1 //===- TestPatterns.cpp - Test dialect pattern driver ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "TestDialect.h" 10 #include "TestOps.h" 11 #include "TestTypes.h" 12 #include "mlir/Dialect/Arith/IR/Arith.h" 13 #include "mlir/Dialect/Func/IR/FuncOps.h" 14 #include "mlir/Dialect/Func/Transforms/FuncConversions.h" 15 #include "mlir/Dialect/Tensor/IR/Tensor.h" 16 #include "mlir/IR/Matchers.h" 17 #include "mlir/Pass/Pass.h" 18 #include "mlir/Transforms/DialectConversion.h" 19 #include "mlir/Transforms/FoldUtils.h" 20 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 21 #include "llvm/ADT/ScopeExit.h" 22 23 using namespace mlir; 24 using namespace test; 25 26 // Native function for testing NativeCodeCall 27 static Value chooseOperand(Value input1, Value input2, BoolAttr choice) { 28 return choice.getValue() ? input1 : input2; 29 } 30 31 static void createOpI(PatternRewriter &rewriter, Location loc, Value input) { 32 rewriter.create<OpI>(loc, input); 33 } 34 35 static void handleNoResultOp(PatternRewriter &rewriter, 36 OpSymbolBindingNoResult op) { 37 // Turn the no result op to a one-result op. 38 rewriter.create<OpSymbolBindingB>(op.getLoc(), op.getOperand().getType(), 39 op.getOperand()); 40 } 41 42 static bool getFirstI32Result(Operation *op, Value &value) { 43 if (!Type(op->getResult(0).getType()).isSignlessInteger(32)) 44 return false; 45 value = op->getResult(0); 46 return true; 47 } 48 49 static Value bindNativeCodeCallResult(Value value) { return value; } 50 51 static SmallVector<Value, 2> bindMultipleNativeCodeCallResult(Value input1, 52 Value input2) { 53 return SmallVector<Value, 2>({input2, input1}); 54 } 55 56 // Test that natives calls are only called once during rewrites. 57 // OpM_Test will return Pi, increased by 1 for each subsequent calls. 58 // This let us check the number of times OpM_Test was called by inspecting 59 // the returned value in the MLIR output. 60 static int64_t opMIncreasingValue = 314159265; 61 static Attribute opMTest(PatternRewriter &rewriter, Value val) { 62 int64_t i = opMIncreasingValue++; 63 return rewriter.getIntegerAttr(rewriter.getIntegerType(32), i); 64 } 65 66 namespace { 67 #include "TestPatterns.inc" 68 } // namespace 69 70 //===----------------------------------------------------------------------===// 71 // Test Reduce Pattern Interface 72 //===----------------------------------------------------------------------===// 73 74 void test::populateTestReductionPatterns(RewritePatternSet &patterns) { 75 populateWithGenerated(patterns); 76 } 77 78 //===----------------------------------------------------------------------===// 79 // Canonicalizer Driver. 80 //===----------------------------------------------------------------------===// 81 82 namespace { 83 struct FoldingPattern : public RewritePattern { 84 public: 85 FoldingPattern(MLIRContext *context) 86 : RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(), 87 /*benefit=*/1, context) {} 88 89 LogicalResult matchAndRewrite(Operation *op, 90 PatternRewriter &rewriter) const override { 91 // Exercise createOrFold API for a single-result operation that is folded 92 // upon construction. The operation being created has an in-place folder, 93 // and it should be still present in the output. Furthermore, the folder 94 // should not crash when attempting to recover the (unchanged) operation 95 // result. 96 Value result = rewriter.createOrFold<TestOpInPlaceFold>( 97 op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0)); 98 assert(result); 99 rewriter.replaceOp(op, result); 100 return success(); 101 } 102 }; 103 104 /// This pattern creates a foldable operation at the entry point of the block. 105 /// This tests the situation where the operation folder will need to replace an 106 /// operation with a previously created constant that does not initially 107 /// dominate the operation to replace. 108 struct FolderInsertBeforePreviouslyFoldedConstantPattern 109 : public OpRewritePattern<TestCastOp> { 110 public: 111 using OpRewritePattern<TestCastOp>::OpRewritePattern; 112 113 LogicalResult matchAndRewrite(TestCastOp op, 114 PatternRewriter &rewriter) const override { 115 if (!op->hasAttr("test_fold_before_previously_folded_op")) 116 return failure(); 117 rewriter.setInsertionPointToStart(op->getBlock()); 118 119 auto constOp = rewriter.create<arith::ConstantOp>( 120 op.getLoc(), rewriter.getBoolAttr(true)); 121 rewriter.replaceOpWithNewOp<TestCastOp>(op, rewriter.getI32Type(), 122 Value(constOp)); 123 return success(); 124 } 125 }; 126 127 /// This pattern matches test.op_commutative2 with the first operand being 128 /// another test.op_commutative2 with a constant on the right side and fold it 129 /// away by propagating it as its result. This is intend to check that patterns 130 /// are applied after the commutative property moves constant to the right. 131 struct FolderCommutativeOp2WithConstant 132 : public OpRewritePattern<TestCommutative2Op> { 133 public: 134 using OpRewritePattern<TestCommutative2Op>::OpRewritePattern; 135 136 LogicalResult matchAndRewrite(TestCommutative2Op op, 137 PatternRewriter &rewriter) const override { 138 auto operand = 139 dyn_cast_or_null<TestCommutative2Op>(op->getOperand(0).getDefiningOp()); 140 if (!operand) 141 return failure(); 142 Attribute constInput; 143 if (!matchPattern(operand->getOperand(1), m_Constant(&constInput))) 144 return failure(); 145 rewriter.replaceOp(op, operand->getOperand(1)); 146 return success(); 147 } 148 }; 149 150 /// This pattern matches test.any_attr_of_i32_str ops. In case of an integer 151 /// attribute with value smaller than MaxVal, it increments the value by 1. 152 template <int MaxVal> 153 struct IncrementIntAttribute : public OpRewritePattern<AnyAttrOfOp> { 154 using OpRewritePattern<AnyAttrOfOp>::OpRewritePattern; 155 156 LogicalResult matchAndRewrite(AnyAttrOfOp op, 157 PatternRewriter &rewriter) const override { 158 auto intAttr = dyn_cast<IntegerAttr>(op.getAttr()); 159 if (!intAttr) 160 return failure(); 161 int64_t val = intAttr.getInt(); 162 if (val >= MaxVal) 163 return failure(); 164 rewriter.modifyOpInPlace( 165 op, [&]() { op.setAttrAttr(rewriter.getI32IntegerAttr(val + 1)); }); 166 return success(); 167 } 168 }; 169 170 /// This patterns adds an "eligible" attribute to "foo.maybe_eligible_op". 171 struct MakeOpEligible : public RewritePattern { 172 MakeOpEligible(MLIRContext *context) 173 : RewritePattern("foo.maybe_eligible_op", /*benefit=*/1, context) {} 174 175 LogicalResult matchAndRewrite(Operation *op, 176 PatternRewriter &rewriter) const override { 177 if (op->hasAttr("eligible")) 178 return failure(); 179 rewriter.modifyOpInPlace( 180 op, [&]() { op->setAttr("eligible", rewriter.getUnitAttr()); }); 181 return success(); 182 } 183 }; 184 185 /// This pattern hoists eligible ops out of a "test.one_region_op". 186 struct HoistEligibleOps : public OpRewritePattern<test::OneRegionOp> { 187 using OpRewritePattern<test::OneRegionOp>::OpRewritePattern; 188 189 LogicalResult matchAndRewrite(test::OneRegionOp op, 190 PatternRewriter &rewriter) const override { 191 Operation *terminator = op.getRegion().front().getTerminator(); 192 Operation *toBeHoisted = terminator->getOperands()[0].getDefiningOp(); 193 if (toBeHoisted->getParentOp() != op) 194 return failure(); 195 if (!toBeHoisted->hasAttr("eligible")) 196 return failure(); 197 rewriter.moveOpBefore(toBeHoisted, op); 198 return success(); 199 } 200 }; 201 202 /// This pattern moves "test.move_before_parent_op" before the parent op. 203 struct MoveBeforeParentOp : public RewritePattern { 204 MoveBeforeParentOp(MLIRContext *context) 205 : RewritePattern("test.move_before_parent_op", /*benefit=*/1, context) {} 206 207 LogicalResult matchAndRewrite(Operation *op, 208 PatternRewriter &rewriter) const override { 209 // Do not hoist past functions. 210 if (isa<FunctionOpInterface>(op->getParentOp())) 211 return failure(); 212 rewriter.moveOpBefore(op, op->getParentOp()); 213 return success(); 214 } 215 }; 216 217 /// This pattern inlines blocks that are nested in 218 /// "test.inline_blocks_into_parent" into the parent block. 219 struct InlineBlocksIntoParent : public RewritePattern { 220 InlineBlocksIntoParent(MLIRContext *context) 221 : RewritePattern("test.inline_blocks_into_parent", /*benefit=*/1, 222 context) {} 223 224 LogicalResult matchAndRewrite(Operation *op, 225 PatternRewriter &rewriter) const override { 226 bool changed = false; 227 for (Region &r : op->getRegions()) { 228 while (!r.empty()) { 229 rewriter.inlineBlockBefore(&r.front(), op); 230 changed = true; 231 } 232 } 233 return success(changed); 234 } 235 }; 236 237 /// This pattern splits blocks at "test.split_block_here" and replaces the op 238 /// with a new op (to prevent an infinite loop of block splitting). 239 struct SplitBlockHere : public RewritePattern { 240 SplitBlockHere(MLIRContext *context) 241 : RewritePattern("test.split_block_here", /*benefit=*/1, context) {} 242 243 LogicalResult matchAndRewrite(Operation *op, 244 PatternRewriter &rewriter) const override { 245 rewriter.splitBlock(op->getBlock(), op->getIterator()); 246 Operation *newOp = rewriter.create( 247 op->getLoc(), 248 OperationName("test.new_op", op->getContext()).getIdentifier(), 249 op->getOperands(), op->getResultTypes()); 250 rewriter.replaceOp(op, newOp); 251 return success(); 252 } 253 }; 254 255 /// This pattern clones "test.clone_me" ops. 256 struct CloneOp : public RewritePattern { 257 CloneOp(MLIRContext *context) 258 : RewritePattern("test.clone_me", /*benefit=*/1, context) {} 259 260 LogicalResult matchAndRewrite(Operation *op, 261 PatternRewriter &rewriter) const override { 262 // Do not clone already cloned ops to avoid going into an infinite loop. 263 if (op->hasAttr("was_cloned")) 264 return failure(); 265 Operation *cloned = rewriter.clone(*op); 266 cloned->setAttr("was_cloned", rewriter.getUnitAttr()); 267 return success(); 268 } 269 }; 270 271 /// This pattern clones regions of "test.clone_region_before" ops before the 272 /// parent block. 