xref: /llvm-project/mlir/lib/Target/LLVMIR/ModuleTranslation.cpp (revision e5865ec93cbf77f84c55e55383ce3254186fc065)
1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the translation between an MLIR LLVM dialect module and
10 // the corresponding LLVMIR module. It only handles core LLVM IR operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Target/LLVMIR/ModuleTranslation.h"
15 
16 #include "AttrKindDetail.h"
17 #include "DebugTranslation.h"
18 #include "LoopAnnotationTranslation.h"
19 #include "mlir/Analysis/TopologicalSortUtils.h"
20 #include "mlir/Dialect/DLTI/DLTI.h"
21 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
22 #include "mlir/Dialect/LLVMIR/LLVMInterfaces.h"
23 #include "mlir/Dialect/LLVMIR/Transforms/DIExpressionLegalization.h"
24 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
25 #include "mlir/Dialect/OpenMP/OpenMPDialect.h"
26 #include "mlir/Dialect/OpenMP/OpenMPInterfaces.h"
27 #include "mlir/IR/AttrTypeSubElements.h"
28 #include "mlir/IR/Attributes.h"
29 #include "mlir/IR/BuiltinOps.h"
30 #include "mlir/IR/BuiltinTypes.h"
31 #include "mlir/IR/DialectResourceBlobManager.h"
32 #include "mlir/IR/RegionGraphTraits.h"
33 #include "mlir/Support/LLVM.h"
34 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
35 #include "mlir/Target/LLVMIR/TypeToLLVM.h"
36 
37 #include "llvm/ADT/PostOrderIterator.h"
38 #include "llvm/ADT/SetVector.h"
39 #include "llvm/ADT/StringExtras.h"
40 #include "llvm/ADT/TypeSwitch.h"
41 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/IRBuilder.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/IntrinsicsNVPTX.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Verifier.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/Cloning.h"
57 #include "llvm/Transforms/Utils/ModuleUtils.h"
58 #include <optional>
59 
60 #define DEBUG_TYPE "llvm-dialect-to-llvm-ir"
61 
62 using namespace mlir;
63 using namespace mlir::LLVM;
64 using namespace mlir::LLVM::detail;
65 
66 extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
67 
68 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
69 
70 namespace {
71 /// A customized inserter for LLVM's IRBuilder that captures all LLVM IR
72 /// instructions that are created for future reference.
73 ///
74 /// This is intended to be used with the `CollectionScope` RAII object:
75 ///
76 ///     llvm::IRBuilder<..., InstructionCapturingInserter> builder;
77 ///     {
78 ///       InstructionCapturingInserter::CollectionScope scope(builder);
79 ///       // Call IRBuilder methods as usual.
80 ///
81 ///       // This will return a list of all instructions created by the builder,
82 ///       // in order of creation.
83 ///       builder.getInserter().getCapturedInstructions();
84 ///     }
85 ///     // This will return an empty list.
86 ///     builder.getInserter().getCapturedInstructions();
87 ///
88 /// The capturing functionality is _disabled_ by default for performance
89 /// consideration. It needs to be explicitly enabled, which is achieved by
90 /// creating a `CollectionScope`.
91 class InstructionCapturingInserter : public llvm::IRBuilderCallbackInserter {
92 public:
93   /// Constructs the inserter.
94   InstructionCapturingInserter()
95       : llvm::IRBuilderCallbackInserter([this](llvm::Instruction *instruction) {
96           if (LLVM_LIKELY(enabled))
97             capturedInstructions.push_back(instruction);
98         }) {}
99 
100   /// Returns the list of LLVM IR instructions captured since the last cleanup.
101   ArrayRef<llvm::Instruction *> getCapturedInstructions() const {
102     return capturedInstructions;
103   }
104 
105   /// Clears the list of captured LLVM IR instructions.
106   void clearCapturedInstructions() { capturedInstructions.clear(); }
107 
108   /// RAII object enabling the capture of created LLVM IR instructions.
109   class CollectionScope {
110   public:
111     /// Creates the scope for the given inserter.
112     CollectionScope(llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing);
113 
114     /// Ends the scope.
115     ~CollectionScope();
116 
117     ArrayRef<llvm::Instruction *> getCapturedInstructions() {
118       if (!inserter)
119         return {};
120       return inserter->getCapturedInstructions();
121     }
122 
123   private:
124     /// Back reference to the inserter.
125     InstructionCapturingInserter *inserter = nullptr;
126 
127     /// List of instructions in the inserter prior to this scope.
128     SmallVector<llvm::Instruction *> previouslyCollectedInstructions;
129 
130     /// Whether the inserter was enabled prior to this scope.
131     bool wasEnabled;
132   };
133 
134   /// Enable or disable the capturing mechanism.
135   void setEnabled(bool enabled = true) { this->enabled = enabled; }
136 
137 private:
138   /// List of captured instructions.
139   SmallVector<llvm::Instruction *> capturedInstructions;
140 
141   /// Whether the collection is enabled.
