xref: /llvm-project/mlir/test/lib/Dialect/Test/TestPatterns.cpp (revision 8fc329421b2e3bc5cdda98ce303ea3b07af58ebc)
1 //===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "TestDialect.h"
10 #include "TestOps.h"
11 #include "TestTypes.h"
12 #include "mlir/Dialect/Arith/IR/Arith.h"
13 #include "mlir/Dialect/Func/IR/FuncOps.h"
14 #include "mlir/Dialect/Func/Transforms/FuncConversions.h"
15 #include "mlir/Dialect/Tensor/IR/Tensor.h"
16 #include "mlir/IR/Matchers.h"
17 #include "mlir/Pass/Pass.h"
18 #include "mlir/Transforms/DialectConversion.h"
19 #include "mlir/Transforms/FoldUtils.h"
20 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
21 #include "llvm/ADT/ScopeExit.h"
22 
23 using namespace mlir;
24 using namespace test;
25 
26 // Native function for testing NativeCodeCall
27 static Value chooseOperand(Value input1, Value input2, BoolAttr choice) {
28   return choice.getValue() ? input1 : input2;
29 }
30 
31 static void createOpI(PatternRewriter &rewriter, Location loc, Value input) {
32   rewriter.create<OpI>(loc, input);
33 }
34 
35 static void handleNoResultOp(PatternRewriter &rewriter,
36                              OpSymbolBindingNoResult op) {
37   // Turn the no result op to a one-result op.
38   rewriter.create<OpSymbolBindingB>(op.getLoc(), op.getOperand().getType(),
39                                     op.getOperand());
40 }
41 
42 static bool getFirstI32Result(Operation *op, Value &value) {
43   if (!Type(op->getResult(0).getType()).isSignlessInteger(32))
44     return false;
45   value = op->getResult(0);
46   return true;
47 }
48 
49 static Value bindNativeCodeCallResult(Value value) { return value; }
50 
51 static SmallVector<Value, 2> bindMultipleNativeCodeCallResult(Value input1,
52                                                               Value input2) {
53   return SmallVector<Value, 2>({input2, input1});
54 }
55 
56 // Test that natives calls are only called once during rewrites.
57 // OpM_Test will return Pi, increased by 1 for each subsequent calls.
58 // This let us check the number of times OpM_Test was called by inspecting
59 // the returned value in the MLIR output.
60 static int64_t opMIncreasingValue = 314159265;
61 static Attribute opMTest(PatternRewriter &rewriter, Value val) {
62   int64_t i = opMIncreasingValue++;
63   return rewriter.getIntegerAttr(rewriter.getIntegerType(32), i);
64 }
65 
66 namespace {
67 #include "TestPatterns.inc"
68 } // namespace
69 
70 //===----------------------------------------------------------------------===//
71 // Test Reduce Pattern Interface
72 //===----------------------------------------------------------------------===//
73 
74 void test::populateTestReductionPatterns(RewritePatternSet &patterns) {
75   populateWithGenerated(patterns);
76 }
77 
78 //===----------------------------------------------------------------------===//
79 // Canonicalizer Driver.
80 //===----------------------------------------------------------------------===//
81 
82 namespace {
83 struct FoldingPattern : public RewritePattern {
84 public:
85   FoldingPattern(MLIRContext *context)
86       : RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(),
87                        /*benefit=*/1, context) {}
88 
89   LogicalResult matchAndRewrite(Operation *op,
90                                 PatternRewriter &rewriter) const override {
91     // Exercise createOrFold API for a single-result operation that is folded
92     // upon construction. The operation being created has an in-place folder,
93     // and it should be still present in the output. Furthermore, the folder
94     // should not crash when attempting to recover the (unchanged) operation
95     // result.
96     Value result = rewriter.createOrFold<TestOpInPlaceFold>(
97         op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0));
98     assert(result);
99     rewriter.replaceOp(op, result);
100     return success();
101   }
102 };
103 
104 /// This pattern creates a foldable operation at the entry point of the block.
105 /// This tests the situation where the operation folder will need to replace an
106 /// operation with a previously created constant that does not initially
107 /// dominate the operation to replace.
108 struct FolderInsertBeforePreviouslyFoldedConstantPattern
109     : public OpRewritePattern<TestCastOp> {
110 public:
111   using OpRewritePattern<TestCastOp>::OpRewritePattern;
112 
113   LogicalResult matchAndRewrite(TestCastOp op,
114                                 PatternRewriter &rewriter) const override {
115     if (!op->hasAttr("test_fold_before_previously_folded_op"))
116       return failure();
117     rewriter.setInsertionPointToStart(op->getBlock());
118 
119     auto constOp = rewriter.create<arith::ConstantOp>(
120         op.getLoc(), rewriter.getBoolAttr(true));
121     rewriter.replaceOpWithNewOp<TestCastOp>(op, rewriter.getI32Type(),
122                                             Value(constOp));
123     return success();
124   }
125 };
126 
127 /// This pattern matches test.op_commutative2 with the first operand being
128 /// another test.op_commutative2 with a constant on the right side and fold it
129 /// away by propagating it as its result. This is intend to check that patterns
130 /// are applied after the commutative property moves constant to the right.
131 struct FolderCommutativeOp2WithConstant
132     : public OpRewritePattern<TestCommutative2Op> {
133 public:
134   using OpRewritePattern<TestCommutative2Op>::OpRewritePattern;
135 
136   LogicalResult matchAndRewrite(TestCommutative2Op op,
137                                 PatternRewriter &rewriter) const override {
138     auto operand =
139         dyn_cast_or_null<TestCommutative2Op>(op->getOperand(0).getDefiningOp());
140     if (!operand)
141       return failure();
142     Attribute constInput;
143     if (!matchPattern(operand->getOperand(1), m_Constant(&constInput)))
144       return failure();
145     rewriter.replaceOp(op, operand->getOperand(1));
146     return success();
147   }
148 };
149 
150 /// This pattern matches test.any_attr_of_i32_str ops. In case of an integer
151 /// attribute with value smaller than MaxVal, it increments the value by 1.
152 template <int MaxVal>
153 struct IncrementIntAttribute : public OpRewritePattern<AnyAttrOfOp> {
154   using OpRewritePattern<AnyAttrOfOp>::OpRewritePattern;
155 
156   LogicalResult matchAndRewrite(AnyAttrOfOp op,
157                                 PatternRewriter &rewriter) const override {
158     auto intAttr = dyn_cast<IntegerAttr>(op.getAttr());
159     if (!intAttr)
160       return failure();
161     int64_t val = intAttr.getInt();
162     if (val >= MaxVal)
163       return failure();
164     rewriter.modifyOpInPlace(
165         op, [&]() { op.setAttrAttr(rewriter.getI32IntegerAttr(val + 1)); });
166     return success();
167   }
168 };
169 
170 /// This patterns adds an "eligible" attribute to "foo.maybe_eligible_op".
171 struct MakeOpEligible : public RewritePattern {
172   MakeOpEligible(MLIRContext *context)
173       : RewritePattern("foo.maybe_eligible_op", /*benefit=*/1, context) {}
174 
175   LogicalResult matchAndRewrite(Operation *op,
176                                 PatternRewriter &rewriter) const override {
177     if (op->hasAttr("eligible"))
178       return failure();
179     rewriter.modifyOpInPlace(
180         op, [&]() { op->setAttr("eligible", rewriter.getUnitAttr()); });
181     return success();
182   }
183 };
184 
185 /// This pattern hoists eligible ops out of a "test.one_region_op".
186 struct HoistEligibleOps : public OpRewritePattern<test::OneRegionOp> {
187   using OpRewritePattern<test::OneRegionOp>::OpRewritePattern;
188 
189   LogicalResult matchAndRewrite(test::OneRegionOp op,
190                                 PatternRewriter &rewriter) const override {
191     Operation *terminator = op.getRegion().front().getTerminator();
192     Operation *toBeHoisted = terminator->getOperands()[0].getDefiningOp();
193     if (toBeHoisted->getParentOp() != op)
194       return failure();
195     if (!toBeHoisted->hasAttr("eligible"))
196       return failure();
197     rewriter.moveOpBefore(toBeHoisted, op);
198     return success();
199   }
200 };
201 
202 /// This pattern moves "test.move_before_parent_op" before the parent op.
203 struct MoveBeforeParentOp : public RewritePattern {
204   MoveBeforeParentOp(MLIRContext *context)
205       : RewritePattern("test.move_before_parent_op", /*benefit=*/1, context) {}
206 
207   LogicalResult matchAndRewrite(Operation *op,
208                                 PatternRewriter &rewriter) const override {
209     // Do not hoist past functions.
210     if (isa<FunctionOpInterface>(op->getParentOp()))
211       return failure();
212     rewriter.moveOpBefore(op, op->getParentOp());
213     return success();
214   }
215 };
216 
217 /// This pattern inlines blocks that are nested in
218 /// "test.inline_blocks_into_parent" into the parent block.
219 struct InlineBlocksIntoParent : public RewritePattern {
220   InlineBlocksIntoParent(MLIRContext *context)
221       : RewritePattern("test.inline_blocks_into_parent", /*benefit=*/1,
222                        context) {}
223 
224   LogicalResult matchAndRewrite(Operation *op,
225                                 PatternRewriter &rewriter) const override {
226     bool changed = false;
227     for (Region &r : op->getRegions()) {
228       while (!r.empty()) {
229         rewriter.inlineBlockBefore(&r.front(), op);
230         changed = true;
231       }
232     }
233     return success(changed);
234   }
235 };
236 
237 /// This pattern splits blocks at "test.split_block_here" and replaces the op
238 /// with a new op (to prevent an infinite loop of block splitting).
239 struct SplitBlockHere : public RewritePattern {
240   SplitBlockHere(MLIRContext *context)
241       : RewritePattern("test.split_block_here", /*benefit=*/1, context) {}
242 
243   LogicalResult matchAndRewrite(Operation *op,
244                                 PatternRewriter &rewriter) const override {
245     rewriter.splitBlock(op->getBlock(), op->getIterator());
246     Operation *newOp = rewriter.create(
247         op->getLoc(),
248         OperationName("test.new_op", op->getContext()).getIdentifier(),
249         op->getOperands(), op->getResultTypes());
250     rewriter.replaceOp(op, newOp);
251     return success();
252   }
253 };
254 
255 /// This pattern clones "test.clone_me" ops.
