xref: /llvm-project/mlir/test/lib/Dialect/Test/TestPatterns.cpp (revision 914e60748729387f45919e42335723eb9d2df460)
1 //===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "TestDialect.h"
10 #include "TestTypes.h"
11 #include "mlir/Dialect/Arith/IR/Arith.h"
12 #include "mlir/Dialect/Func/IR/FuncOps.h"
13 #include "mlir/Dialect/Func/Transforms/FuncConversions.h"
14 #include "mlir/Dialect/Tensor/IR/Tensor.h"
15 #include "mlir/IR/Matchers.h"
16 #include "mlir/Pass/Pass.h"
17 #include "mlir/Transforms/DialectConversion.h"
18 #include "mlir/Transforms/FoldUtils.h"
19 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
20 #include "llvm/ADT/ScopeExit.h"
21 
22 using namespace mlir;
23 using namespace test;
24 
25 // Native function for testing NativeCodeCall
26 static Value chooseOperand(Value input1, Value input2, BoolAttr choice) {
27   return choice.getValue() ? input1 : input2;
28 }
29 
30 static void createOpI(PatternRewriter &rewriter, Location loc, Value input) {
31   rewriter.create<OpI>(loc, input);
32 }
33 
34 static void handleNoResultOp(PatternRewriter &rewriter,
35                              OpSymbolBindingNoResult op) {
36   // Turn the no result op to a one-result op.
37   rewriter.create<OpSymbolBindingB>(op.getLoc(), op.getOperand().getType(),
38                                     op.getOperand());
39 }
40 
41 static bool getFirstI32Result(Operation *op, Value &value) {
42   if (!Type(op->getResult(0).getType()).isSignlessInteger(32))
43     return false;
44   value = op->getResult(0);
45   return true;
46 }
47 
48 static Value bindNativeCodeCallResult(Value value) { return value; }
49 
50 static SmallVector<Value, 2> bindMultipleNativeCodeCallResult(Value input1,
51                                                               Value input2) {
52   return SmallVector<Value, 2>({input2, input1});
53 }
54 
55 // Test that natives calls are only called once during rewrites.
56 // OpM_Test will return Pi, increased by 1 for each subsequent calls.
57 // This let us check the number of times OpM_Test was called by inspecting
58 // the returned value in the MLIR output.
59 static int64_t opMIncreasingValue = 314159265;
60 static Attribute opMTest(PatternRewriter &rewriter, Value val) {
61   int64_t i = opMIncreasingValue++;
62   return rewriter.getIntegerAttr(rewriter.getIntegerType(32), i);
63 }
64 
65 namespace {
66 #include "TestPatterns.inc"
67 } // namespace
68 
69 //===----------------------------------------------------------------------===//
70 // Test Reduce Pattern Interface
71 //===----------------------------------------------------------------------===//
72 
73 void test::populateTestReductionPatterns(RewritePatternSet &patterns) {
74   populateWithGenerated(patterns);
75 }
76 
77 //===----------------------------------------------------------------------===//
78 // Canonicalizer Driver.
79 //===----------------------------------------------------------------------===//
80 
81 namespace {
82 struct FoldingPattern : public RewritePattern {
83 public:
84   FoldingPattern(MLIRContext *context)
85       : RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(),
86                        /*benefit=*/1, context) {}
87 
88   LogicalResult matchAndRewrite(Operation *op,
89                                 PatternRewriter &rewriter) const override {
90     // Exercise createOrFold API for a single-result operation that is folded
91     // upon construction. The operation being created has an in-place folder,
92     // and it should be still present in the output. Furthermore, the folder
93     // should not crash when attempting to recover the (unchanged) operation
94     // result.
95     Value result = rewriter.createOrFold<TestOpInPlaceFold>(
96         op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0));
97     assert(result);
98     rewriter.replaceOp(op, result);
99     return success();
100   }
101 };
102 
103 /// This pattern creates a foldable operation at the entry point of the block.
104 /// This tests the situation where the operation folder will need to replace an
105 /// operation with a previously created constant that does not initially
106 /// dominate the operation to replace.
107 struct FolderInsertBeforePreviouslyFoldedConstantPattern
108     : public OpRewritePattern<TestCastOp> {
109 public:
110   using OpRewritePattern<TestCastOp>::OpRewritePattern;
111 
112   LogicalResult matchAndRewrite(TestCastOp op,
113                                 PatternRewriter &rewriter) const override {
114     if (!op->hasAttr("test_fold_before_previously_folded_op"))
115       return failure();
116     rewriter.setInsertionPointToStart(op->getBlock());
117 
118     auto constOp = rewriter.create<arith::ConstantOp>(
119         op.getLoc(), rewriter.getBoolAttr(true));
120     rewriter.replaceOpWithNewOp<TestCastOp>(op, rewriter.getI32Type(),
121                                             Value(constOp));
122     return success();
123   }
124 };
125 
126 /// This pattern matches test.op_commutative2 with the first operand being
127 /// another test.op_commutative2 with a constant on the right side and fold it
128 /// away by propagating it as its result. This is intend to check that patterns
129 /// are applied after the commutative property moves constant to the right.
130 struct FolderCommutativeOp2WithConstant
131     : public OpRewritePattern<TestCommutative2Op> {
132 public:
133   using OpRewritePattern<TestCommutative2Op>::OpRewritePattern;
134 
135   LogicalResult matchAndRewrite(TestCommutative2Op op,
136                                 PatternRewriter &rewriter) const override {
137     auto operand =
138         dyn_cast_or_null<TestCommutative2Op>(op->getOperand(0).getDefiningOp());
139     if (!operand)
140       return failure();
141     Attribute constInput;
142     if (!matchPattern(operand->getOperand(1), m_Constant(&constInput)))
143       return failure();
144     rewriter.replaceOp(op, operand->getOperand(1));
145     return success();
146   }
147 };
148 
149 /// This pattern matches test.any_attr_of_i32_str ops. In case of an integer
150 /// attribute with value smaller than MaxVal, it increments the value by 1.
151 template <int MaxVal>
152 struct IncrementIntAttribute : public OpRewritePattern<AnyAttrOfOp> {
153   using OpRewritePattern<AnyAttrOfOp>::OpRewritePattern;
154 
155   LogicalResult matchAndRewrite(AnyAttrOfOp op,
156                                 PatternRewriter &rewriter) const override {
157     auto intAttr = dyn_cast<IntegerAttr>(op.getAttr());
158     if (!intAttr)
159       return failure();
160     int64_t val = intAttr.getInt();
161     if (val >= MaxVal)
162       return failure();
163     rewriter.modifyOpInPlace(
164         op, [&]() { op.setAttrAttr(rewriter.getI32IntegerAttr(val + 1)); });
165     return success();
166   }
167 };
168 
169 /// This patterns adds an "eligible" attribute to "foo.maybe_eligible_op".
170 struct MakeOpEligible : public RewritePattern {
171   MakeOpEligible(MLIRContext *context)
172       : RewritePattern("foo.maybe_eligible_op", /*benefit=*/1, context) {}
173 
174   LogicalResult matchAndRewrite(Operation *op,
175                                 PatternRewriter &rewriter) const override {
176     if (op->hasAttr("eligible"))
177       return failure();
178     rewriter.modifyOpInPlace(
179         op, [&]() { op->setAttr("eligible", rewriter.getUnitAttr()); });
180     return success();
181   }
182 };
183 
184 /// This pattern hoists eligible ops out of a "test.one_region_op".
185 struct HoistEligibleOps : public OpRewritePattern<test::OneRegionOp> {
186   using OpRewritePattern<test::OneRegionOp>::OpRewritePattern;
187 
188   LogicalResult matchAndRewrite(test::OneRegionOp op,
189                                 PatternRewriter &rewriter) const override {
190     Operation *terminator = op.getRegion().front().getTerminator();
191     Operation *toBeHoisted = terminator->getOperands()[0].getDefiningOp();
192     if (toBeHoisted->getParentOp() != op)
193       return failure();
194     if (!toBeHoisted->hasAttr("eligible"))
195       return failure();
196     rewriter.moveOpBefore(toBeHoisted, op);
197     return success();
198   }
199 };
200 
201 /// This pattern moves "test.move_before_parent_op" before the parent op.
202 struct MoveBeforeParentOp : public RewritePattern {
203   MoveBeforeParentOp(MLIRContext *context)
204       : RewritePattern("test.move_before_parent_op", /*benefit=*/1, context) {}
205 
206   LogicalResult matchAndRewrite(Operation *op,
207                                 PatternRewriter &rewriter) const override {
208     // Do not hoist past functions.
209     if (isa<FunctionOpInterface>(op->getParentOp()))
210       return failure();
211     rewriter.moveOpBefore(op, op->getParentOp());
212     return success();
213   }
214 };
215 
216 /// This pattern inlines blocks that are nested in
217 /// "test.inline_blocks_into_parent" into the parent block.
218 struct InlineBlocksIntoParent : public RewritePattern {
219   InlineBlocksIntoParent(MLIRContext *context)
220       : RewritePattern("test.inline_blocks_into_parent", /*benefit=*/1,
221                        context) {}
222 
223   LogicalResult matchAndRewrite(Operation *op,
224                                 PatternRewriter &rewriter) const override {
225     bool changed = false;
226     for (Region &r : op->getRegions()) {
227       while (!r.empty()) {
228         rewriter.inlineBlockBefore(&r.front(), op);
229         changed = true;
230       }
231     }
232     return success(changed);
233   }
234 };
235 
236 /// This pattern splits blocks at "test.split_block_here" and replaces the op
237 /// with a new op (to prevent an infinite loop of block splitting).
