1 //===- TestPatterns.cpp - Test dialect pattern driver ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "TestDialect.h" 10 #include "TestOps.h" 11 #include "TestTypes.h" 12 #include "mlir/Dialect/Arith/IR/Arith.h" 13 #include "mlir/Dialect/Func/IR/FuncOps.h" 14 #include "mlir/Dialect/Func/Transforms/FuncConversions.h" 15 #include "mlir/Dialect/Tensor/IR/Tensor.h" 16 #include "mlir/IR/Matchers.h" 17 #include "mlir/Pass/Pass.h" 18 #include "mlir/Transforms/DialectConversion.h" 19 #include "mlir/Transforms/FoldUtils.h" 20 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 21 #include "llvm/ADT/ScopeExit.h" 22 23 using namespace mlir; 24 using namespace test; 25 26 // Native function for testing NativeCodeCall 27 static Value chooseOperand(Value input1, Value input2, BoolAttr choice) { 28 return choice.getValue() ? input1 : input2; 29 } 30 31 static void createOpI(PatternRewriter &rewriter, Location loc, Value input) { 32 rewriter.create<OpI>(loc, input); 33 } 34 35 static void handleNoResultOp(PatternRewriter &rewriter, 36 OpSymbolBindingNoResult op) { 37 // Turn the no result op to a one-result op. 38 rewriter.create<OpSymbolBindingB>(op.getLoc(), op.getOperand().getType(), 39 op.getOperand()); 40 } 41 42 static bool getFirstI32Result(Operation *op, Value &value) { 43 if (!Type(op->getResult(0).getType()).isSignlessInteger(32)) 44 return false; 45 value = op->getResult(0); 46 return true; 47 } 48 49 static Value bindNativeCodeCallResult(Value value) { return value; } 50 51 static SmallVector<Value, 2> bindMultipleNativeCodeCallResult(Value input1, 52 Value input2) { 53 return SmallVector<Value, 2>({input2, input1}); 54 } 55 56 // Test that natives calls are only called once during rewrites. 57 // OpM_Test will return Pi, increased by 1 for each subsequent calls. 58 // This let us check the number of times OpM_Test was called by inspecting 59 // the returned value in the MLIR output. 60 static int64_t opMIncreasingValue = 314159265; 61 static Attribute opMTest(PatternRewriter &rewriter, Value val) { 62 int64_t i = opMIncreasingValue++; 63 return rewriter.getIntegerAttr(rewriter.getIntegerType(32), i); 64 } 65 66 namespace { 67 #include "TestPatterns.inc" 68 } // namespace 69 70 //===----------------------------------------------------------------------===// 71 // Test Reduce Pattern Interface 72 //===----------------------------------------------------------------------===// 73 74 void test::populateTestReductionPatterns(RewritePatternSet &patterns) { 75 populateWithGenerated(patterns); 76 } 77 78 //===----------------------------------------------------------------------===// 79 // Canonicalizer Driver. 80 //===----------------------------------------------------------------------===// 81 82 namespace { 83 struct FoldingPattern : public RewritePattern { 84 public: 85 FoldingPattern(MLIRContext *context) 86 : RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(), 87 /*benefit=*/1, context) {} 88 89 LogicalResult matchAndRewrite(Operation *op, 90 PatternRewriter &rewriter) const override { 91 // Exercise createOrFold API for a single-result operation that is folded 92 // upon construction. The operation being created has an in-place folder, 93 // and it should be still present in the output. Furthermore, the folder 94 // should not crash when attempting to recover the (unchanged) operation 95 // result. 96 Value result = rewriter.createOrFold<TestOpInPlaceFold>( 97 op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0)); 98 assert(result); 99 rewriter.replaceOp(op, result); 100 return success(); 101 } 102 }; 103 104 /// This pattern creates a foldable operation at the entry point of the block. 105 /// This tests the situation where the operation folder will need to replace an 106 /// operation with a previously created constant that does not initially 107 /// dominate the operation to replace. 108 struct FolderInsertBeforePreviouslyFoldedConstantPattern 109 : public OpRewritePattern<TestCastOp> { 110 public: 111 using OpRewritePattern<TestCastOp>::OpRewritePattern; 112 113 LogicalResult matchAndRewrite(TestCastOp op, 114 PatternRewriter &rewriter) const override { 115 if (!op->hasAttr("test_fold_before_previously_folded_op")) 116 return failure(); 117 rewriter.setInsertionPointToStart(op->getBlock()); 118 119 auto constOp = rewriter.create<arith::ConstantOp>( 120 op.getLoc(), rewriter.getBoolAttr(true)); 121 rewriter.replaceOpWithNewOp<TestCastOp>(op, rewriter.getI32Type(), 122 Value(constOp)); 123 return success(); 124 } 125 }; 126 127 /// This pattern matches test.op_commutative2 with the first operand being 128 /// another test.op_commutative2 with a constant on the right side and fold it 129 /// away by propagating it as its result. This is intend to check that patterns 130 /// are applied after the commutative property moves constant to the right. 131 struct FolderCommutativeOp2WithConstant 132 : public OpRewritePattern<TestCommutative2Op> { 133 public: 134 using OpRewritePattern<TestCommutative2Op>::OpRewritePattern; 135 136 LogicalResult matchAndRewrite(TestCommutative2Op op, 137 PatternRewriter &rewriter) const override { 138 auto operand = 139 dyn_cast_or_null<TestCommutative2Op>(op->getOperand(0).getDefiningOp()); 140 if (!operand) 141 return failure(); 142 Attribute constInput; 143 if (!matchPattern(operand->getOperand(1), m_Constant(&constInput))) 144 return failure(); 145 rewriter.replaceOp(op, operand->getOperand(1)); 146 return success(); 147 } 148 }; 149 150 /// This pattern matches test.any_attr_of_i32_str ops. In case of an integer 151 /// attribute with value smaller than MaxVal, it increments the value by 1. 152 template <int MaxVal> 153 struct IncrementIntAttribute : public OpRewritePattern<AnyAttrOfOp> { 154 using OpRewritePattern<AnyAttrOfOp>::OpRewritePattern; 155 156 LogicalResult matchAndRewrite(AnyAttrOfOp op, 157 PatternRewriter &rewriter) const override { 158 auto intAttr = dyn_cast<IntegerAttr>(op.getAttr()); 159 if (!intAttr) 160 return failure(); 161 int64_t val = intAttr.getInt(); 162 if (val >= MaxVal) 163 return failure(); 164 rewriter.modifyOpInPlace( 165 op, [&]() { op.setAttrAttr(rewriter.getI32IntegerAttr(val + 1)); }); 166 return success(); 167 } 168 }; 169 170 /// This patterns adds an "eligible" attribute to "foo.maybe_eligible_op". 171 struct MakeOpEligible : public RewritePattern { 172 MakeOpEligible(MLIRContext *context) 173 : RewritePattern("foo.maybe_eligible_op", /*benefit=*/1, context) {} 174 175 LogicalResult matchAndRewrite(Operation *op, 176 PatternRewriter &rewriter) const override { 177 if (op->hasAttr("eligible")) 178 return failure(); 179 rewriter.modifyOpInPlace( 180 op, [&]() { op->setAttr("eligible", rewriter.getUnitAttr()); }); 181 return success(); 182 } 183 }; 184 185 /// This pattern hoists eligible ops out of a "test.one_region_op". 186 struct HoistEligibleOps : public OpRewritePattern<test::OneRegionOp> { 187 using OpRewritePattern<test::OneRegionOp>::OpRewritePattern; 188 189 LogicalResult matchAndRewrite(test::OneRegionOp op, 190 PatternRewriter &rewriter) const override { 191 Operation *terminator = op.getRegion().front().getTerminator(); 192 Operation *toBeHoisted = terminator->getOperands()[0].getDefiningOp(); 193 if (toBeHoisted->getParentOp() != op) 194 return failure(); 195 if (!toBeHoisted->hasAttr("eligible")) 196 return failure(); 197 rewriter.moveOpBefore(toBeHoisted, op); 198 return success(); 199 } 200 }; 201 202 /// This pattern moves "test.move_before_parent_op" before the parent op. 203 struct MoveBeforeParentOp : public RewritePattern { 204 MoveBeforeParentOp(MLIRContext *context) 205 : RewritePattern("test.move_before_parent_op", /*benefit=*/1, context) {} 206 207 LogicalResult matchAndRewrite(Operation *op, 208 PatternRewriter &rewriter) const override { 209 // Do not hoist past functions. 210 if (isa<FunctionOpInterface>(op->getParentOp())) 211 return failure(); 212 rewriter.moveOpBefore(op, op->getParentOp()); 213 return success(); 214 } 215 }; 216 217 /// This pattern inlines blocks that are nested in 218 /// "test.inline_blocks_into_parent" into the parent block. 219 struct InlineBlocksIntoParent : public RewritePattern { 220 InlineBlocksIntoParent(MLIRContext *context) 221 : RewritePattern("test.inline_blocks_into_parent", /*benefit=*/1, 222 context) {} 223 224 LogicalResult matchAndRewrite(Operation *op, 225 PatternRewriter &rewriter) const override { 226 bool changed = false; 227 for (Region &r : op->getRegions()) { 228 while (!r.empty()) { 229 rewriter.inlineBlockBefore(&r.front(), op); 230 changed = true; 231 } 232 } 233 return success(changed); 234 } 235 }; 236 237 /// This pattern splits blocks at "test.split_block_here" and replaces the op 238 /// with a new op (to prevent an infinite loop of block splitting). 239 struct SplitBlockHere : public RewritePattern { 240 SplitBlockHere(MLIRContext *context) 241 : RewritePattern("test.split_block_here", /*benefit=*/1, context) {} 242 243 LogicalResult matchAndRewrite(Operation *op, 244 PatternRewriter &rewriter) const override { 245 rewriter.splitBlock(op->getBlock(), op->getIterator()); 246 Operation *newOp = rewriter.create( 247 op->getLoc(), 248 OperationName("test.new_op", op->getContext()).getIdentifier(), 249 op->getOperands(), op->getResultTypes()); 250 rewriter.replaceOp(op, newOp); 251 return success(); 252 } 253 }; 254 255 /// This pattern clones "test.clone_me" ops. 256 struct CloneOp : public RewritePattern { 257 CloneOp(MLIRContext *context) 258 : RewritePattern("test.clone_me", /*benefit=*/1, context) {} 259 260 LogicalResult matchAndRewrite(Operation *op, 261 PatternRewriter &rewriter) const override { 262 // Do not clone already cloned ops to avoid going into an infinite loop. 263 if (op->hasAttr("was_cloned")) 264 return failure(); 265 Operation *cloned = rewriter.clone(*op); 266 cloned->setAttr("was_cloned", rewriter.getUnitAttr()); 267 return success(); 268 } 269 }; 270 271 /// This pattern clones regions of "test.clone_region_before" ops before the 272 /// parent block. 