256 struct CloneOp : public RewritePattern {
257   CloneOp(MLIRContext *context)
258       : RewritePattern("test.clone_me", /*benefit=*/1, context) {}
259 
260   LogicalResult matchAndRewrite(Operation *op,
261                                 PatternRewriter &rewriter) const override {
262     // Do not clone already cloned ops to avoid going into an infinite loop.
263     if (op->hasAttr("was_cloned"))
264       return failure();
265     Operation *cloned = rewriter.clone(*op);
266     cloned->setAttr("was_cloned", rewriter.getUnitAttr());
267     return success();
268   }
269 };
270 
271 /// This pattern clones regions of "test.clone_region_before" ops before the
272 /// parent block.
273 struct CloneRegionBeforeOp : public RewritePattern {
274   CloneRegionBeforeOp(MLIRContext *context)
275       : RewritePattern("test.clone_region_before", /*benefit=*/1, context) {}
276 
277   LogicalResult matchAndRewrite(Operation *op,
278                                 PatternRewriter &rewriter) const override {
279     // Do not clone already cloned ops to avoid going into an infinite loop.
280     if (op->hasAttr("was_cloned"))
281       return failure();
282     for (Region &r : op->getRegions())
283       rewriter.cloneRegionBefore(r, op->getBlock());
284     op->setAttr("was_cloned", rewriter.getUnitAttr());
285     return success();
286   }
287 };
288 
289 struct TestPatternDriver
290     : public PassWrapper<TestPatternDriver, OperationPass<>> {
291   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestPatternDriver)
292 
293   TestPatternDriver() = default;
294   TestPatternDriver(const TestPatternDriver &other) : PassWrapper(other) {}
295 
296   StringRef getArgument() const final { return "test-patterns"; }
297   StringRef getDescription() const final { return "Run test dialect patterns"; }
298   void runOnOperation() override {
299     mlir::RewritePatternSet patterns(&getContext());
300     populateWithGenerated(patterns);
301 
302     // Verify named pattern is generated with expected name.
303     patterns.add<FoldingPattern, TestNamedPatternRule,
304                  FolderInsertBeforePreviouslyFoldedConstantPattern,
305                  FolderCommutativeOp2WithConstant, HoistEligibleOps,
306                  MakeOpEligible>(&getContext());
307 
308     // Additional patterns for testing the GreedyPatternRewriteDriver.
309     patterns.insert<IncrementIntAttribute<3>>(&getContext());
310 
311     GreedyRewriteConfig config;
312     config.useTopDownTraversal = this->useTopDownTraversal;
313     config.maxIterations = this->maxIterations;
314     (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns),
315                                        config);
316   }
317 
318   Option<bool> useTopDownTraversal{
319       *this, "top-down",
320       llvm::cl::desc("Seed the worklist in general top-down order"),
321       llvm::cl::init(GreedyRewriteConfig().useTopDownTraversal)};
322   Option<int> maxIterations{
323       *this, "max-iterations",
324       llvm::cl::desc("Max. iterations in the GreedyRewriteConfig"),
325       llvm::cl::init(GreedyRewriteConfig().maxIterations)};
326 };
327 
328 struct DumpNotifications : public RewriterBase::Listener {
329   void notifyBlockInserted(Block *block, Region *previous,
330                            Region::iterator previousIt) override {
331     llvm::outs() << "notifyBlockInserted";
332     if (block->getParentOp()) {
333       llvm::outs() << " into " << block->getParentOp()->getName() << ": ";
334     } else {
335       llvm::outs() << " into unknown op: ";
336     }
337     if (previous == nullptr) {
338       llvm::outs() << "was unlinked\n";
339     } else {
340       llvm::outs() << "was linked\n";
341     }
342   }
343   void notifyOperationInserted(Operation *op,
344                                OpBuilder::InsertPoint previous) override {
345     llvm::outs() << "notifyOperationInserted: " << op->getName();
346     if (!previous.isSet()) {
347       llvm::outs() << ", was unlinked\n";
348     } else {
349       if (!previous.getPoint().getNodePtr()) {
350         llvm::outs() << ", was linked, exact position unknown\n";
351       } else if (previous.getPoint() == previous.getBlock()->end()) {
352         llvm::outs() << ", was last in block\n";
353       } else {
354         llvm::outs() << ", previous = " << previous.getPoint()->getName()
355                      << "\n";
356       }
357     }
358   }
359   void notifyBlockErased(Block *block) override {
360     llvm::outs() << "notifyBlockErased\n";
361   }
362   void notifyOperationErased(Operation *op) override {
363     llvm::outs() << "notifyOperationErased: " << op->getName() << "\n";
364   }
365   void notifyOperationModified(Operation *op) override {
366     llvm::outs() << "notifyOperationModified: " << op->getName() << "\n";
367   }
368   void notifyOperationReplaced(Operation *op, ValueRange values) override {
369     llvm::outs() << "notifyOperationReplaced: " << op->getName() << "\n";
370   }
371 };
372 
373 struct TestStrictPatternDriver
374     : public PassWrapper<TestStrictPatternDriver, OperationPass<func::FuncOp>> {
375 public:
376   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestStrictPatternDriver)
377 
378   TestStrictPatternDriver() = default;
379   TestStrictPatternDriver(const TestStrictPatternDriver &other)
380       : PassWrapper(other) {
381     strictMode = other.strictMode;
382   }
383 
384   StringRef getArgument() const final { return "test-strict-pattern-driver"; }
385   StringRef getDescription() const final {
386     return "Test strict mode of pattern driver";
387   }
388 
389   void runOnOperation() override {
390     MLIRContext *ctx = &getContext();
391     mlir::RewritePatternSet patterns(ctx);
392     patterns.add<
393         // clang-format off
394         ChangeBlockOp,
395         CloneOp,
396         CloneRegionBeforeOp,
397         EraseOp,
398         ImplicitChangeOp,
399         InlineBlocksIntoParent,
400         InsertSameOp,
401         MoveBeforeParentOp,
402         ReplaceWithNewOp,
403         SplitBlockHere
404         // clang-format on
405         >(ctx);
406     SmallVector<Operation *> ops;
407     getOperation()->walk([&](Operation *op) {
408       StringRef opName = op->getName().getStringRef();
409       if (opName == "test.insert_same_op" || opName == "test.change_block_op" ||
410           opName == "test.replace_with_new_op" || opName == "test.erase_op" ||
411           opName == "test.move_before_parent_op" ||
412           opName == "test.inline_blocks_into_parent" ||
413           opName == "test.split_block_here" || opName == "test.clone_me" ||
414           opName == "test.clone_region_before") {
415         ops.push_back(op);
416       }
417     });
418 
419     DumpNotifications dumpNotifications;
420     GreedyRewriteConfig config;
421     config.listener = &dumpNotifications;
422     if (strictMode == "AnyOp") {
423       config.strictMode = GreedyRewriteStrictness::AnyOp;
424     } else if (strictMode == "ExistingAndNewOps") {
425       config.strictMode = GreedyRewriteStrictness::ExistingAndNewOps;
426     } else if (strictMode == "ExistingOps") {
427       config.strictMode = GreedyRewriteStrictness::ExistingOps;
428     } else {
429       llvm_unreachable("invalid strictness option");
430     }
431 
432     // Check if these transformations introduce visiting of operations that
433     // are not in the `ops` set (The new created ops are valid). An invalid
434     // operation will trigger the assertion while processing.
435     bool changed = false;
436     bool allErased = false;
437     (void)applyOpPatternsAndFold(ArrayRef(ops), std::move(patterns), config,
438                                  &changed, &allErased);
439     Builder b(ctx);
440     getOperation()->setAttr("pattern_driver_changed", b.getBoolAttr(changed));
441     getOperation()->setAttr("pattern_driver_all_erased",
442                             b.getBoolAttr(allErased));
443   }
444 
445   Option<std::string> strictMode{
446       *this, "strictness",
447       llvm::cl::desc("Can be {AnyOp, ExistingAndNewOps, ExistingOps}"),
448       llvm::cl::init("AnyOp")};
449 
450 private:
451   // New inserted operation is valid for further transformation.
452   class InsertSameOp : public RewritePattern {
453   public:
454     InsertSameOp(MLIRContext *context)
455         : RewritePattern("test.insert_same_op", /*benefit=*/1, context) {}
456 
457     LogicalResult matchAndRewrite(Operation *op,
458                                   PatternRewriter &rewriter) const override {
459       if (op->hasAttr("skip"))
460         return failure();
461 
462       Operation *newOp =
463           rewriter.create(op->getLoc(), op->getName().getIdentifier(),
464                           op->getOperands(), op->getResultTypes());
465       rewriter.modifyOpInPlace(
466           op, [&]() { op->setAttr("skip", rewriter.getBoolAttr(true)); });
467       newOp->setAttr("skip", rewriter.getBoolAttr(true));
468 
469       return success();
470     }
471   };
472 
473   // Replace an operation may introduce the re-visiting of its users.
474   class ReplaceWithNewOp : public RewritePattern {
475   public:
476     ReplaceWithNewOp(MLIRContext *context)
477         : RewritePattern("test.replace_with_new_op", /*benefit=*/1, context) {}
478 
479     LogicalResult matchAndRewrite(Operation *op,
480                                   PatternRewriter &rewriter) const override {
481       Operation *newOp;
482       if (op->hasAttr("create_erase_op")) {
483         newOp = rewriter.create(
484             op->getLoc(),
485             OperationName("test.erase_op", op->getContext()).getIdentifier(),
486             ValueRange(), TypeRange());
487       } else {
488         newOp = rewriter.create(
489             op->getLoc(),
490             OperationName("test.new_op", op->getContext()).getIdentifier(),
491             op->getOperands(), op->getResultTypes());
492       }
493       // "replaceOp" could be used instead of "replaceAllOpUsesWith"+"eraseOp".
494       // A "notifyOperationReplaced" callback is triggered in either case.