238 struct SplitBlockHere : public RewritePattern {
239   SplitBlockHere(MLIRContext *context)
240       : RewritePattern("test.split_block_here", /*benefit=*/1, context) {}
241 
242   LogicalResult matchAndRewrite(Operation *op,
243                                 PatternRewriter &rewriter) const override {
244     rewriter.splitBlock(op->getBlock(), op->getIterator());
245     Operation *newOp = rewriter.create(
246         op->getLoc(),
247         OperationName("test.new_op", op->getContext()).getIdentifier(),
248         op->getOperands(), op->getResultTypes());
249     rewriter.replaceOp(op, newOp);
250     return success();
251   }
252 };
253 
254 /// This pattern clones "test.clone_me" ops.
255 struct CloneOp : public RewritePattern {
256   CloneOp(MLIRContext *context)
257       : RewritePattern("test.clone_me", /*benefit=*/1, context) {}
258 
259   LogicalResult matchAndRewrite(Operation *op,
260                                 PatternRewriter &rewriter) const override {
261     // Do not clone already cloned ops to avoid going into an infinite loop.
262     if (op->hasAttr("was_cloned"))
263       return failure();
264     Operation *cloned = rewriter.clone(*op);
265     cloned->setAttr("was_cloned", rewriter.getUnitAttr());
266     return success();
267   }
268 };
269 
270 /// This pattern clones regions of "test.clone_region_before" ops before the
271 /// parent block.
272 struct CloneRegionBeforeOp : public RewritePattern {
273   CloneRegionBeforeOp(MLIRContext *context)
274       : RewritePattern("test.clone_region_before", /*benefit=*/1, context) {}
275 
276   LogicalResult matchAndRewrite(Operation *op,
277                                 PatternRewriter &rewriter) const override {
278     // Do not clone already cloned ops to avoid going into an infinite loop.
279     if (op->hasAttr("was_cloned"))
280       return failure();
281     for (Region &r : op->getRegions())
282       rewriter.cloneRegionBefore(r, op->getBlock());
283     op->setAttr("was_cloned", rewriter.getUnitAttr());
284     return success();
285   }
286 };
287 
288 struct TestPatternDriver
289     : public PassWrapper<TestPatternDriver, OperationPass<>> {
290   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestPatternDriver)
291 
292   TestPatternDriver() = default;
293   TestPatternDriver(const TestPatternDriver &other) : PassWrapper(other) {}
294 
295   StringRef getArgument() const final { return "test-patterns"; }
296   StringRef getDescription() const final { return "Run test dialect patterns"; }
297   void runOnOperation() override {
298     mlir::RewritePatternSet patterns(&getContext());
299     populateWithGenerated(patterns);
300 
301     // Verify named pattern is generated with expected name.
302     patterns.add<FoldingPattern, TestNamedPatternRule,
303                  FolderInsertBeforePreviouslyFoldedConstantPattern,
304                  FolderCommutativeOp2WithConstant, HoistEligibleOps,
305                  MakeOpEligible>(&getContext());
306 
307     // Additional patterns for testing the GreedyPatternRewriteDriver.
308     patterns.insert<IncrementIntAttribute<3>>(&getContext());
309 
310     GreedyRewriteConfig config;
311     config.useTopDownTraversal = this->useTopDownTraversal;
312     config.maxIterations = this->maxIterations;
313     (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns),
314                                        config);
315   }
316 
317   Option<bool> useTopDownTraversal{
318       *this, "top-down",
319       llvm::cl::desc("Seed the worklist in general top-down order"),
320       llvm::cl::init(GreedyRewriteConfig().useTopDownTraversal)};
321   Option<int> maxIterations{
322       *this, "max-iterations",
323       llvm::cl::desc("Max. iterations in the GreedyRewriteConfig"),
324       llvm::cl::init(GreedyRewriteConfig().maxIterations)};
325 };
326 
327 struct DumpNotifications : public RewriterBase::Listener {
328   void notifyBlockInserted(Block *block, Region *previous,
329                            Region::iterator previousIt) override {
330     llvm::outs() << "notifyBlockInserted into "
331                  << block->getParentOp()->getName() << ": ";
332     if (previous == nullptr) {
333       llvm::outs() << "was unlinked\n";
334     } else {
335       llvm::outs() << "was linked\n";
336     }
337   }
338   void notifyOperationInserted(Operation *op,
339                                OpBuilder::InsertPoint previous) override {
340     llvm::outs() << "notifyOperationInserted: " << op->getName();
341     if (!previous.isSet()) {
342       llvm::outs() << ", was unlinked\n";
343     } else {
344       if (previous.getPoint() == previous.getBlock()->end()) {
345         llvm::outs() << ", was last in block\n";
346       } else {
347         llvm::outs() << ", previous = " << previous.getPoint()->getName()
348                      << "\n";
349       }
350     }
351   }
352   void notifyOperationErased(Operation *op) override {
353     llvm::outs() << "notifyOperationErased: " << op->getName() << "\n";
354   }
355 };
356 
357 struct TestStrictPatternDriver
358     : public PassWrapper<TestStrictPatternDriver, OperationPass<func::FuncOp>> {
359 public:
360   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestStrictPatternDriver)
361 
362   TestStrictPatternDriver() = default;
363   TestStrictPatternDriver(const TestStrictPatternDriver &other)
364       : PassWrapper(other) {
365     strictMode = other.strictMode;
366   }
367 
368   StringRef getArgument() const final { return "test-strict-pattern-driver"; }
369   StringRef getDescription() const final {
370     return "Test strict mode of pattern driver";
371   }
372 
373   void runOnOperation() override {
374     MLIRContext *ctx = &getContext();
375     mlir::RewritePatternSet patterns(ctx);
376     patterns.add<
377         // clang-format off
378         ChangeBlockOp,
379         CloneOp,
380         CloneRegionBeforeOp,
381         EraseOp,
382         ImplicitChangeOp,
383         InlineBlocksIntoParent,
384         InsertSameOp,
385         MoveBeforeParentOp,
386         ReplaceWithNewOp,
387         SplitBlockHere
388         // clang-format on
389         >(ctx);
390     SmallVector<Operation *> ops;
391     getOperation()->walk([&](Operation *op) {
392       StringRef opName = op->getName().getStringRef();
393       if (opName == "test.insert_same_op" || opName == "test.change_block_op" ||
394           opName == "test.replace_with_new_op" || opName == "test.erase_op" ||
395           opName == "test.move_before_parent_op" ||
396           opName == "test.inline_blocks_into_parent" ||
397           opName == "test.split_block_here" || opName == "test.clone_me" ||
398           opName == "test.clone_region_before") {
399         ops.push_back(op);
400       }
401     });
402 
403     DumpNotifications dumpNotifications;
404     GreedyRewriteConfig config;
405     config.listener = &dumpNotifications;
406     if (strictMode == "AnyOp") {
407       config.strictMode = GreedyRewriteStrictness::AnyOp;
408     } else if (strictMode == "ExistingAndNewOps") {
409       config.strictMode = GreedyRewriteStrictness::ExistingAndNewOps;
410     } else if (strictMode == "ExistingOps") {
411       config.strictMode = GreedyRewriteStrictness::ExistingOps;
412     } else {
413       llvm_unreachable("invalid strictness option");
414     }
415 
416     // Check if these transformations introduce visiting of operations that
417     // are not in the `ops` set (The new created ops are valid). An invalid
418     // operation will trigger the assertion while processing.
419     bool changed = false;
420     bool allErased = false;
421     (void)applyOpPatternsAndFold(ArrayRef(ops), std::move(patterns), config,
422                                  &changed, &allErased);
423     Builder b(ctx);
424     getOperation()->setAttr("pattern_driver_changed", b.getBoolAttr(changed));
425     getOperation()->setAttr("pattern_driver_all_erased",
426                             b.getBoolAttr(allErased));
427   }
428 
429   Option<std::string> strictMode{
430       *this, "strictness",
431       llvm::cl::desc("Can be {AnyOp, ExistingAndNewOps, ExistingOps}"),
432       llvm::cl::init("AnyOp")};
433 
434 private:
435   // New inserted operation is valid for further transformation.
436   class InsertSameOp : public RewritePattern {
437   public:
438     InsertSameOp(MLIRContext *context)
439         : RewritePattern("test.insert_same_op", /*benefit=*/1, context) {}
440 
441     LogicalResult matchAndRewrite(Operation *op,
442                                   PatternRewriter &rewriter) const override {
443       if (op->hasAttr("skip"))
444         return failure();
445 
446       Operation *newOp =
447           rewriter.create(op->getLoc(), op->getName().getIdentifier(),
448                           op->getOperands(), op->getResultTypes());
449       rewriter.modifyOpInPlace(
450           op, [&]() { op->setAttr("skip", rewriter.getBoolAttr(true)); });
451       newOp->setAttr("skip", rewriter.getBoolAttr(true));
452 
453       return success();
454     }
455   };
456 
457   // Replace an operation may introduce the re-visiting of its users.
458   class ReplaceWithNewOp : public RewritePattern {
459   public:
460     ReplaceWithNewOp(MLIRContext *context)
461         : RewritePattern("test.replace_with_new_op", /*benefit=*/1, context) {}
462 
463     LogicalResult matchAndRewrite(Operation *op,
464                                   PatternRewriter &rewriter) const override {
465       Operation *newOp;
466       if (op->hasAttr("create_erase_op")) {
467         newOp = rewriter.create(
468             op->getLoc(),
469             OperationName("test.erase_op", op->getContext()).getIdentifier(),
470             ValueRange(), TypeRange());
471       } else {
472         newOp = rewriter.create(
473             op->getLoc(),
474             OperationName("test.new_op", op->getContext()).getIdentifier(),
475             op->getOperands(), op->getResultTypes());
476       }
477       rewriter.replaceOp(op, newOp->getResults());
478       return success();
479     }
480   };
481 
482   // Remove an operation may introduce the re-visiting of its operands.