273 struct CloneRegionBeforeOp : public RewritePattern { 274 CloneRegionBeforeOp(MLIRContext *context) 275 : RewritePattern("test.clone_region_before", /*benefit=*/1, context) {} 276 277 LogicalResult matchAndRewrite(Operation *op, 278 PatternRewriter &rewriter) const override { 279 // Do not clone already cloned ops to avoid going into an infinite loop. 280 if (op->hasAttr("was_cloned")) 281 return failure(); 282 for (Region &r : op->getRegions()) 283 rewriter.cloneRegionBefore(r, op->getBlock()); 284 op->setAttr("was_cloned", rewriter.getUnitAttr()); 285 return success(); 286 } 287 }; 288 289 struct TestPatternDriver 290 : public PassWrapper<TestPatternDriver, OperationPass<>> { 291 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestPatternDriver) 292 293 TestPatternDriver() = default; 294 TestPatternDriver(const TestPatternDriver &other) : PassWrapper(other) {} 295 296 StringRef getArgument() const final { return "test-patterns"; } 297 StringRef getDescription() const final { return "Run test dialect patterns"; } 298 void runOnOperation() override { 299 mlir::RewritePatternSet patterns(&getContext()); 300 populateWithGenerated(patterns); 301 302 // Verify named pattern is generated with expected name. 303 patterns.add<FoldingPattern, TestNamedPatternRule, 304 FolderInsertBeforePreviouslyFoldedConstantPattern, 305 FolderCommutativeOp2WithConstant, HoistEligibleOps, 306 MakeOpEligible>(&getContext()); 307 308 // Additional patterns for testing the GreedyPatternRewriteDriver. 309 patterns.insert<IncrementIntAttribute<3>>(&getContext()); 310 311 GreedyRewriteConfig config; 312 config.useTopDownTraversal = this->useTopDownTraversal; 313 config.maxIterations = this->maxIterations; 314 (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns), 315 config); 316 } 317 318 Option<bool> useTopDownTraversal{ 319 *this, "top-down", 320 llvm::cl::desc("Seed the worklist in general top-down order"), 321 llvm::cl::init(GreedyRewriteConfig().useTopDownTraversal)}; 322 Option<int> maxIterations{ 323 *this, "max-iterations", 324 llvm::cl::desc("Max. iterations in the GreedyRewriteConfig"), 325 llvm::cl::init(GreedyRewriteConfig().maxIterations)}; 326 }; 327 328 struct DumpNotifications : public RewriterBase::Listener { 329 void notifyBlockInserted(Block *block, Region *previous, 330 Region::iterator previousIt) override { 331 llvm::outs() << "notifyBlockInserted"; 332 if (block->getParentOp()) { 333 llvm::outs() << " into " << block->getParentOp()->getName() << ": "; 334 } else { 335 llvm::outs() << " into unknown op: "; 336 } 337 if (previous == nullptr) { 338 llvm::outs() << "was unlinked\n"; 339 } else { 340 llvm::outs() << "was linked\n"; 341 } 342 } 343 void notifyOperationInserted(Operation *op, 344 OpBuilder::InsertPoint previous) override { 345 llvm::outs() << "notifyOperationInserted: " << op->getName(); 346 if (!previous.isSet()) { 347 llvm::outs() << ", was unlinked\n"; 348 } else { 349 if (!previous.getPoint().getNodePtr()) { 350 llvm::outs() << ", was linked, exact position unknown\n"; 351 } else if (previous.getPoint() == previous.getBlock()->end()) { 352 llvm::outs() << ", was last in block\n"; 353 } else { 354 llvm::outs() << ", previous = " << previous.getPoint()->getName() 355 << "\n"; 356 } 357 } 358 } 359 void notifyBlockErased(Block *block) override { 360 llvm::outs() << "notifyBlockErased\n"; 361 } 362 void notifyOperationErased(Operation *op) override { 363 llvm::outs() << "notifyOperationErased: " << op->getName() << "\n"; 364 } 365 void notifyOperationModified(Operation *op) override { 366 llvm::outs() << "notifyOperationModified: " << op->getName() << "\n"; 367 } 368 void notifyOperationReplaced(Operation *op, ValueRange values) override { 369 llvm::outs() << "notifyOperationReplaced: " << op->getName() << "\n"; 370 } 371 }; 372 373 struct TestStrictPatternDriver 374 : public PassWrapper<TestStrictPatternDriver, OperationPass<func::FuncOp>> { 375 public: 376 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestStrictPatternDriver) 377 378 TestStrictPatternDriver() = default; 379 TestStrictPatternDriver(const TestStrictPatternDriver &other) 380 : PassWrapper(other) { 381 strictMode = other.strictMode; 382 } 383 384 StringRef getArgument() const final { return "test-strict-pattern-driver"; } 385 StringRef getDescription() const final { 386 return "Test strict mode of pattern driver"; 387 } 388 389 void runOnOperation() override { 390 MLIRContext *ctx = &getContext(); 391 mlir::RewritePatternSet patterns(ctx); 392 patterns.add< 393 // clang-format off 394 ChangeBlockOp, 395 CloneOp, 396 CloneRegionBeforeOp, 397 EraseOp, 398 ImplicitChangeOp, 399 InlineBlocksIntoParent, 400 InsertSameOp, 401 MoveBeforeParentOp, 402 ReplaceWithNewOp, 403 SplitBlockHere 404 // clang-format on 405 >(ctx); 406 SmallVector<Operation *> ops; 407 getOperation()->walk([&](Operation *op) { 408 StringRef opName = op->getName().getStringRef(); 409 if (opName == "test.insert_same_op" || opName == "test.change_block_op" || 410 opName == "test.replace_with_new_op" || opName == "test.erase_op" || 411 opName == "test.move_before_parent_op" || 412 opName == "test.inline_blocks_into_parent" || 413 opName == "test.split_block_here" || opName == "test.clone_me" || 414 opName == "test.clone_region_before") { 415 ops.push_back(op); 416 } 417 }); 418 419 DumpNotifications dumpNotifications; 420 GreedyRewriteConfig config; 421 config.listener = &dumpNotifications; 422 if (strictMode == "AnyOp") { 423 config.strictMode = GreedyRewriteStrictness::AnyOp; 424 } else if (strictMode == "ExistingAndNewOps") { 425 config.strictMode = GreedyRewriteStrictness::ExistingAndNewOps; 426 } else if (strictMode == "ExistingOps") { 427 config.strictMode = GreedyRewriteStrictness::ExistingOps; 428 } else { 429 llvm_unreachable("invalid strictness option"); 430 } 431 432 // Check if these transformations introduce visiting of operations that 433 // are not in the `ops` set (The new created ops are valid). An invalid 434 // operation will trigger the assertion while processing. 435 bool changed = false; 436 bool allErased = false; 437 (void)applyOpPatternsAndFold(ArrayRef(ops), std::move(patterns), config, 438 &changed, &allErased); 439 Builder b(ctx); 440 getOperation()->setAttr("pattern_driver_changed", b.getBoolAttr(changed)); 441 getOperation()->setAttr("pattern_driver_all_erased", 442 b.getBoolAttr(allErased)); 443 } 444 445 Option<std::string> strictMode{ 446 *this, "strictness", 447 llvm::cl::desc("Can be {AnyOp, ExistingAndNewOps, ExistingOps}"), 448 llvm::cl::init("AnyOp")}; 449 450 private: 451 // New inserted operation is valid for further transformation. 452 class InsertSameOp : public RewritePattern { 453 public: 454 InsertSameOp(MLIRContext *context) 455 : RewritePattern("test.insert_same_op", /*benefit=*/1, context) {} 456 457 LogicalResult matchAndRewrite(Operation *op, 458 PatternRewriter &rewriter) const override { 459 if (op->hasAttr("skip")) 460 return failure(); 461 462 Operation *newOp = 463 rewriter.create(op->getLoc(), op->getName().getIdentifier(), 464 op->getOperands(), op->getResultTypes()); 465 rewriter.modifyOpInPlace( 466 op, [&]() { op->setAttr("skip", rewriter.getBoolAttr(true)); }); 467 newOp->setAttr("skip", rewriter.getBoolAttr(true)); 468 469 return success(); 470 } 471 }; 472 473 // Replace an operation may introduce the re-visiting of its users. 474 class ReplaceWithNewOp : public RewritePattern { 475 public: 476 ReplaceWithNewOp(MLIRContext *context) 477 : RewritePattern("test.replace_with_new_op", /*benefit=*/1, context) {} 478 479 LogicalResult matchAndRewrite(Operation *op, 480 PatternRewriter &rewriter) const override { 481 Operation *newOp; 482 if (op->hasAttr("create_erase_op")) { 483 newOp = rewriter.create( 484 op->getLoc(), 485 OperationName("test.erase_op", op->getContext()).getIdentifier(), 486 ValueRange(), TypeRange()); 487 } else { 488 newOp = rewriter.create( 489 op->getLoc(), 490 OperationName("test.new_op", op->getContext()).getIdentifier(), 491 op->getOperands(), op->getResultTypes()); 492 } 493 // "replaceOp" could be used instead of "replaceAllOpUsesWith"+"eraseOp". 494 // A "notifyOperationReplaced" callback is triggered in either case. 495 rewriter.replaceAllOpUsesWith(op, newOp->getResults()); 496 rewriter.eraseOp(op); 497 return success(); 498 } 499 }; 500 501 // Remove an operation may introduce the re-visiting of its operands. 502 class EraseOp : public RewritePattern { 503 public: 504 EraseOp(MLIRContext *context) 505 : RewritePattern("test.erase_op", /*benefit=*/1, context) {} 506 LogicalResult matchAndRewrite(Operation *op, 507 PatternRewriter &rewriter) const override { 508 rewriter.eraseOp(op); 509 return success(); 510 } 511 }; 512 513 // The following two patterns test RewriterBase::replaceAllUsesWith. 514 // 515 // That function replaces all usages of a Block (or a Value) with another one 516 // *and tracks these changes in the rewriter.* The GreedyPatternRewriteDriver 517 // with GreedyRewriteStrictness::AnyOp uses that tracking to construct its 518 // worklist: when an op is modified, it is added to the worklist. The two 519 // patterns below make the tracking observable: ChangeBlockOp replaces all 520 // usages of a block and that pattern is applied because the corresponding ops 521 // are put on the initial worklist (see above). ImplicitChangeOp does an 522 // unrelated change but ops of the corresponding type are *not* on the initial 523 // worklist, so the effect of the second pattern is only visible if the 524 // tracking and subsequent adding to the worklist actually works. 