xref: /llvm-project/mlir/test/lib/Dialect/Test/TestPatterns.cpp (revision 38113a083283d2f30a677befaa5fb86dce731c8b)
1 //===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "TestDialect.h"
10 #include "TestTypes.h"
11 #include "mlir/Dialect/Arith/IR/Arith.h"
12 #include "mlir/Dialect/Func/IR/FuncOps.h"
13 #include "mlir/Dialect/Func/Transforms/FuncConversions.h"
14 #include "mlir/Dialect/Tensor/IR/Tensor.h"
15 #include "mlir/IR/Matchers.h"
16 #include "mlir/Pass/Pass.h"
17 #include "mlir/Transforms/DialectConversion.h"
18 #include "mlir/Transforms/FoldUtils.h"
19 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
20 #include "llvm/ADT/ScopeExit.h"
21 
22 using namespace mlir;
23 using namespace test;
24 
25 // Native function for testing NativeCodeCall
26 static Value chooseOperand(Value input1, Value input2, BoolAttr choice) {
27   return choice.getValue() ? input1 : input2;
28 }
29 
30 static void createOpI(PatternRewriter &rewriter, Location loc, Value input) {
31   rewriter.create<OpI>(loc, input);
32 }
33 
34 static void handleNoResultOp(PatternRewriter &rewriter,
35                              OpSymbolBindingNoResult op) {
36   // Turn the no result op to a one-result op.
37   rewriter.create<OpSymbolBindingB>(op.getLoc(), op.getOperand().getType(),
38                                     op.getOperand());
39 }
40 
41 static bool getFirstI32Result(Operation *op, Value &value) {
42   if (!Type(op->getResult(0).getType()).isSignlessInteger(32))
43     return false;
44   value = op->getResult(0);
45   return true;
46 }
47 
48 static Value bindNativeCodeCallResult(Value value) { return value; }
49 
50 static SmallVector<Value, 2> bindMultipleNativeCodeCallResult(Value input1,
51                                                               Value input2) {
52   return SmallVector<Value, 2>({input2, input1});
53 }
54 
55 // Test that natives calls are only called once during rewrites.
56 // OpM_Test will return Pi, increased by 1 for each subsequent calls.
57 // This let us check the number of times OpM_Test was called by inspecting
58 // the returned value in the MLIR output.
59 static int64_t opMIncreasingValue = 314159265;
60 static Attribute opMTest(PatternRewriter &rewriter, Value val) {
61   int64_t i = opMIncreasingValue++;
62   return rewriter.getIntegerAttr(rewriter.getIntegerType(32), i);
63 }
64 
65 namespace {
66 #include "TestPatterns.inc"
67 } // namespace
68 
69 //===----------------------------------------------------------------------===//
70 // Test Reduce Pattern Interface
71 //===----------------------------------------------------------------------===//
72 
73 void test::populateTestReductionPatterns(RewritePatternSet &patterns) {
74   populateWithGenerated(patterns);
75 }
76 
77 //===----------------------------------------------------------------------===//
78 // Canonicalizer Driver.
79 //===----------------------------------------------------------------------===//
80 
81 namespace {
82 struct FoldingPattern : public RewritePattern {
83 public:
84   FoldingPattern(MLIRContext *context)
85       : RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(),
86                        /*benefit=*/1, context) {}
87 
88   LogicalResult matchAndRewrite(Operation *op,
89                                 PatternRewriter &rewriter) const override {
90     // Exercise createOrFold API for a single-result operation that is folded
91     // upon construction. The operation being created has an in-place folder,
92     // and it should be still present in the output. Furthermore, the folder
93     // should not crash when attempting to recover the (unchanged) operation
94     // result.
95     Value result = rewriter.createOrFold<TestOpInPlaceFold>(
96         op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0));
97     assert(result);
98     rewriter.replaceOp(op, result);
99     return success();
100   }
101 };
102 
103 /// This pattern creates a foldable operation at the entry point of the block.
104 /// This tests the situation where the operation folder will need to replace an
105 /// operation with a previously created constant that does not initially
106 /// dominate the operation to replace.
107 struct FolderInsertBeforePreviouslyFoldedConstantPattern
108     : public OpRewritePattern<TestCastOp> {
109 public:
110   using OpRewritePattern<TestCastOp>::OpRewritePattern;
111 
112   LogicalResult matchAndRewrite(TestCastOp op,
113                                 PatternRewriter &rewriter) const override {
114     if (!op->hasAttr("test_fold_before_previously_folded_op"))
115       return failure();
116     rewriter.setInsertionPointToStart(op->getBlock());
117 
118     auto constOp = rewriter.create<arith::ConstantOp>(
119         op.getLoc(), rewriter.getBoolAttr(true));
120     rewriter.replaceOpWithNewOp<TestCastOp>(op, rewriter.getI32Type(),
121                                             Value(constOp));
122     return success();
123   }
124 };
125 
126 /// This pattern matches test.op_commutative2 with the first operand being
127 /// another test.op_commutative2 with a constant on the right side and fold it
128 /// away by propagating it as its result. This is intend to check that patterns
129 /// are applied after the commutative property moves constant to the right.
130 struct FolderCommutativeOp2WithConstant
131     : public OpRewritePattern<TestCommutative2Op> {
132 public:
133   using OpRewritePattern<TestCommutative2Op>::OpRewritePattern;
134 
135   LogicalResult matchAndRewrite(TestCommutative2Op op,
136                                 PatternRewriter &rewriter) const override {
137     auto operand =
138         dyn_cast_or_null<TestCommutative2Op>(op->getOperand(0).getDefiningOp());
139     if (!operand)
140       return failure();
141     Attribute constInput;
142     if (!matchPattern(operand->getOperand(1), m_Constant(&constInput)))
143       return failure();
144     rewriter.replaceOp(op, operand->getOperand(1));
145     return success();
146   }
147 };
148 
149 /// This pattern matches test.any_attr_of_i32_str ops. In case of an integer
150 /// attribute with value smaller than MaxVal, it increments the value by 1.
151 template <int MaxVal>
152 struct IncrementIntAttribute : public OpRewritePattern<AnyAttrOfOp> {
153   using OpRewritePattern<AnyAttrOfOp>::OpRewritePattern;
154 
155   LogicalResult matchAndRewrite(AnyAttrOfOp op,
156                                 PatternRewriter &rewriter) const override {
157     auto intAttr = dyn_cast<IntegerAttr>(op.getAttr());
158     if (!intAttr)
159       return failure();
160     int64_t val = intAttr.getInt();
161     if (val >= MaxVal)
162       return failure();
163     rewriter.modifyOpInPlace(
164         op, [&]() { op.setAttrAttr(rewriter.getI32IntegerAttr(val + 1)); });
165     return success();
166   }
167 };
168 
169 /// This patterns adds an "eligible" attribute to "foo.maybe_eligible_op".
170 struct MakeOpEligible : public RewritePattern {
171   MakeOpEligible(MLIRContext *context)
172       : RewritePattern("foo.maybe_eligible_op", /*benefit=*/1, context) {}
173 
174   LogicalResult matchAndRewrite(Operation *op,
175                                 PatternRewriter &rewriter) const override {
176     if (op->hasAttr("eligible"))
177       return failure();
178     rewriter.modifyOpInPlace(
179         op, [&]() { op->setAttr("eligible", rewriter.getUnitAttr()); });
180     return success();
181   }
182 };
183 
184 /// This pattern hoists eligible ops out of a "test.one_region_op".
185 struct HoistEligibleOps : public OpRewritePattern<test::OneRegionOp> {
186   using OpRewritePattern<test::OneRegionOp>::OpRewritePattern;
187 
188   LogicalResult matchAndRewrite(test::OneRegionOp op,
189                                 PatternRewriter &rewriter) const override {
190     Operation *terminator = op.getRegion().front().getTerminator();
191     Operation *toBeHoisted = terminator->getOperands()[0].getDefiningOp();
192     if (toBeHoisted->getParentOp() != op)
193       return failure();
194     if (!toBeHoisted->hasAttr("eligible"))
195       return failure();
196     rewriter.moveOpBefore(toBeHoisted, op);
197     return success();
198   }
199 };
200 
201 /// This pattern moves "test.move_before_parent_op" before the parent op.
202 struct MoveBeforeParentOp : public RewritePattern {
203   MoveBeforeParentOp(MLIRContext *context)
204       : RewritePattern("test.move_before_parent_op", /*benefit=*/1, context) {}
205 
206   LogicalResult matchAndRewrite(Operation *op,
207                                 PatternRewriter &rewriter) const override {
208     // Do not hoist past functions.
209     if (isa<FunctionOpInterface>(op->getParentOp()))
210       return failure();
211     rewriter.moveOpBefore(op, op->getParentOp());
212     return success();
213   }
214 };
215 
216 /// This pattern inlines blocks that are nested in
217 /// "test.inline_blocks_into_parent" into the parent block.
218 struct InlineBlocksIntoParent : public RewritePattern {
219   InlineBlocksIntoParent(MLIRContext *context)
220       : RewritePattern("test.inline_blocks_into_parent", /*benefit=*/1,
221                        context) {}
222 
223   LogicalResult matchAndRewrite(Operation *op,
224                                 PatternRewriter &rewriter) const override {
225     bool changed = false;
226     for (Region &r : op->getRegions()) {
227       while (!r.empty()) {
228         rewriter.inlineBlockBefore(&r.front(), op);
229         changed = true;
230       }
231     }
232     return success(changed);
233   }
234 };
235 
236 /// This pattern splits blocks at "test.split_block_here" and replaces the op
237 /// with a new op (to prevent an infinite loop of block splitting).