483   class EraseOp : public RewritePattern {
484   public:
485     EraseOp(MLIRContext *context)
486         : RewritePattern("test.erase_op", /*benefit=*/1, context) {}
487     LogicalResult matchAndRewrite(Operation *op,
488                                   PatternRewriter &rewriter) const override {
489       rewriter.eraseOp(op);
490       return success();
491     }
492   };
493 
494   // The following two patterns test RewriterBase::replaceAllUsesWith.
495   //
496   // That function replaces all usages of a Block (or a Value) with another one
497   // *and tracks these changes in the rewriter.* The GreedyPatternRewriteDriver
498   // with GreedyRewriteStrictness::AnyOp uses that tracking to construct its
499   // worklist: when an op is modified, it is added to the worklist. The two
500   // patterns below make the tracking observable: ChangeBlockOp replaces all
501   // usages of a block and that pattern is applied because the corresponding ops
502   // are put on the initial worklist (see above). ImplicitChangeOp does an
503   // unrelated change but ops of the corresponding type are *not* on the initial
504   // worklist, so the effect of the second pattern is only visible if the
505   // tracking and subsequent adding to the worklist actually works.
506 
507   // Replace all usages of the first successor with the second successor.
508   class ChangeBlockOp : public RewritePattern {
509   public:
510     ChangeBlockOp(MLIRContext *context)
511         : RewritePattern("test.change_block_op", /*benefit=*/1, context) {}
512     LogicalResult matchAndRewrite(Operation *op,
513                                   PatternRewriter &rewriter) const override {
514       if (op->getNumSuccessors() < 2)
515         return failure();
516       Block *firstSuccessor = op->getSuccessor(0);
517       Block *secondSuccessor = op->getSuccessor(1);
518       if (firstSuccessor == secondSuccessor)
519         return failure();
520       // This is the function being tested:
521       rewriter.replaceAllUsesWith(firstSuccessor, secondSuccessor);
522       // Using the following line instead would make the test fail:
523       // firstSuccessor->replaceAllUsesWith(secondSuccessor);
524       return success();
525     }
526   };
527 
528   // Changes the successor to the parent block.
529   class ImplicitChangeOp : public RewritePattern {
530   public:
531     ImplicitChangeOp(MLIRContext *context)
532         : RewritePattern("test.implicit_change_op", /*benefit=*/1, context) {}
533     LogicalResult matchAndRewrite(Operation *op,
534                                   PatternRewriter &rewriter) const override {
535       if (op->getNumSuccessors() < 1 || op->getSuccessor(0) == op->getBlock())
536         return failure();
537       rewriter.modifyOpInPlace(op,
538                                [&]() { op->setSuccessor(op->getBlock(), 0); });
539       return success();
540     }
541   };
542 };
543 
544 } // namespace
545 
546 //===----------------------------------------------------------------------===//
547 // ReturnType Driver.
548 //===----------------------------------------------------------------------===//
549 
550 namespace {
551 // Generate ops for each instance where the type can be successfully inferred.
552 template <typename OpTy>
553 static void invokeCreateWithInferredReturnType(Operation *op) {
554   auto *context = op->getContext();
555   auto fop = op->getParentOfType<func::FuncOp>();
556   auto location = UnknownLoc::get(context);
557   OpBuilder b(op);
558   b.setInsertionPointAfter(op);
559 
560   // Use permutations of 2 args as operands.
561   assert(fop.getNumArguments() >= 2);
562   for (int i = 0, e = fop.getNumArguments(); i < e; ++i) {
563     for (int j = 0; j < e; ++j) {
564       std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}};
565       SmallVector<Type, 2> inferredReturnTypes;
566       if (succeeded(OpTy::inferReturnTypes(
567               context, std::nullopt, values, op->getDiscardableAttrDictionary(),
568               op->getPropertiesStorage(), op->getRegions(),
569               inferredReturnTypes))) {
570         OperationState state(location, OpTy::getOperationName());
571         // TODO: Expand to regions.
572         OpTy::build(b, state, values, op->getAttrs());
573         (void)b.create(state);
574       }
575     }
576   }
577 }
578 
579 static void reifyReturnShape(Operation *op) {
580   OpBuilder b(op);
581 
582   // Use permutations of 2 args as operands.
583   auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op);
584   SmallVector<Value, 2> shapes;
585   if (failed(shapedOp.reifyReturnTypeShapes(b, op->getOperands(), shapes)) ||
586       !llvm::hasSingleElement(shapes))
587     return;
588   for (const auto &it : llvm::enumerate(shapes)) {
589     op->emitRemark() << "value " << it.index() << ": "
590                      << it.value().getDefiningOp();
591   }
592 }
593 
594 struct TestReturnTypeDriver
595     : public PassWrapper<TestReturnTypeDriver, OperationPass<func::FuncOp>> {
596   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestReturnTypeDriver)
597 
598   void getDependentDialects(DialectRegistry &registry) const override {
599     registry.insert<tensor::TensorDialect>();
600   }
601   StringRef getArgument() const final { return "test-return-type"; }
602   StringRef getDescription() const final { return "Run return type functions"; }
603 
604   void runOnOperation() override {
605     if (getOperation().getName() == "testCreateFunctions") {
606       std::vector<Operation *> ops;
607       // Collect ops to avoid triggering on inserted ops.
608       for (auto &op : getOperation().getBody().front())
609         ops.push_back(&op);
610       // Generate test patterns for each, but skip terminator.
611       for (auto *op : llvm::ArrayRef(ops).drop_back()) {
612         // Test create method of each of the Op classes below. The resultant
613         // output would be in reverse order underneath `op` from which
614         // the attributes and regions are used.
615         invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op);
616         invokeCreateWithInferredReturnType<OpWithInferTypeAdaptorInterfaceOp>(
617             op);
618         invokeCreateWithInferredReturnType<
619             OpWithShapedTypeInferTypeInterfaceOp>(op);
620       };
621       return;
622     }
623     if (getOperation().getName() == "testReifyFunctions") {
624       std::vector<Operation *> ops;
625       // Collect ops to avoid triggering on inserted ops.
626       for (auto &op : getOperation().getBody().front())
627         if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op))
628           ops.push_back(&op);
629       // Generate test patterns for each, but skip terminator.
630       for (auto *op : ops)
631         reifyReturnShape(op);
632     }
633   }
634 };
635 } // namespace
636 
637 namespace {
638 struct TestDerivedAttributeDriver
639     : public PassWrapper<TestDerivedAttributeDriver,
640                          OperationPass<func::FuncOp>> {
641   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestDerivedAttributeDriver)
642 
643   StringRef getArgument() const final { return "test-derived-attr"; }
644   StringRef getDescription() const final {
645     return "Run test derived attributes";
646   }
647   void runOnOperation() override;
648 };
649 } // namespace
650 
651 void TestDerivedAttributeDriver::runOnOperation() {
652   getOperation().walk([](DerivedAttributeOpInterface dOp) {
653     auto dAttr = dOp.materializeDerivedAttributes();
654     if (!dAttr)
655       return;
656     for (auto d : dAttr)
657       dOp.emitRemark() << d.getName().getValue() << " = " << d.getValue();
658   });
659 }
660 
661 //===----------------------------------------------------------------------===//
662 // Legalization Driver.
663 //===----------------------------------------------------------------------===//
664 
665 namespace {
666 //===----------------------------------------------------------------------===//
667 // Region-Block Rewrite Testing
668 
669 /// This pattern is a simple pattern that inlines the first region of a given
670 /// operation into the parent region.
671 struct TestRegionRewriteBlockMovement : public ConversionPattern {
672   TestRegionRewriteBlockMovement(MLIRContext *ctx)
673       : ConversionPattern("test.region", 1, ctx) {}
674 
675   LogicalResult
676   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
677                   ConversionPatternRewriter &rewriter) const final {
678     // Inline this region into the parent region.
679     auto &parentRegion = *op->getParentRegion();
680     auto &opRegion = op->getRegion(0);
681     if (op->getDiscardableAttr("legalizer.should_clone"))
682       rewriter.cloneRegionBefore(opRegion, parentRegion, parentRegion.end());
683     else
684       rewriter.inlineRegionBefore(opRegion, parentRegion, parentRegion.end());
685 
686     if (op->getDiscardableAttr("legalizer.erase_old_blocks")) {
687       while (!opRegion.empty())
688         rewriter.eraseBlock(&opRegion.front());
689     }
690 
691     // Drop this operation.
692     rewriter.eraseOp(op);
693     return success();
694   }
695 };
696 /// This pattern is a simple pattern that generates a region containing an
697 /// illegal operation.
698 struct TestRegionRewriteUndo : public RewritePattern {
699   TestRegionRewriteUndo(MLIRContext *ctx)
700       : RewritePattern("test.region_builder", 1, ctx) {}
701 
702   LogicalResult matchAndRewrite(Operation *op,
703                                 PatternRewriter &rewriter) const final {
704     // Create the region operation with an entry block containing arguments.
705     OperationState newRegion(op->getLoc(), "test.region");
706     newRegion.addRegion();
707     auto *regionOp = rewriter.create(newRegion);
708     auto *entryBlock = rewriter.createBlock(&regionOp->getRegion(0));
709     entryBlock->addArgument(rewriter.getIntegerType(64),
710                             rewriter.getUnknownLoc());
711 
712     // Add an explicitly illegal operation to ensure the conversion fails.