273 struct CloneRegionBeforeOp : public RewritePattern { 274 CloneRegionBeforeOp(MLIRContext *context) 275 : RewritePattern("test.clone_region_before", /*benefit=*/1, context) {} 276 277 LogicalResult matchAndRewrite(Operation *op, 278 PatternRewriter &rewriter) const override { 279 // Do not clone already cloned ops to avoid going into an infinite loop. 280 if (op->hasAttr("was_cloned")) 281 return failure(); 282 for (Region &r : op->getRegions()) 283 rewriter.cloneRegionBefore(r, op->getBlock()); 284 op->setAttr("was_cloned", rewriter.getUnitAttr()); 285 return success(); 286 } 287 }; 288 289 struct TestPatternDriver 290 : public PassWrapper<TestPatternDriver, OperationPass<>> { 291 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestPatternDriver) 292 293 TestPatternDriver() = default; 294 TestPatternDriver(const TestPatternDriver &other) : PassWrapper(other) {} 295 296 StringRef getArgument() const final { return "test-patterns"; } 297 StringRef getDescription() const final { return "Run test dialect patterns"; } 298 void runOnOperation() override { 299 mlir::RewritePatternSet patterns(&getContext()); 300 populateWithGenerated(patterns); 301 302 // Verify named pattern is generated with expected name. 303 patterns.add<FoldingPattern, TestNamedPatternRule, 304 FolderInsertBeforePreviouslyFoldedConstantPattern, 305 FolderCommutativeOp2WithConstant, HoistEligibleOps, 306 MakeOpEligible>(&getContext()); 307 308 // Additional patterns for testing the GreedyPatternRewriteDriver. 309 patterns.insert<IncrementIntAttribute<3>>(&getContext()); 310 311 GreedyRewriteConfig config; 312 config.useTopDownTraversal = this->useTopDownTraversal; 313 config.maxIterations = this->maxIterations; 314 (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns), 315 config); 316 } 317 318 Option<bool> useTopDownTraversal{ 319 *this, "top-down", 320 llvm::cl::desc("Seed the worklist in general top-down order"), 321 llvm::cl::init(GreedyRewriteConfig().useTopDownTraversal)}; 322 Option<int> maxIterations{ 323 *this, "max-iterations", 324 llvm::cl::desc("Max. iterations in the GreedyRewriteConfig"), 325 llvm::cl::init(GreedyRewriteConfig().maxIterations)}; 326 }; 327 328 struct DumpNotifications : public RewriterBase::Listener { 329 void notifyBlockInserted(Block *block, Region *previous, 330 Region::iterator previousIt) override { 331 llvm::outs() << "notifyBlockInserted"; 332 if (block->getParentOp()) { 333 llvm::outs() << " into " << block->getParentOp()->getName() << ": "; 334 } else { 335 llvm::outs() << " into unknown op: "; 336 } 337 if (previous == nullptr) { 338 llvm::outs() << "was unlinked\n"; 339 } else { 340 llvm::outs() << "was linked\n"; 341 } 342 } 343 void notifyOperationInserted(Operation *op, 344 OpBuilder::InsertPoint previous) override { 345 llvm::outs() << "notifyOperationInserted: " << op->getName(); 346 if (!previous.isSet()) { 347 llvm::outs() << ", was unlinked\n"; 348 } else { 349 if (!previous.getPoint().getNodePtr()) { 350 llvm::outs() << ", was linked, exact position unknown\n"; 351 } else if (previous.getPoint() == previous.getBlock()->end()) { 352 llvm::outs() << ", was last in block\n"; 353 } else { 354 llvm::outs() << ", previous = " << previous.getPoint()->getName() 355 << "\n"; 356 } 357 } 358 } 359 void notifyBlockErased(Block *block) override { 360 llvm::outs() << "notifyBlockErased\n"; 361 } 362 void notifyOperationErased(Operation *op) override { 363 llvm::outs() << "notifyOperationErased: " << op->getName() << "\n"; 364 } 365 void notifyOperationModified(Operation *op) override { 366 llvm::outs() << "notifyOperationModified: " << op->getName() << "\n"; 367 } 368 void notifyOperationReplaced(Operation *op, ValueRange values) override { 369 llvm::outs() << "notifyOperationReplaced: " << op->getName() << "\n"; 370 } 371 }; 372 373 struct TestStrictPatternDriver 374 : public PassWrapper<TestStrictPatternDriver, OperationPass<func::FuncOp>> { 375 public: 376 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestStrictPatternDriver) 377 378 TestStrictPatternDriver() = default; 379 TestStrictPatternDriver(const TestStrictPatternDriver &other) 380 : PassWrapper(other) { 381 strictMode = other.strictMode; 382 } 383 384 StringRef getArgument() const final { return "test-strict-pattern-driver"; } 385 StringRef getDescription() const final { 386 return "Test strict mode of pattern driver"; 387 } 388 389 void runOnOperation() override { 390 MLIRContext *ctx = &getContext(); 391 mlir::RewritePatternSet patterns(ctx); 392 patterns.add< 393 // clang-format off 394 ChangeBlockOp, 395 CloneOp, 396 CloneRegionBeforeOp, 397 EraseOp, 398 ImplicitChangeOp, 399 InlineBlocksIntoParent, 400 InsertSameOp, 401 MoveBeforeParentOp, 402 ReplaceWithNewOp, 403 SplitBlockHere 404 // clang-format on 405 >(ctx); 406 SmallVector<Operation *> ops; 407 getOperation()->walk([&](Operation *op) { 408 StringRef opName = op->getName().getStringRef(); 409 if (opName == "test.insert_same_op" || opName == "test.change_block_op" || 410 opName == "test.replace_with_new_op" || opName == "test.erase_op" || 411 opName == "test.move_before_parent_op" || 412 opName == "test.inline_blocks_into_parent" || 413 opName == "test.split_block_here" || opName == "test.clone_me" || 414 opName == "test.clone_region_before") { 415 ops.push_back(op); 416 } 417 }); 418 419 DumpNotifications dumpNotifications; 420 GreedyRewriteConfig config; 421 config.listener = &dumpNotifications; 422 if (strictMode == "AnyOp") { 423 config.strictMode = GreedyRewriteStrictness::AnyOp; 424 } else if (strictMode == "ExistingAndNewOps") { 425 config.strictMode = GreedyRewriteStrictness::ExistingAndNewOps; 426 } else if (strictMode == "ExistingOps") { 427 config.strictMode = GreedyRewriteStrictness::ExistingOps; 428 } else { 429 llvm_unreachable("invalid strictness option"); 430 } 431 432 // Check if these transformations introduce visiting of operations that 433 // are not in the `ops` set (The new created ops are valid). An invalid 434 // operation will trigger the assertion while processing. 435 bool changed = false; 436 bool allErased = false; 437 (void)applyOpPatternsAndFold(ArrayRef(ops), std::move(patterns), config, 438 &changed, &allErased); 439 Builder b(ctx); 440 getOperation()->setAttr("pattern_driver_changed", b.getBoolAttr(changed)); 441 getOperation()->setAttr("pattern_driver_all_erased", 442 b.getBoolAttr(allErased)); 443 } 444 445 Option<std::string> strictMode{ 446 *this, "strictness", 447 llvm::cl::desc("Can be {AnyOp, ExistingAndNewOps, ExistingOps}"), 448 llvm::cl::init("AnyOp")}; 449 450 private: 451 // New inserted operation is valid for further transformation. 452 class InsertSameOp : public RewritePattern { 453 public: 454 InsertSameOp(MLIRContext *context) 455 : RewritePattern("test.insert_same_op", /*benefit=*/1, context) {} 456 457 LogicalResult matchAndRewrite(Operation *op, 458 PatternRewriter &rewriter) const override { 459 if (op->hasAttr("skip")) 460 return failure(); 461 462 Operation *newOp = 463 rewriter.create(op->getLoc(), op->getName().getIdentifier(), 464 op->getOperands(), op->getResultTypes()); 465 rewriter.modifyOpInPlace( 466 op, [&]() { op->setAttr("skip", rewriter.getBoolAttr(true)); }); 467 newOp->setAttr("skip", rewriter.getBoolAttr(true)); 468 469 return success(); 470 } 471 }; 472 473 // Replace an operation may introduce the re-visiting of its users. 474 class ReplaceWithNewOp : public RewritePattern { 475 public: 476 ReplaceWithNewOp(MLIRContext *context) 477 : RewritePattern("test.replace_with_new_op", /*benefit=*/1, context) {} 478 479 LogicalResult matchAndRewrite(Operation *op, 480 PatternRewriter &rewriter) const override { 481 Operation *newOp; 482 if (op->hasAttr("create_erase_op")) { 483 newOp = rewriter.create( 484 op->getLoc(), 485 OperationName("test.erase_op", op->getContext()).getIdentifier(), 486 ValueRange(), TypeRange()); 487 } else { 488 newOp = rewriter.create( 489 op->getLoc(), 490 OperationName("test.new_op", op->getContext()).getIdentifier(), 491 op->getOperands(), op->getResultTypes()); 492 } 493 // "replaceOp" could be used instead of "replaceAllOpUsesWith"+"eraseOp". 494 // A "notifyOperationReplaced" callback is triggered in either case. 495 rewriter.replaceAllOpUsesWith(op, newOp->getResults()); 496 rewriter.eraseOp(op); 497 return success(); 498 } 499 }; 500 501 // Remove an operation may introduce the re-visiting of its operands. 502 class EraseOp : public RewritePattern { 503 public: 504 EraseOp(MLIRContext *context) 505 : RewritePattern("test.erase_op", /*benefit=*/1, context) {} 506 LogicalResult matchAndRewrite(Operation *op, 507 PatternRewriter &rewriter) const override { 508 rewriter.eraseOp(op); 509 return success(); 510 } 511 }; 512 513 // The following two patterns test RewriterBase::replaceAllUsesWith. 514 // 515 // That function replaces all usages of a Block (or a Value) with another one 516 // *and tracks these changes in the rewriter.* The GreedyPatternRewriteDriver 517 // with GreedyRewriteStrictness::AnyOp uses that tracking to construct its 518 // worklist: when an op is modified, it is added to the worklist. The two 519 // patterns below make the tracking observable: ChangeBlockOp replaces all 520 // usages of a block and that pattern is applied because the corresponding ops 521 // are put on the initial worklist (see above). ImplicitChangeOp does an 522 // unrelated change but ops of the corresponding type are *not* on the initial 523 // worklist, so the effect of the second pattern is only visible if the 524 // tracking and subsequent adding to the worklist actually works. 