142   bool enabled = false;
143 };
144 
145 using CapturingIRBuilder =
146     llvm::IRBuilder<llvm::ConstantFolder, InstructionCapturingInserter>;
147 } // namespace
148 
149 InstructionCapturingInserter::CollectionScope::CollectionScope(
150     llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing) {
151 
152   if (!isBuilderCapturing)
153     return;
154 
155   auto &capturingIRBuilder = static_cast<CapturingIRBuilder &>(irBuilder);
156   inserter = &capturingIRBuilder.getInserter();
157   wasEnabled = inserter->enabled;
158   if (wasEnabled)
159     previouslyCollectedInstructions.swap(inserter->capturedInstructions);
160   inserter->setEnabled(true);
161 }
162 
163 InstructionCapturingInserter::CollectionScope::~CollectionScope() {
164   if (!inserter)
165     return;
166 
167   previouslyCollectedInstructions.swap(inserter->capturedInstructions);
168   // If collection was enabled (likely in another, surrounding scope), keep
169   // the instructions collected in this scope.
170   if (wasEnabled) {
171     llvm::append_range(inserter->capturedInstructions,
172                        previouslyCollectedInstructions);
173   }
174   inserter->setEnabled(wasEnabled);
175 }
176 
177 /// Translates the given data layout spec attribute to the LLVM IR data layout.
178 /// Only integer, float, pointer and endianness entries are currently supported.
179 static FailureOr<llvm::DataLayout>
180 translateDataLayout(DataLayoutSpecInterface attribute,
181                     const DataLayout &dataLayout,
182                     std::optional<Location> loc = std::nullopt) {
183   if (!loc)
184     loc = UnknownLoc::get(attribute.getContext());
185 
186   // Translate the endianness attribute.
187   std::string llvmDataLayout;
188   llvm::raw_string_ostream layoutStream(llvmDataLayout);
189   for (DataLayoutEntryInterface entry : attribute.getEntries()) {
190     auto key = llvm::dyn_cast_if_present<StringAttr>(entry.getKey());
191     if (!key)
192       continue;
193     if (key.getValue() == DLTIDialect::kDataLayoutEndiannessKey) {
194       auto value = cast<StringAttr>(entry.getValue());
195       bool isLittleEndian =
196           value.getValue() == DLTIDialect::kDataLayoutEndiannessLittle;
197       layoutStream << "-" << (isLittleEndian ? "e" : "E");
198       layoutStream.flush();
199       continue;
200     }
201     if (key.getValue() == DLTIDialect::kDataLayoutProgramMemorySpaceKey) {
202       auto value = cast<IntegerAttr>(entry.getValue());
203       uint64_t space = value.getValue().getZExtValue();
204       // Skip the default address space.
205       if (space == 0)
206         continue;
207       layoutStream << "-P" << space;
208       layoutStream.flush();
209       continue;
210     }
211     if (key.getValue() == DLTIDialect::kDataLayoutGlobalMemorySpaceKey) {
212       auto value = cast<IntegerAttr>(entry.getValue());
213       uint64_t space = value.getValue().getZExtValue();
214       // Skip the default address space.
215       if (space == 0)
216         continue;
217       layoutStream << "-G" << space;
218       layoutStream.flush();
219       continue;
220     }
221     if (key.getValue() == DLTIDialect::kDataLayoutAllocaMemorySpaceKey) {
222       auto value = cast<IntegerAttr>(entry.getValue());
223       uint64_t space = value.getValue().getZExtValue();
224       // Skip the default address space.
225       if (space == 0)
226         continue;
227       layoutStream << "-A" << space;
228       layoutStream.flush();
229       continue;
230     }
231     if (key.getValue() == DLTIDialect::kDataLayoutStackAlignmentKey) {
232       auto value = cast<IntegerAttr>(entry.getValue());
233       uint64_t alignment = value.getValue().getZExtValue();
234       // Skip the default stack alignment.
235       if (alignment == 0)
236         continue;
237       layoutStream << "-S" << alignment;
238       layoutStream.flush();
239       continue;
240     }
241     emitError(*loc) << "unsupported data layout key " << key;
242     return failure();
243   }
244 
245   // Go through the list of entries to check which types are explicitly
246   // specified in entries. Where possible, data layout queries are used instead
247   // of directly inspecting the entries.
248   for (DataLayoutEntryInterface entry : attribute.getEntries()) {
249     auto type = llvm::dyn_cast_if_present<Type>(entry.getKey());
250     if (!type)
251       continue;
252     // Data layout for the index type is irrelevant at this point.