713     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
714     rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>());
715 
716     // Drop this operation.
717     rewriter.eraseOp(op);
718     return success();
719   }
720 };
721 /// A simple pattern that creates a block at the end of the parent region of the
722 /// matched operation.
723 struct TestCreateBlock : public RewritePattern {
724   TestCreateBlock(MLIRContext *ctx)
725       : RewritePattern("test.create_block", /*benefit=*/1, ctx) {}
726 
727   LogicalResult matchAndRewrite(Operation *op,
728                                 PatternRewriter &rewriter) const final {
729     Region &region = *op->getParentRegion();
730     Type i32Type = rewriter.getIntegerType(32);
731     Location loc = op->getLoc();
732     rewriter.createBlock(&region, region.end(), {i32Type, i32Type}, {loc, loc});
733     rewriter.create<TerminatorOp>(loc);
734     rewriter.eraseOp(op);
735     return success();
736   }
737 };
738 
739 /// A simple pattern that creates a block containing an invalid operation in
740 /// order to trigger the block creation undo mechanism.
741 struct TestCreateIllegalBlock : public RewritePattern {
742   TestCreateIllegalBlock(MLIRContext *ctx)
743       : RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {}
744 
745   LogicalResult matchAndRewrite(Operation *op,
746                                 PatternRewriter &rewriter) const final {
747     Region &region = *op->getParentRegion();
748     Type i32Type = rewriter.getIntegerType(32);
749     Location loc = op->getLoc();
750     rewriter.createBlock(&region, region.end(), {i32Type, i32Type}, {loc, loc});
751     // Create an illegal op to ensure the conversion fails.
752     rewriter.create<ILLegalOpF>(loc, i32Type);
753     rewriter.create<TerminatorOp>(loc);
754     rewriter.eraseOp(op);
755     return success();
756   }
757 };
758 
759 /// A simple pattern that tests the undo mechanism when replacing the uses of a
760 /// block argument.
761 struct TestUndoBlockArgReplace : public ConversionPattern {
762   TestUndoBlockArgReplace(MLIRContext *ctx)
763       : ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {}
764 
765   LogicalResult
766   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
767                   ConversionPatternRewriter &rewriter) const final {
768     auto illegalOp =
769         rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
770     rewriter.replaceUsesOfBlockArgument(op->getRegion(0).getArgument(0),
771                                         illegalOp->getResult(0));
772     rewriter.modifyOpInPlace(op, [] {});
773     return success();
774   }
775 };
776 
777 /// This pattern hoists ops out of a "test.hoist_me" and then fails conversion.
778 /// This is to test the rollback logic.
779 struct TestUndoMoveOpBefore : public ConversionPattern {
780   TestUndoMoveOpBefore(MLIRContext *ctx)
781       : ConversionPattern("test.hoist_me", /*benefit=*/1, ctx) {}
782 
783   LogicalResult
784   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
785                   ConversionPatternRewriter &rewriter) const override {
786     rewriter.moveOpBefore(op, op->getParentOp());
787     // Replace with an illegal op to ensure the conversion fails.
788     rewriter.replaceOpWithNewOp<ILLegalOpF>(op, rewriter.getF32Type());
789     return success();
790   }
791 };
792 
793 /// A rewrite pattern that tests the undo mechanism when erasing a block.
794 struct TestUndoBlockErase : public ConversionPattern {
795   TestUndoBlockErase(MLIRContext *ctx)
796       : ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {}
797 
798   LogicalResult
799   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
800                   ConversionPatternRewriter &rewriter) const final {
801     Block *secondBlock = &*std::next(op->getRegion(0).begin());
802     rewriter.setInsertionPointToStart(secondBlock);
803     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
804     rewriter.eraseBlock(secondBlock);
805     rewriter.modifyOpInPlace(op, [] {});
806     return success();
807   }
808 };
809 
810 //===----------------------------------------------------------------------===//
811 // Type-Conversion Rewrite Testing
812 
813 /// This patterns erases a region operation that has had a type conversion.
814 struct TestDropOpSignatureConversion : public ConversionPattern {
815   TestDropOpSignatureConversion(MLIRContext *ctx,
816                                 const TypeConverter &converter)
817       : ConversionPattern(converter, "test.drop_region_op", 1, ctx) {}
818   LogicalResult
819   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
820                   ConversionPatternRewriter &rewriter) const override {
821     Region &region = op->getRegion(0);
822     Block *entry = &region.front();
823 
824     // Convert the original entry arguments.
825     const TypeConverter &converter = *getTypeConverter();
826     TypeConverter::SignatureConversion result(entry->getNumArguments());
827     if (failed(converter.convertSignatureArgs(entry->getArgumentTypes(),
828                                               result)) ||
829         failed(rewriter.convertRegionTypes(&region, converter, &result)))
830       return failure();
831 
832     // Convert the region signature and just drop the operation.
833     rewriter.eraseOp(op);
834     return success();
835   }
836 };
837 /// This pattern simply updates the operands of the given operation.
838 struct TestPassthroughInvalidOp : public ConversionPattern {
839   TestPassthroughInvalidOp(MLIRContext *ctx)
840       : ConversionPattern("test.invalid", 1, ctx) {}
841   LogicalResult
842   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
843                   ConversionPatternRewriter &rewriter) const final {
844     rewriter.replaceOpWithNewOp<TestValidOp>(op, std::nullopt, operands,
845                                              std::nullopt);
846     return success();
847   }
848 };
849 /// This pattern handles the case of a split return value.
850 struct TestSplitReturnType : public ConversionPattern {
851   TestSplitReturnType(MLIRContext *ctx)
852       : ConversionPattern("test.return", 1, ctx) {}
853   LogicalResult
854   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
855                   ConversionPatternRewriter &rewriter) const final {
856     // Check for a return of F32.
857     if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32())
858       return failure();
859 
860     // Check if the first operation is a cast operation, if it is we use the
861     // results directly.
862     auto *defOp = operands[0].getDefiningOp();
863     if (auto packerOp =
864             llvm::dyn_cast_or_null<UnrealizedConversionCastOp>(defOp)) {
865       rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands());
866       return success();
867     }
868 
869     // Otherwise, fail to match.
870     return failure();
871   }
872 };
873 
874 //===----------------------------------------------------------------------===//
875 // Multi-Level Type-Conversion Rewrite Testing
876 struct TestChangeProducerTypeI32ToF32 : public ConversionPattern {
877   TestChangeProducerTypeI32ToF32(MLIRContext *ctx)
878       : ConversionPattern("test.type_producer", 1, ctx) {}
879   LogicalResult
880   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
881                   ConversionPatternRewriter &rewriter) const final {
882     // If the type is I32, change the type to F32.
883     if (!Type(*op->result_type_begin()).isSignlessInteger(32))
884       return failure();
885     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type());
886     return success();
887   }
888 };
889 struct TestChangeProducerTypeF32ToF64 : public ConversionPattern {
890   TestChangeProducerTypeF32ToF64(MLIRContext *ctx)
891       : ConversionPattern("test.type_producer", 1, ctx) {}
892   LogicalResult
893   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
894                   ConversionPatternRewriter &rewriter) const final {
895     // If the type is F32, change the type to F64.
896     if (!Type(*op->result_type_begin()).isF32())
897       return rewriter.notifyMatchFailure(op, "expected single f32 operand");
898     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type());
899     return success();
900   }
901 };
902 struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern {
903   TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx)
904       : ConversionPattern("test.type_producer", 10, ctx) {}
905   LogicalResult
906   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
907                   ConversionPatternRewriter &rewriter) const final {
908     // Always convert to B16, even though it is not a legal type. This tests
909     // that values are unmapped correctly.
910     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type());
911     return success();
912   }
913 };
914 struct TestUpdateConsumerType : public ConversionPattern {
915   TestUpdateConsumerType(MLIRContext *ctx)
916       : ConversionPattern("test.type_consumer", 1, ctx) {}
917   LogicalResult
918   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
919                   ConversionPatternRewriter &rewriter) const final {
920     // Verify that the incoming operand has been successfully remapped to F64.
921     if (!operands[0].getType().isF64())
922       return failure();
923     rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]);
924     return success();
925   }
926 };
927 
928 //===----------------------------------------------------------------------===//
929 // Non-Root Replacement Rewrite Testing
930 /// This pattern generates an invalid operation, but replaces it before the
931 /// pattern is finished. This checks that we don't need to legalize the
932 /// temporary op.
933 struct TestNonRootReplacement : public RewritePattern {
934   TestNonRootReplacement(MLIRContext *ctx)
935       : RewritePattern("test.replace_non_root", 1, ctx) {}
936 
937   LogicalResult matchAndRewrite(Operation *op,
938                                 PatternRewriter &rewriter) const final {
939     auto resultType = *op->result_type_begin();
940     auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType);
941     auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType);
942 
943     rewriter.replaceOp(illegalOp, legalOp);
944     rewriter.replaceOp(op, illegalOp);
945     return success();
946   }
947 };
948 
949 //===----------------------------------------------------------------------===//
950 // Recursive Rewrite Testing
951 /// This pattern is applied to the same operation multiple times, but has a
952 /// bounded recursion.
953 struct TestBoundedRecursiveRewrite
954     : public OpRewritePattern<TestRecursiveRewriteOp> {
955   using OpRewritePattern<TestRecursiveRewriteOp>::OpRewritePattern;
956 
957   void initialize() {
958     // The conversion target handles bounding the recursion of this pattern.