495       rewriter.replaceAllOpUsesWith(op, newOp->getResults());
496       rewriter.eraseOp(op);
497       return success();
498     }
499   };
500 
501   // Remove an operation may introduce the re-visiting of its operands.
502   class EraseOp : public RewritePattern {
503   public:
504     EraseOp(MLIRContext *context)
505         : RewritePattern("test.erase_op", /*benefit=*/1, context) {}
506     LogicalResult matchAndRewrite(Operation *op,
507                                   PatternRewriter &rewriter) const override {
508       rewriter.eraseOp(op);
509       return success();
510     }
511   };
512 
513   // The following two patterns test RewriterBase::replaceAllUsesWith.
514   //
515   // That function replaces all usages of a Block (or a Value) with another one
516   // *and tracks these changes in the rewriter.* The GreedyPatternRewriteDriver
517   // with GreedyRewriteStrictness::AnyOp uses that tracking to construct its
518   // worklist: when an op is modified, it is added to the worklist. The two
519   // patterns below make the tracking observable: ChangeBlockOp replaces all
520   // usages of a block and that pattern is applied because the corresponding ops
521   // are put on the initial worklist (see above). ImplicitChangeOp does an
522   // unrelated change but ops of the corresponding type are *not* on the initial
523   // worklist, so the effect of the second pattern is only visible if the
524   // tracking and subsequent adding to the worklist actually works.
525 
526   // Replace all usages of the first successor with the second successor.
527   class ChangeBlockOp : public RewritePattern {
528   public:
529     ChangeBlockOp(MLIRContext *context)
530         : RewritePattern("test.change_block_op", /*benefit=*/1, context) {}
531     LogicalResult matchAndRewrite(Operation *op,
532                                   PatternRewriter &rewriter) const override {
533       if (op->getNumSuccessors() < 2)
534         return failure();
535       Block *firstSuccessor = op->getSuccessor(0);
536       Block *secondSuccessor = op->getSuccessor(1);
537       if (firstSuccessor == secondSuccessor)
538         return failure();
539       // This is the function being tested:
540       rewriter.replaceAllUsesWith(firstSuccessor, secondSuccessor);
541       // Using the following line instead would make the test fail:
542       // firstSuccessor->replaceAllUsesWith(secondSuccessor);
543       return success();
544     }
545   };
546 
547   // Changes the successor to the parent block.
548   class ImplicitChangeOp : public RewritePattern {
549   public:
550     ImplicitChangeOp(MLIRContext *context)
551         : RewritePattern("test.implicit_change_op", /*benefit=*/1, context) {}
552     LogicalResult matchAndRewrite(Operation *op,
553                                   PatternRewriter &rewriter) const override {
554       if (op->getNumSuccessors() < 1 || op->getSuccessor(0) == op->getBlock())
555         return failure();
556       rewriter.modifyOpInPlace(op,
557                                [&]() { op->setSuccessor(op->getBlock(), 0); });
558       return success();
559     }
560   };
561 };
562 
563 } // namespace
564 
565 //===----------------------------------------------------------------------===//
566 // ReturnType Driver.
567 //===----------------------------------------------------------------------===//
568 
569 namespace {
570 // Generate ops for each instance where the type can be successfully inferred.
571 template <typename OpTy>
572 static void invokeCreateWithInferredReturnType(Operation *op) {
573   auto *context = op->getContext();
574   auto fop = op->getParentOfType<func::FuncOp>();
575   auto location = UnknownLoc::get(context);
576   OpBuilder b(op);
577   b.setInsertionPointAfter(op);
578 
579   // Use permutations of 2 args as operands.
580   assert(fop.getNumArguments() >= 2);
581   for (int i = 0, e = fop.getNumArguments(); i < e; ++i) {
582     for (int j = 0; j < e; ++j) {
583       std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}};
584       SmallVector<Type, 2> inferredReturnTypes;
585       if (succeeded(OpTy::inferReturnTypes(
586               context, std::nullopt, values, op->getDiscardableAttrDictionary(),
587               op->getPropertiesStorage(), op->getRegions(),
588               inferredReturnTypes))) {
589         OperationState state(location, OpTy::getOperationName());
590         // TODO: Expand to regions.
591         OpTy::build(b, state, values, op->getAttrs());
592         (void)b.create(state);
593       }
594     }
595   }
596 }
597 
598 static void reifyReturnShape(Operation *op) {
599   OpBuilder b(op);
600 
601   // Use permutations of 2 args as operands.
602   auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op);
603   SmallVector<Value, 2> shapes;
604   if (failed(shapedOp.reifyReturnTypeShapes(b, op->getOperands(), shapes)) ||
605       !llvm::hasSingleElement(shapes))
606     return;
607   for (const auto &it : llvm::enumerate(shapes)) {
608     op->emitRemark() << "value " << it.index() << ": "
609                      << it.value().getDefiningOp();
610   }
611 }
612 
613 struct TestReturnTypeDriver
614     : public PassWrapper<TestReturnTypeDriver, OperationPass<func::FuncOp>> {
615   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestReturnTypeDriver)
616 
617   void getDependentDialects(DialectRegistry &registry) const override {
618     registry.insert<tensor::TensorDialect>();
619   }
620   StringRef getArgument() const final { return "test-return-type"; }
621   StringRef getDescription() const final { return "Run return type functions"; }
622 
623   void runOnOperation() override {
624     if (getOperation().getName() == "testCreateFunctions") {
625       std::vector<Operation *> ops;
626       // Collect ops to avoid triggering on inserted ops.
627       for (auto &op : getOperation().getBody().front())
628         ops.push_back(&op);
629       // Generate test patterns for each, but skip terminator.
630       for (auto *op : llvm::ArrayRef(ops).drop_back()) {
631         // Test create method of each of the Op classes below. The resultant
632         // output would be in reverse order underneath `op` from which
633         // the attributes and regions are used.
634         invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op);
635         invokeCreateWithInferredReturnType<OpWithInferTypeAdaptorInterfaceOp>(
636             op);
637         invokeCreateWithInferredReturnType<
638             OpWithShapedTypeInferTypeInterfaceOp>(op);
639       };
640       return;
641     }
642     if (getOperation().getName() == "testReifyFunctions") {
643       std::vector<Operation *> ops;
644       // Collect ops to avoid triggering on inserted ops.
645       for (auto &op : getOperation().getBody().front())
646         if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op))
647           ops.push_back(&op);
648       // Generate test patterns for each, but skip terminator.
649       for (auto *op : ops)
650         reifyReturnShape(op);
651     }
652   }
653 };
654 } // namespace
655 
656 namespace {
657 struct TestDerivedAttributeDriver
658     : public PassWrapper<TestDerivedAttributeDriver,
659                          OperationPass<func::FuncOp>> {
660   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestDerivedAttributeDriver)
661 
662   StringRef getArgument() const final { return "test-derived-attr"; }
663   StringRef getDescription() const final {
664     return "Run test derived attributes";
665   }
666   void runOnOperation() override;
667 };
668 } // namespace
669 
670 void TestDerivedAttributeDriver::runOnOperation() {
671   getOperation().walk([](DerivedAttributeOpInterface dOp) {
672     auto dAttr = dOp.materializeDerivedAttributes();
673     if (!dAttr)
674       return;
675     for (auto d : dAttr)
676       dOp.emitRemark() << d.getName().getValue() << " = " << d.getValue();
677   });
678 }
679 
680 //===----------------------------------------------------------------------===//
681 // Legalization Driver.
682 //===----------------------------------------------------------------------===//
683 
684 namespace {
685 //===----------------------------------------------------------------------===//
686 // Region-Block Rewrite Testing
687 
688 /// This pattern applies a signature conversion to a block inside a detached
689 /// region.
690 struct TestDetachedSignatureConversion : public ConversionPattern {
691   TestDetachedSignatureConversion(MLIRContext *ctx)
692       : ConversionPattern("test.detached_signature_conversion", /*benefit=*/1,
693                           ctx) {}
694 
695   LogicalResult
696   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
697                   ConversionPatternRewriter &rewriter) const final {
698     if (op->getNumRegions() != 1)
699       return failure();
700     OperationState state(op->getLoc(), "test.legal_op_with_region", operands,
701                          op->getResultTypes(), {}, BlockRange());
702     Region *newRegion = state.addRegion();
703     rewriter.inlineRegionBefore(op->getRegion(0), *newRegion,
704                                 newRegion->begin());
705     TypeConverter::SignatureConversion result(newRegion->getNumArguments());
706     for (unsigned i = 0, e = newRegion->getNumArguments(); i < e; ++i)
707       result.addInputs(i, rewriter.getF64Type());
708     rewriter.applySignatureConversion(&newRegion->front(), result);
709     Operation *newOp = rewriter.create(state);
710     rewriter.replaceOp(op, newOp->getResults());
711     return success();
712   }
713 };
714 
715 /// This pattern is a simple pattern that inlines the first region of a given
716 /// operation into the parent region.
717 struct TestRegionRewriteBlockMovement : public ConversionPattern {
718   TestRegionRewriteBlockMovement(MLIRContext *ctx)
719       : ConversionPattern("test.region", 1, ctx) {}
720 
721   LogicalResult
722   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
723                   ConversionPatternRewriter &rewriter) const final {
724     // Inline this region into the parent region.
725     auto &parentRegion = *op->getParentRegion();
726     auto &opRegion = op->getRegion(0);
727     if (op->getDiscardableAttr("legalizer.should_clone"))
728       rewriter.cloneRegionBefore(opRegion, parentRegion, parentRegion.end());
729     else
730       rewriter.inlineRegionBefore(opRegion, parentRegion, parentRegion.end());
731 
732     if (op->getDiscardableAttr("legalizer.erase_old_blocks")) {
733       while (!opRegion.empty())
734         rewriter.eraseBlock(&opRegion.front());
735     }
736 
737     // Drop this operation.
738     rewriter.eraseOp(op);
739     return success();
740   }
741 };
742 /// This pattern is a simple pattern that generates a region containing an
743 /// illegal operation.