238 struct SplitBlockHere : public RewritePattern {
239   SplitBlockHere(MLIRContext *context)
240       : RewritePattern("test.split_block_here", /*benefit=*/1, context) {}
241 
242   LogicalResult matchAndRewrite(Operation *op,
243                                 PatternRewriter &rewriter) const override {
244     rewriter.splitBlock(op->getBlock(), op->getIterator());
245     Operation *newOp = rewriter.create(
246         op->getLoc(),
247         OperationName("test.new_op", op->getContext()).getIdentifier(),
248         op->getOperands(), op->getResultTypes());
249     rewriter.replaceOp(op, newOp);
250     return success();
251   }
252 };
253 
254 /// This pattern clones "test.clone_me" ops.
255 struct CloneOp : public RewritePattern {
256   CloneOp(MLIRContext *context)
257       : RewritePattern("test.clone_me", /*benefit=*/1, context) {}
258 
259   LogicalResult matchAndRewrite(Operation *op,
260                                 PatternRewriter &rewriter) const override {
261     // Do not clone already cloned ops to avoid going into an infinite loop.
262     if (op->hasAttr("was_cloned"))
263       return failure();
264     Operation *cloned = rewriter.clone(*op);
265     cloned->setAttr("was_cloned", rewriter.getUnitAttr());
266     return success();
267   }
268 };
269 
270 /// This pattern clones regions of "test.clone_region_before" ops before the
271 /// parent block.
272 struct CloneRegionBeforeOp : public RewritePattern {
273   CloneRegionBeforeOp(MLIRContext *context)
274       : RewritePattern("test.clone_region_before", /*benefit=*/1, context) {}
275 
276   LogicalResult matchAndRewrite(Operation *op,
277                                 PatternRewriter &rewriter) const override {
278     // Do not clone already cloned ops to avoid going into an infinite loop.
279     if (op->hasAttr("was_cloned"))
280       return failure();
281     for (Region &r : op->getRegions())
282       rewriter.cloneRegionBefore(r, op->getBlock());
283     op->setAttr("was_cloned", rewriter.getUnitAttr());
284     return success();
285   }
286 };
287 
288 struct TestPatternDriver
289     : public PassWrapper<TestPatternDriver, OperationPass<>> {
290   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestPatternDriver)
291 
292   TestPatternDriver() = default;
293   TestPatternDriver(const TestPatternDriver &other) : PassWrapper(other) {}
294 
295   StringRef getArgument() const final { return "test-patterns"; }
296   StringRef getDescription() const final { return "Run test dialect patterns"; }
297   void runOnOperation() override {
298     mlir::RewritePatternSet patterns(&getContext());
299     populateWithGenerated(patterns);
300 
301     // Verify named pattern is generated with expected name.
302     patterns.add<FoldingPattern, TestNamedPatternRule,
303                  FolderInsertBeforePreviouslyFoldedConstantPattern,
304                  FolderCommutativeOp2WithConstant, HoistEligibleOps,
305                  MakeOpEligible>(&getContext());
306 
307     // Additional patterns for testing the GreedyPatternRewriteDriver.
308     patterns.insert<IncrementIntAttribute<3>>(&getContext());
309 
310     GreedyRewriteConfig config;
311     config.useTopDownTraversal = this->useTopDownTraversal;
312     config.maxIterations = this->maxIterations;
313     (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns),
314                                        config);
315   }
316 
317   Option<bool> useTopDownTraversal{
318       *this, "top-down",
319       llvm::cl::desc("Seed the worklist in general top-down order"),
320       llvm::cl::init(GreedyRewriteConfig().useTopDownTraversal)};
321   Option<int> maxIterations{
322       *this, "max-iterations",
323       llvm::cl::desc("Max. iterations in the GreedyRewriteConfig"),
324       llvm::cl::init(GreedyRewriteConfig().maxIterations)};
325 };
326 
327 struct DumpNotifications : public RewriterBase::Listener {
328   void notifyBlockInserted(Block *block, Region *previous,
329                            Region::iterator previousIt) override {
330     llvm::outs() << "notifyBlockInserted";
331     if (block->getParentOp()) {
332       llvm::outs() << " into " << block->getParentOp()->getName() << ": ";
333     } else {
334       llvm::outs() << " into unknown op: ";
335     }
336     if (previous == nullptr) {
337       llvm::outs() << "was unlinked\n";
338     } else {
339       llvm::outs() << "was linked\n";
340     }
341   }
342   void notifyOperationInserted(Operation *op,
343                                OpBuilder::InsertPoint previous) override {
344     llvm::outs() << "notifyOperationInserted: " << op->getName();
345     if (!previous.isSet()) {
346       llvm::outs() << ", was unlinked\n";
347     } else {
348       if (!previous.getPoint().getNodePtr()) {
349         llvm::outs() << ", was linked, exact position unknown\n";
350       } else if (previous.getPoint() == previous.getBlock()->end()) {
351         llvm::outs() << ", was last in block\n";
352       } else {
353         llvm::outs() << ", previous = " << previous.getPoint()->getName()
354                      << "\n";
355       }
356     }
357   }
358   void notifyBlockErased(Block *block) override {
359     llvm::outs() << "notifyBlockErased\n";
360   }
361   void notifyOperationErased(Operation *op) override {
362     llvm::outs() << "notifyOperationErased: " << op->getName() << "\n";
363   }
364   void notifyOperationModified(Operation *op) override {
365     llvm::outs() << "notifyOperationModified: " << op->getName() << "\n";
366   }
367   void notifyOperationReplaced(Operation *op, ValueRange values) override {
368     llvm::outs() << "notifyOperationReplaced: " << op->getName() << "\n";
369   }
370 };
371 
372 struct TestStrictPatternDriver
373     : public PassWrapper<TestStrictPatternDriver, OperationPass<func::FuncOp>> {
374 public:
375   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestStrictPatternDriver)
376 
377   TestStrictPatternDriver() = default;
378   TestStrictPatternDriver(const TestStrictPatternDriver &other)
379       : PassWrapper(other) {
380     strictMode = other.strictMode;
381   }
382 
383   StringRef getArgument() const final { return "test-strict-pattern-driver"; }
384   StringRef getDescription() const final {
385     return "Test strict mode of pattern driver";
386   }
387 
388   void runOnOperation() override {
389     MLIRContext *ctx = &getContext();
390     mlir::RewritePatternSet patterns(ctx);
391     patterns.add<
392         // clang-format off
393         ChangeBlockOp,
394         CloneOp,
395         CloneRegionBeforeOp,
396         EraseOp,
397         ImplicitChangeOp,
398         InlineBlocksIntoParent,
399         InsertSameOp,
400         MoveBeforeParentOp,
401         ReplaceWithNewOp,
402         SplitBlockHere
403         // clang-format on
404         >(ctx);
405     SmallVector<Operation *> ops;
406     getOperation()->walk([&](Operation *op) {
407       StringRef opName = op->getName().getStringRef();
408       if (opName == "test.insert_same_op" || opName == "test.change_block_op" ||
409           opName == "test.replace_with_new_op" || opName == "test.erase_op" ||
410           opName == "test.move_before_parent_op" ||
411           opName == "test.inline_blocks_into_parent" ||
412           opName == "test.split_block_here" || opName == "test.clone_me" ||
413           opName == "test.clone_region_before") {
414         ops.push_back(op);
415       }
416     });
417 
418     DumpNotifications dumpNotifications;
419     GreedyRewriteConfig config;
420     config.listener = &dumpNotifications;
421     if (strictMode == "AnyOp") {
422       config.strictMode = GreedyRewriteStrictness::AnyOp;
423     } else if (strictMode == "ExistingAndNewOps") {
424       config.strictMode = GreedyRewriteStrictness::ExistingAndNewOps;
425     } else if (strictMode == "ExistingOps") {
426       config.strictMode = GreedyRewriteStrictness::ExistingOps;
427     } else {
428       llvm_unreachable("invalid strictness option");
429     }
430 
431     // Check if these transformations introduce visiting of operations that
432     // are not in the `ops` set (The new created ops are valid). An invalid
433     // operation will trigger the assertion while processing.
434     bool changed = false;
435     bool allErased = false;
436     (void)applyOpPatternsAndFold(ArrayRef(ops), std::move(patterns), config,
437                                  &changed, &allErased);
438     Builder b(ctx);
439     getOperation()->setAttr("pattern_driver_changed", b.getBoolAttr(changed));
440     getOperation()->setAttr("pattern_driver_all_erased",
441                             b.getBoolAttr(allErased));
442   }
443 
444   Option<std::string> strictMode{
445       *this, "strictness",
446       llvm::cl::desc("Can be {AnyOp, ExistingAndNewOps, ExistingOps}"),
447       llvm::cl::init("AnyOp")};
448 
449 private:
450   // New inserted operation is valid for further transformation.
451   class InsertSameOp : public RewritePattern {
452   public:
453     InsertSameOp(MLIRContext *context)
454         : RewritePattern("test.insert_same_op", /*benefit=*/1, context) {}
455 
456     LogicalResult matchAndRewrite(Operation *op,
457                                   PatternRewriter &rewriter) const override {
458       if (op->hasAttr("skip"))
459         return failure();
460 
461       Operation *newOp =
462           rewriter.create(op->getLoc(), op->getName().getIdentifier(),
463                           op->getOperands(), op->getResultTypes());
464       rewriter.modifyOpInPlace(
465           op, [&]() { op->setAttr("skip", rewriter.getBoolAttr(true)); });
466       newOp->setAttr("skip", rewriter.getBoolAttr(true));
467 
468       return success();
469     }
470   };
471 
472   // Replace an operation may introduce the re-visiting of its users.