959     setHasBoundedRewriteRecursion();
960   }
961 
962   LogicalResult matchAndRewrite(TestRecursiveRewriteOp op,
963                                 PatternRewriter &rewriter) const final {
964     // Decrement the depth of the op in-place.
965     rewriter.modifyOpInPlace(op, [&] {
966       op->setAttr("depth", rewriter.getI64IntegerAttr(op.getDepth() - 1));
967     });
968     return success();
969   }
970 };
971 
972 struct TestNestedOpCreationUndoRewrite
973     : public OpRewritePattern<IllegalOpWithRegionAnchor> {
974   using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern;
975 
976   LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op,
977                                 PatternRewriter &rewriter) const final {
978     // rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
979     rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
980     return success();
981   };
982 };
983 
984 // This pattern matches `test.blackhole` and delete this op and its producer.
985 struct TestReplaceEraseOp : public OpRewritePattern<BlackHoleOp> {
986   using OpRewritePattern<BlackHoleOp>::OpRewritePattern;
987 
988   LogicalResult matchAndRewrite(BlackHoleOp op,
989                                 PatternRewriter &rewriter) const final {
990     Operation *producer = op.getOperand().getDefiningOp();
991     // Always erase the user before the producer, the framework should handle
992     // this correctly.
993     rewriter.eraseOp(op);
994     rewriter.eraseOp(producer);
995     return success();
996   };
997 };
998 
999 // This pattern replaces explicitly illegal op with explicitly legal op,
1000 // but in addition creates unregistered operation.
1001 struct TestCreateUnregisteredOp : public OpRewritePattern<ILLegalOpG> {
1002   using OpRewritePattern<ILLegalOpG>::OpRewritePattern;
1003 
1004   LogicalResult matchAndRewrite(ILLegalOpG op,
1005                                 PatternRewriter &rewriter) const final {
1006     IntegerAttr attr = rewriter.getI32IntegerAttr(0);
1007     Value val = rewriter.create<arith::ConstantOp>(op->getLoc(), attr);
1008     rewriter.replaceOpWithNewOp<LegalOpC>(op, val);
1009     return success();
1010   };
1011 };
1012 } // namespace
1013 
1014 namespace {
1015 struct TestTypeConverter : public TypeConverter {
1016   using TypeConverter::TypeConverter;
1017   TestTypeConverter() {
1018     addConversion(convertType);
1019     addArgumentMaterialization(materializeCast);
1020     addSourceMaterialization(materializeCast);
1021   }
1022 
1023   static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) {
1024     // Drop I16 types.
1025     if (t.isSignlessInteger(16))
1026       return success();
1027 
1028     // Convert I64 to F64.
1029     if (t.isSignlessInteger(64)) {
1030       results.push_back(FloatType::getF64(t.getContext()));
1031       return success();
1032     }
1033 
1034     // Convert I42 to I43.
1035     if (t.isInteger(42)) {
1036       results.push_back(IntegerType::get(t.getContext(), 43));
1037       return success();
1038     }
1039 
1040     // Split F32 into F16,F16.
1041     if (t.isF32()) {
1042       results.assign(2, FloatType::getF16(t.getContext()));
1043       return success();
1044     }
1045 
1046     // Otherwise, convert the type directly.
1047     results.push_back(t);
1048     return success();
1049   }
1050 
1051   /// Hook for materializing a conversion. This is necessary because we generate
1052   /// 1->N type mappings.
1053   static std::optional<Value> materializeCast(OpBuilder &builder,
1054                                               Type resultType,
1055                                               ValueRange inputs, Location loc) {
1056     return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
1057   }
1058 };
1059 
1060 struct TestLegalizePatternDriver
1061     : public PassWrapper<TestLegalizePatternDriver, OperationPass<>> {
1062   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestLegalizePatternDriver)
1063 
1064   StringRef getArgument() const final { return "test-legalize-patterns"; }
1065   StringRef getDescription() const final {
1066     return "Run test dialect legalization patterns";
1067   }
1068   /// The mode of conversion to use with the driver.
1069   enum class ConversionMode { Analysis, Full, Partial };
1070 
1071   TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {}
1072 
1073   void getDependentDialects(DialectRegistry &registry) const override {
1074     registry.insert<func::FuncDialect, test::TestDialect>();
1075   }
1076 
1077   void runOnOperation() override {
1078     TestTypeConverter converter;
1079     mlir::RewritePatternSet patterns(&getContext());
1080     populateWithGenerated(patterns);
1081     patterns
1082         .add<TestRegionRewriteBlockMovement, TestRegionRewriteUndo,
1083              TestCreateBlock, TestCreateIllegalBlock, TestUndoBlockArgReplace,
1084              TestUndoBlockErase, TestPassthroughInvalidOp, TestSplitReturnType,
1085              TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64,
1086              TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType,
1087              TestNonRootReplacement, TestBoundedRecursiveRewrite,
1088              TestNestedOpCreationUndoRewrite, TestReplaceEraseOp,
1089              TestCreateUnregisteredOp, TestUndoMoveOpBefore>(&getContext());
1090     patterns.add<TestDropOpSignatureConversion>(&getContext(), converter);
1091     mlir::populateAnyFunctionOpInterfaceTypeConversionPattern(patterns,
1092                                                               converter);
1093     mlir::populateCallOpTypeConversionPattern(patterns, converter);
1094 
1095     // Define the conversion target used for the test.
1096     ConversionTarget target(getContext());
1097     target.addLegalOp<ModuleOp>();
1098     target.addLegalOp<LegalOpA, LegalOpB, LegalOpC, TestCastOp, TestValidOp,
1099                       TerminatorOp, OneRegionOp>();
1100     target
1101         .addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>();
1102     target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
1103       // Don't allow F32 operands.
1104       return llvm::none_of(op.getOperandTypes(),
1105                            [](Type type) { return type.isF32(); });
1106     });
1107     target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
1108       return converter.isSignatureLegal(op.getFunctionType()) &&
1109              converter.isLegal(&op.getBody());
1110     });
1111     target.addDynamicallyLegalOp<func::CallOp>(
1112         [&](func::CallOp op) { return converter.isLegal(op); });
1113 
1114     // TestCreateUnregisteredOp creates `arith.constant` operation,
1115     // which was not added to target intentionally to test
1116     // correct error code from conversion driver.
1117     target.addDynamicallyLegalOp<ILLegalOpG>([](ILLegalOpG) { return false; });
1118 
1119     // Expect the type_producer/type_consumer operations to only operate on f64.
1120     target.addDynamicallyLegalOp<TestTypeProducerOp>(
1121         [](TestTypeProducerOp op) { return op.getType().isF64(); });
1122     target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
1123       return op.getOperand().getType().isF64();
1124     });
1125 
1126     // Check support for marking certain operations as recursively legal.
1127     target.markOpRecursivelyLegal<func::FuncOp, ModuleOp>([](Operation *op) {
1128       return static_cast<bool>(
1129           op->getAttrOfType<UnitAttr>("test.recursively_legal"));
1130     });
1131 
1132     // Mark the bound recursion operation as dynamically legal.
1133     target.addDynamicallyLegalOp<TestRecursiveRewriteOp>(
1134         [](TestRecursiveRewriteOp op) { return op.getDepth() == 0; });
1135 
1136     // Handle a partial conversion.
1137     if (mode == ConversionMode::Partial) {
1138       DenseSet<Operation *> unlegalizedOps;
1139       if (failed(applyPartialConversion(
1140               getOperation(), target, std::move(patterns), &unlegalizedOps))) {
1141         getOperation()->emitRemark() << "applyPartialConversion failed";
1142       }
1143       // Emit remarks for each legalizable operation.
1144       for (auto *op : unlegalizedOps)
1145         op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
1146       return;
1147     }
1148 
1149     // Handle a full conversion.
1150     if (mode == ConversionMode::Full) {
1151       // Check support for marking unknown operations as dynamically legal.
1152       target.markUnknownOpDynamicallyLegal([](Operation *op) {
1153         return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal");
1154       });
1155 
1156       if (failed(applyFullConversion(getOperation(), target,
1157                                      std::move(patterns)))) {
1158         getOperation()->emitRemark() << "applyFullConversion failed";
1159       }
1160       return;
1161     }
1162 
1163     // Otherwise, handle an analysis conversion.
1164     assert(mode == ConversionMode::Analysis);
1165 
1166     // Analyze the convertible operations.
1167     DenseSet<Operation *> legalizedOps;
1168     if (failed(applyAnalysisConversion(getOperation(), target,
1169                                        std::move(patterns), legalizedOps)))
1170       return signalPassFailure();
1171 
1172     // Emit remarks for each legalizable operation.
1173     for (auto *op : legalizedOps)
1174       op->emitRemark() << "op '" << op->getName() << "' is legalizable";
1175   }
1176 
1177   /// The mode of conversion to use.
1178   ConversionMode mode;
1179 };
1180 } // namespace
1181 
1182 static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode>
1183     legalizerConversionMode(
1184         "test-legalize-mode",
1185         llvm::cl::desc("The legalization mode to use with the test driver"),
1186         llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial),
1187         llvm::cl::values(
1188             clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis,
1189                        "analysis", "Perform an analysis conversion"),
1190             clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full",
1191                        "Perform a full conversion"),
1192             clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial,
1193                        "partial", "Perform a partial conversion")));
1194 
1195 //===----------------------------------------------------------------------===//
1196 // ConversionPatternRewriter::getRemappedValue testing. This method is used
1197 // to get the remapped value of an original value that was replaced using
1198 // ConversionPatternRewriter.