744 struct TestRegionRewriteUndo : public RewritePattern {
745   TestRegionRewriteUndo(MLIRContext *ctx)
746       : RewritePattern("test.region_builder", 1, ctx) {}
747 
748   LogicalResult matchAndRewrite(Operation *op,
749                                 PatternRewriter &rewriter) const final {
750     // Create the region operation with an entry block containing arguments.
751     OperationState newRegion(op->getLoc(), "test.region");
752     newRegion.addRegion();
753     auto *regionOp = rewriter.create(newRegion);
754     auto *entryBlock = rewriter.createBlock(&regionOp->getRegion(0));
755     entryBlock->addArgument(rewriter.getIntegerType(64),
756                             rewriter.getUnknownLoc());
757 
758     // Add an explicitly illegal operation to ensure the conversion fails.
759     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
760     rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>());
761 
762     // Drop this operation.
763     rewriter.eraseOp(op);
764     return success();
765   }
766 };
767 /// A simple pattern that creates a block at the end of the parent region of the
768 /// matched operation.
769 struct TestCreateBlock : public RewritePattern {
770   TestCreateBlock(MLIRContext *ctx)
771       : RewritePattern("test.create_block", /*benefit=*/1, ctx) {}
772 
773   LogicalResult matchAndRewrite(Operation *op,
774                                 PatternRewriter &rewriter) const final {
775     Region &region = *op->getParentRegion();
776     Type i32Type = rewriter.getIntegerType(32);
777     Location loc = op->getLoc();
778     rewriter.createBlock(&region, region.end(), {i32Type, i32Type}, {loc, loc});
779     rewriter.create<TerminatorOp>(loc);
780     rewriter.eraseOp(op);
781     return success();
782   }
783 };
784 
785 /// A simple pattern that creates a block containing an invalid operation in
786 /// order to trigger the block creation undo mechanism.
787 struct TestCreateIllegalBlock : public RewritePattern {
788   TestCreateIllegalBlock(MLIRContext *ctx)
789       : RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {}
790 
791   LogicalResult matchAndRewrite(Operation *op,
792                                 PatternRewriter &rewriter) const final {
793     Region &region = *op->getParentRegion();
794     Type i32Type = rewriter.getIntegerType(32);
795     Location loc = op->getLoc();
796     rewriter.createBlock(&region, region.end(), {i32Type, i32Type}, {loc, loc});
797     // Create an illegal op to ensure the conversion fails.
798     rewriter.create<ILLegalOpF>(loc, i32Type);
799     rewriter.create<TerminatorOp>(loc);
800     rewriter.eraseOp(op);
801     return success();
802   }
803 };
804 
805 /// A simple pattern that tests the undo mechanism when replacing the uses of a
806 /// block argument.
807 struct TestUndoBlockArgReplace : public ConversionPattern {
808   TestUndoBlockArgReplace(MLIRContext *ctx)
809       : ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {}
810 
811   LogicalResult
812   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
813                   ConversionPatternRewriter &rewriter) const final {
814     auto illegalOp =
815         rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
816     rewriter.replaceUsesOfBlockArgument(op->getRegion(0).getArgument(0),
817                                         illegalOp->getResult(0));
818     rewriter.modifyOpInPlace(op, [] {});
819     return success();
820   }
821 };
822 
823 /// This pattern hoists ops out of a "test.hoist_me" and then fails conversion.
824 /// This is to test the rollback logic.
825 struct TestUndoMoveOpBefore : public ConversionPattern {
826   TestUndoMoveOpBefore(MLIRContext *ctx)
827       : ConversionPattern("test.hoist_me", /*benefit=*/1, ctx) {}
828 
829   LogicalResult
830   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
831                   ConversionPatternRewriter &rewriter) const override {
832     rewriter.moveOpBefore(op, op->getParentOp());
833     // Replace with an illegal op to ensure the conversion fails.
834     rewriter.replaceOpWithNewOp<ILLegalOpF>(op, rewriter.getF32Type());
835     return success();
836   }
837 };
838 
839 /// A rewrite pattern that tests the undo mechanism when erasing a block.
840 struct TestUndoBlockErase : public ConversionPattern {
841   TestUndoBlockErase(MLIRContext *ctx)
842       : ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {}
843 
844   LogicalResult
845   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
846                   ConversionPatternRewriter &rewriter) const final {
847     Block *secondBlock = &*std::next(op->getRegion(0).begin());
848     rewriter.setInsertionPointToStart(secondBlock);
849     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
850     rewriter.eraseBlock(secondBlock);
851     rewriter.modifyOpInPlace(op, [] {});
852     return success();
853   }
854 };
855 
856 /// A pattern that modifies a property in-place, but keeps the op illegal.
857 struct TestUndoPropertiesModification : public ConversionPattern {
858   TestUndoPropertiesModification(MLIRContext *ctx)
859       : ConversionPattern("test.with_properties", /*benefit=*/1, ctx) {}
860   LogicalResult
861   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
862                   ConversionPatternRewriter &rewriter) const final {
863     if (!op->hasAttr("modify_inplace"))
864       return failure();
865     rewriter.modifyOpInPlace(
866         op, [&]() { cast<TestOpWithProperties>(op).getProperties().setA(42); });
867     return success();
868   }
869 };
870 
871 //===----------------------------------------------------------------------===//
872 // Type-Conversion Rewrite Testing
873 
874 /// This patterns erases a region operation that has had a type conversion.
875 struct TestDropOpSignatureConversion : public ConversionPattern {
876   TestDropOpSignatureConversion(MLIRContext *ctx,
877                                 const TypeConverter &converter)
878       : ConversionPattern(converter, "test.drop_region_op", 1, ctx) {}
879   LogicalResult
880   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
881                   ConversionPatternRewriter &rewriter) const override {
882     Region &region = op->getRegion(0);
883     Block *entry = &region.front();
884 
885     // Convert the original entry arguments.
886     const TypeConverter &converter = *getTypeConverter();
887     TypeConverter::SignatureConversion result(entry->getNumArguments());
888     if (failed(converter.convertSignatureArgs(entry->getArgumentTypes(),
889                                               result)) ||
890         failed(rewriter.convertRegionTypes(&region, converter, &result)))
891       return failure();
892 
893     // Convert the region signature and just drop the operation.
894     rewriter.eraseOp(op);
895     return success();
896   }
897 };
898 /// This pattern simply updates the operands of the given operation.
899 struct TestPassthroughInvalidOp : public ConversionPattern {
900   TestPassthroughInvalidOp(MLIRContext *ctx)
901       : ConversionPattern("test.invalid", 1, ctx) {}
902   LogicalResult
903   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
904                   ConversionPatternRewriter &rewriter) const final {
905     rewriter.replaceOpWithNewOp<TestValidOp>(op, std::nullopt, operands,
906                                              std::nullopt);
907     return success();
908   }
909 };
910 /// This pattern handles the case of a split return value.
911 struct TestSplitReturnType : public ConversionPattern {
912   TestSplitReturnType(MLIRContext *ctx)
913       : ConversionPattern("test.return", 1, ctx) {}
914   LogicalResult
915   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
916                   ConversionPatternRewriter &rewriter) const final {
917     // Check for a return of F32.
918     if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32())
919       return failure();
920 
921     // Check if the first operation is a cast operation, if it is we use the
922     // results directly.
923     auto *defOp = operands[0].getDefiningOp();
924     if (auto packerOp =
925             llvm::dyn_cast_or_null<UnrealizedConversionCastOp>(defOp)) {
926       rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands());
927       return success();
928     }
929 
930     // Otherwise, fail to match.
931     return failure();
932   }
933 };
934 
935 //===----------------------------------------------------------------------===//
936 // Multi-Level Type-Conversion Rewrite Testing
937 struct TestChangeProducerTypeI32ToF32 : public ConversionPattern {
938   TestChangeProducerTypeI32ToF32(MLIRContext *ctx)
939       : ConversionPattern("test.type_producer", 1, ctx) {}
940   LogicalResult
941   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
942                   ConversionPatternRewriter &rewriter) const final {
943     // If the type is I32, change the type to F32.
944     if (!Type(*op->result_type_begin()).isSignlessInteger(32))
945       return failure();
946     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type());
947     return success();
948   }
949 };
950 struct TestChangeProducerTypeF32ToF64 : public ConversionPattern {
951   TestChangeProducerTypeF32ToF64(MLIRContext *ctx)
952       : ConversionPattern("test.type_producer", 1, ctx) {}
953   LogicalResult
954   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
955                   ConversionPatternRewriter &rewriter) const final {
956     // If the type is F32, change the type to F64.
957     if (!Type(*op->result_type_begin()).isF32())
958       return rewriter.notifyMatchFailure(op, "expected single f32 operand");
959     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type());
960     return success();
961   }
962 };
963 struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern {
964   TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx)
965       : ConversionPattern("test.type_producer", 10, ctx) {}
966   LogicalResult
967   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
968                   ConversionPatternRewriter &rewriter) const final {
969     // Always convert to B16, even though it is not a legal type. This tests
970     // that values are unmapped correctly.
971     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type());
972     return success();
973   }
974 };
975 struct TestUpdateConsumerType : public ConversionPattern {
976   TestUpdateConsumerType(MLIRContext *ctx)
977       : ConversionPattern("test.type_consumer", 1, ctx) {}
978   LogicalResult
979   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
980                   ConversionPatternRewriter &rewriter) const final {
981     // Verify that the incoming operand has been successfully remapped to F64.
982     if (!operands[0].getType().isF64())
983       return failure();
984     rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]);
985     return success();
986   }
987 };
988 
989 //===----------------------------------------------------------------------===//
990 // Non-Root Replacement Rewrite Testing
991 /// This pattern generates an invalid operation, but replaces it before the
992 /// pattern is finished. This checks that we don't need to legalize the
993 /// temporary op.
994 struct TestNonRootReplacement : public RewritePattern {
995   TestNonRootReplacement(MLIRContext *ctx)
996       : RewritePattern("test.replace_non_root", 1, ctx) {}
997 
998   LogicalResult matchAndRewrite(Operation *op,
999                                 PatternRewriter &rewriter) const final {
1000     auto resultType = *op->result_type_begin();
1001     auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType);
1002     auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType);
1003 
1004     rewriter.replaceOp(illegalOp, legalOp);
1005     rewriter.replaceOp(op, illegalOp);
1006     return success();
1007   }
1008 };
1009 
1010 //===----------------------------------------------------------------------===//
1011 // Recursive Rewrite Testing
1012 /// This pattern is applied to the same operation multiple times, but has a
1013 /// bounded recursion.