525 526 // Replace all usages of the first successor with the second successor. 527 class ChangeBlockOp : public RewritePattern { 528 public: 529 ChangeBlockOp(MLIRContext *context) 530 : RewritePattern("test.change_block_op", /*benefit=*/1, context) {} 531 LogicalResult matchAndRewrite(Operation *op, 532 PatternRewriter &rewriter) const override { 533 if (op->getNumSuccessors() < 2) 534 return failure(); 535 Block *firstSuccessor = op->getSuccessor(0); 536 Block *secondSuccessor = op->getSuccessor(1); 537 if (firstSuccessor == secondSuccessor) 538 return failure(); 539 // This is the function being tested: 540 rewriter.replaceAllUsesWith(firstSuccessor, secondSuccessor); 541 // Using the following line instead would make the test fail: 542 // firstSuccessor->replaceAllUsesWith(secondSuccessor); 543 return success(); 544 } 545 }; 546 547 // Changes the successor to the parent block. 548 class ImplicitChangeOp : public RewritePattern { 549 public: 550 ImplicitChangeOp(MLIRContext *context) 551 : RewritePattern("test.implicit_change_op", /*benefit=*/1, context) {} 552 LogicalResult matchAndRewrite(Operation *op, 553 PatternRewriter &rewriter) const override { 554 if (op->getNumSuccessors() < 1 || op->getSuccessor(0) == op->getBlock()) 555 return failure(); 556 rewriter.modifyOpInPlace(op, 557 [&]() { op->setSuccessor(op->getBlock(), 0); }); 558 return success(); 559 } 560 }; 561 }; 562 563 } // namespace 564 565 //===----------------------------------------------------------------------===// 566 // ReturnType Driver. 567 //===----------------------------------------------------------------------===// 568 569 namespace { 570 // Generate ops for each instance where the type can be successfully inferred. 571 template <typename OpTy> 572 static void invokeCreateWithInferredReturnType(Operation *op) { 573 auto *context = op->getContext(); 574 auto fop = op->getParentOfType<func::FuncOp>(); 575 auto location = UnknownLoc::get(context); 576 OpBuilder b(op); 577 b.setInsertionPointAfter(op); 578 579 // Use permutations of 2 args as operands. 580 assert(fop.getNumArguments() >= 2); 581 for (int i = 0, e = fop.getNumArguments(); i < e; ++i) { 582 for (int j = 0; j < e; ++j) { 583 std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}}; 584 SmallVector<Type, 2> inferredReturnTypes; 585 if (succeeded(OpTy::inferReturnTypes( 586 context, std::nullopt, values, op->getDiscardableAttrDictionary(), 587 op->getPropertiesStorage(), op->getRegions(), 588 inferredReturnTypes))) { 589 OperationState state(location, OpTy::getOperationName()); 590 // TODO: Expand to regions. 591 OpTy::build(b, state, values, op->getAttrs()); 592 (void)b.create(state); 593 } 594 } 595 } 596 } 597 598 static void reifyReturnShape(Operation *op) { 599 OpBuilder b(op); 600 601 // Use permutations of 2 args as operands. 602 auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op); 603 SmallVector<Value, 2> shapes; 604 if (failed(shapedOp.reifyReturnTypeShapes(b, op->getOperands(), shapes)) || 605 !llvm::hasSingleElement(shapes)) 606 return; 607 for (const auto &it : llvm::enumerate(shapes)) { 608 op->emitRemark() << "value " << it.index() << ": " 609 << it.value().getDefiningOp(); 610 } 611 } 612 613 struct TestReturnTypeDriver 614 : public PassWrapper<TestReturnTypeDriver, OperationPass<func::FuncOp>> { 615 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestReturnTypeDriver) 616 617 void getDependentDialects(DialectRegistry ®istry) const override { 618 registry.insert<tensor::TensorDialect>(); 619 } 620 StringRef getArgument() const final { return "test-return-type"; } 621 StringRef getDescription() const final { return "Run return type functions"; } 622 623 void runOnOperation() override { 624 if (getOperation().getName() == "testCreateFunctions") { 625 std::vector<Operation *> ops; 626 // Collect ops to avoid triggering on inserted ops. 627 for (auto &op : getOperation().getBody().front()) 628 ops.push_back(&op); 629 // Generate test patterns for each, but skip terminator. 630 for (auto *op : llvm::ArrayRef(ops).drop_back()) { 631 // Test create method of each of the Op classes below. The resultant 632 // output would be in reverse order underneath `op` from which 633 // the attributes and regions are used. 634 invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op); 635 invokeCreateWithInferredReturnType<OpWithInferTypeAdaptorInterfaceOp>( 636 op); 637 invokeCreateWithInferredReturnType< 638 OpWithShapedTypeInferTypeInterfaceOp>(op); 639 }; 640 return; 641 } 642 if (getOperation().getName() == "testReifyFunctions") { 643 std::vector<Operation *> ops; 644 // Collect ops to avoid triggering on inserted ops. 645 for (auto &op : getOperation().getBody().front()) 646 if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op)) 647 ops.push_back(&op); 648 // Generate test patterns for each, but skip terminator. 649 for (auto *op : ops) 650 reifyReturnShape(op); 651 } 652 } 653 }; 654 } // namespace 655 656 namespace { 657 struct TestDerivedAttributeDriver 658 : public PassWrapper<TestDerivedAttributeDriver, 659 OperationPass<func::FuncOp>> { 660 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestDerivedAttributeDriver) 661 662 StringRef getArgument() const final { return "test-derived-attr"; } 663 StringRef getDescription() const final { 664 return "Run test derived attributes"; 665 } 666 void runOnOperation() override; 667 }; 668 } // namespace 669 670 void TestDerivedAttributeDriver::runOnOperation() { 671 getOperation().walk([](DerivedAttributeOpInterface dOp) { 672 auto dAttr = dOp.materializeDerivedAttributes(); 673 if (!dAttr) 674 return; 675 for (auto d : dAttr) 676 dOp.emitRemark() << d.getName().getValue() << " = " << d.getValue(); 677 }); 678 } 679 680 //===----------------------------------------------------------------------===// 681 // Legalization Driver. 682 //===----------------------------------------------------------------------===// 683 684 namespace { 685 //===----------------------------------------------------------------------===// 686 // Region-Block Rewrite Testing 687 688 /// This pattern applies a signature conversion to a block inside a detached 689 /// region. 690 struct TestDetachedSignatureConversion : public ConversionPattern { 691 TestDetachedSignatureConversion(MLIRContext *ctx) 692 : ConversionPattern("test.detached_signature_conversion", /*benefit=*/1, 693 ctx) {} 694 695 LogicalResult 696 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 697 ConversionPatternRewriter &rewriter) const final { 698 if (op->getNumRegions() != 1) 699 return failure(); 700 OperationState state(op->getLoc(), "test.legal_op_with_region", operands, 701 op->getResultTypes(), {}, BlockRange()); 702 Region *newRegion = state.addRegion(); 703 rewriter.inlineRegionBefore(op->getRegion(0), *newRegion, 704 newRegion->begin()); 705 TypeConverter::SignatureConversion result(newRegion->getNumArguments()); 706 for (unsigned i = 0, e = newRegion->getNumArguments(); i < e; ++i) 707 result.addInputs(i, rewriter.getF64Type()); 708 rewriter.applySignatureConversion(&newRegion->front(), result); 709 Operation *newOp = rewriter.create(state); 710 rewriter.replaceOp(op, newOp->getResults()); 711 return success(); 712 } 713 }; 714 715 /// This pattern is a simple pattern that inlines the first region of a given 716 /// operation into the parent region. 717 struct TestRegionRewriteBlockMovement : public ConversionPattern { 718 TestRegionRewriteBlockMovement(MLIRContext *ctx) 719 : ConversionPattern("test.region", 1, ctx) {} 720 721 LogicalResult 722 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 723 ConversionPatternRewriter &rewriter) const final { 724 // Inline this region into the parent region. 725 auto &parentRegion = *op->getParentRegion(); 726 auto &opRegion = op->getRegion(0); 727 if (op->getDiscardableAttr("legalizer.should_clone")) 728 rewriter.cloneRegionBefore(opRegion, parentRegion, parentRegion.end()); 729 else 730 rewriter.inlineRegionBefore(opRegion, parentRegion, parentRegion.end()); 731 732 if (op->getDiscardableAttr("legalizer.erase_old_blocks")) { 733 while (!opRegion.empty()) 734 rewriter.eraseBlock(&opRegion.front()); 735 } 736 737 // Drop this operation. 738 rewriter.eraseOp(op); 739 return success(); 740 } 741 }; 742 /// This pattern is a simple pattern that generates a region containing an 743 /// illegal operation. 744 struct TestRegionRewriteUndo : public RewritePattern { 745 TestRegionRewriteUndo(MLIRContext *ctx) 746 : RewritePattern("test.region_builder", 1, ctx) {} 747 748 LogicalResult matchAndRewrite(Operation *op, 749 PatternRewriter &rewriter) const final { 750 // Create the region operation with an entry block containing arguments. 751 OperationState newRegion(op->getLoc(), "test.region"); 752 newRegion.addRegion(); 753 auto *regionOp = rewriter.create(newRegion); 754 auto *entryBlock = rewriter.createBlock(®ionOp->getRegion(0)); 755 entryBlock->addArgument(rewriter.getIntegerType(64), 756 rewriter.getUnknownLoc()); 757 758 // Add an explicitly illegal operation to ensure the conversion fails. 759 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32)); 760 rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>()); 761 762 // Drop this operation. 763 rewriter.eraseOp(op); 764 return success(); 765 } 766 }; 767 /// A simple pattern that creates a block at the end of the parent region of the 768 /// matched operation. 