) { 2024 __kmp_ticks_per_msec = (kmp_uint64)(tpus * 1000.0); 2025 __kmp_ticks_per_usec = (kmp_uint64)tpus; 2026 } 2027 } 2028 } 2029 #endif 2030 2031 /* Determine whether the given address is mapped into the current address 2032 space. */ 2033 2034 int __kmp_is_address_mapped(void *addr) { 2035 2036 int found = 0; 2037 int rc; 2038 2039 #if KMP_OS_LINUX || KMP_OS_HURD 2040 2041 /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the 2042 address ranges mapped into the address space. */ 2043 2044 char *name = __kmp_str_format("/proc/%d/maps", getpid()); 2045 FILE *file = NULL; 2046 2047 file = fopen(name, "r"); 2048 KMP_ASSERT(file != NULL); 2049 2050 for (;;) { 2051 2052 void *beginning = NULL; 2053 void *ending = NULL; 2054 char perms[5]; 2055 2056 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms); 2057 if (rc == EOF) { 2058 break; 2059 } 2060 KMP_ASSERT(rc == 3 && 2061 KMP_STRLEN(perms) == 4); // Make sure all fields are read. 2062 2063 // Ending address is not included in the region, but beginning is. 2064 if ((addr >= beginning) && (addr < ending)) { 2065 perms[2] = 0; // 3th and 4th character does not matter. 2066 if (strcmp(perms, "rw") == 0) { 2067 // Memory we are looking for should be readable and writable. 2068 found = 1; 2069 } 2070 break; 2071 } 2072 } 2073 2074 // Free resources. 2075 fclose(file); 2076 KMP_INTERNAL_FREE(name); 2077 #elif KMP_OS_FREEBSD 2078 char *buf; 2079 size_t lstsz; 2080 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()}; 2081 rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0); 2082 if (rc < 0) 2083 return 0; 2084 // We pass from number of vm entry's semantic 2085 // to size of whole entry map list. 2086 lstsz = lstsz * 4 / 3; 2087 buf = reinterpret_cast<char *>(kmpc_malloc(lstsz)); 2088 rc = sysctl(mib, 4, buf, &lstsz, NULL, 0); 2089 if (rc < 0) { 2090 kmpc_free(buf); 2091 return 0; 2092 } 2093 2094 char *lw = buf; 2095 char *up = buf + lstsz; 2096 2097 while (lw < up) { 2098 struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw); 2099 size_t cursz = cur->kve_structsize; 2100 if (cursz == 0) 2101 break; 2102 void *start = reinterpret_cast<void *>(cur->kve_start); 2103 void *end = reinterpret_cast<void *>(cur->kve_end); 2104 // Readable/Writable addresses within current map entry 2105 if ((addr >= start) && (addr < end)) { 2106 if ((cur->kve_protection & KVME_PROT_READ) != 0 && 2107 (cur->kve_protection & KVME_PROT_WRITE) != 0) { 2108 found = 1; 2109 break; 2110 } 2111 } 2112 lw += cursz; 2113 } 2114 kmpc_free(buf); 2115 2116 #elif KMP_OS_DARWIN 2117 2118 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory 2119 using vm interface. */ 2120 2121 int buffer; 2122 vm_size_t count; 2123 rc = vm_read_overwrite( 2124 mach_task_self(), // Task to read memory of. 2125 (vm_address_t)(addr), // Address to read from. 2126 1, // Number of bytes to be read. 2127 (vm_address_t)(&buffer), // Address of buffer to save read bytes in. 2128 &count // Address of var to save number of read bytes in. 2129 ); 2130 if (rc == 0) { 2131 // Memory successfully read. 2132 found = 1; 2133 } 2134 2135 #elif KMP_OS_NETBSD 2136 2137 int mib[5]; 2138 mib[0] = CTL_VM; 2139 mib[1] = VM_PROC; 2140 mib[2] = VM_PROC_MAP; 2141 mib[3] = getpid(); 2142 mib[4] = sizeof(struct kinfo_vmentry); 2143 2144 size_t size; 2145 rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0); 2146 KMP_ASSERT(!rc); 2147 KMP_ASSERT(size); 2148 2149 size = size * 4 / 3; 2150 struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size); 2151 KMP_ASSERT(kiv); 2152 2153 rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0); 2154 KMP_ASSERT(!rc); 2155 KMP_ASSERT(size); 2156 2157 for (size_t i = 0; i < size; i++) { 2158 if (kiv[i].kve_start >= (uint64_t)addr && 2159 kiv[i].kve_end <= (uint64_t)addr) { 2160 found = 1; 2161 break; 2162 } 2163 } 2164 KMP_INTERNAL_FREE(kiv); 2165 #elif KMP_OS_OPENBSD 2166 2167 int mib[3]; 2168 mib[0] = CTL_KERN; 2169 mib[1] = KERN_PROC_VMMAP; 2170 mib[2] = getpid(); 2171 2172 size_t size; 2173 uint64_t end; 2174 rc = sysctl(mib, 3, NULL, &size, NULL, 0); 2175 KMP_ASSERT(!rc); 2176 KMP_ASSERT(size); 2177 end = size; 2178 