xref: /llvm-project/mlir/test/Dialect/SparseTensor/sparse_relu.mlir (revision 70e227a404e51f9248c7ad5d79953805b2afacb4)
1*70e227a4SAart Bik// RUN: mlir-opt %s --sparsification-and-bufferization | FileCheck %s
2*70e227a4SAart Bik
3*70e227a4SAart Bik#map = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
4*70e227a4SAart Bik
5*70e227a4SAart Bik#sparse = #sparse_tensor.encoding<{
6*70e227a4SAart Bik    map = (d0, d1, d2) -> (d0 : dense, d1 : dense, d2 : compressed)
7*70e227a4SAart Bik}>
8*70e227a4SAart Bik
9*70e227a4SAart Bik//
10*70e227a4SAart Bik// Make sure a simple ReLU passes the sparsifier
11*70e227a4SAart Bik//
12*70e227a4SAart Bik// CHECK-LABEL: func.func @relu
13*70e227a4SAart Bik// CHECK:       scf.for
14*70e227a4SAart Bik// CHECK:         scf.for
15*70e227a4SAart Bik// CHECK:           scf.for
16*70e227a4SAart Bik// CHECK:             arith.cmpf ugt
17*70e227a4SAart Bik// CHECK:             arith.select
18*70e227a4SAart Bik//
19*70e227a4SAart Bikfunc.func @relu(%arg0: tensor<10x20x30xf64, #sparse>) -> tensor<10x20x30xf64, #sparse> {
20*70e227a4SAart Bik  %cst = arith.constant 0.000000e+00 : f64
21*70e227a4SAart Bik  %0 = tensor.empty() : tensor<10x20x30xf64>
22*70e227a4SAart Bik  %1 = linalg.generic {
23*70e227a4SAart Bik      indexing_maps = [#map, #map],
24*70e227a4SAart Bik      iterator_types = ["parallel", "parallel", "parallel"]}
25*70e227a4SAart Bik      ins(%arg0 : tensor<10x20x30xf64, #sparse>)
26*70e227a4SAart Bik      outs(%0 : tensor<10x20x30xf64>) {
27*70e227a4SAart Bik  ^bb0(%in: f64, %out: f64):
28*70e227a4SAart Bik      %2 = arith.cmpf ugt, %in, %cst : f64
29*70e227a4SAart Bik      %3 = arith.select %2, %in, %cst : f64
30*70e227a4SAart Bik      linalg.yield %3 : f64
31*70e227a4SAart Bik  } -> tensor<10x20x30xf64>
32*70e227a4SAart Bik  %cast = tensor.cast %1 : tensor<10x20x30xf64> to tensor<10x20x30xf64, #sparse>
33*70e227a4SAart Bik  return %cast : tensor<10x20x30xf64, #sparse>
34*70e227a4SAart Bik}
35