1014 struct TestBoundedRecursiveRewrite
1015     : public OpRewritePattern<TestRecursiveRewriteOp> {
1016   using OpRewritePattern<TestRecursiveRewriteOp>::OpRewritePattern;
1017 
1018   void initialize() {
1019     // The conversion target handles bounding the recursion of this pattern.
1020     setHasBoundedRewriteRecursion();
1021   }
1022 
1023   LogicalResult matchAndRewrite(TestRecursiveRewriteOp op,
1024                                 PatternRewriter &rewriter) const final {
1025     // Decrement the depth of the op in-place.
1026     rewriter.modifyOpInPlace(op, [&] {
1027       op->setAttr("depth", rewriter.getI64IntegerAttr(op.getDepth() - 1));
1028     });
1029     return success();
1030   }
1031 };
1032 
1033 struct TestNestedOpCreationUndoRewrite
1034     : public OpRewritePattern<IllegalOpWithRegionAnchor> {
1035   using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern;
1036 
1037   LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op,
1038                                 PatternRewriter &rewriter) const final {
1039     // rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
1040     rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
1041     return success();
1042   };
1043 };
1044 
1045 // This pattern matches `test.blackhole` and delete this op and its producer.
1046 struct TestReplaceEraseOp : public OpRewritePattern<BlackHoleOp> {
1047   using OpRewritePattern<BlackHoleOp>::OpRewritePattern;
1048 
1049   LogicalResult matchAndRewrite(BlackHoleOp op,
1050                                 PatternRewriter &rewriter) const final {
1051     Operation *producer = op.getOperand().getDefiningOp();
1052     // Always erase the user before the producer, the framework should handle
1053     // this correctly.
1054     rewriter.eraseOp(op);
1055     rewriter.eraseOp(producer);
1056     return success();
1057   };
1058 };
1059 
1060 // This pattern replaces explicitly illegal op with explicitly legal op,
1061 // but in addition creates unregistered operation.
1062 struct TestCreateUnregisteredOp : public OpRewritePattern<ILLegalOpG> {
1063   using OpRewritePattern<ILLegalOpG>::OpRewritePattern;
1064 
1065   LogicalResult matchAndRewrite(ILLegalOpG op,
1066                                 PatternRewriter &rewriter) const final {
1067     IntegerAttr attr = rewriter.getI32IntegerAttr(0);
1068     Value val = rewriter.create<arith::ConstantOp>(op->getLoc(), attr);
1069     rewriter.replaceOpWithNewOp<LegalOpC>(op, val);
1070     return success();
1071   };
1072 };
1073 } // namespace
1074 
1075 namespace {
1076 struct TestTypeConverter : public TypeConverter {
1077   using TypeConverter::TypeConverter;
1078   TestTypeConverter() {
1079     addConversion(convertType);
1080     addArgumentMaterialization(materializeCast);
1081     addSourceMaterialization(materializeCast);
1082   }
1083 
1084   static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) {
1085     // Drop I16 types.
1086     if (t.isSignlessInteger(16))
1087       return success();
1088 
1089     // Convert I64 to F64.
1090     if (t.isSignlessInteger(64)) {
1091       results.push_back(FloatType::getF64(t.getContext()));
1092       return success();
1093     }
1094 
1095     // Convert I42 to I43.
1096     if (t.isInteger(42)) {
1097       results.push_back(IntegerType::get(t.getContext(), 43));
1098       return success();
1099     }
1100 
1101     // Split F32 into F16,F16.
1102     if (t.isF32()) {
1103       results.assign(2, FloatType::getF16(t.getContext()));
1104       return success();
1105     }
1106 
1107     // Otherwise, convert the type directly.
1108     results.push_back(t);
1109     return success();
1110   }
1111 
1112   /// Hook for materializing a conversion. This is necessary because we generate
1113   /// 1->N type mappings.
1114   static std::optional<Value> materializeCast(OpBuilder &builder,
1115                                               Type resultType,
1116                                               ValueRange inputs, Location loc) {
1117     return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
1118   }
1119 };
1120 
1121 struct TestLegalizePatternDriver
1122     : public PassWrapper<TestLegalizePatternDriver, OperationPass<>> {
1123   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestLegalizePatternDriver)
1124 
1125   StringRef getArgument() const final { return "test-legalize-patterns"; }
1126   StringRef getDescription() const final {
1127     return "Run test dialect legalization patterns";
1128   }
1129   /// The mode of conversion to use with the driver.
1130   enum class ConversionMode { Analysis, Full, Partial };
1131 
1132   TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {}
1133 
1134   void getDependentDialects(DialectRegistry &registry) const override {
1135     registry.insert<func::FuncDialect, test::TestDialect>();
1136   }
1137 
1138   void runOnOperation() override {
1139     TestTypeConverter converter;
1140     mlir::RewritePatternSet patterns(&getContext());
1141     populateWithGenerated(patterns);
1142     patterns.add<
1143         TestRegionRewriteBlockMovement, TestDetachedSignatureConversion,
1144         TestRegionRewriteUndo, TestCreateBlock, TestCreateIllegalBlock,
1145         TestUndoBlockArgReplace, TestUndoBlockErase, TestPassthroughInvalidOp,
1146         TestSplitReturnType, TestChangeProducerTypeI32ToF32,
1147         TestChangeProducerTypeF32ToF64, TestChangeProducerTypeF32ToInvalid,
1148         TestUpdateConsumerType, TestNonRootReplacement,
1149         TestBoundedRecursiveRewrite, TestNestedOpCreationUndoRewrite,
1150         TestReplaceEraseOp, TestCreateUnregisteredOp, TestUndoMoveOpBefore,
1151         TestUndoPropertiesModification>(&getContext());
1152     patterns.add<TestDropOpSignatureConversion>(&getContext(), converter);
1153     mlir::populateAnyFunctionOpInterfaceTypeConversionPattern(patterns,
1154                                                               converter);
1155     mlir::populateCallOpTypeConversionPattern(patterns, converter);
1156 
1157     // Define the conversion target used for the test.
1158     ConversionTarget target(getContext());
1159     target.addLegalOp<ModuleOp>();
1160     target.addLegalOp<LegalOpA, LegalOpB, LegalOpC, TestCastOp, TestValidOp,
1161                       TerminatorOp, OneRegionOp>();
1162     target.addLegalOp(
1163         OperationName("test.legal_op_with_region", &getContext()));
1164     target
1165         .addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>();
1166     target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
1167       // Don't allow F32 operands.
1168       return llvm::none_of(op.getOperandTypes(),
1169                            [](Type type) { return type.isF32(); });
1170     });
1171     target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
1172       return converter.isSignatureLegal(op.getFunctionType()) &&
1173              converter.isLegal(&op.getBody());
1174     });
1175     target.addDynamicallyLegalOp<func::CallOp>(
1176         [&](func::CallOp op) { return converter.isLegal(op); });
1177 
1178     // TestCreateUnregisteredOp creates `arith.constant` operation,
1179     // which was not added to target intentionally to test
1180     // correct error code from conversion driver.
1181     target.addDynamicallyLegalOp<ILLegalOpG>([](ILLegalOpG) { return false; });
1182 
1183     // Expect the type_producer/type_consumer operations to only operate on f64.
1184     target.addDynamicallyLegalOp<TestTypeProducerOp>(
1185         [](TestTypeProducerOp op) { return op.getType().isF64(); });
1186     target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
1187       return op.getOperand().getType().isF64();
1188     });
1189 
1190     // Check support for marking certain operations as recursively legal.
1191     target.markOpRecursivelyLegal<func::FuncOp, ModuleOp>([](Operation *op) {
1192       return static_cast<bool>(
1193           op->getAttrOfType<UnitAttr>("test.recursively_legal"));
1194     });
1195 
1196     // Mark the bound recursion operation as dynamically legal.
1197     target.addDynamicallyLegalOp<TestRecursiveRewriteOp>(
1198         [](TestRecursiveRewriteOp op) { return op.getDepth() == 0; });
1199 
1200     // Create a dynamically legal rule that can only be legalized by folding it.
1201     target.addDynamicallyLegalOp<TestOpInPlaceSelfFold>(
1202         [](TestOpInPlaceSelfFold op) { return op.getFolded(); });
1203 
1204     // Handle a partial conversion.
1205     if (mode == ConversionMode::Partial) {
1206       DenseSet<Operation *> unlegalizedOps;
1207       ConversionConfig config;
1208       DumpNotifications dumpNotifications;
1209       config.listener = &dumpNotifications;
1210       config.unlegalizedOps = &unlegalizedOps;
1211       if (failed(applyPartialConversion(getOperation(), target,
1212                                         std::move(patterns), config))) {
1213         getOperation()->emitRemark() << "applyPartialConversion failed";
1214       }
1215       // Emit remarks for each legalizable operation.
1216       for (auto *op : unlegalizedOps)
1217         op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
1218       return;
1219     }
1220 
1221     // Handle a full conversion.
1222     if (mode == ConversionMode::Full) {
1223       // Check support for marking unknown operations as dynamically legal.
1224       target.markUnknownOpDynamicallyLegal([](Operation *op) {
1225         return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal");
1226       });
1227 
1228       ConversionConfig config;
1229       DumpNotifications dumpNotifications;
1230       config.listener = &dumpNotifications;
1231       if (failed(applyFullConversion(getOperation(), target,
1232                                      std::move(patterns), config))) {
1233         getOperation()->emitRemark() << "applyFullConversion failed";
1234       }
1235       return;
1236     }
1237 
1238     // Otherwise, handle an analysis conversion.
1239     assert(mode == ConversionMode::Analysis);
1240 
1241     // Analyze the convertible operations.
1242     DenseSet<Operation *> legalizedOps;
1243     ConversionConfig config;
1244     config.legalizableOps = &legalizedOps;
1245     if (failed(applyAnalysisConversion(getOperation(), target,
1246                                        std::move(patterns), config)))
1247       return signalPassFailure();
1248 
1249     // Emit remarks for each legalizable operation.