2179 struct kinfo_vmentry kiv = {.kve_start = 0}; 2180 2181 while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) { 2182 KMP_ASSERT(size); 2183 if (kiv.kve_end == end) 2184 break; 2185 2186 if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) { 2187 found = 1; 2188 break; 2189 } 2190 kiv.kve_start += 1; 2191 } 2192 #elif KMP_OS_DRAGONFLY 2193 2194 // FIXME(DragonFly): Implement this 2195 found = 1; 2196 2197 #else 2198 2199 #error "Unknown or unsupported OS" 2200 2201 #endif 2202 2203 return found; 2204 2205 } // __kmp_is_address_mapped 2206 2207 #ifdef USE_LOAD_BALANCE 2208 2209 #if KMP_OS_DARWIN || KMP_OS_NETBSD 2210 2211 // The function returns the rounded value of the system load average 2212 // during given time interval which depends on the value of 2213 // __kmp_load_balance_interval variable (default is 60 sec, other values 2214 // may be 300 sec or 900 sec). 2215 // It returns -1 in case of error. 2216 int __kmp_get_load_balance(int max) { 2217 double averages[3]; 2218 int ret_avg = 0; 2219 2220 int res = getloadavg(averages, 3); 2221 2222 // Check __kmp_load_balance_interval to determine which of averages to use. 2223 // getloadavg() may return the number of samples less than requested that is 2224 // less than 3. 2225 if (__kmp_load_balance_interval < 180 && (res >= 1)) { 2226 ret_avg = (int)averages[0]; // 1 min 2227 } else if ((__kmp_load_balance_interval >= 180 && 2228 __kmp_load_balance_interval < 600) && 2229 (res >= 2)) { 2230 ret_avg = (int)averages[1]; // 5 min 2231 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) { 2232 ret_avg = (int)averages[2]; // 15 min 2233 } else { // Error occurred 2234 return -1; 2235 } 2236 2237 return ret_avg; 2238 } 2239 2240 #else // Linux* OS 2241 2242 // The function returns number of running (not sleeping) threads, or -1 in case 2243 // of error. Error could be reported if Linux* OS kernel too old (without 2244 // "/proc" support). Counting running threads stops if max running threads 2245 // encountered. 2246 int __kmp_get_load_balance(int max) { 2247 static int permanent_error = 0; 2248 static int glb_running_threads = 0; // Saved count of the running threads for 2249 // the thread balance algorithm 2250 static double glb_call_time = 0; /* Thread balance algorithm call time */ 2251 2252 int running_threads = 0; // Number of running threads in the system. 2253 2254 DIR *proc_dir = NULL; // Handle of "/proc/" directory. 2255 struct dirent *proc_entry = NULL; 2256 2257 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path. 2258 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory. 2259 struct dirent *task_entry = NULL; 2260 int task_path_fixed_len; 2261 2262 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path. 2263 int stat_file = -1; 2264 int stat_path_fixed_len; 2265 2266 #ifdef KMP_DEBUG 2267 int total_processes = 0; // Total number of processes in system. 2268 #endif 2269 2270 double call_time = 0.0; 2271 2272 __kmp_str_buf_init(&task_path); 2273 __kmp_str_buf_init(&stat_path); 2274 2275 __kmp_elapsed(&call_time); 2276 2277 if (glb_call_time && 2278 (call_time - glb_call_time < __kmp_load_balance_interval)) { 2279 running_threads = glb_running_threads; 2280 goto finish; 2281 } 2282 2283 glb_call_time = call_time; 2284 2285 // Do not spend time on scanning "/proc/" if we have a permanent error. 2286 if (permanent_error) { 2287 running_threads = -1; 2288 goto finish; 2289 } 2290 2291 if (max <= 0) { 2292 max = INT_MAX; 2293 } 2294 2295 // Open "/proc/" directory. 2296 proc_dir = opendir("/proc"); 2297 if (proc_dir == NULL) { 2298 // Cannot open "/prroc/". Probably the kernel does not support it. Return an 2299 // error now and in subsequent calls. 2300 running_threads = -1; 2301 permanent_error = 1; 2302 goto finish; 2303 } 2304 2305 // Initialize fixed part of task_path. This part will not change. 2306 __kmp_str_buf_cat(&task_path, "/proc/", 6); 2307 task_path_fixed_len = task_path.used; // Remember number of used characters. 2308 2309 proc_entry = readdir(proc_dir); 2310 while (proc_entry != NULL) { 2311 // Proc entry is a directory and name starts with a digit. Assume it is a 2312 // process' directory. 