525 526 // Replace all usages of the first successor with the second successor. 527 class ChangeBlockOp : public RewritePattern { 528 public: 529 ChangeBlockOp(MLIRContext *context) 530 : RewritePattern("test.change_block_op", /*benefit=*/1, context) {} 531 LogicalResult matchAndRewrite(Operation *op, 532 PatternRewriter &rewriter) const override { 533 if (op->getNumSuccessors() < 2) 534 return failure(); 535 Block *firstSuccessor = op->getSuccessor(0); 536 Block *secondSuccessor = op->getSuccessor(1); 537 if (firstSuccessor == secondSuccessor) 538 return failure(); 539 // This is the function being tested: 540 rewriter.replaceAllUsesWith(firstSuccessor, secondSuccessor); 541 // Using the following line instead would make the test fail: 542 // firstSuccessor->replaceAllUsesWith(secondSuccessor); 543 return success(); 544 } 545 }; 546 547 // Changes the successor to the parent block. 548 class ImplicitChangeOp : public RewritePattern { 549 public: 550 ImplicitChangeOp(MLIRContext *context) 551 : RewritePattern("test.implicit_change_op", /*benefit=*/1, context) {} 552 LogicalResult matchAndRewrite(Operation *op, 553 PatternRewriter &rewriter) const override { 554 if (op->getNumSuccessors() < 1 || op->getSuccessor(0) == op->getBlock()) 555 return failure(); 556 rewriter.modifyOpInPlace(op, 557 [&]() { op->setSuccessor(op->getBlock(), 0); }); 558 return success(); 559 } 560 }; 561 }; 562 563 } // namespace 564 565 //===----------------------------------------------------------------------===// 566 // ReturnType Driver. 567 //===----------------------------------------------------------------------===// 568 569 namespace { 570 // Generate ops for each instance where the type can be successfully inferred. 571 template <typename OpTy> 572 static void invokeCreateWithInferredReturnType(Operation *op) { 573 auto *context = op->getContext(); 574 auto fop = op->getParentOfType<func::FuncOp>(); 575 auto location = UnknownLoc::get(context); 576 OpBuilder b(op); 577 b.setInsertionPointAfter(op); 578 579 // Use permutations of 2 args as operands. 580 assert(fop.getNumArguments() >= 2); 581 for (int i = 0, e = fop.getNumArguments(); i < e; ++i) { 582 for (int j = 0; j < e; ++j) { 583 std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}}; 584 SmallVector<Type, 2> inferredReturnTypes; 585 if (succeeded(OpTy::inferReturnTypes( 586 context, std::nullopt, values, op->getDiscardableAttrDictionary(), 587 op->getPropertiesStorage(), op->getRegions(), 588 inferredReturnTypes))) { 589 OperationState state(location, OpTy::getOperationName()); 590 // TODO: Expand to regions. 591 OpTy::build(b, state, values, op->getAttrs()); 592 (void)b.create(state); 593 } 594 } 595 } 596 } 597 598 static void reifyReturnShape(Operation *op) { 599 OpBuilder b(op); 600 601 // Use permutations of 2 args as operands. 602 auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op); 603 SmallVector<Value, 2> shapes; 604 if (failed(shapedOp.reifyReturnTypeShapes(b, op->getOperands(), shapes)) || 605 !llvm::hasSingleElement(shapes)) 606 return; 607 for (const auto &it : llvm::enumerate(shapes)) { 608 op->emitRemark() << "value " << it.index() << ": " 609 << it.value().getDefiningOp(); 610 } 611 } 612 613 struct TestReturnTypeDriver 614 : public PassWrapper<TestReturnTypeDriver, OperationPass<func::FuncOp>> { 615 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestReturnTypeDriver) 616 617 void getDependentDialects(DialectRegistry ®istry) const override { 618 registry.insert<tensor::TensorDialect>(); 619 } 620 StringRef getArgument() const final { return "test-return-type"; } 621 StringRef getDescription() const final { return "Run return type functions"; } 622 623 void runOnOperation() override { 624 if (getOperation().getName() == "testCreateFunctions") { 625 std::vector<Operation *> ops; 626 // Collect ops to avoid triggering on inserted ops. 627 for (auto &op : getOperation().getBody().front()) 628 ops.push_back(&op); 629 // Generate test patterns for each, but skip terminator. 630 for (auto *op : llvm::ArrayRef(ops).drop_back()) { 631 // Test create method of each of the Op classes below. The resultant 632 // output would be in reverse order underneath `op` from which 633 // the attributes and regions are used. 634 invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op); 635 invokeCreateWithInferredReturnType<OpWithInferTypeAdaptorInterfaceOp>( 636 op); 637 invokeCreateWithInferredReturnType< 638 OpWithShapedTypeInferTypeInterfaceOp>(op); 639 }; 640 return; 641 } 642 if (getOperation().getName() == "testReifyFunctions") { 643 std::vector<Operation *> ops; 644 // Collect ops to avoid triggering on inserted ops. 645 for (auto &op : getOperation().getBody().front()) 646 if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op)) 647 ops.push_back(&op); 648 // Generate test patterns for each, but skip terminator. 649 for (auto *op : ops) 650 reifyReturnShape(op); 651 } 652 } 653 }; 654 } // namespace 655 656 namespace { 657 struct TestDerivedAttributeDriver 658 : public PassWrapper<TestDerivedAttributeDriver, 659 OperationPass<func::FuncOp>> { 660 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestDerivedAttributeDriver) 661 662 StringRef getArgument() const final { return "test-derived-attr"; } 663 StringRef getDescription() const final { 664 return "Run test derived attributes"; 665 } 666 void runOnOperation() override; 667 }; 668 } // namespace 669 670 void TestDerivedAttributeDriver::runOnOperation() { 671 getOperation().walk([](DerivedAttributeOpInterface dOp) { 672 auto dAttr = dOp.materializeDerivedAttributes(); 673 if (!dAttr) 674 return; 675 for (auto d : dAttr) 676 dOp.emitRemark() << d.getName().getValue() << " = " << d.getValue(); 677 }); 678 } 679 680 //===----------------------------------------------------------------------===// 681 // Legalization Driver. 682 //===----------------------------------------------------------------------===// 683 684 namespace { 685 //===----------------------------------------------------------------------===// 686 // Region-Block Rewrite Testing 687 688 /// This pattern applies a signature conversion to a block inside a detached 689 /// region. 690 struct TestDetachedSignatureConversion : public ConversionPattern { 691 TestDetachedSignatureConversion(MLIRContext *ctx) 692 : ConversionPattern("test.detached_signature_conversion", /*benefit=*/1, 693 ctx) {} 694 695 LogicalResult 696 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 697 ConversionPatternRewriter &rewriter) const final { 698 if (op->getNumRegions() != 1) 699 return failure(); 700 OperationState state(op->getLoc(), "test.legal_op_with_region", operands, 701 op->getResultTypes(), {}, BlockRange()); 702 Region *newRegion = state.addRegion(); 703 rewriter.inlineRegionBefore(op->getRegion(0), *newRegion, 704 newRegion->begin()); 705 TypeConverter::SignatureConversion result(newRegion->getNumArguments()); 706 for (unsigned i = 0, e = newRegion->getNumArguments(); i < e; ++i) 707 result.addInputs(i, rewriter.getF64Type()); 708 rewriter.applySignatureConversion(&newRegion->front(), result); 709 Operation *newOp = rewriter.create(state); 710 rewriter.replaceOp(op, newOp->getResults()); 711 return success(); 712 } 713 }; 714 715 /// This pattern is a simple pattern that inlines the first region of a given 716 /// operation into the parent region. 717 struct TestRegionRewriteBlockMovement : public ConversionPattern { 718 TestRegionRewriteBlockMovement(MLIRContext *ctx) 719 : ConversionPattern("test.region", 1, ctx) {} 720 721 LogicalResult 722 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 723 ConversionPatternRewriter &rewriter) const final { 724 // Inline this region into the parent region. 725 auto &parentRegion = *op->getParentRegion(); 726 auto &opRegion = op->getRegion(0); 727 if (op->getDiscardableAttr("legalizer.should_clone")) 728 rewriter.cloneRegionBefore(opRegion, parentRegion, parentRegion.end()); 729 else 730 rewriter.inlineRegionBefore(opRegion, parentRegion, parentRegion.end()); 731 732 if (op->getDiscardableAttr("legalizer.erase_old_blocks")) { 733 while (!opRegion.empty()) 734 rewriter.eraseBlock(&opRegion.front()); 735 } 736 737 // Drop this operation. 738 rewriter.eraseOp(op); 739 return success(); 740 } 741 }; 742 /// This pattern is a simple pattern that generates a region containing an 743 /// illegal operation. 744 struct TestRegionRewriteUndo : public RewritePattern { 745 TestRegionRewriteUndo(MLIRContext *ctx) 746 : RewritePattern("test.region_builder", 1, ctx) {} 747 748 LogicalResult matchAndRewrite(Operation *op, 749 PatternRewriter &rewriter) const final { 750 // Create the region operation with an entry block containing arguments. 751 OperationState newRegion(op->getLoc(), "test.region"); 752 newRegion.addRegion(); 753 auto *regionOp = rewriter.create(newRegion); 754 auto *entryBlock = rewriter.createBlock(®ionOp->getRegion(0)); 755 entryBlock->addArgument(rewriter.getIntegerType(64), 756 rewriter.getUnknownLoc()); 757 758 // Add an explicitly illegal operation to ensure the conversion fails. 759 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32)); 760 rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>()); 761 762 // Drop this operation. 763 rewriter.eraseOp(op); 764 return success(); 765 } 766 }; 767 /// A simple pattern that creates a block at the end of the parent region of the 768 /// matched operation. 