769 struct TestCreateBlock : public RewritePattern { 770 TestCreateBlock(MLIRContext *ctx) 771 : RewritePattern("test.create_block", /*benefit=*/1, ctx) {} 772 773 LogicalResult matchAndRewrite(Operation *op, 774 PatternRewriter &rewriter) const final { 775 Region ®ion = *op->getParentRegion(); 776 Type i32Type = rewriter.getIntegerType(32); 777 Location loc = op->getLoc(); 778 rewriter.createBlock(®ion, region.end(), {i32Type, i32Type}, {loc, loc}); 779 rewriter.create<TerminatorOp>(loc); 780 rewriter.eraseOp(op); 781 return success(); 782 } 783 }; 784 785 /// A simple pattern that creates a block containing an invalid operation in 786 /// order to trigger the block creation undo mechanism. 787 struct TestCreateIllegalBlock : public RewritePattern { 788 TestCreateIllegalBlock(MLIRContext *ctx) 789 : RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {} 790 791 LogicalResult matchAndRewrite(Operation *op, 792 PatternRewriter &rewriter) const final { 793 Region ®ion = *op->getParentRegion(); 794 Type i32Type = rewriter.getIntegerType(32); 795 Location loc = op->getLoc(); 796 rewriter.createBlock(®ion, region.end(), {i32Type, i32Type}, {loc, loc}); 797 // Create an illegal op to ensure the conversion fails. 798 rewriter.create<ILLegalOpF>(loc, i32Type); 799 rewriter.create<TerminatorOp>(loc); 800 rewriter.eraseOp(op); 801 return success(); 802 } 803 }; 804 805 /// A simple pattern that tests the undo mechanism when replacing the uses of a 806 /// block argument. 807 struct TestUndoBlockArgReplace : public ConversionPattern { 808 TestUndoBlockArgReplace(MLIRContext *ctx) 809 : ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {} 810 811 LogicalResult 812 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 813 ConversionPatternRewriter &rewriter) const final { 814 auto illegalOp = 815 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type()); 816 rewriter.replaceUsesOfBlockArgument(op->getRegion(0).getArgument(0), 817 illegalOp->getResult(0)); 818 rewriter.modifyOpInPlace(op, [] {}); 819 return success(); 820 } 821 }; 822 823 /// This pattern hoists ops out of a "test.hoist_me" and then fails conversion. 824 /// This is to test the rollback logic. 825 struct TestUndoMoveOpBefore : public ConversionPattern { 826 TestUndoMoveOpBefore(MLIRContext *ctx) 827 : ConversionPattern("test.hoist_me", /*benefit=*/1, ctx) {} 828 829 LogicalResult 830 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 831 ConversionPatternRewriter &rewriter) const override { 832 rewriter.moveOpBefore(op, op->getParentOp()); 833 // Replace with an illegal op to ensure the conversion fails. 834 rewriter.replaceOpWithNewOp<ILLegalOpF>(op, rewriter.getF32Type()); 835 return success(); 836 } 837 }; 838 839 /// A rewrite pattern that tests the undo mechanism when erasing a block. 840 struct TestUndoBlockErase : public ConversionPattern { 841 TestUndoBlockErase(MLIRContext *ctx) 842 : ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {} 843 844 LogicalResult 845 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 846 ConversionPatternRewriter &rewriter) const final { 847 Block *secondBlock = &*std::next(op->getRegion(0).begin()); 848 rewriter.setInsertionPointToStart(secondBlock); 849 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type()); 850 rewriter.eraseBlock(secondBlock); 851 rewriter.modifyOpInPlace(op, [] {}); 852 return success(); 853 } 854 }; 855 856 /// A pattern that modifies a property in-place, but keeps the op illegal. 857 struct TestUndoPropertiesModification : public ConversionPattern { 858 TestUndoPropertiesModification(MLIRContext *ctx) 859 : ConversionPattern("test.with_properties", /*benefit=*/1, ctx) {} 860 LogicalResult 861 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 862 ConversionPatternRewriter &rewriter) const final { 863 if (!op->hasAttr("modify_inplace")) 864 return failure(); 865 rewriter.modifyOpInPlace( 866 op, [&]() { cast<TestOpWithProperties>(op).getProperties().setA(42); }); 867 return success(); 868 } 869 }; 870 871 //===----------------------------------------------------------------------===// 872 // Type-Conversion Rewrite Testing 873 874 /// This patterns erases a region operation that has had a type conversion. 875 struct TestDropOpSignatureConversion : public ConversionPattern { 876 TestDropOpSignatureConversion(MLIRContext *ctx, 877 const TypeConverter &converter) 878 : ConversionPattern(converter, "test.drop_region_op", 1, ctx) {} 879 LogicalResult 880 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 881 ConversionPatternRewriter &rewriter) const override { 882 Region ®ion = op->getRegion(0); 883 Block *entry = ®ion.front(); 884 885 // Convert the original entry arguments. 886 const TypeConverter &converter = *getTypeConverter(); 887 TypeConverter::SignatureConversion result(entry->getNumArguments()); 888 if (failed(converter.convertSignatureArgs(entry->getArgumentTypes(), 889 result)) || 890 failed(rewriter.convertRegionTypes(®ion, converter, &result))) 891 return failure(); 892 893 // Convert the region signature and just drop the operation. 894 rewriter.eraseOp(op); 895 return success(); 896 } 897 }; 898 /// This pattern simply updates the operands of the given operation. 899 struct TestPassthroughInvalidOp : public ConversionPattern { 900 TestPassthroughInvalidOp(MLIRContext *ctx) 901 : ConversionPattern("test.invalid", 1, ctx) {} 902 LogicalResult 903 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 904 ConversionPatternRewriter &rewriter) const final { 905 rewriter.replaceOpWithNewOp<TestValidOp>(op, std::nullopt, operands, 906 std::nullopt); 907 return success(); 908 } 909 }; 910 /// Replace with valid op, but simply drop the operands. This is used in a 911 /// regression where we used to generate circular unrealized_conversion_cast 912 /// ops. 913 struct TestDropAndReplaceInvalidOp : public ConversionPattern { 914 TestDropAndReplaceInvalidOp(MLIRContext *ctx, const TypeConverter &converter) 915 : ConversionPattern(converter, 916 "test.drop_operands_and_replace_with_valid", 1, ctx) { 917 } 918 LogicalResult 919 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 920 ConversionPatternRewriter &rewriter) const final { 921 rewriter.replaceOpWithNewOp<TestValidOp>(op, std::nullopt, ValueRange(), 922 std::nullopt); 923 return success(); 924 } 925 }; 926 /// This pattern handles the case of a split return value. 927 struct TestSplitReturnType : public ConversionPattern { 928 TestSplitReturnType(MLIRContext *ctx) 929 : ConversionPattern("test.return", 1, ctx) {} 930 LogicalResult 931 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 932 ConversionPatternRewriter &rewriter) const final { 933 // Check for a return of F32. 934 if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32()) 935 return failure(); 936 937 // Check if the first operation is a cast operation, if it is we use the 938 // results directly. 939 auto *defOp = operands[0].getDefiningOp(); 940 if (auto packerOp = 941 llvm::dyn_cast_or_null<UnrealizedConversionCastOp>(defOp)) { 942 rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands()); 943 return success(); 944 } 945 946 // Otherwise, fail to match. 947 return failure(); 948 } 949 }; 950 951 //===----------------------------------------------------------------------===// 952 // Multi-Level Type-Conversion Rewrite Testing 953 struct TestChangeProducerTypeI32ToF32 : public ConversionPattern { 954 TestChangeProducerTypeI32ToF32(MLIRContext *ctx) 955 : ConversionPattern("test.type_producer", 1, ctx) {} 956 LogicalResult 957 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 958 ConversionPatternRewriter &rewriter) const final { 959 // If the type is I32, change the type to F32. 960 if (!Type(*op->result_type_begin()).isSignlessInteger(32)) 961 return failure(); 962 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type()); 963 return success(); 964 } 965 }; 966 struct TestChangeProducerTypeF32ToF64 : public ConversionPattern { 967 TestChangeProducerTypeF32ToF64(MLIRContext *ctx) 968 : ConversionPattern("test.type_producer", 1, ctx) {} 969 LogicalResult 970 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 971 ConversionPatternRewriter &rewriter) const final { 972 // If the type is F32, change the type to F64. 973 if (!Type(*op->result_type_begin()).isF32()) 974 return rewriter.notifyMatchFailure(op, "expected single f32 operand"); 975 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type()); 976 return success(); 977 } 978 }; 979 struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern { 980 TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx) 981 : ConversionPattern("test.type_producer", 10, ctx) {} 982 LogicalResult 983 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 984 ConversionPatternRewriter &rewriter) const final { 985 // Always convert to B16, even though it is not a legal type. This tests 986 // that values are unmapped correctly. 987 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type()); 988 return success(); 989 } 990 }; 991 struct TestUpdateConsumerType : public ConversionPattern { 992 TestUpdateConsumerType(MLIRContext *ctx) 993 : ConversionPattern("test.type_consumer", 1, ctx) {} 994 LogicalResult 995 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 996 ConversionPatternRewriter &rewriter) const final { 997 // Verify that the incoming operand has been successfully remapped to F64. 998 if (!operands[0].getType().isF64()) 999 return failure(); 1000 rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]); 1001 return success(); 1002 } 1003 }; 1004 1005 //===----------------------------------------------------------------------===// 1006 // Non-Root Replacement Rewrite Testing 1007 /// This pattern generates an invalid operation, but replaces it before the 1008 /// pattern is finished. This checks that we don't need to legalize the 1009 /// temporary op. 1010 struct TestNonRootReplacement : public RewritePattern { 1011 TestNonRootReplacement(MLIRContext *ctx) 1012 : RewritePattern("test.replace_non_root", 1, ctx) {} 1013 1014 LogicalResult matchAndRewrite(Operation *op, 1015 PatternRewriter &rewriter) const final { 1016 auto resultType = *op->result_type_begin(); 1017 auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType); 1018 auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType); 1019 1020 rewriter.replaceOp(illegalOp, legalOp); 1021 rewriter.replaceOp(op, illegalOp); 1022 return success(); 1023 } 1024 }; 1025 1026 //===----------------------------------------------------------------------===// 1027 // Recursive Rewrite Testing 1028 /// This pattern is applied to the same operation multiple times, but has a 1029 /// bounded recursion. 