2313 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) { 2314 2315 #ifdef KMP_DEBUG 2316 ++total_processes; 2317 #endif 2318 // Make sure init process is the very first in "/proc", so we can replace 2319 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == 2320 // 1. We are going to check that total_processes == 1 => d_name == "1" is 2321 // true (where "=>" is implication). Since C++ does not have => operator, 2322 // let us replace it with its equivalent: a => b == ! a || b. 2323 KMP_DEBUG_ASSERT(total_processes != 1 || 2324 strcmp(proc_entry->d_name, "1") == 0); 2325 2326 // Construct task_path. 2327 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/". 2328 __kmp_str_buf_cat(&task_path, proc_entry->d_name, 2329 KMP_STRLEN(proc_entry->d_name)); 2330 __kmp_str_buf_cat(&task_path, "/task", 5); 2331 2332 task_dir = opendir(task_path.str); 2333 if (task_dir == NULL) { 2334 // Process can finish between reading "/proc/" directory entry and 2335 // opening process' "task/" directory. So, in general case we should not 2336 // complain, but have to skip this process and read the next one. But on 2337 // systems with no "task/" support we will spend lot of time to scan 2338 // "/proc/" tree again and again without any benefit. "init" process 2339 // (its pid is 1) should exist always, so, if we cannot open 2340 // "/proc/1/task/" directory, it means "task/" is not supported by 2341 // kernel. Report an error now and in the future. 2342 if (strcmp(proc_entry->d_name, "1") == 0) { 2343 running_threads = -1; 2344 permanent_error = 1; 2345 goto finish; 2346 } 2347 } else { 2348 // Construct fixed part of stat file path. 2349 __kmp_str_buf_clear(&stat_path); 2350 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used); 2351 __kmp_str_buf_cat(&stat_path, "/", 1); 2352 stat_path_fixed_len = stat_path.used; 2353 2354 task_entry = readdir(task_dir); 2355 while (task_entry != NULL) { 2356 // It is a directory and name starts with a digit. 2357 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) { 2358 2359 // Construct complete stat file path. Easiest way would be: 2360 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, 2361 // task_entry->d_name ); 2362 // but seriae of __kmp_str_buf_cat works a bit faster. 2363 stat_path.used = 2364 stat_path_fixed_len; // Reset stat path to its fixed part. 2365 __kmp_str_buf_cat(&stat_path, task_entry->d_name, 2366 KMP_STRLEN(task_entry->d_name)); 2367 __kmp_str_buf_cat(&stat_path, "/stat", 5); 2368 2369 // Note: Low-level API (open/read/close) is used. High-level API 2370 // (fopen/fclose) works ~ 30 % slower. 2371 stat_file = open(stat_path.str, O_RDONLY); 2372 if (stat_file == -1) { 2373 // We cannot report an error because task (thread) can terminate 2374 // just before reading this file. 2375 } else { 2376 /* Content of "stat" file looks like: 2377 24285 (program) S ... 2378 2379 It is a single line (if program name does not include funny 2380 symbols). First number is a thread id, then name of executable 2381 file name in paretheses, then state of the thread. We need just 2382 thread state. 2383 2384 Good news: Length of program name is 15 characters max. Longer 2385 names are truncated. 2386 2387 Thus, we need rather short buffer: 15 chars for program name + 2388 2 parenthesis, + 3 spaces + ~7 digits of pid = 37. 2389 2390 Bad news: Program name may contain special symbols like space, 2391 closing parenthesis, or even new line. This makes parsing 2392 "stat" file not 100 % reliable. In case of fanny program names 2393 parsing may fail (report incorrect thread state). 2394 2395 Parsing "status" file looks more promissing (due to different 2396 file structure and escaping special symbols) but reading and 2397 parsing of "status" file works slower. 2398 -- ln 2399 */ 2400 char buffer[65]; 2401 ssize_t len; 2402 len = read(stat_file, buffer, sizeof(buffer) - 1); 2403 if (len >= 0) { 2404 buffer[len] = 0; 2405 // Using scanf: 2406 // sscanf( buffer, "%*d (%*s) %c ", & state ); 2407 // looks very nice, but searching for a closing parenthesis 2408 // works a bit faster. 