769 struct TestCreateBlock : public RewritePattern { 770 TestCreateBlock(MLIRContext *ctx) 771 : RewritePattern("test.create_block", /*benefit=*/1, ctx) {} 772 773 LogicalResult matchAndRewrite(Operation *op, 774 PatternRewriter &rewriter) const final { 775 Region ®ion = *op->getParentRegion(); 776 Type i32Type = rewriter.getIntegerType(32); 777 Location loc = op->getLoc(); 778 rewriter.createBlock(®ion, region.end(), {i32Type, i32Type}, {loc, loc}); 779 rewriter.create<TerminatorOp>(loc); 780 rewriter.eraseOp(op); 781 return success(); 782 } 783 }; 784 785 /// A simple pattern that creates a block containing an invalid operation in 786 /// order to trigger the block creation undo mechanism. 787 struct TestCreateIllegalBlock : public RewritePattern { 788 TestCreateIllegalBlock(MLIRContext *ctx) 789 : RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {} 790 791 LogicalResult matchAndRewrite(Operation *op, 792 PatternRewriter &rewriter) const final { 793 Region ®ion = *op->getParentRegion(); 794 Type i32Type = rewriter.getIntegerType(32); 795 Location loc = op->getLoc(); 796 rewriter.createBlock(®ion, region.end(), {i32Type, i32Type}, {loc, loc}); 797 // Create an illegal op to ensure the conversion fails. 798 rewriter.create<ILLegalOpF>(loc, i32Type); 799 rewriter.create<TerminatorOp>(loc); 800 rewriter.eraseOp(op); 801 return success(); 802 } 803 }; 804 805 /// A simple pattern that tests the undo mechanism when replacing the uses of a 806 /// block argument. 807 struct TestUndoBlockArgReplace : public ConversionPattern { 808 TestUndoBlockArgReplace(MLIRContext *ctx) 809 : ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {} 810 811 LogicalResult 812 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 813 ConversionPatternRewriter &rewriter) const final { 814 auto illegalOp = 815 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type()); 816 rewriter.replaceUsesOfBlockArgument(op->getRegion(0).getArgument(0), 817 illegalOp->getResult(0)); 818 rewriter.modifyOpInPlace(op, [] {}); 819 return success(); 820 } 821 }; 822 823 /// This pattern hoists ops out of a "test.hoist_me" and then fails conversion. 824 /// This is to test the rollback logic. 825 struct TestUndoMoveOpBefore : public ConversionPattern { 826 TestUndoMoveOpBefore(MLIRContext *ctx) 827 : ConversionPattern("test.hoist_me", /*benefit=*/1, ctx) {} 828 829 LogicalResult 830 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 831 ConversionPatternRewriter &rewriter) const override { 832 rewriter.moveOpBefore(op, op->getParentOp()); 833 // Replace with an illegal op to ensure the conversion fails. 834 rewriter.replaceOpWithNewOp<ILLegalOpF>(op, rewriter.getF32Type()); 835 return success(); 836 } 837 }; 838 839 /// A rewrite pattern that tests the undo mechanism when erasing a block. 840 struct TestUndoBlockErase : public ConversionPattern { 841 TestUndoBlockErase(MLIRContext *ctx) 842 : ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {} 843 844 LogicalResult 845 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 846 ConversionPatternRewriter &rewriter) const final { 847 Block *secondBlock = &*std::next(op->getRegion(0).begin()); 848 rewriter.setInsertionPointToStart(secondBlock); 849 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type()); 850 rewriter.eraseBlock(secondBlock); 851 rewriter.modifyOpInPlace(op, [] {}); 852 return success(); 853 } 854 }; 855 856 /// A pattern that modifies a property in-place, but keeps the op illegal. 857 struct TestUndoPropertiesModification : public ConversionPattern { 858 TestUndoPropertiesModification(MLIRContext *ctx) 859 : ConversionPattern("test.with_properties", /*benefit=*/1, ctx) {} 860 LogicalResult 861 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 862 ConversionPatternRewriter &rewriter) const final { 863 if (!op->hasAttr("modify_inplace")) 864 return failure(); 865 rewriter.modifyOpInPlace( 866 op, [&]() { cast<TestOpWithProperties>(op).getProperties().setA(42); }); 867 return success(); 868 } 869 }; 870 871 //===----------------------------------------------------------------------===// 872 // Type-Conversion Rewrite Testing 873 874 /// This patterns erases a region operation that has had a type conversion. 875 struct TestDropOpSignatureConversion : public ConversionPattern { 876 TestDropOpSignatureConversion(MLIRContext *ctx, 877 const TypeConverter &converter) 878 : ConversionPattern(converter, "test.drop_region_op", 1, ctx) {} 879 LogicalResult 880 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 881 ConversionPatternRewriter &rewriter) const override { 882 Region ®ion = op->getRegion(0); 883 Block *entry = ®ion.front(); 884 885 // Convert the original entry arguments. 886 const TypeConverter &converter = *getTypeConverter(); 887 TypeConverter::SignatureConversion result(entry->getNumArguments()); 888 if (failed(converter.convertSignatureArgs(entry->getArgumentTypes(), 889 result)) || 890 failed(rewriter.convertRegionTypes(®ion, converter, &result))) 891 return failure(); 892 893 // Convert the region signature and just drop the operation. 894 rewriter.eraseOp(op); 895 return success(); 896 } 897 }; 898 /// This pattern simply updates the operands of the given operation. 899 struct TestPassthroughInvalidOp : public ConversionPattern { 900 TestPassthroughInvalidOp(MLIRContext *ctx) 901 : ConversionPattern("test.invalid", 1, ctx) {} 902 LogicalResult 903 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 904 ConversionPatternRewriter &rewriter) const final { 905 rewriter.replaceOpWithNewOp<TestValidOp>(op, std::nullopt, operands, 906 std::nullopt); 907 return success(); 908 } 909 }; 910 /// Replace with valid op, but simply drop the operands. This is used in a 911 /// regression where we used to generate circular unrealized_conversion_cast 912 /// ops. 913 struct TestDropAndReplaceInvalidOp : public ConversionPattern { 914 TestDropAndReplaceInvalidOp(MLIRContext *ctx, const TypeConverter &converter) 915 : ConversionPattern(converter, 916 "test.drop_operands_and_replace_with_valid", 1, ctx) { 917 } 918 LogicalResult 919 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 920 ConversionPatternRewriter &rewriter) const final { 921 rewriter.replaceOpWithNewOp<TestValidOp>(op, std::nullopt, ValueRange(), 922 std::nullopt); 923 return success(); 924 } 925 }; 926 /// This pattern handles the case of a split return value. 927 struct TestSplitReturnType : public ConversionPattern { 928 TestSplitReturnType(MLIRContext *ctx) 929 : ConversionPattern("test.return", 1, ctx) {} 930 LogicalResult 931 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 932 ConversionPatternRewriter &rewriter) const final { 933 // Check for a return of F32. 934 if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32()) 935 return failure(); 936 937 // Check if the first operation is a cast operation, if it is we use the 938 // results directly. 939 auto *defOp = operands[0].getDefiningOp(); 940 if (auto packerOp = 941 llvm::dyn_cast_or_null<UnrealizedConversionCastOp>(defOp)) { 942 rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands()); 943 return success(); 944 } 945 946 // Otherwise, fail to match. 947 return failure(); 948 } 949 }; 950 951 //===----------------------------------------------------------------------===// 952 // Multi-Level Type-Conversion Rewrite Testing 953 struct TestChangeProducerTypeI32ToF32 : public ConversionPattern { 954 TestChangeProducerTypeI32ToF32(MLIRContext *ctx) 955 : ConversionPattern("test.type_producer", 1, ctx) {} 956 LogicalResult 957 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 958 ConversionPatternRewriter &rewriter) const final { 959 // If the type is I32, change the type to F32. 960 if (!Type(*op->result_type_begin()).isSignlessInteger(32)) 961 return failure(); 962 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type()); 963 return success(); 964 } 965 }; 966 struct TestChangeProducerTypeF32ToF64 : public ConversionPattern { 967 TestChangeProducerTypeF32ToF64(MLIRContext *ctx) 968 : ConversionPattern("test.type_producer", 1, ctx) {} 969 LogicalResult 970 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 971 ConversionPatternRewriter &rewriter) const final { 972 // If the type is F32, change the type to F64. 973 if (!Type(*op->result_type_begin()).isF32()) 974 return rewriter.notifyMatchFailure(op, "expected single f32 operand"); 975 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type()); 976 return success(); 977 } 978 }; 979 struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern { 980 TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx) 981 : ConversionPattern("test.type_producer", 10, ctx) {} 982 LogicalResult 983 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 984 ConversionPatternRewriter &rewriter) const final { 985 // Always convert to B16, even though it is not a legal type. This tests 986 // that values are unmapped correctly. 987 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type()); 988 return success(); 989 } 990 }; 991 struct TestUpdateConsumerType : public ConversionPattern { 992 TestUpdateConsumerType(MLIRContext *ctx) 993 : ConversionPattern("test.type_consumer", 1, ctx) {} 994 LogicalResult 995 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 996 ConversionPatternRewriter &rewriter) const final { 997 // Verify that the incoming operand has been successfully remapped to F64. 998 if (!operands[0].getType().isF64()) 999 return failure(); 1000 rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]); 1001 return success(); 1002 } 1003 }; 1004 1005 //===----------------------------------------------------------------------===// 1006 // Non-Root Replacement Rewrite Testing 1007 /// This pattern generates an invalid operation, but replaces it before the 1008 /// pattern is finished. This checks that we don't need to legalize the 1009 /// temporary op. 1010 struct TestNonRootReplacement : public RewritePattern { 1011 TestNonRootReplacement(MLIRContext *ctx) 1012 : RewritePattern("test.replace_non_root", 1, ctx) {} 1013 1014 LogicalResult matchAndRewrite(Operation *op, 1015 PatternRewriter &rewriter) const final { 1016 auto resultType = *op->result_type_begin(); 1017 auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType); 1018 auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType); 1019 1020 rewriter.replaceOp(illegalOp, legalOp); 1021 rewriter.replaceOp(op, illegalOp); 1022 return success(); 1023 } 1024 }; 1025 1026 //===----------------------------------------------------------------------===// 1027 // Recursive Rewrite Testing 1028 /// This pattern is applied to the same operation multiple times, but has a 1029 /// bounded recursion. 