1030 struct TestBoundedRecursiveRewrite 1031 : public OpRewritePattern<TestRecursiveRewriteOp> { 1032 using OpRewritePattern<TestRecursiveRewriteOp>::OpRewritePattern; 1033 1034 void initialize() { 1035 // The conversion target handles bounding the recursion of this pattern. 1036 setHasBoundedRewriteRecursion(); 1037 } 1038 1039 LogicalResult matchAndRewrite(TestRecursiveRewriteOp op, 1040 PatternRewriter &rewriter) const final { 1041 // Decrement the depth of the op in-place. 1042 rewriter.modifyOpInPlace(op, [&] { 1043 op->setAttr("depth", rewriter.getI64IntegerAttr(op.getDepth() - 1)); 1044 }); 1045 return success(); 1046 } 1047 }; 1048 1049 struct TestNestedOpCreationUndoRewrite 1050 : public OpRewritePattern<IllegalOpWithRegionAnchor> { 1051 using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern; 1052 1053 LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op, 1054 PatternRewriter &rewriter) const final { 1055 // rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op); 1056 rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op); 1057 return success(); 1058 }; 1059 }; 1060 1061 // This pattern matches `test.blackhole` and delete this op and its producer. 1062 struct TestReplaceEraseOp : public OpRewritePattern<BlackHoleOp> { 1063 using OpRewritePattern<BlackHoleOp>::OpRewritePattern; 1064 1065 LogicalResult matchAndRewrite(BlackHoleOp op, 1066 PatternRewriter &rewriter) const final { 1067 Operation *producer = op.getOperand().getDefiningOp(); 1068 // Always erase the user before the producer, the framework should handle 1069 // this correctly. 1070 rewriter.eraseOp(op); 1071 rewriter.eraseOp(producer); 1072 return success(); 1073 }; 1074 }; 1075 1076 // This pattern replaces explicitly illegal op with explicitly legal op, 1077 // but in addition creates unregistered operation. 1078 struct TestCreateUnregisteredOp : public OpRewritePattern<ILLegalOpG> { 1079 using OpRewritePattern<ILLegalOpG>::OpRewritePattern; 1080 1081 LogicalResult matchAndRewrite(ILLegalOpG op, 1082 PatternRewriter &rewriter) const final { 1083 IntegerAttr attr = rewriter.getI32IntegerAttr(0); 1084 Value val = rewriter.create<arith::ConstantOp>(op->getLoc(), attr); 1085 rewriter.replaceOpWithNewOp<LegalOpC>(op, val); 1086 return success(); 1087 }; 1088 }; 1089 1090 class TestEraseOp : public ConversionPattern { 1091 public: 1092 TestEraseOp(MLIRContext *ctx) : ConversionPattern("test.erase_op", 1, ctx) {} 1093 LogicalResult 1094 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 1095 ConversionPatternRewriter &rewriter) const final { 1096 // Erase op without replacements. 1097 rewriter.eraseOp(op); 1098 return success(); 1099 } 1100 }; 1101 1102 } // namespace 1103 1104 namespace { 1105 struct TestTypeConverter : public TypeConverter { 1106 using TypeConverter::TypeConverter; 1107 TestTypeConverter() { 1108 addConversion(convertType); 1109 addArgumentMaterialization(materializeCast); 1110 addSourceMaterialization(materializeCast); 1111 } 1112 1113 static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) { 1114 // Drop I16 types. 1115 if (t.isSignlessInteger(16)) 1116 return success(); 1117 1118 // Convert I64 to F64. 1119 if (t.isSignlessInteger(64)) { 1120 results.push_back(FloatType::getF64(t.getContext())); 1121 return success(); 1122 } 1123 1124 // Convert I42 to I43. 1125 if (t.isInteger(42)) { 1126 results.push_back(IntegerType::get(t.getContext(), 43)); 1127 return success(); 1128 } 1129 1130 // Split F32 into F16,F16. 1131 if (t.isF32()) { 1132 results.assign(2, FloatType::getF16(t.getContext())); 1133 return success(); 1134 } 1135 1136 // Otherwise, convert the type directly. 1137 results.push_back(t); 1138 return success(); 1139 } 1140 1141 /// Hook for materializing a conversion. This is necessary because we generate 1142 /// 1->N type mappings. 1143 static std::optional<Value> materializeCast(OpBuilder &builder, 1144 Type resultType, 1145 ValueRange inputs, Location loc) { 1146 return builder.create<TestCastOp>(loc, resultType, inputs).getResult(); 1147 } 1148 }; 1149 1150 struct TestLegalizePatternDriver 1151 : public PassWrapper<TestLegalizePatternDriver, OperationPass<>> { 1152 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestLegalizePatternDriver) 1153 1154 StringRef getArgument() const final { return "test-legalize-patterns"; } 1155 StringRef getDescription() const final { 1156 return "Run test dialect legalization patterns"; 1157 } 1158 /// The mode of conversion to use with the driver. 1159 enum class ConversionMode { Analysis, Full, Partial }; 1160 1161 TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {} 1162 1163 void getDependentDialects(DialectRegistry ®istry) const override { 1164 registry.insert<func::FuncDialect, test::TestDialect>(); 1165 } 1166 1167 void runOnOperation() override { 1168 TestTypeConverter converter; 1169 mlir::RewritePatternSet patterns(&getContext()); 1170 populateWithGenerated(patterns); 1171 patterns.add< 1172 TestRegionRewriteBlockMovement, TestDetachedSignatureConversion, 1173 TestRegionRewriteUndo, TestCreateBlock, TestCreateIllegalBlock, 1174 TestUndoBlockArgReplace, TestUndoBlockErase, TestPassthroughInvalidOp, 1175 TestSplitReturnType, TestChangeProducerTypeI32ToF32, 1176 TestChangeProducerTypeF32ToF64, TestChangeProducerTypeF32ToInvalid, 1177 TestUpdateConsumerType, TestNonRootReplacement, 1178 TestBoundedRecursiveRewrite, TestNestedOpCreationUndoRewrite, 1179 TestReplaceEraseOp, TestCreateUnregisteredOp, TestUndoMoveOpBefore, 1180 TestUndoPropertiesModification, TestEraseOp>(&getContext()); 1181 patterns.add<TestDropOpSignatureConversion, TestDropAndReplaceInvalidOp>( 1182 &getContext(), converter); 1183 mlir::populateAnyFunctionOpInterfaceTypeConversionPattern(patterns, 1184 converter); 1185 mlir::populateCallOpTypeConversionPattern(patterns, converter); 1186 1187 // Define the conversion target used for the test. 1188 ConversionTarget target(getContext()); 1189 target.addLegalOp<ModuleOp>(); 1190 target.addLegalOp<LegalOpA, LegalOpB, LegalOpC, TestCastOp, TestValidOp, 1191 TerminatorOp, OneRegionOp>(); 1192 target.addLegalOp( 1193 OperationName("test.legal_op_with_region", &getContext())); 1194 target 1195 .addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>(); 1196 target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) { 1197 // Don't allow F32 operands. 1198 return llvm::none_of(op.getOperandTypes(), 1199 [](Type type) { return type.isF32(); }); 1200 }); 1201 target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) { 1202 return converter.isSignatureLegal(op.getFunctionType()) && 1203 converter.isLegal(&op.getBody()); 1204 }); 1205 target.addDynamicallyLegalOp<func::CallOp>( 1206 [&](func::CallOp op) { return converter.isLegal(op); }); 1207 1208 // TestCreateUnregisteredOp creates `arith.constant` operation, 1209 // which was not added to target intentionally to test 1210 // correct error code from conversion driver. 1211 target.addDynamicallyLegalOp<ILLegalOpG>([](ILLegalOpG) { return false; }); 1212 1213 // Expect the type_producer/type_consumer operations to only operate on f64. 1214 target.addDynamicallyLegalOp<TestTypeProducerOp>( 1215 [](TestTypeProducerOp op) { return op.getType().isF64(); }); 1216 target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) { 1217 return op.getOperand().getType().isF64(); 1218 }); 1219 1220 // Check support for marking certain operations as recursively legal. 1221 target.markOpRecursivelyLegal<func::FuncOp, ModuleOp>([](Operation *op) { 1222 return static_cast<bool>( 1223 op->getAttrOfType<UnitAttr>("test.recursively_legal")); 1224 }); 1225 1226 // Mark the bound recursion operation as dynamically legal. 1227 target.addDynamicallyLegalOp<TestRecursiveRewriteOp>( 1228 [](TestRecursiveRewriteOp op) { return op.getDepth() == 0; }); 1229 1230 // Create a dynamically legal rule that can only be legalized by folding it. 1231 target.addDynamicallyLegalOp<TestOpInPlaceSelfFold>( 1232 [](TestOpInPlaceSelfFold op) { return op.getFolded(); }); 1233 1234 // Handle a partial conversion. 1235 if (mode == ConversionMode::Partial) { 1236 DenseSet<Operation *> unlegalizedOps; 1237 ConversionConfig config; 1238 DumpNotifications dumpNotifications; 1239 config.listener = &dumpNotifications; 1240 config.unlegalizedOps = &unlegalizedOps; 1241 if (failed(applyPartialConversion(getOperation(), target, 1242 std::move(patterns), config))) { 1243 getOperation()->emitRemark() << "applyPartialConversion failed"; 1244 } 1245 // Emit remarks for each legalizable operation. 1246 for (auto *op : unlegalizedOps) 1247 op->emitRemark() << "op '" << op->getName() << "' is not legalizable"; 1248 return; 1249 } 1250 1251 // Handle a full conversion. 1252 if (mode == ConversionMode::Full) { 1253 // Check support for marking unknown operations as dynamically legal. 1254 target.markUnknownOpDynamicallyLegal([](Operation *op) { 1255 return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal"); 1256 }); 1257 1258 ConversionConfig config; 1259 DumpNotifications dumpNotifications; 1260 config.listener = &dumpNotifications; 1261 if (failed(applyFullConversion(getOperation(), target, 1262 std::move(patterns), config))) { 1263 getOperation()->emitRemark() << "applyFullConversion failed"; 1264 } 1265 return; 1266 } 1267 1268 // Otherwise, handle an analysis conversion. 