1199 namespace {
1200 struct TestRemapValueTypeConverter : public TypeConverter {
1201   using TypeConverter::TypeConverter;
1202 
1203   TestRemapValueTypeConverter() {
1204     addConversion(
1205         [](Float32Type type) { return Float64Type::get(type.getContext()); });
1206     addConversion([](Type type) { return type; });
1207   }
1208 };
1209 
1210 /// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with
1211 /// a one-operand two-result OneVResOneVOperandOp1 by replicating its original
1212 /// operand twice.
1213 ///
1214 /// Example:
1215 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0)
1216 /// is replaced with:
1217 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0, %0)
1218 struct OneVResOneVOperandOp1Converter
1219     : public OpConversionPattern<OneVResOneVOperandOp1> {
1220   using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern;
1221 
1222   LogicalResult
1223   matchAndRewrite(OneVResOneVOperandOp1 op, OpAdaptor adaptor,
1224                   ConversionPatternRewriter &rewriter) const override {
1225     auto origOps = op.getOperands();
1226     assert(std::distance(origOps.begin(), origOps.end()) == 1 &&
1227            "One operand expected");
1228     Value origOp = *origOps.begin();
1229     SmallVector<Value, 2> remappedOperands;
1230     // Replicate the remapped original operand twice. Note that we don't used
1231     // the remapped 'operand' since the goal is testing 'getRemappedValue'.
1232     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
1233     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
1234 
1235     rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(),
1236                                                        remappedOperands);
1237     return success();
1238   }
1239 };
1240 
1241 /// A rewriter pattern that tests that blocks can be merged.
1242 struct TestRemapValueInRegion
1243     : public OpConversionPattern<TestRemappedValueRegionOp> {
1244   using OpConversionPattern<TestRemappedValueRegionOp>::OpConversionPattern;
1245 
1246   LogicalResult
1247   matchAndRewrite(TestRemappedValueRegionOp op, OpAdaptor adaptor,
1248                   ConversionPatternRewriter &rewriter) const final {
1249     Block &block = op.getBody().front();
1250     Operation *terminator = block.getTerminator();
1251 
1252     // Merge the block into the parent region.
1253     Block *parentBlock = op->getBlock();
1254     Block *finalBlock = rewriter.splitBlock(parentBlock, op->getIterator());
1255     rewriter.mergeBlocks(&block, parentBlock, ValueRange());
1256     rewriter.mergeBlocks(finalBlock, parentBlock, ValueRange());
1257 
1258     // Replace the results of this operation with the remapped terminator
1259     // values.
1260     SmallVector<Value> terminatorOperands;
1261     if (failed(rewriter.getRemappedValues(terminator->getOperands(),
1262                                           terminatorOperands)))
1263       return failure();
1264 
1265     rewriter.eraseOp(terminator);
1266     rewriter.replaceOp(op, terminatorOperands);
1267     return success();
1268   }
1269 };
1270 
1271 struct TestRemappedValue
1272     : public mlir::PassWrapper<TestRemappedValue, OperationPass<>> {
1273   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestRemappedValue)
1274 
1275   StringRef getArgument() const final { return "test-remapped-value"; }
1276   StringRef getDescription() const final {
1277     return "Test public remapped value mechanism in ConversionPatternRewriter";
1278   }
1279   void runOnOperation() override {
1280     TestRemapValueTypeConverter typeConverter;
1281 
1282     mlir::RewritePatternSet patterns(&getContext());
1283     patterns.add<OneVResOneVOperandOp1Converter>(&getContext());
1284     patterns.add<TestChangeProducerTypeF32ToF64, TestUpdateConsumerType>(
1285         &getContext());
1286     patterns.add<TestRemapValueInRegion>(typeConverter, &getContext());
1287 
1288     mlir::ConversionTarget target(getContext());
1289     target.addLegalOp<ModuleOp, func::FuncOp, TestReturnOp>();
1290 
1291     // Expect the type_producer/type_consumer operations to only operate on f64.
1292     target.addDynamicallyLegalOp<TestTypeProducerOp>(
1293         [](TestTypeProducerOp op) { return op.getType().isF64(); });
1294     target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
1295       return op.getOperand().getType().isF64();
1296     });
1297 
1298     // We make OneVResOneVOperandOp1 legal only when it has more that one
1299     // operand. This will trigger the conversion that will replace one-operand
1300     // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1.
1301     target.addDynamicallyLegalOp<OneVResOneVOperandOp1>(
1302         [](Operation *op) { return op->getNumOperands() > 1; });
1303 
1304     if (failed(mlir::applyFullConversion(getOperation(), target,
1305                                          std::move(patterns)))) {
1306       signalPassFailure();
1307     }
1308   }
1309 };
1310 } // namespace
1311 
1312 //===----------------------------------------------------------------------===//
1313 // Test patterns without a specific root operation kind
1314 //===----------------------------------------------------------------------===//
1315 
1316 namespace {
1317 /// This pattern matches and removes any operation in the test dialect.
1318 struct RemoveTestDialectOps : public RewritePattern {
1319   RemoveTestDialectOps(MLIRContext *context)
1320       : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
1321 
1322   LogicalResult matchAndRewrite(Operation *op,
1323                                 PatternRewriter &rewriter) const override {
1324     if (!isa<TestDialect>(op->getDialect()))
1325       return failure();
1326     rewriter.eraseOp(op);
1327     return success();
1328   }
1329 };
1330 
1331 struct TestUnknownRootOpDriver
1332     : public mlir::PassWrapper<TestUnknownRootOpDriver, OperationPass<>> {
1333   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestUnknownRootOpDriver)
1334 
1335   StringRef getArgument() const final {
1336     return "test-legalize-unknown-root-patterns";
1337   }
1338   StringRef getDescription() const final {
1339     return "Test public remapped value mechanism in ConversionPatternRewriter";
1340   }
1341   void runOnOperation() override {
1342     mlir::RewritePatternSet patterns(&getContext());
1343     patterns.add<RemoveTestDialectOps>(&getContext());
1344 
1345     mlir::ConversionTarget target(getContext());
1346     target.addIllegalDialect<TestDialect>();
1347     if (failed(applyPartialConversion(getOperation(), target,
1348                                       std::move(patterns))))
1349       signalPassFailure();
1350   }
1351 };
1352 } // namespace
1353 
1354 //===----------------------------------------------------------------------===//
1355 // Test patterns that uses operations and types defined at runtime
1356 //===----------------------------------------------------------------------===//
1357 
1358 namespace {
1359 /// This pattern matches dynamic operations 'test.one_operand_two_results' and
1360 /// replace them with dynamic operations 'test.generic_dynamic_op'.
1361 struct RewriteDynamicOp : public RewritePattern {
1362   RewriteDynamicOp(MLIRContext *context)
1363       : RewritePattern("test.dynamic_one_operand_two_results", /*benefit=*/1,
1364                        context) {}
1365 
1366   LogicalResult matchAndRewrite(Operation *op,
1367                                 PatternRewriter &rewriter) const override {
1368     assert(op->getName().getStringRef() ==
1369                "test.dynamic_one_operand_two_results" &&
1370            "rewrite pattern should only match operations with the right name");
1371 
1372     OperationState state(op->getLoc(), "test.dynamic_generic",
1373                          op->getOperands(), op->getResultTypes(),
1374                          op->getAttrs());
1375     auto *newOp = rewriter.create(state);
1376     rewriter.replaceOp(op, newOp->getResults());
1377     return success();
1378   }
1379 };
1380 
1381 struct TestRewriteDynamicOpDriver
1382     : public PassWrapper<TestRewriteDynamicOpDriver, OperationPass<>> {
1383   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestRewriteDynamicOpDriver)
1384 
1385   void getDependentDialects(DialectRegistry &registry) const override {
1386     registry.insert<TestDialect>();
1387   }
1388   StringRef getArgument() const final { return "test-rewrite-dynamic-op"; }
1389   StringRef getDescription() const final {
1390     return "Test rewritting on dynamic operations";
1391   }
1392   void runOnOperation() override {
1393     RewritePatternSet patterns(&getContext());
1394     patterns.add<RewriteDynamicOp>(&getContext());
1395 
1396     ConversionTarget target(getContext());
1397     target.addIllegalOp(
1398         OperationName("test.dynamic_one_operand_two_results", &getContext()));
1399     target.addLegalOp(OperationName("test.dynamic_generic", &getContext()));
1400     if (failed(applyPartialConversion(getOperation(), target,
1401                                       std::move(patterns))))
1402       signalPassFailure();
1403   }
1404 };
1405 } // end anonymous namespace
1406 
1407 //===----------------------------------------------------------------------===//
1408 // Test type conversions
1409 //===----------------------------------------------------------------------===//
1410 
1411 namespace {
1412 struct TestTypeConversionProducer
1413     : public OpConversionPattern<TestTypeProducerOp> {
1414   using OpConversionPattern<TestTypeProducerOp>::OpConversionPattern;
1415   LogicalResult
1416   matchAndRewrite(TestTypeProducerOp op, OpAdaptor adaptor,
1417                   ConversionPatternRewriter &rewriter) const final {
1418     Type resultType = op.getType();
1419     Type convertedType = getTypeConverter()
1420                              ? getTypeConverter()->convertType(resultType)
1421                              : resultType;
1422     if (isa<FloatType>(resultType))
1423       resultType = rewriter.getF64Type();
1424     else if (resultType.isInteger(16))
1425       resultType = rewriter.getIntegerType(64);
1426     else if (isa<test::TestRecursiveType>(resultType) &&
1427              convertedType != resultType)
1428       resultType = convertedType;
1429     else
1430       return failure();
1431 
1432     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, resultType);
1433     return success();
1434   }
1435 };
1436 
1437 /// Call signature conversion and then fail the rewrite to trigger the undo
1438 /// mechanism.