1030 struct TestBoundedRecursiveRewrite 1031 : public OpRewritePattern<TestRecursiveRewriteOp> { 1032 using OpRewritePattern<TestRecursiveRewriteOp>::OpRewritePattern; 1033 1034 void initialize() { 1035 // The conversion target handles bounding the recursion of this pattern. 1036 setHasBoundedRewriteRecursion(); 1037 } 1038 1039 LogicalResult matchAndRewrite(TestRecursiveRewriteOp op, 1040 PatternRewriter &rewriter) const final { 1041 // Decrement the depth of the op in-place. 1042 rewriter.modifyOpInPlace(op, [&] { 1043 op->setAttr("depth", rewriter.getI64IntegerAttr(op.getDepth() - 1)); 1044 }); 1045 return success(); 1046 } 1047 }; 1048 1049 struct TestNestedOpCreationUndoRewrite 1050 : public OpRewritePattern<IllegalOpWithRegionAnchor> { 1051 using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern; 1052 1053 LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op, 1054 PatternRewriter &rewriter) const final { 1055 // rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op); 1056 rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op); 1057 return success(); 1058 }; 1059 }; 1060 1061 // This pattern matches `test.blackhole` and delete this op and its producer. 1062 struct TestReplaceEraseOp : public OpRewritePattern<BlackHoleOp> { 1063 using OpRewritePattern<BlackHoleOp>::OpRewritePattern; 1064 1065 LogicalResult matchAndRewrite(BlackHoleOp op, 1066 PatternRewriter &rewriter) const final { 1067 Operation *producer = op.getOperand().getDefiningOp(); 1068 // Always erase the user before the producer, the framework should handle 1069 // this correctly. 1070 rewriter.eraseOp(op); 1071 rewriter.eraseOp(producer); 1072 return success(); 1073 }; 1074 }; 1075 1076 // This pattern replaces explicitly illegal op with explicitly legal op, 1077 // but in addition creates unregistered operation. 1078 struct TestCreateUnregisteredOp : public OpRewritePattern<ILLegalOpG> { 1079 using OpRewritePattern<ILLegalOpG>::OpRewritePattern; 1080 1081 LogicalResult matchAndRewrite(ILLegalOpG op, 1082 PatternRewriter &rewriter) const final { 1083 IntegerAttr attr = rewriter.getI32IntegerAttr(0); 1084 Value val = rewriter.create<arith::ConstantOp>(op->getLoc(), attr); 1085 rewriter.replaceOpWithNewOp<LegalOpC>(op, val); 1086 return success(); 1087 }; 1088 }; 1089 1090 class TestEraseOp : public ConversionPattern { 1091 public: 1092 TestEraseOp(MLIRContext *ctx) : ConversionPattern("test.erase_op", 1, ctx) {} 1093 LogicalResult 1094 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 1095 ConversionPatternRewriter &rewriter) const final { 1096 // Erase op without replacements. 1097 rewriter.eraseOp(op); 1098 return success(); 1099 } 1100 }; 1101 1102 } // namespace 1103 1104 namespace { 1105 struct TestTypeConverter : public TypeConverter { 1106 using TypeConverter::TypeConverter; 1107 TestTypeConverter() { 1108 addConversion(convertType); 1109 addArgumentMaterialization(materializeCast); 1110 addSourceMaterialization(materializeCast); 1111 } 1112 1113 static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) { 1114 // Drop I16 types. 1115 if (t.isSignlessInteger(16)) 1116 return success(); 1117 1118 // Convert I64 to F64. 1119 if (t.isSignlessInteger(64)) { 1120 results.push_back(FloatType::getF64(t.getContext())); 1121 return success(); 1122 } 1123 1124 // Convert I42 to I43. 1125 if (t.isInteger(42)) { 1126 results.push_back(IntegerType::get(t.getContext(), 43)); 1127 return success(); 1128 } 1129 1130 // Split F32 into F16,F16. 1131 if (t.isF32()) { 1132 results.assign(2, FloatType::getF16(t.getContext())); 1133 return success(); 1134 } 1135 1136 // Otherwise, convert the type directly. 1137 results.push_back(t); 1138 return success(); 1139 } 1140 1141 /// Hook for materializing a conversion. This is necessary because we generate 1142 /// 1->N type mappings. 1143 static Value materializeCast(OpBuilder &builder, Type resultType, 1144 ValueRange inputs, Location loc) { 1145 return builder.create<TestCastOp>(loc, resultType, inputs).getResult(); 1146 } 1147 }; 1148 1149 struct TestLegalizePatternDriver 1150 : public PassWrapper<TestLegalizePatternDriver, OperationPass<>> { 1151 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestLegalizePatternDriver) 1152 1153 StringRef getArgument() const final { return "test-legalize-patterns"; } 1154 StringRef getDescription() const final { 1155 return "Run test dialect legalization patterns"; 1156 } 1157 /// The mode of conversion to use with the driver. 1158 enum class ConversionMode { Analysis, Full, Partial }; 1159 1160 TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {} 1161 1162 void getDependentDialects(DialectRegistry ®istry) const override { 1163 registry.insert<func::FuncDialect, test::TestDialect>(); 1164 } 1165 1166 void runOnOperation() override { 1167 TestTypeConverter converter; 1168 mlir::RewritePatternSet patterns(&getContext()); 1169 populateWithGenerated(patterns); 1170 patterns.add< 1171 TestRegionRewriteBlockMovement, TestDetachedSignatureConversion, 1172 TestRegionRewriteUndo, TestCreateBlock, TestCreateIllegalBlock, 1173 TestUndoBlockArgReplace, TestUndoBlockErase, TestPassthroughInvalidOp, 1174 TestSplitReturnType, TestChangeProducerTypeI32ToF32, 1175 TestChangeProducerTypeF32ToF64, TestChangeProducerTypeF32ToInvalid, 1176 TestUpdateConsumerType, TestNonRootReplacement, 1177 TestBoundedRecursiveRewrite, TestNestedOpCreationUndoRewrite, 1178 TestReplaceEraseOp, TestCreateUnregisteredOp, TestUndoMoveOpBefore, 1179 TestUndoPropertiesModification, TestEraseOp>(&getContext()); 1180 patterns.add<TestDropOpSignatureConversion, TestDropAndReplaceInvalidOp>( 1181 &getContext(), converter); 1182 mlir::populateAnyFunctionOpInterfaceTypeConversionPattern(patterns, 1183 converter); 1184 mlir::populateCallOpTypeConversionPattern(patterns, converter); 1185 1186 // Define the conversion target used for the test. 1187 ConversionTarget target(getContext()); 1188 target.addLegalOp<ModuleOp>(); 1189 target.addLegalOp<LegalOpA, LegalOpB, LegalOpC, TestCastOp, TestValidOp, 1190 TerminatorOp, OneRegionOp>(); 1191 target.addLegalOp( 1192 OperationName("test.legal_op_with_region", &getContext())); 1193 target 1194 .addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>(); 1195 target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) { 1196 // Don't allow F32 operands. 1197 return llvm::none_of(op.getOperandTypes(), 1198 [](Type type) { return type.isF32(); }); 1199 }); 1200 target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) { 1201 return converter.isSignatureLegal(op.getFunctionType()) && 1202 converter.isLegal(&op.getBody()); 1203 }); 1204 target.addDynamicallyLegalOp<func::CallOp>( 1205 [&](func::CallOp op) { return converter.isLegal(op); }); 1206 1207 // TestCreateUnregisteredOp creates `arith.constant` operation, 1208 // which was not added to target intentionally to test 1209 // correct error code from conversion driver. 1210 target.addDynamicallyLegalOp<ILLegalOpG>([](ILLegalOpG) { return false; }); 1211 1212 // Expect the type_producer/type_consumer operations to only operate on f64. 1213 target.addDynamicallyLegalOp<TestTypeProducerOp>( 1214 [](TestTypeProducerOp op) { return op.getType().isF64(); }); 1215 target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) { 1216 return op.getOperand().getType().isF64(); 1217 }); 1218 1219 // Check support for marking certain operations as recursively legal. 1220 target.markOpRecursivelyLegal<func::FuncOp, ModuleOp>([](Operation *op) { 1221 return static_cast<bool>( 1222 op->getAttrOfType<UnitAttr>("test.recursively_legal")); 1223 }); 1224 1225 // Mark the bound recursion operation as dynamically legal. 1226 target.addDynamicallyLegalOp<TestRecursiveRewriteOp>( 1227 [](TestRecursiveRewriteOp op) { return op.getDepth() == 0; }); 1228 1229 // Create a dynamically legal rule that can only be legalized by folding it. 1230 target.addDynamicallyLegalOp<TestOpInPlaceSelfFold>( 1231 [](TestOpInPlaceSelfFold op) { return op.getFolded(); }); 1232 1233 // Handle a partial conversion. 1234 if (mode == ConversionMode::Partial) { 1235 DenseSet<Operation *> unlegalizedOps; 1236 ConversionConfig config; 1237 DumpNotifications dumpNotifications; 1238 config.listener = &dumpNotifications; 1239 config.unlegalizedOps = &unlegalizedOps; 1240 if (failed(applyPartialConversion(getOperation(), target, 1241 std::move(patterns), config))) { 1242 getOperation()->emitRemark() << "applyPartialConversion failed"; 1243 } 1244 // Emit remarks for each legalizable operation. 1245 for (auto *op : unlegalizedOps) 1246 op->emitRemark() << "op '" << op->getName() << "' is not legalizable"; 1247 return; 1248 } 1249 1250 // Handle a full conversion. 1251 if (mode == ConversionMode::Full) { 1252 // Check support for marking unknown operations as dynamically legal. 1253 target.markUnknownOpDynamicallyLegal([](Operation *op) { 1254 return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal"); 1255 }); 1256 1257 ConversionConfig config; 1258 DumpNotifications dumpNotifications; 1259 config.listener = &dumpNotifications; 1260 if (failed(applyFullConversion(getOperation(), target, 1261 std::move(patterns), config))) { 1262 getOperation()->emitRemark() << "applyFullConversion failed"; 1263 } 1264 return; 1265 } 1266 1267 // Otherwise, handle an analysis conversion. 