1269 assert(mode == ConversionMode::Analysis); 1270 1271 // Analyze the convertible operations. 1272 DenseSet<Operation *> legalizedOps; 1273 ConversionConfig config; 1274 config.legalizableOps = &legalizedOps; 1275 if (failed(applyAnalysisConversion(getOperation(), target, 1276 std::move(patterns), config))) 1277 return signalPassFailure(); 1278 1279 // Emit remarks for each legalizable operation. 1280 for (auto *op : legalizedOps) 1281 op->emitRemark() << "op '" << op->getName() << "' is legalizable"; 1282 } 1283 1284 /// The mode of conversion to use. 1285 ConversionMode mode; 1286 }; 1287 } // namespace 1288 1289 static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode> 1290 legalizerConversionMode( 1291 "test-legalize-mode", 1292 llvm::cl::desc("The legalization mode to use with the test driver"), 1293 llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial), 1294 llvm::cl::values( 1295 clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis, 1296 "analysis", "Perform an analysis conversion"), 1297 clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full", 1298 "Perform a full conversion"), 1299 clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial, 1300 "partial", "Perform a partial conversion"))); 1301 1302 //===----------------------------------------------------------------------===// 1303 // ConversionPatternRewriter::getRemappedValue testing. This method is used 1304 // to get the remapped value of an original value that was replaced using 1305 // ConversionPatternRewriter. 1306 namespace { 1307 struct TestRemapValueTypeConverter : public TypeConverter { 1308 using TypeConverter::TypeConverter; 1309 1310 TestRemapValueTypeConverter() { 1311 addConversion( 1312 [](Float32Type type) { return Float64Type::get(type.getContext()); }); 1313 addConversion([](Type type) { return type; }); 1314 } 1315 }; 1316 1317 /// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with 1318 /// a one-operand two-result OneVResOneVOperandOp1 by replicating its original 1319 /// operand twice. 1320 /// 1321 /// Example: 1322 /// %1 = test.one_variadic_out_one_variadic_in1"(%0) 1323 /// is replaced with: 1324 /// %1 = test.one_variadic_out_one_variadic_in1"(%0, %0) 1325 struct OneVResOneVOperandOp1Converter 1326 : public OpConversionPattern<OneVResOneVOperandOp1> { 1327 using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern; 1328 1329 LogicalResult 1330 matchAndRewrite(OneVResOneVOperandOp1 op, OpAdaptor adaptor, 1331 ConversionPatternRewriter &rewriter) const override { 1332 auto origOps = op.getOperands(); 1333 assert(std::distance(origOps.begin(), origOps.end()) == 1 && 1334 "One operand expected"); 1335 Value origOp = *origOps.begin(); 1336 SmallVector<Value, 2> remappedOperands; 1337 // Replicate the remapped original operand twice. Note that we don't used 1338 // the remapped 'operand' since the goal is testing 'getRemappedValue'. 1339 remappedOperands.push_back(rewriter.getRemappedValue(origOp)); 1340 remappedOperands.push_back(rewriter.getRemappedValue(origOp)); 1341 1342 rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(), 1343 remappedOperands); 1344 return success(); 1345 } 1346 }; 1347 1348 /// A rewriter pattern that tests that blocks can be merged. 1349 struct TestRemapValueInRegion 1350 : public OpConversionPattern<TestRemappedValueRegionOp> { 1351 using OpConversionPattern<TestRemappedValueRegionOp>::OpConversionPattern; 1352 1353 LogicalResult 1354 matchAndRewrite(TestRemappedValueRegionOp op, OpAdaptor adaptor, 1355 ConversionPatternRewriter &rewriter) const final { 1356 Block &block = op.getBody().front(); 1357 Operation *terminator = block.getTerminator(); 1358 1359 // Merge the block into the parent region. 1360 Block *parentBlock = op->getBlock(); 1361 Block *finalBlock = rewriter.splitBlock(parentBlock, op->getIterator()); 1362 rewriter.mergeBlocks(&block, parentBlock, ValueRange()); 1363 rewriter.mergeBlocks(finalBlock, parentBlock, ValueRange()); 1364 1365 // Replace the results of this operation with the remapped terminator 1366 // values. 1367 SmallVector<Value> terminatorOperands; 1368 if (failed(rewriter.getRemappedValues(terminator->getOperands(), 1369 terminatorOperands))) 1370 return failure(); 1371 1372 rewriter.eraseOp(terminator); 1373 rewriter.replaceOp(op, terminatorOperands); 1374 return success(); 1375 } 1376 }; 1377 1378 struct TestRemappedValue 1379 : public mlir::PassWrapper<TestRemappedValue, OperationPass<>> { 1380 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestRemappedValue) 1381 1382 StringRef getArgument() const final { return "test-remapped-value"; } 1383 StringRef getDescription() const final { 1384 return "Test public remapped value mechanism in ConversionPatternRewriter"; 1385 } 1386 void runOnOperation() override { 1387 TestRemapValueTypeConverter typeConverter; 1388 1389 mlir::RewritePatternSet patterns(&getContext()); 1390 patterns.add<OneVResOneVOperandOp1Converter>(&getContext()); 1391 patterns.add<TestChangeProducerTypeF32ToF64, TestUpdateConsumerType>( 1392 &getContext()); 1393 patterns.add<TestRemapValueInRegion>(typeConverter, &getContext()); 1394 1395 mlir::ConversionTarget target(getContext()); 1396 target.addLegalOp<ModuleOp, func::FuncOp, TestReturnOp>(); 1397 1398 // Expect the type_producer/type_consumer operations to only operate on f64. 1399 target.addDynamicallyLegalOp<TestTypeProducerOp>( 1400 [](TestTypeProducerOp op) { return op.getType().isF64(); }); 1401 target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) { 1402 return op.getOperand().getType().isF64(); 1403 }); 1404 1405 // We make OneVResOneVOperandOp1 legal only when it has more that one 1406 // operand. This will trigger the conversion that will replace one-operand 1407 // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1. 1408 target.addDynamicallyLegalOp<OneVResOneVOperandOp1>( 1409 [](Operation *op) { return op->getNumOperands() > 1; }); 1410 1411 if (failed(mlir::applyFullConversion(getOperation(), target, 1412 std::move(patterns)))) { 1413 signalPassFailure(); 1414 } 1415 } 1416 }; 1417 } // namespace 1418 1419 //===----------------------------------------------------------------------===// 1420 // Test patterns without a specific root operation kind 1421 //===----------------------------------------------------------------------===// 1422 1423 namespace { 1424 /// This pattern matches and removes any operation in the test dialect. 1425 struct RemoveTestDialectOps : public RewritePattern { 1426 RemoveTestDialectOps(MLIRContext *context) 1427 : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {} 1428 1429 LogicalResult matchAndRewrite(Operation *op, 1430 PatternRewriter &rewriter) const override { 1431 if (!isa<TestDialect>(op->getDialect())) 1432 return failure(); 1433 rewriter.eraseOp(op); 1434 return success(); 1435 } 1436 }; 1437 1438 struct TestUnknownRootOpDriver 1439 : public mlir::PassWrapper<TestUnknownRootOpDriver, OperationPass<>> { 1440 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestUnknownRootOpDriver) 1441 1442 StringRef getArgument() const final { 1443 return "test-legalize-unknown-root-patterns"; 1444 } 1445 StringRef getDescription() const final { 1446 return "Test public remapped value mechanism in ConversionPatternRewriter"; 1447 } 1448 void runOnOperation() override { 1449 mlir::RewritePatternSet patterns(&getContext()); 1450 patterns.add<RemoveTestDialectOps>(&getContext()); 1451 1452 mlir::ConversionTarget target(getContext()); 1453 target.addIllegalDialect<TestDialect>(); 1454 if (failed(applyPartialConversion(getOperation(), target, 1455 std::move(patterns)))) 1456 signalPassFailure(); 1457 } 1458 }; 1459 } // namespace 1460 1461 //===----------------------------------------------------------------------===// 1462 // Test patterns that uses operations and types defined at runtime 1463 //===----------------------------------------------------------------------===// 1464 1465 namespace { 1466 /// This pattern matches dynamic operations 'test.one_operand_two_results' and 1467 /// replace them with dynamic operations 'test.generic_dynamic_op'. 1468 struct RewriteDynamicOp : public RewritePattern { 1469 RewriteDynamicOp(MLIRContext *context) 1470 : RewritePattern("test.dynamic_one_operand_two_results", /*benefit=*/1, 1471 context) {} 1472 1473 LogicalResult matchAndRewrite(Operation *op, 1474 PatternRewriter &rewriter) const override { 1475 assert(op->getName().getStringRef() == 1476 "test.dynamic_one_operand_two_results" && 1477 "rewrite pattern should only match operations with the right name"); 1478 1479 OperationState state(op->getLoc(), "test.dynamic_generic", 1480 op->getOperands(), op->getResultTypes(), 1481 op->getAttrs()); 1482 auto *newOp = rewriter.create(state); 1483 rewriter.replaceOp(op, newOp->getResults()); 1484 return success(); 1485 } 1486 }; 1487 1488 struct TestRewriteDynamicOpDriver 1489 : public PassWrapper<TestRewriteDynamicOpDriver, OperationPass<>> { 1490 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestRewriteDynamicOpDriver) 1491 1492 void getDependentDialects(DialectRegistry ®istry) const override { 1493 registry.insert<TestDialect>(); 1494 } 1495 StringRef getArgument() const final { return "test-rewrite-dynamic-op"; } 1496 StringRef getDescription() const final { 1497 return "Test rewritting on dynamic operations"; 1498 } 1499 void runOnOperation() override { 1500 RewritePatternSet patterns(&getContext()); 1501 patterns.add<RewriteDynamicOp>(&getContext()); 1502 1503 ConversionTarget target(getContext()); 1504 target.addIllegalOp( 1505 OperationName("test.dynamic_one_operand_two_results", &getContext())); 