473   class ReplaceWithNewOp : public RewritePattern {
474   public:
475     ReplaceWithNewOp(MLIRContext *context)
476         : RewritePattern("test.replace_with_new_op", /*benefit=*/1, context) {}
477 
478     LogicalResult matchAndRewrite(Operation *op,
479                                   PatternRewriter &rewriter) const override {
480       Operation *newOp;
481       if (op->hasAttr("create_erase_op")) {
482         newOp = rewriter.create(
483             op->getLoc(),
484             OperationName("test.erase_op", op->getContext()).getIdentifier(),
485             ValueRange(), TypeRange());
486       } else {
487         newOp = rewriter.create(
488             op->getLoc(),
489             OperationName("test.new_op", op->getContext()).getIdentifier(),
490             op->getOperands(), op->getResultTypes());
491       }
492       // "replaceOp" could be used instead of "replaceAllOpUsesWith"+"eraseOp".
493       // A "notifyOperationReplaced" callback is triggered in either case.
494       rewriter.replaceAllOpUsesWith(op, newOp->getResults());
495       rewriter.eraseOp(op);
496       return success();
497     }
498   };
499 
500   // Remove an operation may introduce the re-visiting of its operands.
501   class EraseOp : public RewritePattern {
502   public:
503     EraseOp(MLIRContext *context)
504         : RewritePattern("test.erase_op", /*benefit=*/1, context) {}
505     LogicalResult matchAndRewrite(Operation *op,
506                                   PatternRewriter &rewriter) const override {
507       rewriter.eraseOp(op);
508       return success();
509     }
510   };
511 
512   // The following two patterns test RewriterBase::replaceAllUsesWith.
513   //
514   // That function replaces all usages of a Block (or a Value) with another one
515   // *and tracks these changes in the rewriter.* The GreedyPatternRewriteDriver
516   // with GreedyRewriteStrictness::AnyOp uses that tracking to construct its
517   // worklist: when an op is modified, it is added to the worklist. The two
518   // patterns below make the tracking observable: ChangeBlockOp replaces all
519   // usages of a block and that pattern is applied because the corresponding ops
520   // are put on the initial worklist (see above). ImplicitChangeOp does an
521   // unrelated change but ops of the corresponding type are *not* on the initial
522   // worklist, so the effect of the second pattern is only visible if the
523   // tracking and subsequent adding to the worklist actually works.
524 
525   // Replace all usages of the first successor with the second successor.
526   class ChangeBlockOp : public RewritePattern {
527   public:
528     ChangeBlockOp(MLIRContext *context)
529         : RewritePattern("test.change_block_op", /*benefit=*/1, context) {}
530     LogicalResult matchAndRewrite(Operation *op,
531                                   PatternRewriter &rewriter) const override {
532       if (op->getNumSuccessors() < 2)
533         return failure();
534       Block *firstSuccessor = op->getSuccessor(0);
535       Block *secondSuccessor = op->getSuccessor(1);
536       if (firstSuccessor == secondSuccessor)
537         return failure();
538       // This is the function being tested:
539       rewriter.replaceAllUsesWith(firstSuccessor, secondSuccessor);
540       // Using the following line instead would make the test fail:
541       // firstSuccessor->replaceAllUsesWith(secondSuccessor);
542       return success();
543     }
544   };
545 
546   // Changes the successor to the parent block.
547   class ImplicitChangeOp : public RewritePattern {
548   public:
549     ImplicitChangeOp(MLIRContext *context)
550         : RewritePattern("test.implicit_change_op", /*benefit=*/1, context) {}
551     LogicalResult matchAndRewrite(Operation *op,
552                                   PatternRewriter &rewriter) const override {
553       if (op->getNumSuccessors() < 1 || op->getSuccessor(0) == op->getBlock())
554         return failure();
555       rewriter.modifyOpInPlace(op,
556                                [&]() { op->setSuccessor(op->getBlock(), 0); });
557       return success();
558     }
559   };
560 };
561 
562 } // namespace
563 
564 //===----------------------------------------------------------------------===//
565 // ReturnType Driver.
566 //===----------------------------------------------------------------------===//
567 
568 namespace {
569 // Generate ops for each instance where the type can be successfully inferred.
570 template <typename OpTy>
571 static void invokeCreateWithInferredReturnType(Operation *op) {
572   auto *context = op->getContext();
573   auto fop = op->getParentOfType<func::FuncOp>();
574   auto location = UnknownLoc::get(context);
575   OpBuilder b(op);
576   b.setInsertionPointAfter(op);
577 
578   // Use permutations of 2 args as operands.
579   assert(fop.getNumArguments() >= 2);
580   for (int i = 0, e = fop.getNumArguments(); i < e; ++i) {
581     for (int j = 0; j < e; ++j) {
582       std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}};
583       SmallVector<Type, 2> inferredReturnTypes;
584       if (succeeded(OpTy::inferReturnTypes(
585               context, std::nullopt, values, op->getDiscardableAttrDictionary(),
586               op->getPropertiesStorage(), op->getRegions(),
587               inferredReturnTypes))) {
588         OperationState state(location, OpTy::getOperationName());
589         // TODO: Expand to regions.
590         OpTy::build(b, state, values, op->getAttrs());
591         (void)b.create(state);
592       }
593     }
594   }
595 }
596 
597 static void reifyReturnShape(Operation *op) {
598   OpBuilder b(op);
599 
600   // Use permutations of 2 args as operands.
601   auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op);
602   SmallVector<Value, 2> shapes;
603   if (failed(shapedOp.reifyReturnTypeShapes(b, op->getOperands(), shapes)) ||
604       !llvm::hasSingleElement(shapes))
605     return;
606   for (const auto &it : llvm::enumerate(shapes)) {
607     op->emitRemark() << "value " << it.index() << ": "
608                      << it.value().getDefiningOp();
609   }
610 }
611 
612 struct TestReturnTypeDriver
613     : public PassWrapper<TestReturnTypeDriver, OperationPass<func::FuncOp>> {
614   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestReturnTypeDriver)
615 
616   void getDependentDialects(DialectRegistry &registry) const override {
617     registry.insert<tensor::TensorDialect>();
618   }
619   StringRef getArgument() const final { return "test-return-type"; }
620   StringRef getDescription() const final { return "Run return type functions"; }
621 
622   void runOnOperation() override {
623     if (getOperation().getName() == "testCreateFunctions") {
624       std::vector<Operation *> ops;
625       // Collect ops to avoid triggering on inserted ops.
626       for (auto &op : getOperation().getBody().front())
627         ops.push_back(&op);
628       // Generate test patterns for each, but skip terminator.
629       for (auto *op : llvm::ArrayRef(ops).drop_back()) {
630         // Test create method of each of the Op classes below. The resultant
631         // output would be in reverse order underneath `op` from which
632         // the attributes and regions are used.
633         invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op);
634         invokeCreateWithInferredReturnType<OpWithInferTypeAdaptorInterfaceOp>(
635             op);
636         invokeCreateWithInferredReturnType<
637             OpWithShapedTypeInferTypeInterfaceOp>(op);
638       };
639       return;
640     }
641     if (getOperation().getName() == "testReifyFunctions") {
642       std::vector<Operation *> ops;
643       // Collect ops to avoid triggering on inserted ops.
644       for (auto &op : getOperation().getBody().front())
645         if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op))
646           ops.push_back(&op);
647       // Generate test patterns for each, but skip terminator.
648       for (auto *op : ops)
649         reifyReturnShape(op);
650     }
651   }
652 };
653 } // namespace
654 
655 namespace {
656 struct TestDerivedAttributeDriver
657     : public PassWrapper<TestDerivedAttributeDriver,
658                          OperationPass<func::FuncOp>> {
659   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestDerivedAttributeDriver)
660 
661   StringRef getArgument() const final { return "test-derived-attr"; }
662   StringRef getDescription() const final {
663     return "Run test derived attributes";
664   }
665   void runOnOperation() override;
666 };
667 } // namespace
668 
669 void TestDerivedAttributeDriver::runOnOperation() {
670   getOperation().walk([](DerivedAttributeOpInterface dOp) {
671     auto dAttr = dOp.materializeDerivedAttributes();
672     if (!dAttr)
673       return;
674     for (auto d : dAttr)
675       dOp.emitRemark() << d.getName().getValue() << " = " << d.getValue();
676   });
677 }
678 
679 //===----------------------------------------------------------------------===//
680 // Legalization Driver.
681 //===----------------------------------------------------------------------===//
682 
683 namespace {
684 //===----------------------------------------------------------------------===//
685 // Region-Block Rewrite Testing
686 
687 /// This pattern is a simple pattern that inlines the first region of a given
688 /// operation into the parent region.
689 struct TestRegionRewriteBlockMovement : public ConversionPattern {
690   TestRegionRewriteBlockMovement(MLIRContext *ctx)
691       : ConversionPattern("test.region", 1, ctx) {}
692 
693   LogicalResult
694   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
695                   ConversionPatternRewriter &rewriter) const final {
696     // Inline this region into the parent region.
697     auto &parentRegion = *op->getParentRegion();
698     auto &opRegion = op->getRegion(0);
699     if (op->getDiscardableAttr("legalizer.should_clone"))
700       rewriter.cloneRegionBefore(opRegion, parentRegion, parentRegion.end());
701     else
702       rewriter.inlineRegionBefore(opRegion, parentRegion, parentRegion.end());
703 
704     if (op->getDiscardableAttr("legalizer.erase_old_blocks")) {
705       while (!opRegion.empty())
706         rewriter.eraseBlock(&opRegion.front());
707     }
708 
709     // Drop this operation.
710     rewriter.eraseOp(op);
711     return success();
712   }
713 };
714 /// This pattern is a simple pattern that generates a region containing an
715 /// illegal operation.
716 struct TestRegionRewriteUndo : public RewritePattern {
717   TestRegionRewriteUndo(MLIRContext *ctx)
718       : RewritePattern("test.region_builder", 1, ctx) {}
719 
720   LogicalResult matchAndRewrite(Operation *op,
721                                 PatternRewriter &rewriter) const final {
722     // Create the region operation with an entry block containing arguments.