1268 assert(mode == ConversionMode::Analysis); 1269 1270 // Analyze the convertible operations. 1271 DenseSet<Operation *> legalizedOps; 1272 ConversionConfig config; 1273 config.legalizableOps = &legalizedOps; 1274 if (failed(applyAnalysisConversion(getOperation(), target, 1275 std::move(patterns), config))) 1276 return signalPassFailure(); 1277 1278 // Emit remarks for each legalizable operation. 1279 for (auto *op : legalizedOps) 1280 op->emitRemark() << "op '" << op->getName() << "' is legalizable"; 1281 } 1282 1283 /// The mode of conversion to use. 1284 ConversionMode mode; 1285 }; 1286 } // namespace 1287 1288 static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode> 1289 legalizerConversionMode( 1290 "test-legalize-mode", 1291 llvm::cl::desc("The legalization mode to use with the test driver"), 1292 llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial), 1293 llvm::cl::values( 1294 clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis, 1295 "analysis", "Perform an analysis conversion"), 1296 clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full", 1297 "Perform a full conversion"), 1298 clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial, 1299 "partial", "Perform a partial conversion"))); 1300 1301 //===----------------------------------------------------------------------===// 1302 // ConversionPatternRewriter::getRemappedValue testing. This method is used 1303 // to get the remapped value of an original value that was replaced using 1304 // ConversionPatternRewriter. 1305 namespace { 1306 struct TestRemapValueTypeConverter : public TypeConverter { 1307 using TypeConverter::TypeConverter; 1308 1309 TestRemapValueTypeConverter() { 1310 addConversion( 1311 [](Float32Type type) { return Float64Type::get(type.getContext()); }); 1312 addConversion([](Type type) { return type; }); 1313 } 1314 }; 1315 1316 /// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with 1317 /// a one-operand two-result OneVResOneVOperandOp1 by replicating its original 1318 /// operand twice. 1319 /// 1320 /// Example: 1321 /// %1 = test.one_variadic_out_one_variadic_in1"(%0) 1322 /// is replaced with: 1323 /// %1 = test.one_variadic_out_one_variadic_in1"(%0, %0) 1324 struct OneVResOneVOperandOp1Converter 1325 : public OpConversionPattern<OneVResOneVOperandOp1> { 1326 using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern; 1327 1328 LogicalResult 1329 matchAndRewrite(OneVResOneVOperandOp1 op, OpAdaptor adaptor, 1330 ConversionPatternRewriter &rewriter) const override { 1331 auto origOps = op.getOperands(); 1332 assert(std::distance(origOps.begin(), origOps.end()) == 1 && 1333 "One operand expected"); 1334 Value origOp = *origOps.begin(); 1335 SmallVector<Value, 2> remappedOperands; 1336 // Replicate the remapped original operand twice. Note that we don't used 1337 // the remapped 'operand' since the goal is testing 'getRemappedValue'. 1338 remappedOperands.push_back(rewriter.getRemappedValue(origOp)); 1339 remappedOperands.push_back(rewriter.getRemappedValue(origOp)); 1340 1341 rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(), 1342 remappedOperands); 1343 return success(); 1344 } 1345 }; 1346 1347 /// A rewriter pattern that tests that blocks can be merged. 1348 struct TestRemapValueInRegion 1349 : public OpConversionPattern<TestRemappedValueRegionOp> { 1350 using OpConversionPattern<TestRemappedValueRegionOp>::OpConversionPattern; 1351 1352 LogicalResult 1353 matchAndRewrite(TestRemappedValueRegionOp op, OpAdaptor adaptor, 1354 ConversionPatternRewriter &rewriter) const final { 1355 Block &block = op.getBody().front(); 1356 Operation *terminator = block.getTerminator(); 1357 1358 // Merge the block into the parent region. 1359 Block *parentBlock = op->getBlock(); 1360 Block *finalBlock = rewriter.splitBlock(parentBlock, op->getIterator()); 1361 rewriter.mergeBlocks(&block, parentBlock, ValueRange()); 1362 rewriter.mergeBlocks(finalBlock, parentBlock, ValueRange()); 1363 1364 // Replace the results of this operation with the remapped terminator 1365 // values. 1366 SmallVector<Value> terminatorOperands; 1367 if (failed(rewriter.getRemappedValues(terminator->getOperands(), 1368 terminatorOperands))) 1369 return failure(); 1370 1371 rewriter.eraseOp(terminator); 1372 rewriter.replaceOp(op, terminatorOperands); 1373 return success(); 1374 } 1375 }; 1376 1377 struct TestRemappedValue 1378 : public mlir::PassWrapper<TestRemappedValue, OperationPass<>> { 1379 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestRemappedValue) 1380 1381 StringRef getArgument() const final { return "test-remapped-value"; } 1382 StringRef getDescription() const final { 1383 return "Test public remapped value mechanism in ConversionPatternRewriter"; 1384 } 1385 void runOnOperation() override { 1386 TestRemapValueTypeConverter typeConverter; 1387 1388 mlir::RewritePatternSet patterns(&getContext()); 1389 patterns.add<OneVResOneVOperandOp1Converter>(&getContext()); 1390 patterns.add<TestChangeProducerTypeF32ToF64, TestUpdateConsumerType>( 1391 &getContext()); 1392 patterns.add<TestRemapValueInRegion>(typeConverter, &getContext()); 1393 1394 mlir::ConversionTarget target(getContext()); 1395 target.addLegalOp<ModuleOp, func::FuncOp, TestReturnOp>(); 1396 1397 // Expect the type_producer/type_consumer operations to only operate on f64. 1398 target.addDynamicallyLegalOp<TestTypeProducerOp>( 1399 [](TestTypeProducerOp op) { return op.getType().isF64(); }); 1400 target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) { 1401 return op.getOperand().getType().isF64(); 1402 }); 1403 1404 // We make OneVResOneVOperandOp1 legal only when it has more that one 1405 // operand. This will trigger the conversion that will replace one-operand 1406 // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1. 1407 target.addDynamicallyLegalOp<OneVResOneVOperandOp1>( 1408 [](Operation *op) { return op->getNumOperands() > 1; }); 1409 1410 if (failed(mlir::applyFullConversion(getOperation(), target, 1411 std::move(patterns)))) { 1412 signalPassFailure(); 1413 } 1414 } 1415 }; 1416 } // namespace 1417 1418 //===----------------------------------------------------------------------===// 1419 // Test patterns without a specific root operation kind 1420 //===----------------------------------------------------------------------===// 1421 1422 namespace { 1423 /// This pattern matches and removes any operation in the test dialect. 1424 struct RemoveTestDialectOps : public RewritePattern { 1425 RemoveTestDialectOps(MLIRContext *context) 1426 : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {} 1427 1428 LogicalResult matchAndRewrite(Operation *op, 1429 PatternRewriter &rewriter) const override { 1430 if (!isa<TestDialect>(op->getDialect())) 1431 return failure(); 1432 rewriter.eraseOp(op); 1433 return success(); 1434 } 1435 }; 1436 1437 struct TestUnknownRootOpDriver 1438 : public mlir::PassWrapper<TestUnknownRootOpDriver, OperationPass<>> { 1439 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestUnknownRootOpDriver) 1440 1441 StringRef getArgument() const final { 1442 return "test-legalize-unknown-root-patterns"; 1443 } 1444 StringRef getDescription() const final { 1445 return "Test public remapped value mechanism in ConversionPatternRewriter"; 1446 } 1447 void runOnOperation() override { 1448 mlir::RewritePatternSet patterns(&getContext()); 1449 patterns.add<RemoveTestDialectOps>(&getContext()); 1450 1451 mlir::ConversionTarget target(getContext()); 1452 target.addIllegalDialect<TestDialect>(); 1453 if (failed(applyPartialConversion(getOperation(), target, 1454 std::move(patterns)))) 1455 signalPassFailure(); 1456 } 1457 }; 1458 } // namespace 1459 1460 //===----------------------------------------------------------------------===// 1461 // Test patterns that uses operations and types defined at runtime 1462 //===----------------------------------------------------------------------===// 1463 1464 namespace { 1465 /// This pattern matches dynamic operations 'test.one_operand_two_results' and 1466 /// replace them with dynamic operations 'test.generic_dynamic_op'. 1467 struct RewriteDynamicOp : public RewritePattern { 1468 RewriteDynamicOp(MLIRContext *context) 1469 : RewritePattern("test.dynamic_one_operand_two_results", /*benefit=*/1, 1470 context) {} 1471 1472 LogicalResult matchAndRewrite(Operation *op, 1473 PatternRewriter &rewriter) const override { 1474 assert(op->getName().getStringRef() == 1475 "test.dynamic_one_operand_two_results" && 1476 "rewrite pattern should only match operations with the right name"); 1477 1478 OperationState state(op->getLoc(), "test.dynamic_generic", 1479 op->getOperands(), op->getResultTypes(), 1480 op->getAttrs()); 1481 auto *newOp = rewriter.create(state); 1482 rewriter.replaceOp(op, newOp->getResults()); 1483 return success(); 1484 } 1485 }; 1486 1487 struct TestRewriteDynamicOpDriver 1488 : public PassWrapper<TestRewriteDynamicOpDriver, OperationPass<>> { 1489 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestRewriteDynamicOpDriver) 1490 1491 void getDependentDialects(DialectRegistry ®istry) const override { 1492 registry.insert<TestDialect>(); 1493 } 1494 StringRef getArgument() const final { return "test-rewrite-dynamic-op"; } 1495 StringRef getDescription() const final { 1496 return "Test rewritting on dynamic operations"; 1497 } 1498 void runOnOperation() override { 1499 RewritePatternSet patterns(&getContext()); 1500 patterns.add<RewriteDynamicOp>(&getContext()); 1501 1502 ConversionTarget target(getContext()); 1503 target.addIllegalOp( 1504 OperationName("test.dynamic_one_operand_two_results", &getContext())); 