1250     for (auto *op : legalizedOps)
1251       op->emitRemark() << "op '" << op->getName() << "' is legalizable";
1252   }
1253 
1254   /// The mode of conversion to use.
1255   ConversionMode mode;
1256 };
1257 } // namespace
1258 
1259 static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode>
1260     legalizerConversionMode(
1261         "test-legalize-mode",
1262         llvm::cl::desc("The legalization mode to use with the test driver"),
1263         llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial),
1264         llvm::cl::values(
1265             clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis,
1266                        "analysis", "Perform an analysis conversion"),
1267             clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full",
1268                        "Perform a full conversion"),
1269             clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial,
1270                        "partial", "Perform a partial conversion")));
1271 
1272 //===----------------------------------------------------------------------===//
1273 // ConversionPatternRewriter::getRemappedValue testing. This method is used
1274 // to get the remapped value of an original value that was replaced using
1275 // ConversionPatternRewriter.
1276 namespace {
1277 struct TestRemapValueTypeConverter : public TypeConverter {
1278   using TypeConverter::TypeConverter;
1279 
1280   TestRemapValueTypeConverter() {
1281     addConversion(
1282         [](Float32Type type) { return Float64Type::get(type.getContext()); });
1283     addConversion([](Type type) { return type; });
1284   }
1285 };
1286 
1287 /// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with
1288 /// a one-operand two-result OneVResOneVOperandOp1 by replicating its original
1289 /// operand twice.
1290 ///
1291 /// Example:
1292 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0)
1293 /// is replaced with:
1294 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0, %0)
1295 struct OneVResOneVOperandOp1Converter
1296     : public OpConversionPattern<OneVResOneVOperandOp1> {
1297   using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern;
1298 
1299   LogicalResult
1300   matchAndRewrite(OneVResOneVOperandOp1 op, OpAdaptor adaptor,
1301                   ConversionPatternRewriter &rewriter) const override {
1302     auto origOps = op.getOperands();
1303     assert(std::distance(origOps.begin(), origOps.end()) == 1 &&
1304            "One operand expected");
1305     Value origOp = *origOps.begin();
1306     SmallVector<Value, 2> remappedOperands;
1307     // Replicate the remapped original operand twice. Note that we don't used
1308     // the remapped 'operand' since the goal is testing 'getRemappedValue'.
1309     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
1310     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
1311 
1312     rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(),
1313                                                        remappedOperands);
1314     return success();
1315   }
1316 };
1317 
1318 /// A rewriter pattern that tests that blocks can be merged.
1319 struct TestRemapValueInRegion
1320     : public OpConversionPattern<TestRemappedValueRegionOp> {
1321   using OpConversionPattern<TestRemappedValueRegionOp>::OpConversionPattern;
1322 
1323   LogicalResult
1324   matchAndRewrite(TestRemappedValueRegionOp op, OpAdaptor adaptor,
1325                   ConversionPatternRewriter &rewriter) const final {
1326     Block &block = op.getBody().front();
1327     Operation *terminator = block.getTerminator();
1328 
1329     // Merge the block into the parent region.
1330     Block *parentBlock = op->getBlock();
1331     Block *finalBlock = rewriter.splitBlock(parentBlock, op->getIterator());
1332     rewriter.mergeBlocks(&block, parentBlock, ValueRange());
1333     rewriter.mergeBlocks(finalBlock, parentBlock, ValueRange());
1334 
1335     // Replace the results of this operation with the remapped terminator
1336     // values.
1337     SmallVector<Value> terminatorOperands;
1338     if (failed(rewriter.getRemappedValues(terminator->getOperands(),
1339                                           terminatorOperands)))
1340       return failure();
1341 
1342     rewriter.eraseOp(terminator);
1343     rewriter.replaceOp(op, terminatorOperands);
1344     return success();
1345   }
1346 };
1347 
1348 struct TestRemappedValue
1349     : public mlir::PassWrapper<TestRemappedValue, OperationPass<>> {
1350   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestRemappedValue)
1351 
1352   StringRef getArgument() const final { return "test-remapped-value"; }
1353   StringRef getDescription() const final {
1354     return "Test public remapped value mechanism in ConversionPatternRewriter";
1355   }
1356   void runOnOperation() override {
1357     TestRemapValueTypeConverter typeConverter;
1358 
1359     mlir::RewritePatternSet patterns(&getContext());
1360     patterns.add<OneVResOneVOperandOp1Converter>(&getContext());
1361     patterns.add<TestChangeProducerTypeF32ToF64, TestUpdateConsumerType>(
1362         &getContext());
1363     patterns.add<TestRemapValueInRegion>(typeConverter, &getContext());
1364 
1365     mlir::ConversionTarget target(getContext());
1366     target.addLegalOp<ModuleOp, func::FuncOp, TestReturnOp>();
1367 
1368     // Expect the type_producer/type_consumer operations to only operate on f64.
1369     target.addDynamicallyLegalOp<TestTypeProducerOp>(
1370         [](TestTypeProducerOp op) { return op.getType().isF64(); });
1371     target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
1372       return op.getOperand().getType().isF64();
1373     });
1374 
1375     // We make OneVResOneVOperandOp1 legal only when it has more that one
1376     // operand. This will trigger the conversion that will replace one-operand
1377     // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1.
1378     target.addDynamicallyLegalOp<OneVResOneVOperandOp1>(
1379         [](Operation *op) { return op->getNumOperands() > 1; });
1380 
1381     if (failed(mlir::applyFullConversion(getOperation(), target,
1382                                          std::move(patterns)))) {
1383       signalPassFailure();
1384     }
1385   }
1386 };
1387 } // namespace
1388 
1389 //===----------------------------------------------------------------------===//
1390 // Test patterns without a specific root operation kind
1391 //===----------------------------------------------------------------------===//
1392 
1393 namespace {
1394 /// This pattern matches and removes any operation in the test dialect.
1395 struct RemoveTestDialectOps : public RewritePattern {
1396   RemoveTestDialectOps(MLIRContext *context)
1397       : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
1398 
1399   LogicalResult matchAndRewrite(Operation *op,
1400                                 PatternRewriter &rewriter) const override {
1401     if (!isa<TestDialect>(op->getDialect()))
1402       return failure();
1403     rewriter.eraseOp(op);
1404     return success();
1405   }
1406 };
1407 
1408 struct TestUnknownRootOpDriver
1409     : public mlir::PassWrapper<TestUnknownRootOpDriver, OperationPass<>> {
1410   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestUnknownRootOpDriver)
1411 
1412   StringRef getArgument() const final {
1413     return "test-legalize-unknown-root-patterns";
1414   }
1415   StringRef getDescription() const final {
1416     return "Test public remapped value mechanism in ConversionPatternRewriter";
1417   }
1418   void runOnOperation() override {
1419     mlir::RewritePatternSet patterns(&getContext());
1420     patterns.add<RemoveTestDialectOps>(&getContext());
1421 
1422     mlir::ConversionTarget target(getContext());
1423     target.addIllegalDialect<TestDialect>();
1424     if (failed(applyPartialConversion(getOperation(), target,
1425                                       std::move(patterns))))
1426       signalPassFailure();
1427   }
1428 };
1429 } // namespace
1430 
1431 //===----------------------------------------------------------------------===//
1432 // Test patterns that uses operations and types defined at runtime
1433 //===----------------------------------------------------------------------===//
1434 
1435 namespace {
1436 /// This pattern matches dynamic operations 'test.one_operand_two_results' and
1437 /// replace them with dynamic operations 'test.generic_dynamic_op'.
1438 struct RewriteDynamicOp : public RewritePattern {
1439   RewriteDynamicOp(MLIRContext *context)
1440       : RewritePattern("test.dynamic_one_operand_two_results", /*benefit=*/1,
1441                        context) {}
1442 
1443   LogicalResult matchAndRewrite(Operation *op,
1444                                 PatternRewriter &rewriter) const override {
1445     assert(op->getName().getStringRef() ==
1446                "test.dynamic_one_operand_two_results" &&
1447            "rewrite pattern should only match operations with the right name");
1448 
1449     OperationState state(op->getLoc(), "test.dynamic_generic",
1450                          op->getOperands(), op->getResultTypes(),
1451                          op->getAttrs());
1452     auto *newOp = rewriter.create(state);
1453     rewriter.replaceOp(op, newOp->getResults());
1454     return success();
1455   }
1456 };
1457 
1458 struct TestRewriteDynamicOpDriver
1459     : public PassWrapper<TestRewriteDynamicOpDriver, OperationPass<>> {
1460   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestRewriteDynamicOpDriver)
1461 
1462   void getDependentDialects(DialectRegistry &registry) const override {
1463     registry.insert<TestDialect>();
1464   }
1465   StringRef getArgument() const final { return "test-rewrite-dynamic-op"; }
1466   StringRef getDescription() const final {
1467     return "Test rewritting on dynamic operations";
1468   }
1469   void runOnOperation() override {
1470     RewritePatternSet patterns(&getContext());
1471     patterns.add<RewriteDynamicOp>(&getContext());
1472 
1473     ConversionTarget target(getContext());
1474     target.addIllegalOp(
1475         OperationName("test.dynamic_one_operand_two_results", &getContext()));
1476     target.addLegalOp(OperationName("test.dynamic_generic", &getContext()));
1477     if (failed(applyPartialConversion(getOperation(), target,
1478                                       std::move(patterns))))
1479       signalPassFailure();
1480   }
1481 };
1482 } // end anonymous namespace
1483 
1484 //===----------------------------------------------------------------------===//
1485 // Test type conversions
1486 //===----------------------------------------------------------------------===//
1487 
1488 namespace {
1489 struct TestTypeConversionProducer
1490     : public OpConversionPattern<TestTypeProducerOp> {
1491   using OpConversionPattern<TestTypeProducerOp>::OpConversionPattern;
1492   LogicalResult
1493   matchAndRewrite(TestTypeProducerOp op, OpAdaptor adaptor,
1494                   ConversionPatternRewriter &rewriter) const final {
1495     Type resultType = op.getType();
1496     Type convertedType = getTypeConverter()
1497                              ? getTypeConverter()->convertType(resultType)
1498                              : resultType;
1499     if (isa<FloatType>(resultType))
1500       resultType = rewriter.getF64Type();
1501     else if (resultType.isInteger(16))
1502       resultType = rewriter.getIntegerType(64);
1503     else if (isa<test::TestRecursiveType>(resultType) &&
1504              convertedType != resultType)
1505       resultType = convertedType;
1506     else
1507       return failure();
1508 
1509     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, resultType);
1510     return success();
1511   }
1512 };
1513 
1514 /// Call signature conversion and then fail the rewrite to trigger the undo
1515 /// mechanism.