1506 target.addLegalOp(OperationName("test.dynamic_generic", &getContext())); 1507 if (failed(applyPartialConversion(getOperation(), target, 1508 std::move(patterns)))) 1509 signalPassFailure(); 1510 } 1511 }; 1512 } // end anonymous namespace 1513 1514 //===----------------------------------------------------------------------===// 1515 // Test type conversions 1516 //===----------------------------------------------------------------------===// 1517 1518 namespace { 1519 struct TestTypeConversionProducer 1520 : public OpConversionPattern<TestTypeProducerOp> { 1521 using OpConversionPattern<TestTypeProducerOp>::OpConversionPattern; 1522 LogicalResult 1523 matchAndRewrite(TestTypeProducerOp op, OpAdaptor adaptor, 1524 ConversionPatternRewriter &rewriter) const final { 1525 Type resultType = op.getType(); 1526 Type convertedType = getTypeConverter() 1527 ? getTypeConverter()->convertType(resultType) 1528 : resultType; 1529 if (isa<FloatType>(resultType)) 1530 resultType = rewriter.getF64Type(); 1531 else if (resultType.isInteger(16)) 1532 resultType = rewriter.getIntegerType(64); 1533 else if (isa<test::TestRecursiveType>(resultType) && 1534 convertedType != resultType) 1535 resultType = convertedType; 1536 else 1537 return failure(); 1538 1539 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, resultType); 1540 return success(); 1541 } 1542 }; 1543 1544 /// Call signature conversion and then fail the rewrite to trigger the undo 1545 /// mechanism. 1546 struct TestSignatureConversionUndo 1547 : public OpConversionPattern<TestSignatureConversionUndoOp> { 1548 using OpConversionPattern<TestSignatureConversionUndoOp>::OpConversionPattern; 1549 1550 LogicalResult 1551 matchAndRewrite(TestSignatureConversionUndoOp op, OpAdaptor adaptor, 1552 ConversionPatternRewriter &rewriter) const final { 1553 (void)rewriter.convertRegionTypes(&op->getRegion(0), *getTypeConverter()); 1554 return failure(); 1555 } 1556 }; 1557 1558 /// Call signature conversion without providing a type converter to handle 1559 /// materializations. 1560 struct TestTestSignatureConversionNoConverter 1561 : public OpConversionPattern<TestSignatureConversionNoConverterOp> { 1562 TestTestSignatureConversionNoConverter(const TypeConverter &converter, 1563 MLIRContext *context) 1564 : OpConversionPattern<TestSignatureConversionNoConverterOp>(context), 1565 converter(converter) {} 1566 1567 LogicalResult 1568 matchAndRewrite(TestSignatureConversionNoConverterOp op, OpAdaptor adaptor, 1569 ConversionPatternRewriter &rewriter) const final { 1570 Region ®ion = op->getRegion(0); 1571 Block *entry = ®ion.front(); 1572 1573 // Convert the original entry arguments. 1574 TypeConverter::SignatureConversion result(entry->getNumArguments()); 1575 if (failed( 1576 converter.convertSignatureArgs(entry->getArgumentTypes(), result))) 1577 return failure(); 1578 rewriter.modifyOpInPlace(op, [&] { 1579 rewriter.applySignatureConversion(®ion.front(), result); 1580 }); 1581 return success(); 1582 } 1583 1584 const TypeConverter &converter; 1585 }; 1586 1587 /// Just forward the operands to the root op. This is essentially a no-op 1588 /// pattern that is used to trigger target materialization. 1589 struct TestTypeConsumerForward 1590 : public OpConversionPattern<TestTypeConsumerOp> { 1591 using OpConversionPattern<TestTypeConsumerOp>::OpConversionPattern; 1592 1593 LogicalResult 1594 matchAndRewrite(TestTypeConsumerOp op, OpAdaptor adaptor, 1595 ConversionPatternRewriter &rewriter) const final { 1596 rewriter.modifyOpInPlace(op, 1597 [&] { op->setOperands(adaptor.getOperands()); }); 1598 return success(); 1599 } 1600 }; 1601 1602 struct TestTypeConversionAnotherProducer 1603 : public OpRewritePattern<TestAnotherTypeProducerOp> { 1604 using OpRewritePattern<TestAnotherTypeProducerOp>::OpRewritePattern; 1605 1606 LogicalResult matchAndRewrite(TestAnotherTypeProducerOp op, 1607 PatternRewriter &rewriter) const final { 1608 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, op.getType()); 1609 return success(); 1610 } 1611 }; 1612 1613 struct TestReplaceWithLegalOp : public ConversionPattern { 1614 TestReplaceWithLegalOp(MLIRContext *ctx) 1615 : ConversionPattern("test.replace_with_legal_op", /*benefit=*/1, ctx) {} 1616 LogicalResult 1617 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 1618 ConversionPatternRewriter &rewriter) const final { 1619 rewriter.replaceOpWithNewOp<LegalOpD>(op, operands[0]); 1620 return success(); 1621 } 1622 }; 1623 1624 struct TestTypeConversionDriver 1625 : public PassWrapper<TestTypeConversionDriver, OperationPass<>> { 1626 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestTypeConversionDriver) 1627 1628 void getDependentDialects(DialectRegistry ®istry) const override { 1629 registry.insert<TestDialect>(); 1630 } 1631 StringRef getArgument() const final { 1632 return "test-legalize-type-conversion"; 1633 } 1634 StringRef getDescription() const final { 1635 return "Test various type conversion functionalities in DialectConversion"; 1636 } 1637 1638 void runOnOperation() override { 1639 // Initialize the type converter. 1640 SmallVector<Type, 2> conversionCallStack; 1641 TypeConverter converter; 1642 1643 /// Add the legal set of type conversions. 1644 converter.addConversion([](Type type) -> Type { 1645 // Treat F64 as legal. 1646 if (type.isF64()) 1647 return type; 1648 // Allow converting BF16/F16/F32 to F64. 1649 if (type.isBF16() || type.isF16() || type.isF32()) 1650 return FloatType::getF64(type.getContext()); 1651 // Otherwise, the type is illegal. 1652 return nullptr; 1653 }); 1654 converter.addConversion([](IntegerType type, SmallVectorImpl<Type> &) { 1655 // Drop all integer types. 1656 return success(); 1657 }); 1658 converter.addConversion( 1659 // Convert a recursive self-referring type into a non-self-referring 1660 // type named "outer_converted_type" that contains a SimpleAType. 1661 [&](test::TestRecursiveType type, 1662 SmallVectorImpl<Type> &results) -> std::optional<LogicalResult> { 1663 // If the type is already converted, return it to indicate that it is 1664 // legal. 1665 if (type.getName() == "outer_converted_type") { 1666 results.push_back(type); 1667 return success(); 1668 } 1669 1670 conversionCallStack.push_back(type); 1671 auto popConversionCallStack = llvm::make_scope_exit( 1672 [&conversionCallStack]() { conversionCallStack.pop_back(); }); 1673 1674 // If the type is on the call stack more than once (it is there at 1675 // least once because of the _current_ call, which is always the last 1676 // element on the stack), we've hit the recursive case. Just return 1677 // SimpleAType here to create a non-recursive type as a result. 1678 if (llvm::is_contained(ArrayRef(conversionCallStack).drop_back(), 1679 type)) { 1680 results.push_back(test::SimpleAType::get(type.getContext())); 1681 return success(); 1682 } 1683 1684 // Convert the body recursively. 1685 auto result = test::TestRecursiveType::get(type.getContext(), 1686 "outer_converted_type"); 1687 if (failed(result.setBody(converter.convertType(type.getBody())))) 1688 return failure(); 1689 results.push_back(result); 1690 return success(); 1691 }); 1692 1693 /// Add the legal set of type materializations. 1694 converter.addSourceMaterialization([](OpBuilder &builder, Type resultType, 1695 ValueRange inputs, 1696 Location loc) -> Value { 1697 // Allow casting from F64 back to F32. 1698 if (!resultType.isF16() && inputs.size() == 1 && 1699 inputs[0].getType().isF64()) 1700 return builder.create<TestCastOp>(loc, resultType, inputs).getResult(); 1701 // Allow producing an i32 or i64 from nothing. 1702 if ((resultType.isInteger(32) || resultType.isInteger(64)) && 1703 inputs.empty()) 1704 return builder.create<TestTypeProducerOp>(loc, resultType); 1705 // Allow producing an i64 from an integer. 1706 if (isa<IntegerType>(resultType) && inputs.size() == 1 && 1707 isa<IntegerType>(inputs[0].getType())) 1708 return builder.create<TestCastOp>(loc, resultType, inputs).getResult(); 1709 // Otherwise, fail. 1710 return nullptr; 1711 }); 1712 1713 // Initialize the conversion target. 1714 mlir::ConversionTarget target(getContext()); 1715 target.addLegalOp<LegalOpD>(); 1716 target.addDynamicallyLegalOp<TestTypeProducerOp>([](TestTypeProducerOp op) { 1717 auto recursiveType = dyn_cast<test::TestRecursiveType>(op.getType()); 1718 return op.getType().isF64() || op.getType().isInteger(64) || 1719 (recursiveType && 1720 recursiveType.getName() == "outer_converted_type"); 1721 }); 1722 target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) { 1723 return converter.isSignatureLegal(op.getFunctionType()) && 1724 converter.isLegal(&op.getBody()); 1725 }); 1726 target.addDynamicallyLegalOp<TestCastOp>([&](TestCastOp op) { 1727 // Allow casts from F64 to F32. 1728 return (*op.operand_type_begin()).isF64() && op.getType().isF32(); 1729 }); 1730 target.addDynamicallyLegalOp<TestSignatureConversionNoConverterOp>( 1731 [&](TestSignatureConversionNoConverterOp op) { 1732 return converter.isLegal(op.getRegion().front().getArgumentTypes()); 1733 }); 1734 1735 // Initialize the set of rewrite patterns. 