723     OperationState newRegion(op->getLoc(), "test.region");
724     newRegion.addRegion();
725     auto *regionOp = rewriter.create(newRegion);
726     auto *entryBlock = rewriter.createBlock(&regionOp->getRegion(0));
727     entryBlock->addArgument(rewriter.getIntegerType(64),
728                             rewriter.getUnknownLoc());
729 
730     // Add an explicitly illegal operation to ensure the conversion fails.
731     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
732     rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>());
733 
734     // Drop this operation.
735     rewriter.eraseOp(op);
736     return success();
737   }
738 };
739 /// A simple pattern that creates a block at the end of the parent region of the
740 /// matched operation.
741 struct TestCreateBlock : public RewritePattern {
742   TestCreateBlock(MLIRContext *ctx)
743       : RewritePattern("test.create_block", /*benefit=*/1, ctx) {}
744 
745   LogicalResult matchAndRewrite(Operation *op,
746                                 PatternRewriter &rewriter) const final {
747     Region &region = *op->getParentRegion();
748     Type i32Type = rewriter.getIntegerType(32);
749     Location loc = op->getLoc();
750     rewriter.createBlock(&region, region.end(), {i32Type, i32Type}, {loc, loc});
751     rewriter.create<TerminatorOp>(loc);
752     rewriter.eraseOp(op);
753     return success();
754   }
755 };
756 
757 /// A simple pattern that creates a block containing an invalid operation in
758 /// order to trigger the block creation undo mechanism.
759 struct TestCreateIllegalBlock : public RewritePattern {
760   TestCreateIllegalBlock(MLIRContext *ctx)
761       : RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {}
762 
763   LogicalResult matchAndRewrite(Operation *op,
764                                 PatternRewriter &rewriter) const final {
765     Region &region = *op->getParentRegion();
766     Type i32Type = rewriter.getIntegerType(32);
767     Location loc = op->getLoc();
768     rewriter.createBlock(&region, region.end(), {i32Type, i32Type}, {loc, loc});
769     // Create an illegal op to ensure the conversion fails.
770     rewriter.create<ILLegalOpF>(loc, i32Type);
771     rewriter.create<TerminatorOp>(loc);
772     rewriter.eraseOp(op);
773     return success();
774   }
775 };
776 
777 /// A simple pattern that tests the undo mechanism when replacing the uses of a
778 /// block argument.
779 struct TestUndoBlockArgReplace : public ConversionPattern {
780   TestUndoBlockArgReplace(MLIRContext *ctx)
781       : ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {}
782 
783   LogicalResult
784   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
785                   ConversionPatternRewriter &rewriter) const final {
786     auto illegalOp =
787         rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
788     rewriter.replaceUsesOfBlockArgument(op->getRegion(0).getArgument(0),
789                                         illegalOp->getResult(0));
790     rewriter.modifyOpInPlace(op, [] {});
791     return success();
792   }
793 };
794 
795 /// This pattern hoists ops out of a "test.hoist_me" and then fails conversion.
796 /// This is to test the rollback logic.
797 struct TestUndoMoveOpBefore : public ConversionPattern {
798   TestUndoMoveOpBefore(MLIRContext *ctx)
799       : ConversionPattern("test.hoist_me", /*benefit=*/1, ctx) {}
800 
801   LogicalResult
802   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
803                   ConversionPatternRewriter &rewriter) const override {
804     rewriter.moveOpBefore(op, op->getParentOp());
805     // Replace with an illegal op to ensure the conversion fails.
806     rewriter.replaceOpWithNewOp<ILLegalOpF>(op, rewriter.getF32Type());
807     return success();
808   }
809 };
810 
811 /// A rewrite pattern that tests the undo mechanism when erasing a block.
812 struct TestUndoBlockErase : public ConversionPattern {
813   TestUndoBlockErase(MLIRContext *ctx)
814       : ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {}
815 
816   LogicalResult
817   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
818                   ConversionPatternRewriter &rewriter) const final {
819     Block *secondBlock = &*std::next(op->getRegion(0).begin());
820     rewriter.setInsertionPointToStart(secondBlock);
821     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
822     rewriter.eraseBlock(secondBlock);
823     rewriter.modifyOpInPlace(op, [] {});
824     return success();
825   }
826 };
827 
828 /// A pattern that modifies a property in-place, but keeps the op illegal.
829 struct TestUndoPropertiesModification : public ConversionPattern {
830   TestUndoPropertiesModification(MLIRContext *ctx)
831       : ConversionPattern("test.with_properties", /*benefit=*/1, ctx) {}
832   LogicalResult
833   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
834                   ConversionPatternRewriter &rewriter) const final {
835     if (!op->hasAttr("modify_inplace"))
836       return failure();
837     rewriter.modifyOpInPlace(
838         op, [&]() { cast<TestOpWithProperties>(op).getProperties().setA(42); });
839     return success();
840   }
841 };
842 
843 //===----------------------------------------------------------------------===//
844 // Type-Conversion Rewrite Testing
845 
846 /// This patterns erases a region operation that has had a type conversion.
847 struct TestDropOpSignatureConversion : public ConversionPattern {
848   TestDropOpSignatureConversion(MLIRContext *ctx,
849                                 const TypeConverter &converter)
850       : ConversionPattern(converter, "test.drop_region_op", 1, ctx) {}
851   LogicalResult
852   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
853                   ConversionPatternRewriter &rewriter) const override {
854     Region &region = op->getRegion(0);
855     Block *entry = &region.front();
856 
857     // Convert the original entry arguments.
858     const TypeConverter &converter = *getTypeConverter();
859     TypeConverter::SignatureConversion result(entry->getNumArguments());
860     if (failed(converter.convertSignatureArgs(entry->getArgumentTypes(),
861                                               result)) ||
862         failed(rewriter.convertRegionTypes(&region, converter, &result)))
863       return failure();
864 
865     // Convert the region signature and just drop the operation.
866     rewriter.eraseOp(op);
867     return success();
868   }
869 };
870 /// This pattern simply updates the operands of the given operation.
871 struct TestPassthroughInvalidOp : public ConversionPattern {
872   TestPassthroughInvalidOp(MLIRContext *ctx)
873       : ConversionPattern("test.invalid", 1, ctx) {}
874   LogicalResult
875   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
876                   ConversionPatternRewriter &rewriter) const final {
877     rewriter.replaceOpWithNewOp<TestValidOp>(op, std::nullopt, operands,
878                                              std::nullopt);
879     return success();
880   }
881 };
882 /// This pattern handles the case of a split return value.
883 struct TestSplitReturnType : public ConversionPattern {
884   TestSplitReturnType(MLIRContext *ctx)
885       : ConversionPattern("test.return", 1, ctx) {}
886   LogicalResult
887   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
888                   ConversionPatternRewriter &rewriter) const final {
889     // Check for a return of F32.
890     if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32())
891       return failure();
892 
893     // Check if the first operation is a cast operation, if it is we use the
894     // results directly.
895     auto *defOp = operands[0].getDefiningOp();
896     if (auto packerOp =
897             llvm::dyn_cast_or_null<UnrealizedConversionCastOp>(defOp)) {
898       rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands());
899       return success();
900     }
901 
902     // Otherwise, fail to match.
903     return failure();
904   }
905 };
906 
907 //===----------------------------------------------------------------------===//
908 // Multi-Level Type-Conversion Rewrite Testing
909 struct TestChangeProducerTypeI32ToF32 : public ConversionPattern {
910   TestChangeProducerTypeI32ToF32(MLIRContext *ctx)
911       : ConversionPattern("test.type_producer", 1, ctx) {}
912   LogicalResult
913   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
914                   ConversionPatternRewriter &rewriter) const final {
915     // If the type is I32, change the type to F32.
916     if (!Type(*op->result_type_begin()).isSignlessInteger(32))
917       return failure();
918     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type());
919     return success();
920   }
921 };
922 struct TestChangeProducerTypeF32ToF64 : public ConversionPattern {
923   TestChangeProducerTypeF32ToF64(MLIRContext *ctx)
924       : ConversionPattern("test.type_producer", 1, ctx) {}
925   LogicalResult
926   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
927                   ConversionPatternRewriter &rewriter) const final {
928     // If the type is F32, change the type to F64.
929     if (!Type(*op->result_type_begin()).isF32())
930       return rewriter.notifyMatchFailure(op, "expected single f32 operand");
931     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type());
932     return success();
933   }
934 };
935 struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern {
936   TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx)
937       : ConversionPattern("test.type_producer", 10, ctx) {}
938   LogicalResult
939   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
940                   ConversionPatternRewriter &rewriter) const final {
941     // Always convert to B16, even though it is not a legal type. This tests
942     // that values are unmapped correctly.
943     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type());
944     return success();
945   }
946 };
947 struct TestUpdateConsumerType : public ConversionPattern {
948   TestUpdateConsumerType(MLIRContext *ctx)
949       : ConversionPattern("test.type_consumer", 1, ctx) {}
950   LogicalResult
951   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
952                   ConversionPatternRewriter &rewriter) const final {
953     // Verify that the incoming operand has been successfully remapped to F64.
954     if (!operands[0].getType().isF64())
955       return failure();
956     rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]);
957     return success();
958   }
959 };
960 
961 //===----------------------------------------------------------------------===//
962 // Non-Root Replacement Rewrite Testing
963 /// This pattern generates an invalid operation, but replaces it before the
964 /// pattern is finished. This checks that we don't need to legalize the
965 /// temporary op.
966 struct TestNonRootReplacement : public RewritePattern {
967   TestNonRootReplacement(MLIRContext *ctx)
968       : RewritePattern("test.replace_non_root", 1, ctx) {}
969 
970   LogicalResult matchAndRewrite(Operation *op,
971                                 PatternRewriter &rewriter) const final {
972     auto resultType = *op->result_type_begin();
973     auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType);
974     auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType);
975 
976     rewriter.replaceOp(illegalOp, legalOp);
977     rewriter.replaceOp(op, illegalOp);
978     return success();
979   }
980 };
981 
982 //===----------------------------------------------------------------------===//
983 // Recursive Rewrite Testing
984 /// This pattern is applied to the same operation multiple times, but has a
985 /// bounded recursion.