1516 struct TestSignatureConversionUndo
1517     : public OpConversionPattern<TestSignatureConversionUndoOp> {
1518   using OpConversionPattern<TestSignatureConversionUndoOp>::OpConversionPattern;
1519 
1520   LogicalResult
1521   matchAndRewrite(TestSignatureConversionUndoOp op, OpAdaptor adaptor,
1522                   ConversionPatternRewriter &rewriter) const final {
1523     (void)rewriter.convertRegionTypes(&op->getRegion(0), *getTypeConverter());
1524     return failure();
1525   }
1526 };
1527 
1528 /// Call signature conversion without providing a type converter to handle
1529 /// materializations.
1530 struct TestTestSignatureConversionNoConverter
1531     : public OpConversionPattern<TestSignatureConversionNoConverterOp> {
1532   TestTestSignatureConversionNoConverter(const TypeConverter &converter,
1533                                          MLIRContext *context)
1534       : OpConversionPattern<TestSignatureConversionNoConverterOp>(context),
1535         converter(converter) {}
1536 
1537   LogicalResult
1538   matchAndRewrite(TestSignatureConversionNoConverterOp op, OpAdaptor adaptor,
1539                   ConversionPatternRewriter &rewriter) const final {
1540     Region &region = op->getRegion(0);
1541     Block *entry = &region.front();
1542 
1543     // Convert the original entry arguments.
1544     TypeConverter::SignatureConversion result(entry->getNumArguments());
1545     if (failed(
1546             converter.convertSignatureArgs(entry->getArgumentTypes(), result)))
1547       return failure();
1548     rewriter.modifyOpInPlace(op, [&] {
1549       rewriter.applySignatureConversion(&region.front(), result);
1550     });
1551     return success();
1552   }
1553 
1554   const TypeConverter &converter;
1555 };
1556 
1557 /// Just forward the operands to the root op. This is essentially a no-op
1558 /// pattern that is used to trigger target materialization.
1559 struct TestTypeConsumerForward
1560     : public OpConversionPattern<TestTypeConsumerOp> {
1561   using OpConversionPattern<TestTypeConsumerOp>::OpConversionPattern;
1562 
1563   LogicalResult
1564   matchAndRewrite(TestTypeConsumerOp op, OpAdaptor adaptor,
1565                   ConversionPatternRewriter &rewriter) const final {
1566     rewriter.modifyOpInPlace(op,
1567                              [&] { op->setOperands(adaptor.getOperands()); });
1568     return success();
1569   }
1570 };
1571 
1572 struct TestTypeConversionAnotherProducer
1573     : public OpRewritePattern<TestAnotherTypeProducerOp> {
1574   using OpRewritePattern<TestAnotherTypeProducerOp>::OpRewritePattern;
1575 
1576   LogicalResult matchAndRewrite(TestAnotherTypeProducerOp op,
1577                                 PatternRewriter &rewriter) const final {
1578     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, op.getType());
1579     return success();
1580   }
1581 };
1582 
1583 struct TestReplaceWithLegalOp : public ConversionPattern {
1584   TestReplaceWithLegalOp(MLIRContext *ctx)
1585       : ConversionPattern("test.replace_with_legal_op", /*benefit=*/1, ctx) {}
1586   LogicalResult
1587   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
1588                   ConversionPatternRewriter &rewriter) const final {
1589     rewriter.replaceOpWithNewOp<LegalOpD>(op, operands[0]);
1590     return success();
1591   }
1592 };
1593 
1594 struct TestTypeConversionDriver
1595     : public PassWrapper<TestTypeConversionDriver, OperationPass<>> {
1596   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestTypeConversionDriver)
1597 
1598   void getDependentDialects(DialectRegistry &registry) const override {
1599     registry.insert<TestDialect>();
1600   }
1601   StringRef getArgument() const final {
1602     return "test-legalize-type-conversion";
1603   }
1604   StringRef getDescription() const final {
1605     return "Test various type conversion functionalities in DialectConversion";
1606   }
1607 
1608   void runOnOperation() override {
1609     // Initialize the type converter.
1610     SmallVector<Type, 2> conversionCallStack;
1611     TypeConverter converter;
1612 
1613     /// Add the legal set of type conversions.
1614     converter.addConversion([](Type type) -> Type {
1615       // Treat F64 as legal.
1616       if (type.isF64())
1617         return type;
1618       // Allow converting BF16/F16/F32 to F64.
1619       if (type.isBF16() || type.isF16() || type.isF32())
1620         return FloatType::getF64(type.getContext());
1621       // Otherwise, the type is illegal.
1622       return nullptr;
1623     });
1624     converter.addConversion([](IntegerType type, SmallVectorImpl<Type> &) {
1625       // Drop all integer types.
1626       return success();
1627     });
1628     converter.addConversion(
1629         // Convert a recursive self-referring type into a non-self-referring
1630         // type named "outer_converted_type" that contains a SimpleAType.
1631         [&](test::TestRecursiveType type,
1632             SmallVectorImpl<Type> &results) -> std::optional<LogicalResult> {
1633           // If the type is already converted, return it to indicate that it is
1634           // legal.
1635           if (type.getName() == "outer_converted_type") {
1636             results.push_back(type);
1637             return success();
1638           }
1639 
1640           conversionCallStack.push_back(type);
1641           auto popConversionCallStack = llvm::make_scope_exit(
1642               [&conversionCallStack]() { conversionCallStack.pop_back(); });
1643 
1644           // If the type is on the call stack more than once (it is there at
1645           // least once because of the _current_ call, which is always the last
1646           // element on the stack), we've hit the recursive case. Just return
1647           // SimpleAType here to create a non-recursive type as a result.
1648           if (llvm::is_contained(ArrayRef(conversionCallStack).drop_back(),
1649                                  type)) {
1650             results.push_back(test::SimpleAType::get(type.getContext()));
1651             return success();
1652           }
1653 
1654           // Convert the body recursively.
1655           auto result = test::TestRecursiveType::get(type.getContext(),
1656                                                      "outer_converted_type");
1657           if (failed(result.setBody(converter.convertType(type.getBody()))))
1658             return failure();
1659           results.push_back(result);
1660           return success();
1661         });
1662 
1663     /// Add the legal set of type materializations.
1664     converter.addSourceMaterialization([](OpBuilder &builder, Type resultType,
1665                                           ValueRange inputs,
1666                                           Location loc) -> Value {
1667       // Allow casting from F64 back to F32.
1668       if (!resultType.isF16() && inputs.size() == 1 &&
1669           inputs[0].getType().isF64())
1670         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
1671       // Allow producing an i32 or i64 from nothing.
1672       if ((resultType.isInteger(32) || resultType.isInteger(64)) &&
1673           inputs.empty())
1674         return builder.create<TestTypeProducerOp>(loc, resultType);
1675       // Allow producing an i64 from an integer.
1676       if (isa<IntegerType>(resultType) && inputs.size() == 1 &&
1677           isa<IntegerType>(inputs[0].getType()))
1678         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
1679       // Otherwise, fail.
1680       return nullptr;
1681     });
1682 
1683     // Initialize the conversion target.
1684     mlir::ConversionTarget target(getContext());
1685     target.addLegalOp<LegalOpD>();
1686     target.addDynamicallyLegalOp<TestTypeProducerOp>([](TestTypeProducerOp op) {
1687       auto recursiveType = dyn_cast<test::TestRecursiveType>(op.getType());
1688       return op.getType().isF64() || op.getType().isInteger(64) ||
1689              (recursiveType &&
1690               recursiveType.getName() == "outer_converted_type");
1691     });
1692     target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
1693       return converter.isSignatureLegal(op.getFunctionType()) &&
1694              converter.isLegal(&op.getBody());
1695     });
1696     target.addDynamicallyLegalOp<TestCastOp>([&](TestCastOp op) {
1697       // Allow casts from F64 to F32.
1698       return (*op.operand_type_begin()).isF64() && op.getType().isF32();
1699     });
1700     target.addDynamicallyLegalOp<TestSignatureConversionNoConverterOp>(
1701         [&](TestSignatureConversionNoConverterOp op) {
1702           return converter.isLegal(op.getRegion().front().getArgumentTypes());
1703         });
1704 
1705     // Initialize the set of rewrite patterns.