2409 char *close_parent = strstr(buffer, ") "); 2410 if (close_parent != NULL) { 2411 char state = *(close_parent + 2); 2412 if (state == 'R') { 2413 ++running_threads; 2414 if (running_threads >= max) { 2415 goto finish; 2416 } 2417 } 2418 } 2419 } 2420 close(stat_file); 2421 stat_file = -1; 2422 } 2423 } 2424 task_entry = readdir(task_dir); 2425 } 2426 closedir(task_dir); 2427 task_dir = NULL; 2428 } 2429 } 2430 proc_entry = readdir(proc_dir); 2431 } 2432 2433 // There _might_ be a timing hole where the thread executing this 2434 // code get skipped in the load balance, and running_threads is 0. 2435 // Assert in the debug builds only!!! 2436 KMP_DEBUG_ASSERT(running_threads > 0); 2437 if (running_threads <= 0) { 2438 running_threads = 1; 2439 } 2440 2441 finish: // Clean up and exit. 2442 if (proc_dir != NULL) { 2443 closedir(proc_dir); 2444 } 2445 __kmp_str_buf_free(&task_path); 2446 if (task_dir != NULL) { 2447 closedir(task_dir); 2448 } 2449 __kmp_str_buf_free(&stat_path); 2450 if (stat_file != -1) { 2451 close(stat_file); 2452 } 2453 2454 glb_running_threads = running_threads; 2455 2456 return running_threads; 2457 2458 } // __kmp_get_load_balance 2459 2460 #endif // KMP_OS_DARWIN 2461 2462 #endif // USE_LOAD_BALANCE 2463 2464 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \ 2465 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \ 2466 KMP_ARCH_PPC64 || KMP_ARCH_RISCV64 || KMP_ARCH_LOONGARCH64 || \ 2467 KMP_ARCH_ARM || KMP_ARCH_VE) 2468 2469 // we really only need the case with 1 argument, because CLANG always build 2470 // a struct of pointers to shared variables referenced in the outlined function 2471 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc, 2472 void *p_argv[] 2473 #if OMPT_SUPPORT 2474 , 2475 void **exit_frame_ptr 2476 #endif 2477 ) { 2478 #if OMPT_SUPPORT 2479 *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0); 2480 #endif 2481 2482 switch (argc) { 2483 default: 2484 fprintf(stderr, "Too many args to microtask: %d!\n", argc); 2485 fflush(stderr); 2486 exit(-1); 2487 case 0: 2488 (*pkfn)(>id, &tid); 2489 break; 2490 case 1: 2491 (*pkfn)(>id, &tid, p_argv[0]); 2492 break; 2493 case 2: 2494 (*pkfn)(>id, &tid, p_argv[0], p_argv[1]); 2495 break; 2496 case 3: 2497 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]); 2498 break; 2499 case 4: 2500 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]); 2501 break; 2502 case 5: 2503 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]); 2504 break; 2505 case 6: 2506 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2507 p_argv[5]); 2508 break; 2509 case 7: 2510 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2511 p_argv[5], p_argv[6]); 2512 break; 2513 case 8: 2514 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2515 p_argv[5], p_argv[6], p_argv[7]); 2516 break; 2517 case 9: 2518 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2519 p_argv[5], p_argv[6], p_argv[7], p_argv[8]); 2520 break; 2521 case 10: 2522 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2523 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]); 2524 break; 2525 case 11: 2526 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2527 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]); 2528 break; 2529 case 12: 2530 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2531 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2532 p_argv[11]); 2533 break; 2534 case 13: 2535 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2536 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2537 p_argv[11], p_argv[12]); 2538 break; 2539 case 14: 2540 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2541 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2542 p_argv[11], p_argv[12], p_argv[13]); 2543 break; 2544 case 15: 2545 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2546 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2547 p_argv[11], p_argv[12], p_argv[13], p_argv[14]); 2548 break; 2549 } 2550 2551 return 1; 2552 } 2553 2554 #endif 2555 2556 #if KMP_OS_LINUX 2557 // Functions for hidden helper task 2558 namespace { 2559 // Condition variable for initializing