1505 target.addLegalOp(OperationName("test.dynamic_generic", &getContext())); 1506 if (failed(applyPartialConversion(getOperation(), target, 1507 std::move(patterns)))) 1508 signalPassFailure(); 1509 } 1510 }; 1511 } // end anonymous namespace 1512 1513 //===----------------------------------------------------------------------===// 1514 // Test type conversions 1515 //===----------------------------------------------------------------------===// 1516 1517 namespace { 1518 struct TestTypeConversionProducer 1519 : public OpConversionPattern<TestTypeProducerOp> { 1520 using OpConversionPattern<TestTypeProducerOp>::OpConversionPattern; 1521 LogicalResult 1522 matchAndRewrite(TestTypeProducerOp op, OpAdaptor adaptor, 1523 ConversionPatternRewriter &rewriter) const final { 1524 Type resultType = op.getType(); 1525 Type convertedType = getTypeConverter() 1526 ? getTypeConverter()->convertType(resultType) 1527 : resultType; 1528 if (isa<FloatType>(resultType)) 1529 resultType = rewriter.getF64Type(); 1530 else if (resultType.isInteger(16)) 1531 resultType = rewriter.getIntegerType(64); 1532 else if (isa<test::TestRecursiveType>(resultType) && 1533 convertedType != resultType) 1534 resultType = convertedType; 1535 else 1536 return failure(); 1537 1538 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, resultType); 1539 return success(); 1540 } 1541 }; 1542 1543 /// Call signature conversion and then fail the rewrite to trigger the undo 1544 /// mechanism. 1545 struct TestSignatureConversionUndo 1546 : public OpConversionPattern<TestSignatureConversionUndoOp> { 1547 using OpConversionPattern<TestSignatureConversionUndoOp>::OpConversionPattern; 1548 1549 LogicalResult 1550 matchAndRewrite(TestSignatureConversionUndoOp op, OpAdaptor adaptor, 1551 ConversionPatternRewriter &rewriter) const final { 1552 (void)rewriter.convertRegionTypes(&op->getRegion(0), *getTypeConverter()); 1553 return failure(); 1554 } 1555 }; 1556 1557 /// Call signature conversion without providing a type converter to handle 1558 /// materializations. 1559 struct TestTestSignatureConversionNoConverter 1560 : public OpConversionPattern<TestSignatureConversionNoConverterOp> { 1561 TestTestSignatureConversionNoConverter(const TypeConverter &converter, 1562 MLIRContext *context) 1563 : OpConversionPattern<TestSignatureConversionNoConverterOp>(context), 1564 converter(converter) {} 1565 1566 LogicalResult 1567 matchAndRewrite(TestSignatureConversionNoConverterOp op, OpAdaptor adaptor, 1568 ConversionPatternRewriter &rewriter) const final { 1569 Region ®ion = op->getRegion(0); 1570 Block *entry = ®ion.front(); 1571 1572 // Convert the original entry arguments. 1573 TypeConverter::SignatureConversion result(entry->getNumArguments()); 1574 if (failed( 1575 converter.convertSignatureArgs(entry->getArgumentTypes(), result))) 1576 return failure(); 1577 rewriter.modifyOpInPlace(op, [&] { 1578 rewriter.applySignatureConversion(®ion.front(), result); 1579 }); 1580 return success(); 1581 } 1582 1583 const TypeConverter &converter; 1584 }; 1585 1586 /// Just forward the operands to the root op. This is essentially a no-op 1587 /// pattern that is used to trigger target materialization. 1588 struct TestTypeConsumerForward 1589 : public OpConversionPattern<TestTypeConsumerOp> { 1590 using OpConversionPattern<TestTypeConsumerOp>::OpConversionPattern; 1591 1592 LogicalResult 1593 matchAndRewrite(TestTypeConsumerOp op, OpAdaptor adaptor, 1594 ConversionPatternRewriter &rewriter) const final { 1595 rewriter.modifyOpInPlace(op, 1596 [&] { op->setOperands(adaptor.getOperands()); }); 1597 return success(); 1598 } 1599 }; 1600 1601 struct TestTypeConversionAnotherProducer 1602 : public OpRewritePattern<TestAnotherTypeProducerOp> { 1603 using OpRewritePattern<TestAnotherTypeProducerOp>::OpRewritePattern; 1604 1605 LogicalResult matchAndRewrite(TestAnotherTypeProducerOp op, 1606 PatternRewriter &rewriter) const final { 1607 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, op.getType()); 1608 return success(); 1609 } 1610 }; 1611 1612 struct TestReplaceWithLegalOp : public ConversionPattern { 1613 TestReplaceWithLegalOp(MLIRContext *ctx) 1614 : ConversionPattern("test.replace_with_legal_op", /*benefit=*/1, ctx) {} 1615 LogicalResult 1616 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 1617 ConversionPatternRewriter &rewriter) const final { 1618 rewriter.replaceOpWithNewOp<LegalOpD>(op, operands[0]); 1619 return success(); 1620 } 1621 }; 1622 1623 struct TestTypeConversionDriver 1624 : public PassWrapper<TestTypeConversionDriver, OperationPass<>> { 1625 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestTypeConversionDriver) 1626 1627 void getDependentDialects(DialectRegistry ®istry) const override { 1628 registry.insert<TestDialect>(); 1629 } 1630 StringRef getArgument() const final { 1631 return "test-legalize-type-conversion"; 1632 } 1633 StringRef getDescription() const final { 1634 return "Test various type conversion functionalities in DialectConversion"; 1635 } 1636 1637 void runOnOperation() override { 1638 // Initialize the type converter. 1639 SmallVector<Type, 2> conversionCallStack; 1640 TypeConverter converter; 1641 1642 /// Add the legal set of type conversions. 1643 converter.addConversion([](Type type) -> Type { 1644 // Treat F64 as legal. 1645 if (type.isF64()) 1646 return type; 1647 // Allow converting BF16/F16/F32 to F64. 1648 if (type.isBF16() || type.isF16() || type.isF32()) 1649 return FloatType::getF64(type.getContext()); 1650 // Otherwise, the type is illegal. 1651 return nullptr; 1652 }); 1653 converter.addConversion([](IntegerType type, SmallVectorImpl<Type> &) { 1654 // Drop all integer types. 1655 return success(); 1656 }); 1657 converter.addConversion( 1658 // Convert a recursive self-referring type into a non-self-referring 1659 // type named "outer_converted_type" that contains a SimpleAType. 1660 [&](test::TestRecursiveType type, 1661 SmallVectorImpl<Type> &results) -> std::optional<LogicalResult> { 1662 // If the type is already converted, return it to indicate that it is 1663 // legal. 1664 if (type.getName() == "outer_converted_type") { 1665 results.push_back(type); 1666 return success(); 1667 } 1668 1669 conversionCallStack.push_back(type); 1670 auto popConversionCallStack = llvm::make_scope_exit( 1671 [&conversionCallStack]() { conversionCallStack.pop_back(); }); 1672 1673 // If the type is on the call stack more than once (it is there at 1674 // least once because of the _current_ call, which is always the last 1675 // element on the stack), we've hit the recursive case. Just return 1676 // SimpleAType here to create a non-recursive type as a result. 1677 if (llvm::is_contained(ArrayRef(conversionCallStack).drop_back(), 1678 type)) { 1679 results.push_back(test::SimpleAType::get(type.getContext())); 1680 return success(); 1681 } 1682 1683 // Convert the body recursively. 1684 auto result = test::TestRecursiveType::get(type.getContext(), 1685 "outer_converted_type"); 1686 if (failed(result.setBody(converter.convertType(type.getBody())))) 1687 return failure(); 1688 results.push_back(result); 1689 return success(); 1690 }); 1691 1692 /// Add the legal set of type materializations. 1693 converter.addSourceMaterialization([](OpBuilder &builder, Type resultType, 1694 ValueRange inputs, 1695 Location loc) -> Value { 1696 // Allow casting from F64 back to F32. 1697 if (!resultType.isF16() && inputs.size() == 1 && 1698 inputs[0].getType().isF64()) 1699 return builder.create<TestCastOp>(loc, resultType, inputs).getResult(); 1700 // Allow producing an i32 or i64 from nothing. 1701 if ((resultType.isInteger(32) || resultType.isInteger(64)) && 1702 inputs.empty()) 1703 return builder.create<TestTypeProducerOp>(loc, resultType); 1704 // Allow producing an i64 from an integer. 1705 if (isa<IntegerType>(resultType) && inputs.size() == 1 && 1706 isa<IntegerType>(inputs[0].getType())) 1707 return builder.create<TestCastOp>(loc, resultType, inputs).getResult(); 1708 // Otherwise, fail. 1709 return nullptr; 1710 }); 1711 1712 // Initialize the conversion target. 1713 mlir::ConversionTarget target(getContext()); 1714 target.addLegalOp<LegalOpD>(); 1715 target.addDynamicallyLegalOp<TestTypeProducerOp>([](TestTypeProducerOp op) { 1716 auto recursiveType = dyn_cast<test::TestRecursiveType>(op.getType()); 1717 return op.getType().isF64() || op.getType().isInteger(64) || 1718 (recursiveType && 1719 recursiveType.getName() == "outer_converted_type"); 1720 }); 1721 target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) { 1722 return converter.isSignatureLegal(op.getFunctionType()) && 1723 converter.isLegal(&op.getBody()); 1724 }); 1725 target.addDynamicallyLegalOp<TestCastOp>([&](TestCastOp op) { 1726 // Allow casts from F64 to F32. 1727 return (*op.operand_type_begin()).isF64() && op.getType().isF32(); 1728 }); 1729 target.addDynamicallyLegalOp<TestSignatureConversionNoConverterOp>( 1730 [&](TestSignatureConversionNoConverterOp op) { 1731 return converter.isLegal(op.getRegion().front().getArgumentTypes()); 1732 }); 1733 1734 // Initialize the set of rewrite patterns. 