1706     RewritePatternSet patterns(&getContext());
1707     patterns.add<TestTypeConsumerForward, TestTypeConversionProducer,
1708                  TestSignatureConversionUndo,
1709                  TestTestSignatureConversionNoConverter>(converter,
1710                                                          &getContext());
1711     patterns.add<TestTypeConversionAnotherProducer, TestReplaceWithLegalOp>(
1712         &getContext());
1713     mlir::populateAnyFunctionOpInterfaceTypeConversionPattern(patterns,
1714                                                               converter);
1715 
1716     if (failed(applyPartialConversion(getOperation(), target,
1717                                       std::move(patterns))))
1718       signalPassFailure();
1719   }
1720 };
1721 } // namespace
1722 
1723 //===----------------------------------------------------------------------===//
1724 // Test Target Materialization With No Uses
1725 //===----------------------------------------------------------------------===//
1726 
1727 namespace {
1728 struct ForwardOperandPattern : public OpConversionPattern<TestTypeChangerOp> {
1729   using OpConversionPattern<TestTypeChangerOp>::OpConversionPattern;
1730 
1731   LogicalResult
1732   matchAndRewrite(TestTypeChangerOp op, OpAdaptor adaptor,
1733                   ConversionPatternRewriter &rewriter) const final {
1734     rewriter.replaceOp(op, adaptor.getOperands());
1735     return success();
1736   }
1737 };
1738 
1739 struct TestTargetMaterializationWithNoUses
1740     : public PassWrapper<TestTargetMaterializationWithNoUses, OperationPass<>> {
1741   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(
1742       TestTargetMaterializationWithNoUses)
1743 
1744   StringRef getArgument() const final {
1745     return "test-target-materialization-with-no-uses";
1746   }
1747   StringRef getDescription() const final {
1748     return "Test a special case of target materialization in DialectConversion";
1749   }
1750 
1751   void runOnOperation() override {
1752     TypeConverter converter;
1753     converter.addConversion([](Type t) { return t; });
1754     converter.addConversion([](IntegerType intTy) -> Type {
1755       if (intTy.getWidth() == 16)
1756         return IntegerType::get(intTy.getContext(), 64);
1757       return intTy;
1758     });
1759     converter.addTargetMaterialization(
1760         [](OpBuilder &builder, Type type, ValueRange inputs, Location loc) {
1761           return builder.create<TestCastOp>(loc, type, inputs).getResult();
1762         });
1763 
1764     ConversionTarget target(getContext());
1765     target.addIllegalOp<TestTypeChangerOp>();
1766 
1767     RewritePatternSet patterns(&getContext());
1768     patterns.add<ForwardOperandPattern>(converter, &getContext());
1769 
1770     if (failed(applyPartialConversion(getOperation(), target,
1771                                       std::move(patterns))))
1772       signalPassFailure();
1773   }
1774 };
1775 } // namespace
1776 
1777 //===----------------------------------------------------------------------===//
1778 // Test Block Merging
1779 //===----------------------------------------------------------------------===//
1780 
1781 namespace {
1782 /// A rewriter pattern that tests that blocks can be merged.
1783 struct TestMergeBlock : public OpConversionPattern<TestMergeBlocksOp> {
1784   using OpConversionPattern<TestMergeBlocksOp>::OpConversionPattern;
1785 
1786   LogicalResult
1787   matchAndRewrite(TestMergeBlocksOp op, OpAdaptor adaptor,
1788                   ConversionPatternRewriter &rewriter) const final {
1789     Block &firstBlock = op.getBody().front();
1790     Operation *branchOp = firstBlock.getTerminator();
1791     Block *secondBlock = &*(std::next(op.getBody().begin()));
1792     auto succOperands = branchOp->getOperands();
1793     SmallVector<Value, 2> replacements(succOperands);
1794     rewriter.eraseOp(branchOp);
1795     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
1796     rewriter.modifyOpInPlace(op, [] {});
1797     return success();
1798   }
1799 };
1800 
1801 /// A rewrite pattern to tests the undo mechanism of blocks being merged.
1802 struct TestUndoBlocksMerge : public ConversionPattern {
1803   TestUndoBlocksMerge(MLIRContext *ctx)
1804       : ConversionPattern("test.undo_blocks_merge", /*benefit=*/1, ctx) {}
1805   LogicalResult
1806   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
1807                   ConversionPatternRewriter &rewriter) const final {
1808     Block &firstBlock = op->getRegion(0).front();
1809     Operation *branchOp = firstBlock.getTerminator();
1810     Block *secondBlock = &*(std::next(op->getRegion(0).begin()));
1811     rewriter.setInsertionPointToStart(secondBlock);
1812     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
1813     auto succOperands = branchOp->getOperands();
1814     SmallVector<Value, 2> replacements(succOperands);
1815     rewriter.eraseOp(branchOp);
1816     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
1817     rewriter.modifyOpInPlace(op, [] {});
1818     return success();
1819   }
1820 };
1821 
1822 /// A rewrite mechanism to inline the body of the op into its parent, when both
1823 /// ops can have a single block.
1824 struct TestMergeSingleBlockOps
1825     : public OpConversionPattern<SingleBlockImplicitTerminatorOp> {
1826   using OpConversionPattern<
1827       SingleBlockImplicitTerminatorOp>::OpConversionPattern;
1828 
1829   LogicalResult
1830   matchAndRewrite(SingleBlockImplicitTerminatorOp op, OpAdaptor adaptor,
1831                   ConversionPatternRewriter &rewriter) const final {
1832     SingleBlockImplicitTerminatorOp parentOp =
1833         op->getParentOfType<SingleBlockImplicitTerminatorOp>();
1834     if (!parentOp)
1835       return failure();
1836     Block &innerBlock = op.getRegion().front();
1837     TerminatorOp innerTerminator =
1838         cast<TerminatorOp>(innerBlock.getTerminator());
1839     rewriter.inlineBlockBefore(&innerBlock, op);
1840     rewriter.eraseOp(innerTerminator);
1841     rewriter.eraseOp(op);
1842     return success();
1843   }
1844 };
1845 
1846 struct TestMergeBlocksPatternDriver
1847     : public PassWrapper<TestMergeBlocksPatternDriver, OperationPass<>> {
1848   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestMergeBlocksPatternDriver)
1849 
1850   StringRef getArgument() const final { return "test-merge-blocks"; }
1851   StringRef getDescription() const final {
1852     return "Test Merging operation in ConversionPatternRewriter";
1853   }
1854   void runOnOperation() override {
1855     MLIRContext *context = &getContext();
1856     mlir::RewritePatternSet patterns(context);
1857     patterns.add<TestMergeBlock, TestUndoBlocksMerge, TestMergeSingleBlockOps>(
1858         context);
1859     ConversionTarget target(*context);
1860     target.addLegalOp<func::FuncOp, ModuleOp, TerminatorOp, TestBranchOp,
1861                       TestTypeConsumerOp, TestTypeProducerOp, TestReturnOp>();
1862     target.addIllegalOp<ILLegalOpF>();
1863 
1864     /// Expect the op to have a single block after legalization.
1865     target.addDynamicallyLegalOp<TestMergeBlocksOp>(
1866         [&](TestMergeBlocksOp op) -> bool {
1867           return llvm::hasSingleElement(op.getBody());
1868         });
1869 
1870     /// Only allow `test.br` within test.merge_blocks op.
1871     target.addDynamicallyLegalOp<TestBranchOp>([&](TestBranchOp op) -> bool {
1872       return op->getParentOfType<TestMergeBlocksOp>();
1873     });
1874 
1875     /// Expect that all nested test.SingleBlockImplicitTerminator ops are
1876     /// inlined.
1877     target.addDynamicallyLegalOp<SingleBlockImplicitTerminatorOp>(
1878         [&](SingleBlockImplicitTerminatorOp op) -> bool {
1879           return !op->getParentOfType<SingleBlockImplicitTerminatorOp>();
1880         });
1881 
1882     DenseSet<Operation *> unlegalizedOps;
1883     ConversionConfig config;
1884     config.unlegalizedOps = &unlegalizedOps;
1885     (void)applyPartialConversion(getOperation(), target, std::move(patterns),
1886                                  config);
1887     for (auto *op : unlegalizedOps)
1888       op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
1889   }
1890 };
1891 } // namespace
1892 
1893 //===----------------------------------------------------------------------===//
1894 // Test Selective Replacement
1895 //===----------------------------------------------------------------------===//
1896 
1897 namespace {
1898 /// A rewrite mechanism to inline the body of the op into its parent, when both
1899 /// ops can have a single block.
1900 struct TestSelectiveOpReplacementPattern : public OpRewritePattern<TestCastOp> {
1901   using OpRewritePattern<TestCastOp>::OpRewritePattern;
1902 
1903   LogicalResult matchAndRewrite(TestCastOp op,
1904                                 PatternRewriter &rewriter) const final {
1905     if (op.getNumOperands() != 2)
1906       return failure();
1907     OperandRange operands = op.getOperands();
1908 
1909     // Replace non-terminator uses with the first operand.
1910     rewriter.replaceUsesWithIf(op, operands[0], [](OpOperand &operand) {
1911       return operand.getOwner()->hasTrait<OpTrait::IsTerminator>();
1912     });
1913     // Replace everything else with the second operand if the operation isn't
1914     // dead.
1915     rewriter.replaceOp(op, op.getOperand(1));
1916     return success();
1917   }
1918 };
1919 
1920 struct TestSelectiveReplacementPatternDriver
1921     : public PassWrapper<TestSelectiveReplacementPatternDriver,
1922                          OperationPass<>> {
1923   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(
1924       TestSelectiveReplacementPatternDriver)
1925 
1926   StringRef getArgument() const final {
1927     return "test-pattern-selective-replacement";
1928   }
1929   StringRef getDescription() const final {
1930     return "Test selective replacement in the PatternRewriter";
1931   }
1932   void runOnOperation() override {
1933     MLIRContext *context = &getContext();
1934     mlir::RewritePatternSet patterns(context);
1935     patterns.add<TestSelectiveOpReplacementPattern>(context);
1936     (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
1937   }
1938 };
1939 } // namespace
1940 
1941 //===----------------------------------------------------------------------===//
1942 // PassRegistration
1943 //===----------------------------------------------------------------------===//
1944 
1945 namespace mlir {
1946 namespace test {
1947 void registerPatternsTestPass() {
1948   PassRegistration<TestReturnTypeDriver>();
1949 
1950   PassRegistration<TestDerivedAttributeDriver>();
1951 
1952   PassRegistration<TestPatternDriver>();
1953   PassRegistration<TestStrictPatternDriver>();
1954 
1955   PassRegistration<TestLegalizePatternDriver>([] {
1956     return std::make_unique<TestLegalizePatternDriver>(legalizerConversionMode);
1957   });
1958 
1959   PassRegistration<TestRemappedValue>();
1960 
1961   PassRegistration<TestUnknownRootOpDriver>();
1962 
1963   PassRegistration<TestTypeConversionDriver>();
1964   PassRegistration<TestTargetMaterializationWithNoUses>();
1965 
1966   PassRegistration<TestRewriteDynamicOpDriver>();
1967 
1968   PassRegistration<TestMergeBlocksPatternDriver>();
1969   PassRegistration<TestSelectiveReplacementPatternDriver>();
1970 }
1971 } // namespace test
1972 } // namespace mlir
1973