hidden helper team 2560 pthread_cond_t hidden_helper_threads_initz_cond_var; 2561 pthread_mutex_t hidden_helper_threads_initz_lock; 2562 volatile int hidden_helper_initz_signaled = FALSE; 2563 2564 // Condition variable for deinitializing hidden helper team 2565 pthread_cond_t hidden_helper_threads_deinitz_cond_var; 2566 pthread_mutex_t hidden_helper_threads_deinitz_lock; 2567 volatile int hidden_helper_deinitz_signaled = FALSE; 2568 2569 // Condition variable for the wrapper function of main thread 2570 pthread_cond_t hidden_helper_main_thread_cond_var; 2571 pthread_mutex_t hidden_helper_main_thread_lock; 2572 volatile int hidden_helper_main_thread_signaled = FALSE; 2573 2574 // Semaphore for worker threads. We don't use condition variable here in case 2575 // that when multiple signals are sent at the same time, only one thread might 2576 // be waken. 2577 sem_t hidden_helper_task_sem; 2578 } // namespace 2579 2580 void __kmp_hidden_helper_worker_thread_wait() { 2581 int status = sem_wait(&hidden_helper_task_sem); 2582 KMP_CHECK_SYSFAIL("sem_wait", status); 2583 } 2584 2585 void __kmp_do_initialize_hidden_helper_threads() { 2586 // Initialize condition variable 2587 int status = 2588 pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr); 2589 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2590 2591 status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr); 2592 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2593 2594 status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr); 2595 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2596 2597 status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr); 2598 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2599 2600 status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr); 2601 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2602 2603 status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr); 2604 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2605 2606 // Initialize the semaphore 2607 status = sem_init(&hidden_helper_task_sem, 0, 0); 2608 KMP_CHECK_SYSFAIL("sem_init", status); 2609 2610 // Create a new thread to finish initialization 2611 pthread_t handle; 2612 status = pthread_create( 2613 &handle, nullptr, 2614 [](void *) -> void * { 2615 __kmp_hidden_helper_threads_initz_routine(); 2616 return nullptr; 2617 }, 2618 nullptr); 2619 KMP_CHECK_SYSFAIL("pthread_create", status); 2620 } 2621 2622 void __kmp_hidden_helper_threads_initz_wait() { 2623 // Initial thread waits here for the completion of the initialization. The 2624 // condition variable will be notified by main thread of hidden helper teams. 2625 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock); 2626 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2627 2628 if (!TCR_4(hidden_helper_initz_signaled)) { 2629 status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var, 2630 &hidden_helper_threads_initz_lock); 2631 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2632 } 2633 2634 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock); 2635 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2636 } 2637 2638 void __kmp_hidden_helper_initz_release() { 2639 // After all initialization, reset __kmp_init_hidden_helper_threads to false. 2640 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock); 2641 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2642 2643 status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var); 2644 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2645 2646 TCW_SYNC_4(hidden_helper_initz_signaled, TRUE); 2647 2648 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock); 2649 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2650 } 2651 2652 void __kmp_hidden_helper_main_thread_wait() { 2653 // The main thread of hidden helper team will be blocked here. The 2654 // condition variable can only be signal in the destructor of RTL. 2655 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock); 2656 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2657 2658 if (!TCR_4(hidden_helper_main_thread_signaled)) { 2659 status = pthread_cond_wait(&hidden_helper_main_thread_cond_var, 2660 &hidden_helper_main_thread_lock); 2661 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2662 } 2663 2664 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock); 2665 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2666 } 2667 2668 void __kmp_hidden_helper_main_thread_release() { 2669 // The initial thread of OpenMP RTL should call this function to wake up the 2670 // main thread of hidden helper team. 2671 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock); 2672 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2673 2674 status = pthread_cond_signal(&hidden_helper_main_thread_cond_var); 2675 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 2676 2677 // The hidden helper team is done here 2678 TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE); 2679 2680 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock); 2681 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2682 } 2683 2684 void __kmp_hidden_helper_worker_thread_signal() { 2685 int status = sem_post(&hidden_helper_task_sem); 2686 KMP_CHECK_SYSFAIL("sem_post", status); 2687 } 2688 2689 void __kmp_hidden_helper_threads_deinitz_wait() { 2690 // Initial thread waits here for the completion of the deinitialization. The 2691 // condition variable will be notified by main thread of hidden helper teams. 2692 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock); 2693 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2694 2695 if (!TCR_4(hidden_helper_deinitz_signaled)) { 2696 status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var, 2697 &hidden_helper_threads_deinitz_lock); 2698 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2699 } 2700 2701 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock); 2702 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2703 } 2704 2705 void __kmp_hidden_helper_threads_deinitz_release() { 2706 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock); 2707 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2708 2709 status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var); 2710 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2711 2712 TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE); 2713 2714 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock); 2715 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2716 } 2717 #else // KMP_OS_LINUX 2718 void __kmp_hidden_helper_worker_thread_wait() { 2719 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2720 } 2721 2722 void __kmp_do_initialize_hidden_helper_threads() { 2723 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2724 } 2725 2726 void __kmp_hidden_helper_threads_initz_wait() { 2727 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2728 } 2729 2730 void __kmp_hidden_helper_initz_release() { 2731 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2732 } 2733 2734 void __kmp_hidden_helper_main_thread_wait() { 2735 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2736 } 2737 2738 void __kmp_hidden_helper_main_thread_release() { 2739 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2740 } 2741 2742 void __kmp_hidden_helper_worker_thread_signal() { 2743 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2744 } 2745 2746 void __kmp_hidden_helper_threads_deinitz_wait() { 2747 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2748 } 2749 2750 void __kmp_hidden_helper_threads_deinitz_release() { 2751 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2752 } 2753 #endif // KMP_OS_LINUX 2754 2755 bool __kmp_detect_shm() { 2756 DIR *dir = opendir("/dev/shm"); 2757 if (dir) { // /dev/shm exists 2758 closedir(dir); 2759 return true; 2760 } else if (ENOENT == errno) { // /dev/shm does not exist 2761 return false; 2762 } else { // opendir() failed 2763 return false; 2764 } 2765 } 2766 2767 bool __kmp_detect_tmp() { 2768 DIR *dir = opendir("/tmp"); 2769 if (dir) { // /tmp exists 2770 closedir(dir); 2771 return true; 2772 } else if (ENOENT == errno) { // /tmp does not exist 2773 return false; 2774 } else { // opendir() failed 2775 return false; 2776 } 2777 } 2778 2779 // end of file // 2780