1736 RewritePatternSet patterns(&getContext()); 1737 patterns.add<TestTypeConsumerForward, TestTypeConversionProducer, 1738 TestSignatureConversionUndo, 1739 TestTestSignatureConversionNoConverter>(converter, 1740 &getContext()); 1741 patterns.add<TestTypeConversionAnotherProducer, TestReplaceWithLegalOp>( 1742 &getContext()); 1743 mlir::populateAnyFunctionOpInterfaceTypeConversionPattern(patterns, 1744 converter); 1745 1746 if (failed(applyPartialConversion(getOperation(), target, 1747 std::move(patterns)))) 1748 signalPassFailure(); 1749 } 1750 }; 1751 } // namespace 1752 1753 //===----------------------------------------------------------------------===// 1754 // Test Target Materialization With No Uses 1755 //===----------------------------------------------------------------------===// 1756 1757 namespace { 1758 struct ForwardOperandPattern : public OpConversionPattern<TestTypeChangerOp> { 1759 using OpConversionPattern<TestTypeChangerOp>::OpConversionPattern; 1760 1761 LogicalResult 1762 matchAndRewrite(TestTypeChangerOp op, OpAdaptor adaptor, 1763 ConversionPatternRewriter &rewriter) const final { 1764 rewriter.replaceOp(op, adaptor.getOperands()); 1765 return success(); 1766 } 1767 }; 1768 1769 struct TestTargetMaterializationWithNoUses 1770 : public PassWrapper<TestTargetMaterializationWithNoUses, OperationPass<>> { 1771 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID( 1772 TestTargetMaterializationWithNoUses) 1773 1774 StringRef getArgument() const final { 1775 return "test-target-materialization-with-no-uses"; 1776 } 1777 StringRef getDescription() const final { 1778 return "Test a special case of target materialization in DialectConversion"; 1779 } 1780 1781 void runOnOperation() override { 1782 TypeConverter converter; 1783 converter.addConversion([](Type t) { return t; }); 1784 converter.addConversion([](IntegerType intTy) -> Type { 1785 if (intTy.getWidth() == 16) 1786 return IntegerType::get(intTy.getContext(), 64); 1787 return intTy; 1788 }); 1789 converter.addTargetMaterialization( 1790 [](OpBuilder &builder, Type type, ValueRange inputs, Location loc) { 1791 return builder.create<TestCastOp>(loc, type, inputs).getResult(); 1792 }); 1793 1794 ConversionTarget target(getContext()); 1795 target.addIllegalOp<TestTypeChangerOp>(); 1796 1797 RewritePatternSet patterns(&getContext()); 1798 patterns.add<ForwardOperandPattern>(converter, &getContext()); 1799 1800 if (failed(applyPartialConversion(getOperation(), target, 1801 std::move(patterns)))) 1802 signalPassFailure(); 1803 } 1804 }; 1805 } // namespace 1806 1807 //===----------------------------------------------------------------------===// 1808 // Test Block Merging 1809 //===----------------------------------------------------------------------===// 1810 1811 namespace { 1812 /// A rewriter pattern that tests that blocks can be merged. 1813 struct TestMergeBlock : public OpConversionPattern<TestMergeBlocksOp> { 1814 using OpConversionPattern<TestMergeBlocksOp>::OpConversionPattern; 1815 1816 LogicalResult 1817 matchAndRewrite(TestMergeBlocksOp op, OpAdaptor adaptor, 1818 ConversionPatternRewriter &rewriter) const final { 1819 Block &firstBlock = op.getBody().front(); 1820 Operation *branchOp = firstBlock.getTerminator(); 1821 Block *secondBlock = &*(std::next(op.getBody().begin())); 1822 auto succOperands = branchOp->getOperands(); 1823 SmallVector<Value, 2> replacements(succOperands); 1824 rewriter.eraseOp(branchOp); 1825 rewriter.mergeBlocks(secondBlock, &firstBlock, replacements); 1826 rewriter.modifyOpInPlace(op, [] {}); 1827 return success(); 1828 } 1829 }; 1830 1831 /// A rewrite pattern to tests the undo mechanism of blocks being merged. 1832 struct TestUndoBlocksMerge : public ConversionPattern { 1833 TestUndoBlocksMerge(MLIRContext *ctx) 1834 : ConversionPattern("test.undo_blocks_merge", /*benefit=*/1, ctx) {} 1835 LogicalResult 1836 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 1837 ConversionPatternRewriter &rewriter) const final { 1838 Block &firstBlock = op->getRegion(0).front(); 1839 Operation *branchOp = firstBlock.getTerminator(); 1840 Block *secondBlock = &*(std::next(op->getRegion(0).begin())); 1841 rewriter.setInsertionPointToStart(secondBlock); 1842 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type()); 1843 auto succOperands = branchOp->getOperands(); 1844 SmallVector<Value, 2> replacements(succOperands); 1845 rewriter.eraseOp(branchOp); 1846 rewriter.mergeBlocks(secondBlock, &firstBlock, replacements); 1847 rewriter.modifyOpInPlace(op, [] {}); 1848 return success(); 1849 } 1850 }; 1851 1852 /// A rewrite mechanism to inline the body of the op into its parent, when both 1853 /// ops can have a single block. 1854 struct TestMergeSingleBlockOps 1855 : public OpConversionPattern<SingleBlockImplicitTerminatorOp> { 1856 using OpConversionPattern< 1857 SingleBlockImplicitTerminatorOp>::OpConversionPattern; 1858 1859 LogicalResult 1860 matchAndRewrite(SingleBlockImplicitTerminatorOp op, OpAdaptor adaptor, 1861 ConversionPatternRewriter &rewriter) const final { 1862 SingleBlockImplicitTerminatorOp parentOp = 1863 op->getParentOfType<SingleBlockImplicitTerminatorOp>(); 1864 if (!parentOp) 1865 return failure(); 1866 Block &innerBlock = op.getRegion().front(); 1867 TerminatorOp innerTerminator = 1868 cast<TerminatorOp>(innerBlock.getTerminator()); 1869 rewriter.inlineBlockBefore(&innerBlock, op); 1870 rewriter.eraseOp(innerTerminator); 1871 rewriter.eraseOp(op); 1872 return success(); 1873 } 1874 }; 1875 1876 struct TestMergeBlocksPatternDriver 1877 : public PassWrapper<TestMergeBlocksPatternDriver, OperationPass<>> { 1878 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestMergeBlocksPatternDriver) 1879 1880 StringRef getArgument() const final { return "test-merge-blocks"; } 1881 StringRef getDescription() const final { 1882 return "Test Merging operation in ConversionPatternRewriter"; 1883 } 1884 void runOnOperation() override { 1885 MLIRContext *context = &getContext(); 1886 mlir::RewritePatternSet patterns(context); 1887 patterns.add<TestMergeBlock, TestUndoBlocksMerge, TestMergeSingleBlockOps>( 1888 context); 1889 ConversionTarget target(*context); 1890 target.addLegalOp<func::FuncOp, ModuleOp, TerminatorOp, TestBranchOp, 1891 TestTypeConsumerOp, TestTypeProducerOp, TestReturnOp>(); 1892 target.addIllegalOp<ILLegalOpF>(); 1893 1894 /// Expect the op to have a single block after legalization. 1895 target.addDynamicallyLegalOp<TestMergeBlocksOp>( 1896 [&](TestMergeBlocksOp op) -> bool { 1897 return llvm::hasSingleElement(op.getBody()); 1898 }); 1899 1900 /// Only allow `test.br` within test.merge_blocks op. 1901 target.addDynamicallyLegalOp<TestBranchOp>([&](TestBranchOp op) -> bool { 1902 return op->getParentOfType<TestMergeBlocksOp>(); 1903 }); 1904 1905 /// Expect that all nested test.SingleBlockImplicitTerminator ops are 1906 /// inlined. 1907 target.addDynamicallyLegalOp<SingleBlockImplicitTerminatorOp>( 1908 [&](SingleBlockImplicitTerminatorOp op) -> bool { 1909 return !op->getParentOfType<SingleBlockImplicitTerminatorOp>(); 1910 }); 1911 1912 DenseSet<Operation *> unlegalizedOps; 1913 ConversionConfig config; 1914 config.unlegalizedOps = &unlegalizedOps; 1915 (void)applyPartialConversion(getOperation(), target, std::move(patterns), 1916 config); 1917 for (auto *op : unlegalizedOps) 1918 op->emitRemark() << "op '" << op->getName() << "' is not legalizable"; 1919 } 1920 }; 1921 } // namespace 1922 1923 //===----------------------------------------------------------------------===// 1924 // Test Selective Replacement 1925 //===----------------------------------------------------------------------===// 1926 1927 namespace { 1928 /// A rewrite mechanism to inline the body of the op into its parent, when both 1929 /// ops can have a single block. 1930 struct TestSelectiveOpReplacementPattern : public OpRewritePattern<TestCastOp> { 1931 using OpRewritePattern<TestCastOp>::OpRewritePattern; 1932 1933 LogicalResult matchAndRewrite(TestCastOp op, 1934 PatternRewriter &rewriter) const final { 1935 if (op.getNumOperands() != 2) 1936 return failure(); 1937 OperandRange operands = op.getOperands(); 1938 1939 // Replace non-terminator uses with the first operand. 1940 rewriter.replaceUsesWithIf(op, operands[0], [](OpOperand &operand) { 1941 return operand.getOwner()->hasTrait<OpTrait::IsTerminator>(); 1942 }); 1943 // Replace everything else with the second operand if the operation isn't 1944 // dead. 1945 rewriter.replaceOp(op, op.getOperand(1)); 1946 return success(); 1947 } 1948 }; 1949 1950 struct TestSelectiveReplacementPatternDriver 1951 : public PassWrapper<TestSelectiveReplacementPatternDriver, 1952 OperationPass<>> { 1953 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID( 1954 TestSelectiveReplacementPatternDriver) 1955 1956 StringRef getArgument() const final { 1957 return "test-pattern-selective-replacement"; 1958 } 1959 StringRef getDescription() const final { 1960 return "Test selective replacement in the PatternRewriter"; 1961 } 1962 void runOnOperation() override { 1963 MLIRContext *context = &getContext(); 1964 mlir::RewritePatternSet patterns(context); 1965 patterns.add<TestSelectiveOpReplacementPattern>(context); 1966 (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)); 1967 } 1968 }; 1969 } // namespace 1970 1971 //===----------------------------------------------------------------------===// 1972 // PassRegistration 1973 //===----------------------------------------------------------------------===// 1974 1975 namespace mlir { 1976 namespace test { 1977 void registerPatternsTestPass() { 1978 PassRegistration<TestReturnTypeDriver>(); 1979 1980 PassRegistration<TestDerivedAttributeDriver>(); 1981 1982 PassRegistration<TestPatternDriver>(); 1983 PassRegistration<TestStrictPatternDriver>(); 1984 1985 PassRegistration<TestLegalizePatternDriver>([] { 1986 return std::make_unique<TestLegalizePatternDriver>(legalizerConversionMode); 1987 }); 1988 1989 PassRegistration<TestRemappedValue>(); 1990 1991 PassRegistration<TestUnknownRootOpDriver>(); 1992 1993 PassRegistration<TestTypeConversionDriver>(); 1994 PassRegistration<TestTargetMaterializationWithNoUses>(); 1995 1996 PassRegistration<TestRewriteDynamicOpDriver>(); 1997 1998 PassRegistration<TestMergeBlocksPatternDriver>(); 1999 PassRegistration<TestSelectiveReplacementPatternDriver>(); 2000 } 2001 } // namespace test 2002 } // namespace mlir 2003