986 struct TestBoundedRecursiveRewrite
987     : public OpRewritePattern<TestRecursiveRewriteOp> {
988   using OpRewritePattern<TestRecursiveRewriteOp>::OpRewritePattern;
989 
990   void initialize() {
991     // The conversion target handles bounding the recursion of this pattern.
992     setHasBoundedRewriteRecursion();
993   }
994 
995   LogicalResult matchAndRewrite(TestRecursiveRewriteOp op,
996                                 PatternRewriter &rewriter) const final {
997     // Decrement the depth of the op in-place.
998     rewriter.modifyOpInPlace(op, [&] {
999       op->setAttr("depth", rewriter.getI64IntegerAttr(op.getDepth() - 1));
1000     });
1001     return success();
1002   }
1003 };
1004 
1005 struct TestNestedOpCreationUndoRewrite
1006     : public OpRewritePattern<IllegalOpWithRegionAnchor> {
1007   using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern;
1008 
1009   LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op,
1010                                 PatternRewriter &rewriter) const final {
1011     // rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
1012     rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
1013     return success();
1014   };
1015 };
1016 
1017 // This pattern matches `test.blackhole` and delete this op and its producer.
1018 struct TestReplaceEraseOp : public OpRewritePattern<BlackHoleOp> {
1019   using OpRewritePattern<BlackHoleOp>::OpRewritePattern;
1020 
1021   LogicalResult matchAndRewrite(BlackHoleOp op,
1022                                 PatternRewriter &rewriter) const final {
1023     Operation *producer = op.getOperand().getDefiningOp();
1024     // Always erase the user before the producer, the framework should handle
1025     // this correctly.
1026     rewriter.eraseOp(op);
1027     rewriter.eraseOp(producer);
1028     return success();
1029   };
1030 };
1031 
1032 // This pattern replaces explicitly illegal op with explicitly legal op,
1033 // but in addition creates unregistered operation.
1034 struct TestCreateUnregisteredOp : public OpRewritePattern<ILLegalOpG> {
1035   using OpRewritePattern<ILLegalOpG>::OpRewritePattern;
1036 
1037   LogicalResult matchAndRewrite(ILLegalOpG op,
1038                                 PatternRewriter &rewriter) const final {
1039     IntegerAttr attr = rewriter.getI32IntegerAttr(0);
1040     Value val = rewriter.create<arith::ConstantOp>(op->getLoc(), attr);
1041     rewriter.replaceOpWithNewOp<LegalOpC>(op, val);
1042     return success();
1043   };
1044 };
1045 } // namespace
1046 
1047 namespace {
1048 struct TestTypeConverter : public TypeConverter {
1049   using TypeConverter::TypeConverter;
1050   TestTypeConverter() {
1051     addConversion(convertType);
1052     addArgumentMaterialization(materializeCast);
1053     addSourceMaterialization(materializeCast);
1054   }
1055 
1056   static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) {
1057     // Drop I16 types.
1058     if (t.isSignlessInteger(16))
1059       return success();
1060 
1061     // Convert I64 to F64.
1062     if (t.isSignlessInteger(64)) {
1063       results.push_back(FloatType::getF64(t.getContext()));
1064       return success();
1065     }
1066 
1067     // Convert I42 to I43.
1068     if (t.isInteger(42)) {
1069       results.push_back(IntegerType::get(t.getContext(), 43));
1070       return success();
1071     }
1072 
1073     // Split F32 into F16,F16.
1074     if (t.isF32()) {
1075       results.assign(2, FloatType::getF16(t.getContext()));
1076       return success();
1077     }
1078 
1079     // Otherwise, convert the type directly.
1080     results.push_back(t);
1081     return success();
1082   }
1083 
1084   /// Hook for materializing a conversion. This is necessary because we generate
1085   /// 1->N type mappings.
1086   static std::optional<Value> materializeCast(OpBuilder &builder,
1087                                               Type resultType,
1088                                               ValueRange inputs, Location loc) {
1089     return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
1090   }
1091 };
1092 
1093 struct TestLegalizePatternDriver
1094     : public PassWrapper<TestLegalizePatternDriver, OperationPass<>> {
1095   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestLegalizePatternDriver)
1096 
1097   StringRef getArgument() const final { return "test-legalize-patterns"; }
1098   StringRef getDescription() const final {
1099     return "Run test dialect legalization patterns";
1100   }
1101   /// The mode of conversion to use with the driver.
1102   enum class ConversionMode { Analysis, Full, Partial };
1103 
1104   TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {}
1105 
1106   void getDependentDialects(DialectRegistry &registry) const override {
1107     registry.insert<func::FuncDialect, test::TestDialect>();
1108   }
1109 
1110   void runOnOperation() override {
1111     TestTypeConverter converter;
1112     mlir::RewritePatternSet patterns(&getContext());
1113     populateWithGenerated(patterns);
1114     patterns
1115         .add<TestRegionRewriteBlockMovement, TestRegionRewriteUndo,
1116              TestCreateBlock, TestCreateIllegalBlock, TestUndoBlockArgReplace,
1117              TestUndoBlockErase, TestPassthroughInvalidOp, TestSplitReturnType,
1118              TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64,
1119              TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType,
1120              TestNonRootReplacement, TestBoundedRecursiveRewrite,
1121              TestNestedOpCreationUndoRewrite, TestReplaceEraseOp,
1122              TestCreateUnregisteredOp, TestUndoMoveOpBefore,
1123              TestUndoPropertiesModification>(&getContext());
1124     patterns.add<TestDropOpSignatureConversion>(&getContext(), converter);
1125     mlir::populateAnyFunctionOpInterfaceTypeConversionPattern(patterns,
1126                                                               converter);
1127     mlir::populateCallOpTypeConversionPattern(patterns, converter);
1128 
1129     // Define the conversion target used for the test.
1130     ConversionTarget target(getContext());
1131     target.addLegalOp<ModuleOp>();
1132     target.addLegalOp<LegalOpA, LegalOpB, LegalOpC, TestCastOp, TestValidOp,
1133                       TerminatorOp, OneRegionOp>();
1134     target
1135         .addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>();
1136     target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
1137       // Don't allow F32 operands.
1138       return llvm::none_of(op.getOperandTypes(),
1139                            [](Type type) { return type.isF32(); });
1140     });
1141     target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
1142       return converter.isSignatureLegal(op.getFunctionType()) &&
1143              converter.isLegal(&op.getBody());
1144     });
1145     target.addDynamicallyLegalOp<func::CallOp>(
1146         [&](func::CallOp op) { return converter.isLegal(op); });
1147 
1148     // TestCreateUnregisteredOp creates `arith.constant` operation,
1149     // which was not added to target intentionally to test
1150     // correct error code from conversion driver.
1151     target.addDynamicallyLegalOp<ILLegalOpG>([](ILLegalOpG) { return false; });
1152 
1153     // Expect the type_producer/type_consumer operations to only operate on f64.
1154     target.addDynamicallyLegalOp<TestTypeProducerOp>(
1155         [](TestTypeProducerOp op) { return op.getType().isF64(); });
1156     target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
1157       return op.getOperand().getType().isF64();
1158     });
1159 
1160     // Check support for marking certain operations as recursively legal.
1161     target.markOpRecursivelyLegal<func::FuncOp, ModuleOp>([](Operation *op) {
1162       return static_cast<bool>(
1163           op->getAttrOfType<UnitAttr>("test.recursively_legal"));
1164     });
1165 
1166     // Mark the bound recursion operation as dynamically legal.
1167     target.addDynamicallyLegalOp<TestRecursiveRewriteOp>(
1168         [](TestRecursiveRewriteOp op) { return op.getDepth() == 0; });
1169 
1170     // Handle a partial conversion.
1171     if (mode == ConversionMode::Partial) {
1172       DenseSet<Operation *> unlegalizedOps;
1173       ConversionConfig config;
1174       DumpNotifications dumpNotifications;
1175       config.listener = &dumpNotifications;
1176       config.unlegalizedOps = &unlegalizedOps;
1177       if (failed(applyPartialConversion(getOperation(), target,
1178                                         std::move(patterns), config))) {
1179         getOperation()->emitRemark() << "applyPartialConversion failed";
1180       }
1181       // Emit remarks for each legalizable operation.
1182       for (auto *op : unlegalizedOps)
1183         op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
1184       return;
1185     }
1186 
1187     // Handle a full conversion.
1188     if (mode == ConversionMode::Full) {
1189       // Check support for marking unknown operations as dynamically legal.
1190       target.markUnknownOpDynamicallyLegal([](Operation *op) {
1191         return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal");
1192       });
1193 
1194       ConversionConfig config;
1195       DumpNotifications dumpNotifications;
1196       config.listener = &dumpNotifications;
1197       if (failed(applyFullConversion(getOperation(), target,
1198                                      std::move(patterns), config))) {
1199         getOperation()->emitRemark() << "applyFullConversion failed";
1200       }
1201       return;
1202     }
1203 
1204     // Otherwise, handle an analysis conversion.
1205     assert(mode == ConversionMode::Analysis);
1206 
1207     // Analyze the convertible operations.
1208     DenseSet<Operation *> legalizedOps;
1209     ConversionConfig config;
1210     config.legalizableOps = &legalizedOps;
1211     if (failed(applyAnalysisConversion(getOperation(), target,
1212                                        std::move(patterns), config)))
1213       return signalPassFailure();
1214 
1215     // Emit remarks for each legalizable operation.
1216     for (auto *op : legalizedOps)
1217       op->emitRemark() << "op '" << op->getName() << "' is legalizable";
1218   }
1219 
1220   /// The mode of conversion to use.