1439 struct TestSignatureConversionUndo
1440     : public OpConversionPattern<TestSignatureConversionUndoOp> {
1441   using OpConversionPattern<TestSignatureConversionUndoOp>::OpConversionPattern;
1442 
1443   LogicalResult
1444   matchAndRewrite(TestSignatureConversionUndoOp op, OpAdaptor adaptor,
1445                   ConversionPatternRewriter &rewriter) const final {
1446     (void)rewriter.convertRegionTypes(&op->getRegion(0), *getTypeConverter());
1447     return failure();
1448   }
1449 };
1450 
1451 /// Call signature conversion without providing a type converter to handle
1452 /// materializations.
1453 struct TestTestSignatureConversionNoConverter
1454     : public OpConversionPattern<TestSignatureConversionNoConverterOp> {
1455   TestTestSignatureConversionNoConverter(const TypeConverter &converter,
1456                                          MLIRContext *context)
1457       : OpConversionPattern<TestSignatureConversionNoConverterOp>(context),
1458         converter(converter) {}
1459 
1460   LogicalResult
1461   matchAndRewrite(TestSignatureConversionNoConverterOp op, OpAdaptor adaptor,
1462                   ConversionPatternRewriter &rewriter) const final {
1463     Region &region = op->getRegion(0);
1464     Block *entry = &region.front();
1465 
1466     // Convert the original entry arguments.
1467     TypeConverter::SignatureConversion result(entry->getNumArguments());
1468     if (failed(
1469             converter.convertSignatureArgs(entry->getArgumentTypes(), result)))
1470       return failure();
1471     rewriter.modifyOpInPlace(
1472         op, [&] { rewriter.applySignatureConversion(&region, result); });
1473     return success();
1474   }
1475 
1476   const TypeConverter &converter;
1477 };
1478 
1479 /// Just forward the operands to the root op. This is essentially a no-op
1480 /// pattern that is used to trigger target materialization.
1481 struct TestTypeConsumerForward
1482     : public OpConversionPattern<TestTypeConsumerOp> {
1483   using OpConversionPattern<TestTypeConsumerOp>::OpConversionPattern;
1484 
1485   LogicalResult
1486   matchAndRewrite(TestTypeConsumerOp op, OpAdaptor adaptor,
1487                   ConversionPatternRewriter &rewriter) const final {
1488     rewriter.modifyOpInPlace(op,
1489                              [&] { op->setOperands(adaptor.getOperands()); });
1490     return success();
1491   }
1492 };
1493 
1494 struct TestTypeConversionAnotherProducer
1495     : public OpRewritePattern<TestAnotherTypeProducerOp> {
1496   using OpRewritePattern<TestAnotherTypeProducerOp>::OpRewritePattern;
1497 
1498   LogicalResult matchAndRewrite(TestAnotherTypeProducerOp op,
1499                                 PatternRewriter &rewriter) const final {
1500     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, op.getType());
1501     return success();
1502   }
1503 };
1504 
1505 struct TestTypeConversionDriver
1506     : public PassWrapper<TestTypeConversionDriver, OperationPass<>> {
1507   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestTypeConversionDriver)
1508 
1509   void getDependentDialects(DialectRegistry &registry) const override {
1510     registry.insert<TestDialect>();
1511   }
1512   StringRef getArgument() const final {
1513     return "test-legalize-type-conversion";
1514   }
1515   StringRef getDescription() const final {
1516     return "Test various type conversion functionalities in DialectConversion";
1517   }
1518 
1519   void runOnOperation() override {
1520     // Initialize the type converter.
1521     SmallVector<Type, 2> conversionCallStack;
1522     TypeConverter converter;
1523 
1524     /// Add the legal set of type conversions.
1525     converter.addConversion([](Type type) -> Type {
1526       // Treat F64 as legal.
1527       if (type.isF64())
1528         return type;
1529       // Allow converting BF16/F16/F32 to F64.
1530       if (type.isBF16() || type.isF16() || type.isF32())
1531         return FloatType::getF64(type.getContext());
1532       // Otherwise, the type is illegal.
1533       return nullptr;
1534     });
1535     converter.addConversion([](IntegerType type, SmallVectorImpl<Type> &) {
1536       // Drop all integer types.
1537       return success();
1538     });
1539     converter.addConversion(
1540         // Convert a recursive self-referring type into a non-self-referring
1541         // type named "outer_converted_type" that contains a SimpleAType.
1542         [&](test::TestRecursiveType type,
1543             SmallVectorImpl<Type> &results) -> std::optional<LogicalResult> {
1544           // If the type is already converted, return it to indicate that it is
1545           // legal.
1546           if (type.getName() == "outer_converted_type") {
1547             results.push_back(type);
1548             return success();
1549           }
1550 
1551           conversionCallStack.push_back(type);
1552           auto popConversionCallStack = llvm::make_scope_exit(
1553               [&conversionCallStack]() { conversionCallStack.pop_back(); });
1554 
1555           // If the type is on the call stack more than once (it is there at
1556           // least once because of the _current_ call, which is always the last
1557           // element on the stack), we've hit the recursive case. Just return
1558           // SimpleAType here to create a non-recursive type as a result.
1559           if (llvm::is_contained(ArrayRef(conversionCallStack).drop_back(),
1560                                  type)) {
1561             results.push_back(test::SimpleAType::get(type.getContext()));
1562             return success();
1563           }
1564 
1565           // Convert the body recursively.
1566           auto result = test::TestRecursiveType::get(type.getContext(),
1567                                                      "outer_converted_type");
1568           if (failed(result.setBody(converter.convertType(type.getBody()))))
1569             return failure();
1570           results.push_back(result);
1571           return success();
1572         });
1573 
1574     /// Add the legal set of type materializations.
1575     converter.addSourceMaterialization([](OpBuilder &builder, Type resultType,
1576                                           ValueRange inputs,
1577                                           Location loc) -> Value {
1578       // Allow casting from F64 back to F32.
1579       if (!resultType.isF16() && inputs.size() == 1 &&
1580           inputs[0].getType().isF64())
1581         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
1582       // Allow producing an i32 or i64 from nothing.
1583       if ((resultType.isInteger(32) || resultType.isInteger(64)) &&
1584           inputs.empty())
1585         return builder.create<TestTypeProducerOp>(loc, resultType);
1586       // Allow producing an i64 from an integer.
1587       if (isa<IntegerType>(resultType) && inputs.size() == 1 &&
1588           isa<IntegerType>(inputs[0].getType()))
1589         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
1590       // Otherwise, fail.
1591       return nullptr;
1592     });
1593 
1594     // Initialize the conversion target.
1595     mlir::ConversionTarget target(getContext());
1596     target.addDynamicallyLegalOp<TestTypeProducerOp>([](TestTypeProducerOp op) {
1597       auto recursiveType = dyn_cast<test::TestRecursiveType>(op.getType());
1598       return op.getType().isF64() || op.getType().isInteger(64) ||
1599              (recursiveType &&
1600               recursiveType.getName() == "outer_converted_type");
1601     });
1602     target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
1603       return converter.isSignatureLegal(op.getFunctionType()) &&
1604              converter.isLegal(&op.getBody());
1605     });
1606     target.addDynamicallyLegalOp<TestCastOp>([&](TestCastOp op) {
1607       // Allow casts from F64 to F32.
1608       return (*op.operand_type_begin()).isF64() && op.getType().isF32();
1609     });
1610     target.addDynamicallyLegalOp<TestSignatureConversionNoConverterOp>(
1611         [&](TestSignatureConversionNoConverterOp op) {
1612           return converter.isLegal(op.getRegion().front().getArgumentTypes());
1613         });
1614 
1615     // Initialize the set of rewrite patterns.
1616     RewritePatternSet patterns(&getContext());
1617     patterns.add<TestTypeConsumerForward, TestTypeConversionProducer,
1618                  TestSignatureConversionUndo,
1619                  TestTestSignatureConversionNoConverter>(converter,
1620                                                          &getContext());
1621     patterns.add<TestTypeConversionAnotherProducer>(&getContext());
1622     mlir::populateAnyFunctionOpInterfaceTypeConversionPattern(patterns,
1623                                                               converter);
1624 
1625     if (failed(applyPartialConversion(getOperation(), target,
1626                                       std::move(patterns))))
1627       signalPassFailure();
1628   }
1629 };
1630 } // namespace
1631 
1632 //===----------------------------------------------------------------------===//
1633 // Test Target Materialization With No Uses
1634 //===----------------------------------------------------------------------===//
1635 
1636 namespace {
1637 struct ForwardOperandPattern : public OpConversionPattern<TestTypeChangerOp> {
1638   using OpConversionPattern<TestTypeChangerOp>::OpConversionPattern;
1639 
1640   LogicalResult
1641   matchAndRewrite(TestTypeChangerOp op, OpAdaptor adaptor,
1642                   ConversionPatternRewriter &rewriter) const final {
1643     rewriter.replaceOp(op, adaptor.getOperands());
1644     return success();
1645   }
1646 };
1647 
1648 struct TestTargetMaterializationWithNoUses
1649     : public PassWrapper<TestTargetMaterializationWithNoUses, OperationPass<>> {
1650   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(
1651       TestTargetMaterializationWithNoUses)
1652 
1653   StringRef getArgument() const final {
1654     return "test-target-materialization-with-no-uses";
1655   }
1656   StringRef getDescription() const final {
1657     return "Test a special case of target materialization in DialectConversion";
1658   }
1659 
1660   void runOnOperation() override {
1661     TypeConverter converter;
1662     converter.addConversion([](Type t) { return t; });
1663     converter.addConversion([](IntegerType intTy) -> Type {
1664       if (intTy.getWidth() == 16)
1665         return IntegerType::get(intTy.getContext(), 64);
1666       return intTy;
1667     });
1668     converter.addTargetMaterialization(
1669         [](OpBuilder &builder, Type type, ValueRange inputs, Location loc) {
1670           return builder.create<TestCastOp>(loc, type, inputs).getResult();
1671         });
1672 
1673     ConversionTarget target(getContext());
1674     target.addIllegalOp<TestTypeChangerOp>();
1675 
1676     RewritePatternSet patterns(&getContext());
1677     patterns.add<ForwardOperandPattern>(converter, &getContext());
1678 
1679     if (failed(applyPartialConversion(getOperation(), target,
1680                                       std::move(patterns))))
1681       signalPassFailure();
1682   }
1683 };
1684 } // namespace
1685 
1686 //===----------------------------------------------------------------------===//
1687 // Test Block Merging
1688 //===----------------------------------------------------------------------===//
1689 
1690 namespace {
1691 /// A rewriter pattern that tests that blocks can be merged.