1735 RewritePatternSet patterns(&getContext()); 1736 patterns.add<TestTypeConsumerForward, TestTypeConversionProducer, 1737 TestSignatureConversionUndo, 1738 TestTestSignatureConversionNoConverter>(converter, 1739 &getContext()); 1740 patterns.add<TestTypeConversionAnotherProducer, TestReplaceWithLegalOp>( 1741 &getContext()); 1742 mlir::populateAnyFunctionOpInterfaceTypeConversionPattern(patterns, 1743 converter); 1744 1745 if (failed(applyPartialConversion(getOperation(), target, 1746 std::move(patterns)))) 1747 signalPassFailure(); 1748 } 1749 }; 1750 } // namespace 1751 1752 //===----------------------------------------------------------------------===// 1753 // Test Target Materialization With No Uses 1754 //===----------------------------------------------------------------------===// 1755 1756 namespace { 1757 struct ForwardOperandPattern : public OpConversionPattern<TestTypeChangerOp> { 1758 using OpConversionPattern<TestTypeChangerOp>::OpConversionPattern; 1759 1760 LogicalResult 1761 matchAndRewrite(TestTypeChangerOp op, OpAdaptor adaptor, 1762 ConversionPatternRewriter &rewriter) const final { 1763 rewriter.replaceOp(op, adaptor.getOperands()); 1764 return success(); 1765 } 1766 }; 1767 1768 struct TestTargetMaterializationWithNoUses 1769 : public PassWrapper<TestTargetMaterializationWithNoUses, OperationPass<>> { 1770 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID( 1771 TestTargetMaterializationWithNoUses) 1772 1773 StringRef getArgument() const final { 1774 return "test-target-materialization-with-no-uses"; 1775 } 1776 StringRef getDescription() const final { 1777 return "Test a special case of target materialization in DialectConversion"; 1778 } 1779 1780 void runOnOperation() override { 1781 TypeConverter converter; 1782 converter.addConversion([](Type t) { return t; }); 1783 converter.addConversion([](IntegerType intTy) -> Type { 1784 if (intTy.getWidth() == 16) 1785 return IntegerType::get(intTy.getContext(), 64); 1786 return intTy; 1787 }); 1788 converter.addTargetMaterialization( 1789 [](OpBuilder &builder, Type type, ValueRange inputs, Location loc) { 1790 return builder.create<TestCastOp>(loc, type, inputs).getResult(); 1791 }); 1792 1793 ConversionTarget target(getContext()); 1794 target.addIllegalOp<TestTypeChangerOp>(); 1795 1796 RewritePatternSet patterns(&getContext()); 1797 patterns.add<ForwardOperandPattern>(converter, &getContext()); 1798 1799 if (failed(applyPartialConversion(getOperation(), target, 1800 std::move(patterns)))) 1801 signalPassFailure(); 1802 } 1803 }; 1804 } // namespace 1805 1806 //===----------------------------------------------------------------------===// 1807 // Test Block Merging 1808 //===----------------------------------------------------------------------===// 1809 1810 namespace { 1811 /// A rewriter pattern that tests that blocks can be merged. 1812 struct TestMergeBlock : public OpConversionPattern<TestMergeBlocksOp> { 1813 using OpConversionPattern<TestMergeBlocksOp>::OpConversionPattern; 1814 1815 LogicalResult 1816 matchAndRewrite(TestMergeBlocksOp op, OpAdaptor adaptor, 1817 ConversionPatternRewriter &rewriter) const final { 1818 Block &firstBlock = op.getBody().front(); 1819 Operation *branchOp = firstBlock.getTerminator(); 1820 Block *secondBlock = &*(std::next(op.getBody().begin())); 1821 auto succOperands = branchOp->getOperands(); 1822 SmallVector<Value, 2> replacements(succOperands); 1823 rewriter.eraseOp(branchOp); 1824 rewriter.mergeBlocks(secondBlock, &firstBlock, replacements); 1825 rewriter.modifyOpInPlace(op, [] {}); 1826 return success(); 1827 } 1828 }; 1829 1830 /// A rewrite pattern to tests the undo mechanism of blocks being merged. 1831 struct TestUndoBlocksMerge : public ConversionPattern { 1832 TestUndoBlocksMerge(MLIRContext *ctx) 1833 : ConversionPattern("test.undo_blocks_merge", /*benefit=*/1, ctx) {} 1834 LogicalResult 1835 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 1836 ConversionPatternRewriter &rewriter) const final { 1837 Block &firstBlock = op->getRegion(0).front(); 1838 Operation *branchOp = firstBlock.getTerminator(); 1839 Block *secondBlock = &*(std::next(op->getRegion(0).begin())); 1840 rewriter.setInsertionPointToStart(secondBlock); 1841 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type()); 1842 auto succOperands = branchOp->getOperands(); 1843 SmallVector<Value, 2> replacements(succOperands); 1844 rewriter.eraseOp(branchOp); 1845 rewriter.mergeBlocks(secondBlock, &firstBlock, replacements); 1846 rewriter.modifyOpInPlace(op, [] {}); 1847 return success(); 1848 } 1849 }; 1850 1851 /// A rewrite mechanism to inline the body of the op into its parent, when both 1852 /// ops can have a single block. 1853 struct TestMergeSingleBlockOps 1854 : public OpConversionPattern<SingleBlockImplicitTerminatorOp> { 1855 using OpConversionPattern< 1856 SingleBlockImplicitTerminatorOp>::OpConversionPattern; 1857 1858 LogicalResult 1859 matchAndRewrite(SingleBlockImplicitTerminatorOp op, OpAdaptor adaptor, 1860 ConversionPatternRewriter &rewriter) const final { 1861 SingleBlockImplicitTerminatorOp parentOp = 1862 op->getParentOfType<SingleBlockImplicitTerminatorOp>(); 1863 if (!parentOp) 1864 return failure(); 1865 Block &innerBlock = op.getRegion().front(); 1866 TerminatorOp innerTerminator = 1867 cast<TerminatorOp>(innerBlock.getTerminator()); 1868 rewriter.inlineBlockBefore(&innerBlock, op); 1869 rewriter.eraseOp(innerTerminator); 1870 rewriter.eraseOp(op); 1871 return success(); 1872 } 1873 }; 1874 1875 struct TestMergeBlocksPatternDriver 1876 : public PassWrapper<TestMergeBlocksPatternDriver, OperationPass<>> { 1877 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestMergeBlocksPatternDriver) 1878 1879 StringRef getArgument() const final { return "test-merge-blocks"; } 1880 StringRef getDescription() const final { 1881 return "Test Merging operation in ConversionPatternRewriter"; 1882 } 1883 void runOnOperation() override { 1884 MLIRContext *context = &getContext(); 1885 mlir::RewritePatternSet patterns(context); 1886 patterns.add<TestMergeBlock, TestUndoBlocksMerge, TestMergeSingleBlockOps>( 1887 context); 1888 ConversionTarget target(*context); 1889 target.addLegalOp<func::FuncOp, ModuleOp, TerminatorOp, TestBranchOp, 1890 TestTypeConsumerOp, TestTypeProducerOp, TestReturnOp>(); 1891 target.addIllegalOp<ILLegalOpF>(); 1892 1893 /// Expect the op to have a single block after legalization. 1894 target.addDynamicallyLegalOp<TestMergeBlocksOp>( 1895 [&](TestMergeBlocksOp op) -> bool { 1896 return llvm::hasSingleElement(op.getBody()); 1897 }); 1898 1899 /// Only allow `test.br` within test.merge_blocks op. 1900 target.addDynamicallyLegalOp<TestBranchOp>([&](TestBranchOp op) -> bool { 1901 return op->getParentOfType<TestMergeBlocksOp>(); 1902 }); 1903 1904 /// Expect that all nested test.SingleBlockImplicitTerminator ops are 1905 /// inlined. 1906 target.addDynamicallyLegalOp<SingleBlockImplicitTerminatorOp>( 1907 [&](SingleBlockImplicitTerminatorOp op) -> bool { 1908 return !op->getParentOfType<SingleBlockImplicitTerminatorOp>(); 1909 }); 1910 1911 DenseSet<Operation *> unlegalizedOps; 1912 ConversionConfig config; 1913 config.unlegalizedOps = &unlegalizedOps; 1914 (void)applyPartialConversion(getOperation(), target, std::move(patterns), 1915 config); 1916 for (auto *op : unlegalizedOps) 1917 op->emitRemark() << "op '" << op->getName() << "' is not legalizable"; 1918 } 1919 }; 1920 } // namespace 1921 1922 //===----------------------------------------------------------------------===// 1923 // Test Selective Replacement 1924 //===----------------------------------------------------------------------===// 1925 1926 namespace { 1927 /// A rewrite mechanism to inline the body of the op into its parent, when both 1928 /// ops can have a single block. 1929 struct TestSelectiveOpReplacementPattern : public OpRewritePattern<TestCastOp> { 1930 using OpRewritePattern<TestCastOp>::OpRewritePattern; 1931 1932 LogicalResult matchAndRewrite(TestCastOp op, 1933 PatternRewriter &rewriter) const final { 1934 if (op.getNumOperands() != 2) 1935 return failure(); 1936 OperandRange operands = op.getOperands(); 1937 1938 // Replace non-terminator uses with the first operand. 1939 rewriter.replaceUsesWithIf(op, operands[0], [](OpOperand &operand) { 1940 return operand.getOwner()->hasTrait<OpTrait::IsTerminator>(); 1941 }); 1942 // Replace everything else with the second operand if the operation isn't 1943 // dead. 1944 rewriter.replaceOp(op, op.getOperand(1)); 1945 return success(); 1946 } 1947 }; 1948 1949 struct TestSelectiveReplacementPatternDriver 1950 : public PassWrapper<TestSelectiveReplacementPatternDriver, 1951 OperationPass<>> { 1952 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID( 1953 TestSelectiveReplacementPatternDriver) 1954 1955 StringRef getArgument() const final { 1956 return "test-pattern-selective-replacement"; 1957 } 1958 StringRef getDescription() const final { 1959 return "Test selective replacement in the PatternRewriter"; 1960 } 1961 void runOnOperation() override { 1962 MLIRContext *context = &getContext(); 1963 mlir::RewritePatternSet patterns(context); 1964 patterns.add<TestSelectiveOpReplacementPattern>(context); 1965 (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)); 1966 } 1967 }; 1968 } // namespace 1969 1970 //===----------------------------------------------------------------------===// 1971 // PassRegistration 1972 //===----------------------------------------------------------------------===// 1973 1974 namespace mlir { 1975 namespace test { 1976 void registerPatternsTestPass() { 1977 PassRegistration<TestReturnTypeDriver>(); 1978 1979 PassRegistration<TestDerivedAttributeDriver>(); 1980 1981 PassRegistration<TestPatternDriver>(); 1982 PassRegistration<TestStrictPatternDriver>(); 1983 1984 PassRegistration<TestLegalizePatternDriver>([] { 1985 return std::make_unique<TestLegalizePatternDriver>(legalizerConversionMode); 1986 }); 1987 1988 PassRegistration<TestRemappedValue>(); 1989 1990 PassRegistration<TestUnknownRootOpDriver>(); 1991 1992 PassRegistration<TestTypeConversionDriver>(); 1993 PassRegistration<TestTargetMaterializationWithNoUses>(); 1994 1995 PassRegistration<TestRewriteDynamicOpDriver>(); 1996 1997 PassRegistration<TestMergeBlocksPatternDriver>(); 1998 PassRegistration<TestSelectiveReplacementPatternDriver>(); 1999 } 2000 } // namespace test 2001 } // namespace mlir 2002