1221   ConversionMode mode;
1222 };
1223 } // namespace
1224 
1225 static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode>
1226     legalizerConversionMode(
1227         "test-legalize-mode",
1228         llvm::cl::desc("The legalization mode to use with the test driver"),
1229         llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial),
1230         llvm::cl::values(
1231             clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis,
1232                        "analysis", "Perform an analysis conversion"),
1233             clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full",
1234                        "Perform a full conversion"),
1235             clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial,
1236                        "partial", "Perform a partial conversion")));
1237 
1238 //===----------------------------------------------------------------------===//
1239 // ConversionPatternRewriter::getRemappedValue testing. This method is used
1240 // to get the remapped value of an original value that was replaced using
1241 // ConversionPatternRewriter.
1242 namespace {
1243 struct TestRemapValueTypeConverter : public TypeConverter {
1244   using TypeConverter::TypeConverter;
1245 
1246   TestRemapValueTypeConverter() {
1247     addConversion(
1248         [](Float32Type type) { return Float64Type::get(type.getContext()); });
1249     addConversion([](Type type) { return type; });
1250   }
1251 };
1252 
1253 /// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with
1254 /// a one-operand two-result OneVResOneVOperandOp1 by replicating its original
1255 /// operand twice.
1256 ///
1257 /// Example:
1258 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0)
1259 /// is replaced with:
1260 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0, %0)
1261 struct OneVResOneVOperandOp1Converter
1262     : public OpConversionPattern<OneVResOneVOperandOp1> {
1263   using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern;
1264 
1265   LogicalResult
1266   matchAndRewrite(OneVResOneVOperandOp1 op, OpAdaptor adaptor,
1267                   ConversionPatternRewriter &rewriter) const override {
1268     auto origOps = op.getOperands();
1269     assert(std::distance(origOps.begin(), origOps.end()) == 1 &&
1270            "One operand expected");
1271     Value origOp = *origOps.begin();
1272     SmallVector<Value, 2> remappedOperands;
1273     // Replicate the remapped original operand twice. Note that we don't used
1274     // the remapped 'operand' since the goal is testing 'getRemappedValue'.
1275     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
1276     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
1277 
1278     rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(),
1279                                                        remappedOperands);
1280     return success();
1281   }
1282 };
1283 
1284 /// A rewriter pattern that tests that blocks can be merged.
1285 struct TestRemapValueInRegion
1286     : public OpConversionPattern<TestRemappedValueRegionOp> {
1287   using OpConversionPattern<TestRemappedValueRegionOp>::OpConversionPattern;
1288 
1289   LogicalResult
1290   matchAndRewrite(TestRemappedValueRegionOp op, OpAdaptor adaptor,
1291                   ConversionPatternRewriter &rewriter) const final {
1292     Block &block = op.getBody().front();
1293     Operation *terminator = block.getTerminator();
1294 
1295     // Merge the block into the parent region.
1296     Block *parentBlock = op->getBlock();
1297     Block *finalBlock = rewriter.splitBlock(parentBlock, op->getIterator());
1298     rewriter.mergeBlocks(&block, parentBlock, ValueRange());
1299     rewriter.mergeBlocks(finalBlock, parentBlock, ValueRange());
1300 
1301     // Replace the results of this operation with the remapped terminator
1302     // values.
1303     SmallVector<Value> terminatorOperands;
1304     if (failed(rewriter.getRemappedValues(terminator->getOperands(),
1305                                           terminatorOperands)))
1306       return failure();
1307 
1308     rewriter.eraseOp(terminator);
1309     rewriter.replaceOp(op, terminatorOperands);
1310     return success();
1311   }
1312 };
1313 
1314 struct TestRemappedValue
1315     : public mlir::PassWrapper<TestRemappedValue, OperationPass<>> {
1316   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestRemappedValue)
1317 
1318   StringRef getArgument() const final { return "test-remapped-value"; }
1319   StringRef getDescription() const final {
1320     return "Test public remapped value mechanism in ConversionPatternRewriter";
1321   }
1322   void runOnOperation() override {
1323     TestRemapValueTypeConverter typeConverter;
1324 
1325     mlir::RewritePatternSet patterns(&getContext());
1326     patterns.add<OneVResOneVOperandOp1Converter>(&getContext());
1327     patterns.add<TestChangeProducerTypeF32ToF64, TestUpdateConsumerType>(
1328         &getContext());
1329     patterns.add<TestRemapValueInRegion>(typeConverter, &getContext());
1330 
1331     mlir::ConversionTarget target(getContext());
1332     target.addLegalOp<ModuleOp, func::FuncOp, TestReturnOp>();
1333 
1334     // Expect the type_producer/type_consumer operations to only operate on f64.
1335     target.addDynamicallyLegalOp<TestTypeProducerOp>(
1336         [](TestTypeProducerOp op) { return op.getType().isF64(); });
1337     target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
1338       return op.getOperand().getType().isF64();
1339     });
1340 
1341     // We make OneVResOneVOperandOp1 legal only when it has more that one
1342     // operand. This will trigger the conversion that will replace one-operand
1343     // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1.
1344     target.addDynamicallyLegalOp<OneVResOneVOperandOp1>(
1345         [](Operation *op) { return op->getNumOperands() > 1; });
1346 
1347     if (failed(mlir::applyFullConversion(getOperation(), target,
1348                                          std::move(patterns)))) {
1349       signalPassFailure();
1350     }
1351   }
1352 };
1353 } // namespace
1354 
1355 //===----------------------------------------------------------------------===//
1356 // Test patterns without a specific root operation kind
1357 //===----------------------------------------------------------------------===//
1358 
1359 namespace {
1360 /// This pattern matches and removes any operation in the test dialect.
1361 struct RemoveTestDialectOps : public RewritePattern {
1362   RemoveTestDialectOps(MLIRContext *context)
1363       : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
1364 
1365   LogicalResult matchAndRewrite(Operation *op,
1366                                 PatternRewriter &rewriter) const override {
1367     if (!isa<TestDialect>(op->getDialect()))
1368       return failure();
1369     rewriter.eraseOp(op);
1370     return success();
1371   }
1372 };
1373 
1374 struct TestUnknownRootOpDriver
1375     : public mlir::PassWrapper<TestUnknownRootOpDriver, OperationPass<>> {
1376   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestUnknownRootOpDriver)
1377 
1378   StringRef getArgument() const final {
1379     return "test-legalize-unknown-root-patterns";
1380   }
1381   StringRef getDescription() const final {
1382     return "Test public remapped value mechanism in ConversionPatternRewriter";
1383   }
1384   void runOnOperation() override {
1385     mlir::RewritePatternSet patterns(&getContext());
1386     patterns.add<RemoveTestDialectOps>(&getContext());
1387 
1388     mlir::ConversionTarget target(getContext());
1389     target.addIllegalDialect<TestDialect>();
1390     if (failed(applyPartialConversion(getOperation(), target,
1391                                       std::move(patterns))))
1392       signalPassFailure();
1393   }
1394 };
1395 } // namespace
1396 
1397 //===----------------------------------------------------------------------===//
1398 // Test patterns that uses operations and types defined at runtime
1399 //===----------------------------------------------------------------------===//
1400 
1401 namespace {
1402 /// This pattern matches dynamic operations 'test.one_operand_two_results' and
1403 /// replace them with dynamic operations 'test.generic_dynamic_op'.
1404 struct RewriteDynamicOp : public RewritePattern {
1405   RewriteDynamicOp(MLIRContext *context)
1406       : RewritePattern("test.dynamic_one_operand_two_results", /*benefit=*/1,
1407                        context) {}
1408 
1409   LogicalResult matchAndRewrite(Operation *op,
1410                                 PatternRewriter &rewriter) const override {
1411     assert(op->getName().getStringRef() ==
1412                "test.dynamic_one_operand_two_results" &&
1413            "rewrite pattern should only match operations with the right name");
1414 
1415     OperationState state(op->getLoc(), "test.dynamic_generic",
1416                          op->getOperands(), op->getResultTypes(),
1417                          op->getAttrs());
1418     auto *newOp = rewriter.create(state);
1419     rewriter.replaceOp(op, newOp->getResults());
1420     return success();
1421   }
1422 };
1423 
1424 struct TestRewriteDynamicOpDriver
1425     : public PassWrapper<TestRewriteDynamicOpDriver, OperationPass<>> {
1426   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestRewriteDynamicOpDriver)
1427 
1428   void getDependentDialects(DialectRegistry &registry) const override {
1429     registry.insert<TestDialect>();
1430   }
1431   StringRef getArgument() const final { return "test-rewrite-dynamic-op"; }
1432   StringRef getDescription() const final {
1433     return "Test rewritting on dynamic operations";
1434   }
1435   void runOnOperation() override {
1436     RewritePatternSet patterns(&getContext());
1437     patterns.add<RewriteDynamicOp>(&getContext());
1438 
1439     ConversionTarget target(getContext());
1440     target.addIllegalOp(
1441         OperationName("test.dynamic_one_operand_two_results", &getContext()));
1442     target.addLegalOp(OperationName("test.dynamic_generic", &getContext()));
1443     if (failed(applyPartialConversion(getOperation(), target,
1444                                       std::move(patterns))))
1445       signalPassFailure();
1446   }
1447 };
1448 } // end anonymous namespace
1449 
1450 //===----------------------------------------------------------------------===//
1451 // Test type conversions
1452 //===----------------------------------------------------------------------===//
1453 
1454 namespace {
1455 struct TestTypeConversionProducer
1456     : public OpConversionPattern<TestTypeProducerOp> {
1457   using OpConversionPattern<TestTypeProducerOp>::OpConversionPattern;
1458   LogicalResult
1459   matchAndRewrite(TestTypeProducerOp op, OpAdaptor adaptor,
1460                   ConversionPatternRewriter &rewriter) const final {
1461     Type resultType = op.getType();
1462     Type convertedType = getTypeConverter()
1463                              ? getTypeConverter()->convertType(resultType)
1464                              : resultType;
1465     if (isa<FloatType>(resultType))
1466       resultType = rewriter.getF64Type();
1467     else if (resultType.isInteger(16))
1468       resultType = rewriter.getIntegerType(64);
1469     else if (isa<test::TestRecursiveType>(resultType) &&
1470              convertedType != resultType)
1471       resultType = convertedType;
1472     else
1473       return failure();
1474 
1475     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, resultType);
1476     return success();
1477   }
1478 };
1479 
1480 /// Call signature conversion and then fail the rewrite to trigger the undo
1481 /// mechanism.