1692 struct TestMergeBlock : public OpConversionPattern<TestMergeBlocksOp> {
1693   using OpConversionPattern<TestMergeBlocksOp>::OpConversionPattern;
1694 
1695   LogicalResult
1696   matchAndRewrite(TestMergeBlocksOp op, OpAdaptor adaptor,
1697                   ConversionPatternRewriter &rewriter) const final {
1698     Block &firstBlock = op.getBody().front();
1699     Operation *branchOp = firstBlock.getTerminator();
1700     Block *secondBlock = &*(std::next(op.getBody().begin()));
1701     auto succOperands = branchOp->getOperands();
1702     SmallVector<Value, 2> replacements(succOperands);
1703     rewriter.eraseOp(branchOp);
1704     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
1705     rewriter.modifyOpInPlace(op, [] {});
1706     return success();
1707   }
1708 };
1709 
1710 /// A rewrite pattern to tests the undo mechanism of blocks being merged.
1711 struct TestUndoBlocksMerge : public ConversionPattern {
1712   TestUndoBlocksMerge(MLIRContext *ctx)
1713       : ConversionPattern("test.undo_blocks_merge", /*benefit=*/1, ctx) {}
1714   LogicalResult
1715   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
1716                   ConversionPatternRewriter &rewriter) const final {
1717     Block &firstBlock = op->getRegion(0).front();
1718     Operation *branchOp = firstBlock.getTerminator();
1719     Block *secondBlock = &*(std::next(op->getRegion(0).begin()));
1720     rewriter.setInsertionPointToStart(secondBlock);
1721     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
1722     auto succOperands = branchOp->getOperands();
1723     SmallVector<Value, 2> replacements(succOperands);
1724     rewriter.eraseOp(branchOp);
1725     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
1726     rewriter.modifyOpInPlace(op, [] {});
1727     return success();
1728   }
1729 };
1730 
1731 /// A rewrite mechanism to inline the body of the op into its parent, when both
1732 /// ops can have a single block.
1733 struct TestMergeSingleBlockOps
1734     : public OpConversionPattern<SingleBlockImplicitTerminatorOp> {
1735   using OpConversionPattern<
1736       SingleBlockImplicitTerminatorOp>::OpConversionPattern;
1737 
1738   LogicalResult
1739   matchAndRewrite(SingleBlockImplicitTerminatorOp op, OpAdaptor adaptor,
1740                   ConversionPatternRewriter &rewriter) const final {
1741     SingleBlockImplicitTerminatorOp parentOp =
1742         op->getParentOfType<SingleBlockImplicitTerminatorOp>();
1743     if (!parentOp)
1744       return failure();
1745     Block &innerBlock = op.getRegion().front();
1746     TerminatorOp innerTerminator =
1747         cast<TerminatorOp>(innerBlock.getTerminator());
1748     rewriter.inlineBlockBefore(&innerBlock, op);
1749     rewriter.eraseOp(innerTerminator);
1750     rewriter.eraseOp(op);
1751     rewriter.modifyOpInPlace(op, [] {});
1752     return success();
1753   }
1754 };
1755 
1756 struct TestMergeBlocksPatternDriver
1757     : public PassWrapper<TestMergeBlocksPatternDriver, OperationPass<>> {
1758   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestMergeBlocksPatternDriver)
1759 
1760   StringRef getArgument() const final { return "test-merge-blocks"; }
1761   StringRef getDescription() const final {
1762     return "Test Merging operation in ConversionPatternRewriter";
1763   }
1764   void runOnOperation() override {
1765     MLIRContext *context = &getContext();
1766     mlir::RewritePatternSet patterns(context);
1767     patterns.add<TestMergeBlock, TestUndoBlocksMerge, TestMergeSingleBlockOps>(
1768         context);
1769     ConversionTarget target(*context);
1770     target.addLegalOp<func::FuncOp, ModuleOp, TerminatorOp, TestBranchOp,
1771                       TestTypeConsumerOp, TestTypeProducerOp, TestReturnOp>();
1772     target.addIllegalOp<ILLegalOpF>();
1773 
1774     /// Expect the op to have a single block after legalization.
1775     target.addDynamicallyLegalOp<TestMergeBlocksOp>(
1776         [&](TestMergeBlocksOp op) -> bool {
1777           return llvm::hasSingleElement(op.getBody());
1778         });
1779 
1780     /// Only allow `test.br` within test.merge_blocks op.
1781     target.addDynamicallyLegalOp<TestBranchOp>([&](TestBranchOp op) -> bool {
1782       return op->getParentOfType<TestMergeBlocksOp>();
1783     });
1784 
1785     /// Expect that all nested test.SingleBlockImplicitTerminator ops are
1786     /// inlined.
1787     target.addDynamicallyLegalOp<SingleBlockImplicitTerminatorOp>(
1788         [&](SingleBlockImplicitTerminatorOp op) -> bool {
1789           return !op->getParentOfType<SingleBlockImplicitTerminatorOp>();
1790         });
1791 
1792     DenseSet<Operation *> unlegalizedOps;
1793     (void)applyPartialConversion(getOperation(), target, std::move(patterns),
1794                                  &unlegalizedOps);
1795     for (auto *op : unlegalizedOps)
1796       op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
1797   }
1798 };
1799 } // namespace
1800 
1801 //===----------------------------------------------------------------------===//
1802 // Test Selective Replacement
1803 //===----------------------------------------------------------------------===//
1804 
1805 namespace {
1806 /// A rewrite mechanism to inline the body of the op into its parent, when both
1807 /// ops can have a single block.
1808 struct TestSelectiveOpReplacementPattern : public OpRewritePattern<TestCastOp> {
1809   using OpRewritePattern<TestCastOp>::OpRewritePattern;
1810 
1811   LogicalResult matchAndRewrite(TestCastOp op,
1812                                 PatternRewriter &rewriter) const final {
1813     if (op.getNumOperands() != 2)
1814       return failure();
1815     OperandRange operands = op.getOperands();
1816 
1817     // Replace non-terminator uses with the first operand.
1818     rewriter.replaceOpWithIf(op, operands[0], [](OpOperand &operand) {
1819       return operand.getOwner()->hasTrait<OpTrait::IsTerminator>();
1820     });
1821     // Replace everything else with the second operand if the operation isn't
1822     // dead.
1823     rewriter.replaceOp(op, op.getOperand(1));
1824     return success();
1825   }
1826 };
1827 
1828 struct TestSelectiveReplacementPatternDriver
1829     : public PassWrapper<TestSelectiveReplacementPatternDriver,
1830                          OperationPass<>> {
1831   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(
1832       TestSelectiveReplacementPatternDriver)
1833 
1834   StringRef getArgument() const final {
1835     return "test-pattern-selective-replacement";
1836   }
1837   StringRef getDescription() const final {
1838     return "Test selective replacement in the PatternRewriter";
1839   }
1840   void runOnOperation() override {
1841     MLIRContext *context = &getContext();
1842     mlir::RewritePatternSet patterns(context);
1843     patterns.add<TestSelectiveOpReplacementPattern>(context);
1844     (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
1845   }
1846 };
1847 } // namespace
1848 
1849 //===----------------------------------------------------------------------===//
1850 // PassRegistration
1851 //===----------------------------------------------------------------------===//
1852 
1853 namespace mlir {
1854 namespace test {
1855 void registerPatternsTestPass() {
1856   PassRegistration<TestReturnTypeDriver>();
1857 
1858   PassRegistration<TestDerivedAttributeDriver>();
1859 
1860   PassRegistration<TestPatternDriver>();
1861   PassRegistration<TestStrictPatternDriver>();
1862 
1863   PassRegistration<TestLegalizePatternDriver>([] {
1864     return std::make_unique<TestLegalizePatternDriver>(legalizerConversionMode);
1865   });
1866 
1867   PassRegistration<TestRemappedValue>();
1868 
1869   PassRegistration<TestUnknownRootOpDriver>();
1870 
1871   PassRegistration<TestTypeConversionDriver>();
1872   PassRegistration<TestTargetMaterializationWithNoUses>();
1873 
1874   PassRegistration<TestRewriteDynamicOpDriver>();
1875 
1876   PassRegistration<TestMergeBlocksPatternDriver>();
1877   PassRegistration<TestSelectiveReplacementPatternDriver>();
1878 }
1879 } // namespace test
1880 } // namespace mlir
1881