1482 struct TestSignatureConversionUndo
1483     : public OpConversionPattern<TestSignatureConversionUndoOp> {
1484   using OpConversionPattern<TestSignatureConversionUndoOp>::OpConversionPattern;
1485 
1486   LogicalResult
1487   matchAndRewrite(TestSignatureConversionUndoOp op, OpAdaptor adaptor,
1488                   ConversionPatternRewriter &rewriter) const final {
1489     (void)rewriter.convertRegionTypes(&op->getRegion(0), *getTypeConverter());
1490     return failure();
1491   }
1492 };
1493 
1494 /// Call signature conversion without providing a type converter to handle
1495 /// materializations.
1496 struct TestTestSignatureConversionNoConverter
1497     : public OpConversionPattern<TestSignatureConversionNoConverterOp> {
1498   TestTestSignatureConversionNoConverter(const TypeConverter &converter,
1499                                          MLIRContext *context)
1500       : OpConversionPattern<TestSignatureConversionNoConverterOp>(context),
1501         converter(converter) {}
1502 
1503   LogicalResult
1504   matchAndRewrite(TestSignatureConversionNoConverterOp op, OpAdaptor adaptor,
1505                   ConversionPatternRewriter &rewriter) const final {
1506     Region &region = op->getRegion(0);
1507     Block *entry = &region.front();
1508 
1509     // Convert the original entry arguments.
1510     TypeConverter::SignatureConversion result(entry->getNumArguments());
1511     if (failed(
1512             converter.convertSignatureArgs(entry->getArgumentTypes(), result)))
1513       return failure();
1514     rewriter.modifyOpInPlace(
1515         op, [&] { rewriter.applySignatureConversion(&region, result); });
1516     return success();
1517   }
1518 
1519   const TypeConverter &converter;
1520 };
1521 
1522 /// Just forward the operands to the root op. This is essentially a no-op
1523 /// pattern that is used to trigger target materialization.
1524 struct TestTypeConsumerForward
1525     : public OpConversionPattern<TestTypeConsumerOp> {
1526   using OpConversionPattern<TestTypeConsumerOp>::OpConversionPattern;
1527 
1528   LogicalResult
1529   matchAndRewrite(TestTypeConsumerOp op, OpAdaptor adaptor,
1530                   ConversionPatternRewriter &rewriter) const final {
1531     rewriter.modifyOpInPlace(op,
1532                              [&] { op->setOperands(adaptor.getOperands()); });
1533     return success();
1534   }
1535 };
1536 
1537 struct TestTypeConversionAnotherProducer
1538     : public OpRewritePattern<TestAnotherTypeProducerOp> {
1539   using OpRewritePattern<TestAnotherTypeProducerOp>::OpRewritePattern;
1540 
1541   LogicalResult matchAndRewrite(TestAnotherTypeProducerOp op,
1542                                 PatternRewriter &rewriter) const final {
1543     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, op.getType());
1544     return success();
1545   }
1546 };
1547 
1548 struct TestTypeConversionDriver
1549     : public PassWrapper<TestTypeConversionDriver, OperationPass<>> {
1550   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestTypeConversionDriver)
1551 
1552   void getDependentDialects(DialectRegistry &registry) const override {
1553     registry.insert<TestDialect>();
1554   }
1555   StringRef getArgument() const final {
1556     return "test-legalize-type-conversion";
1557   }
1558   StringRef getDescription() const final {
1559     return "Test various type conversion functionalities in DialectConversion";
1560   }
1561 
1562   void runOnOperation() override {
1563     // Initialize the type converter.
1564     SmallVector<Type, 2> conversionCallStack;
1565     TypeConverter converter;
1566 
1567     /// Add the legal set of type conversions.
1568     converter.addConversion([](Type type) -> Type {
1569       // Treat F64 as legal.
1570       if (type.isF64())
1571         return type;
1572       // Allow converting BF16/F16/F32 to F64.
1573       if (type.isBF16() || type.isF16() || type.isF32())
1574         return FloatType::getF64(type.getContext());
1575       // Otherwise, the type is illegal.
1576       return nullptr;
1577     });
1578     converter.addConversion([](IntegerType type, SmallVectorImpl<Type> &) {
1579       // Drop all integer types.
1580       return success();
1581     });
1582     converter.addConversion(
1583         // Convert a recursive self-referring type into a non-self-referring
1584         // type named "outer_converted_type" that contains a SimpleAType.
1585         [&](test::TestRecursiveType type,
1586             SmallVectorImpl<Type> &results) -> std::optional<LogicalResult> {
1587           // If the type is already converted, return it to indicate that it is
1588           // legal.
1589           if (type.getName() == "outer_converted_type") {
1590             results.push_back(type);
1591             return success();
1592           }
1593 
1594           conversionCallStack.push_back(type);
1595           auto popConversionCallStack = llvm::make_scope_exit(
1596               [&conversionCallStack]() { conversionCallStack.pop_back(); });
1597 
1598           // If the type is on the call stack more than once (it is there at
1599           // least once because of the _current_ call, which is always the last
1600           // element on the stack), we've hit the recursive case. Just return
1601           // SimpleAType here to create a non-recursive type as a result.
1602           if (llvm::is_contained(ArrayRef(conversionCallStack).drop_back(),
1603                                  type)) {
1604             results.push_back(test::SimpleAType::get(type.getContext()));
1605             return success();
1606           }
1607 
1608           // Convert the body recursively.
1609           auto result = test::TestRecursiveType::get(type.getContext(),
1610                                                      "outer_converted_type");
1611           if (failed(result.setBody(converter.convertType(type.getBody()))))
1612             return failure();
1613           results.push_back(result);
1614           return success();
1615         });
1616 
1617     /// Add the legal set of type materializations.
1618     converter.addSourceMaterialization([](OpBuilder &builder, Type resultType,
1619                                           ValueRange inputs,
1620                                           Location loc) -> Value {
1621       // Allow casting from F64 back to F32.
1622       if (!resultType.isF16() && inputs.size() == 1 &&
1623           inputs[0].getType().isF64())
1624         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
1625       // Allow producing an i32 or i64 from nothing.
1626       if ((resultType.isInteger(32) || resultType.isInteger(64)) &&
1627           inputs.empty())
1628         return builder.create<TestTypeProducerOp>(loc, resultType);
1629       // Allow producing an i64 from an integer.
1630       if (isa<IntegerType>(resultType) && inputs.size() == 1 &&
1631           isa<IntegerType>(inputs[0].getType()))
1632         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
1633       // Otherwise, fail.
1634       return nullptr;
1635     });
1636 
1637     // Initialize the conversion target.
1638     mlir::ConversionTarget target(getContext());
1639     target.addDynamicallyLegalOp<TestTypeProducerOp>([](TestTypeProducerOp op) {
1640       auto recursiveType = dyn_cast<test::TestRecursiveType>(op.getType());
1641       return op.getType().isF64() || op.getType().isInteger(64) ||
1642              (recursiveType &&
1643               recursiveType.getName() == "outer_converted_type");
1644     });
1645     target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
1646       return converter.isSignatureLegal(op.getFunctionType()) &&
1647              converter.isLegal(&op.getBody());
1648     });
1649     target.addDynamicallyLegalOp<TestCastOp>([&](TestCastOp op) {
1650       // Allow casts from F64 to F32.
1651       return (*op.operand_type_begin()).isF64() && op.getType().isF32();
1652     });
1653     target.addDynamicallyLegalOp<TestSignatureConversionNoConverterOp>(
1654         [&](TestSignatureConversionNoConverterOp op) {
1655           return converter.isLegal(op.getRegion().front().getArgumentTypes());
1656         });
1657 
1658     // Initialize the set of rewrite patterns.
1659     RewritePatternSet patterns(&getContext());
1660     patterns.add<TestTypeConsumerForward, TestTypeConversionProducer,
1661                  TestSignatureConversionUndo,
1662                  TestTestSignatureConversionNoConverter>(converter,
1663                                                          &getContext());
1664     patterns.add<TestTypeConversionAnotherProducer>(&getContext());
1665     mlir::populateAnyFunctionOpInterfaceTypeConversionPattern(patterns,
1666                                                               converter);
1667 
1668     if (failed(applyPartialConversion(getOperation(), target,
1669                                       std::move(patterns))))
1670       signalPassFailure();
1671   }
1672 };
1673 } // namespace
1674 
1675 //===----------------------------------------------------------------------===//
1676 // Test Target Materialization With No Uses
1677 //===----------------------------------------------------------------------===//
1678 
1679 namespace {
1680 struct ForwardOperandPattern : public OpConversionPattern<TestTypeChangerOp> {
1681   using OpConversionPattern<TestTypeChangerOp>::OpConversionPattern;
1682 
1683   LogicalResult
1684   matchAndRewrite(TestTypeChangerOp op, OpAdaptor adaptor,
1685                   ConversionPatternRewriter &rewriter) const final {
1686     rewriter.replaceOp(op, adaptor.getOperands());
1687     return success();
1688   }
1689 };
1690 
1691 struct TestTargetMaterializationWithNoUses
1692     : public PassWrapper<TestTargetMaterializationWithNoUses, OperationPass<>> {
1693   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(
1694       TestTargetMaterializationWithNoUses)
1695 
1696   StringRef getArgument() const final {
1697     return "test-target-materialization-with-no-uses";
1698   }
1699   StringRef getDescription() const final {
1700     return "Test a special case of target materialization in DialectConversion";
1701   }
1702 
1703   void runOnOperation() override {
1704     TypeConverter converter;
1705     converter.addConversion([](Type t) { return t; });
1706     converter.addConversion([](IntegerType intTy) -> Type {
1707       if (intTy.getWidth() == 16)
1708         return IntegerType::get(intTy.getContext(), 64);
1709       return intTy;
1710     });
1711     converter.addTargetMaterialization(
1712         [](OpBuilder &builder, Type type, ValueRange inputs, Location loc) {
1713           return builder.create<TestCastOp>(loc, type, inputs).getResult();
1714         });
1715 
1716     ConversionTarget target(getContext());
1717     target.addIllegalOp<TestTypeChangerOp>();
1718 
1719     RewritePatternSet patterns(&getContext());
1720     patterns.add<ForwardOperandPattern>(converter, &getContext());
1721 
1722     if (failed(applyPartialConversion(getOperation(), target,
1723                                       std::move(patterns))))
1724       signalPassFailure();
1725   }
1726 };
1727 } // namespace
1728 
1729 //===----------------------------------------------------------------------===//
1730 // Test Block Merging
1731 //===----------------------------------------------------------------------===//
1732 
1733 namespace {
1734 /// A rewriter pattern that tests that blocks can be merged.
1735 struct TestMergeBlock : public OpConversionPattern<TestMergeBlocksOp> {
1736   using OpConversionPattern<TestMergeBlocksOp>::OpConversionPattern;
1737 
1738   LogicalResult
1739   matchAndRewrite(TestMergeBlocksOp op, OpAdaptor adaptor,
1740                   ConversionPatternRewriter &rewriter) const final {
1741     Block &firstBlock = op.getBody().front();
1742     Operation *branchOp = firstBlock.getTerminator();
1743     Block *secondBlock = &*(std::next(op.getBody().begin()));
1744     auto succOperands = branchOp->getOperands();
1745     SmallVector<Value, 2> replacements(succOperands);
1746     rewriter.eraseOp(branchOp);
1747     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
1748     rewriter.modifyOpInPlace(op, [] {});
1749     return success();
1750   }
1751 };
1752 
1753 /// A rewrite pattern to tests the undo mechanism of blocks being merged.
1754 struct TestUndoBlocksMerge : public ConversionPattern {
1755   TestUndoBlocksMerge(MLIRContext *ctx)
1756       : ConversionPattern("test.undo_blocks_merge", /*benefit=*/1, ctx) {}
1757   LogicalResult
1758   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
1759                   ConversionPatternRewriter &rewriter) const final {
1760     Block &firstBlock = op->getRegion(0).front();
1761     Operation *branchOp = firstBlock.getTerminator();
1762     Block *secondBlock = &*(std::next(op->getRegion(0).begin()));
1763     rewriter.setInsertionPointToStart(secondBlock);
1764     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
1765     auto succOperands = branchOp->getOperands();
1766     SmallVector<Value, 2> replacements(succOperands);
1767     rewriter.eraseOp(branchOp);
1768     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
1769     rewriter.modifyOpInPlace(op, [] {});
1770     return success();
1771   }
1772 };
1773 
1774 /// A rewrite mechanism to inline the body of the op into its parent, when both
1775 /// ops can have a single block.
1776 struct TestMergeSingleBlockOps
1777     : public OpConversionPattern<SingleBlockImplicitTerminatorOp> {
1778   using OpConversionPattern<
1779       SingleBlockImplicitTerminatorOp>::OpConversionPattern;
1780 
1781   LogicalResult
1782   matchAndRewrite(SingleBlockImplicitTerminatorOp op, OpAdaptor adaptor,
1783                   ConversionPatternRewriter &rewriter) const final {
1784     SingleBlockImplicitTerminatorOp parentOp =
1785         op->getParentOfType<SingleBlockImplicitTerminatorOp>();
1786     if (!parentOp)
1787       return failure();
1788     Block &innerBlock = op.getRegion().front();
1789     TerminatorOp innerTerminator =
1790         cast<TerminatorOp>(innerBlock.getTerminator());
1791     rewriter.inlineBlockBefore(&innerBlock, op);
1792     rewriter.eraseOp(innerTerminator);
1793     rewriter.eraseOp(op);
1794     return success();
1795   }
1796 };
1797 
1798 struct TestMergeBlocksPatternDriver
1799     : public PassWrapper<TestMergeBlocksPatternDriver, OperationPass<>> {
1800   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestMergeBlocksPatternDriver)
1801 
1802   StringRef getArgument() const final { return "test-merge-blocks"; }
1803   StringRef getDescription() const final {
1804     return "Test Merging operation in ConversionPatternRewriter";
1805   }
1806   void runOnOperation() override {
1807     MLIRContext *context = &getContext();
1808     mlir::RewritePatternSet patterns(context);
1809     patterns.add<TestMergeBlock, TestUndoBlocksMerge, TestMergeSingleBlockOps>(
1810         context);
1811     ConversionTarget target(*context);
1812     target.addLegalOp<func::FuncOp, ModuleOp, TerminatorOp, TestBranchOp,
1813                       TestTypeConsumerOp, TestTypeProducerOp, TestReturnOp>();
1814     target.addIllegalOp<ILLegalOpF>();
1815 
1816     /// Expect the op to have a single block after legalization.
1817     target.addDynamicallyLegalOp<TestMergeBlocksOp>(
1818         [&](TestMergeBlocksOp op) -> bool {
1819           return llvm::hasSingleElement(op.getBody());
1820         });
1821 
1822     /// Only allow `test.br` within test.merge_blocks op.
1823     target.addDynamicallyLegalOp<TestBranchOp>([&](TestBranchOp op) -> bool {
1824       return op->getParentOfType<TestMergeBlocksOp>();
1825     });
1826 
1827     /// Expect that all nested test.SingleBlockImplicitTerminator ops are
1828     /// inlined.
1829     target.addDynamicallyLegalOp<SingleBlockImplicitTerminatorOp>(
1830         [&](SingleBlockImplicitTerminatorOp op) -> bool {
1831           return !op->getParentOfType<SingleBlockImplicitTerminatorOp>();
1832         });
1833 
1834     DenseSet<Operation *> unlegalizedOps;
1835     ConversionConfig config;
1836     config.unlegalizedOps = &unlegalizedOps;
1837     (void)applyPartialConversion(getOperation(), target, std::move(patterns),
1838                                  config);
1839     for (auto *op : unlegalizedOps)
1840       op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
1841   }
1842 };
1843 } // namespace
1844 
1845 //===----------------------------------------------------------------------===//
1846 // Test Selective Replacement
1847 //===----------------------------------------------------------------------===//
1848 
1849 namespace {
1850 /// A rewrite mechanism to inline the body of the op into its parent, when both
1851 /// ops can have a single block.
1852 struct TestSelectiveOpReplacementPattern : public OpRewritePattern<TestCastOp> {
1853   using OpRewritePattern<TestCastOp>::OpRewritePattern;
1854 
1855   LogicalResult matchAndRewrite(TestCastOp op,
1856                                 PatternRewriter &rewriter) const final {
1857     if (op.getNumOperands() != 2)
1858       return failure();
1859     OperandRange operands = op.getOperands();
1860 
1861     // Replace non-terminator uses with the first operand.
1862     rewriter.replaceUsesWithIf(op, operands[0], [](OpOperand &operand) {
1863       return operand.getOwner()->hasTrait<OpTrait::IsTerminator>();
1864     });
1865     // Replace everything else with the second operand if the operation isn't
1866     // dead.
1867     rewriter.replaceOp(op, op.getOperand(1));
1868     return success();
1869   }
1870 };
1871 
1872 struct TestSelectiveReplacementPatternDriver
1873     : public PassWrapper<TestSelectiveReplacementPatternDriver,
1874                          OperationPass<>> {
1875   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(
1876       TestSelectiveReplacementPatternDriver)
1877 
1878   StringRef getArgument() const final {
1879     return "test-pattern-selective-replacement";
1880   }
1881   StringRef getDescription() const final {
1882     return "Test selective replacement in the PatternRewriter";
1883   }
1884   void runOnOperation() override {
1885     MLIRContext *context = &getContext();
1886     mlir::RewritePatternSet patterns(context);
1887     patterns.add<TestSelectiveOpReplacementPattern>(context);
1888     (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
1889   }
1890 };
1891 } // namespace
1892 
1893 //===----------------------------------------------------------------------===//
1894 // PassRegistration
1895 //===----------------------------------------------------------------------===//
1896 
1897 namespace mlir {
1898 namespace test {
1899 void registerPatternsTestPass() {
1900   PassRegistration<TestReturnTypeDriver>();
1901 
1902   PassRegistration<TestDerivedAttributeDriver>();
1903 
1904   PassRegistration<TestPatternDriver>();
1905   PassRegistration<TestStrictPatternDriver>();
1906 
1907   PassRegistration<TestLegalizePatternDriver>([] {
1908     return std::make_unique<TestLegalizePatternDriver>(legalizerConversionMode);
1909   });
1910 
1911   PassRegistration<TestRemappedValue>();
1912 
1913   PassRegistration<TestUnknownRootOpDriver>();
1914 
1915   PassRegistration<TestTypeConversionDriver>();
1916   PassRegistration<TestTargetMaterializationWithNoUses>();
1917 
1918   PassRegistration<TestRewriteDynamicOpDriver>();
1919 
1920   PassRegistration<TestMergeBlocksPatternDriver>();
1921   PassRegistration<TestSelectiveReplacementPatternDriver>();
1922 }
1923 } // namespace test
1924 } // namespace mlir
1925