253     if (isa<IndexType>(type))
254       continue;
255     layoutStream << "-";
256     LogicalResult result =
257         llvm::TypeSwitch<Type, LogicalResult>(type)
258             .Case<IntegerType, Float16Type, Float32Type, Float64Type,
259                   Float80Type, Float128Type>([&](Type type) -> LogicalResult {
260               if (auto intType = dyn_cast<IntegerType>(type)) {
261                 if (intType.getSignedness() != IntegerType::Signless)
262                   return emitError(*loc)
263                          << "unsupported data layout for non-signless integer "
264                          << intType;
265                 layoutStream << "i";
266               } else {
267                 layoutStream << "f";
268               }
269               uint64_t size = dataLayout.getTypeSizeInBits(type);
270               uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u;
271               uint64_t preferred =
272                   dataLayout.getTypePreferredAlignment(type) * 8u;
273               layoutStream << size << ":" << abi;
274               if (abi != preferred)
275                 layoutStream << ":" << preferred;
276               return success();
277             })
278             .Case([&](LLVMPointerType type) {
279               layoutStream << "p" << type.getAddressSpace() << ":";
280               uint64_t size = dataLayout.getTypeSizeInBits(type);
281               uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u;
282               uint64_t preferred =
283                   dataLayout.getTypePreferredAlignment(type) * 8u;
284               uint64_t index = *dataLayout.getTypeIndexBitwidth(type);
285               layoutStream << size << ":" << abi << ":" << preferred << ":"
286                            << index;
287               return success();
288             })
289             .Default([loc](Type type) {
290               return emitError(*loc)
291                      << "unsupported type in data layout: " << type;
292             });
293     if (failed(result))
294       return failure();
295   }
296   layoutStream.flush();
297   StringRef layoutSpec(llvmDataLayout);
298   if (layoutSpec.starts_with("-"))
299     layoutSpec = layoutSpec.drop_front();
300 
301   return llvm::DataLayout(layoutSpec);
302 }
303 
304 /// Builds a constant of a sequential LLVM type `type`, potentially containing
305 /// other sequential types recursively, from the individual constant values
306 /// provided in `constants`. `shape` contains the number of elements in nested
307 /// sequential types. Reports errors at `loc` and returns nullptr on error.
308 static llvm::Constant *
309 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
310                         ArrayRef<int64_t> shape, llvm::Type *type,
311                         Location loc) {
312   if (shape.empty()) {
313     llvm::Constant *result = constants.front();
314     constants = constants.drop_front();
315     return result;
316   }
317 
318   llvm::Type *elementType;
319   if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
320     elementType = arrayTy->getElementType();
321   } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
322     elementType = vectorTy->getElementType();
323   } else {
324     emitError(loc) << "expected sequential LLVM types wrapping a scalar";
325     return nullptr;
326   }
327 
328   SmallVector<llvm::Constant *, 8> nested;
329   nested.reserve(shape.front());
330   for (int64_t i = 0; i < shape.front(); ++i) {
331     nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
332                                              elementType, loc));
333     if (!nested.back())
334       return nullptr;
335   }
336 
337   if (shape.size() == 1 && type->isVectorTy())
338     return llvm::ConstantVector::get(nested);
339   return llvm::ConstantArray::get(
340       llvm::ArrayType::get(elementType, shape.front()), nested);
341 }
342 
343 /// Returns the first non-sequential type nested in sequential types.
344 static llvm::Type *getInnermostElementType(llvm::Type *type) {
345   do {
346     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
347       type = arrayTy->getElementType();
348     } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
349       type = vectorTy->getElementType();
350     } else {
351       return type;
352     }
353   } while (true);
354 }
355 
356 /// Convert a dense elements attribute to an LLVM IR constant using its raw data
357 /// storage if possible. This supports elements attributes of tensor or vector
358 /// type and avoids constructing separate objects for individual values of the
359 /// innermost dimension. Constants for other dimensions are still constructed
360 /// recursively. Returns null if constructing from raw data is not supported for
361 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports
362 /// other errors at `loc`.
363 static llvm::Constant *
364 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr,
365                          llvm::Type *llvmType,
366                          const ModuleTranslation &moduleTranslation) {
367   if (!denseElementsAttr)
368     return nullptr;
369 
370   llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
371   if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType))
372     return nullptr;
373 
374   ShapedType type = denseElementsAttr.getType();
375   if (type.getNumElements() == 0)
376     return nullptr;
377 
378   // Check that the raw data size matches what is expected for the scalar size.
379   // TODO: in theory, we could repack the data here to keep constructing from
380   // raw data.
381   // TODO: we may also need to consider endianness when cross-compiling to an
382   // architecture where it is different.
383   int64_t elementByteSize = denseElementsAttr.getRawData().size() /
384                             denseElementsAttr.getNumElements();
385   if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits())
386     return nullptr;
387 
388   // Compute the shape of all dimensions but the innermost. Note that the
389   // innermost dimension may be that of the vector element type.
390   bool hasVectorElementType = isa<VectorType>(type.getElementType());
391   int64_t numAggregates =
392       denseElementsAttr.getNumElements() /
393       (hasVectorElementType ? 1
394                             : denseElementsAttr.getType().getShape().back());
395   ArrayRef<int64_t> outerShape = type.getShape();
396   if (!hasVectorElementType)
397     outerShape = outerShape.drop_back();
398 
399   // Handle the case of vector splat, LLVM has special support for it.
400   if (denseElementsAttr.isSplat() &&
401       (isa<VectorType>(type) || hasVectorElementType)) {
402     llvm::Constant *splatValue = LLVM::detail::getLLVMConstant(
403         innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc,
404         moduleTranslation);
405     llvm::Constant *splatVector =
406         llvm::ConstantDataVector::getSplat(0, splatValue);
407     SmallVector<llvm::Constant *> constants(numAggregates, splatVector);
408     ArrayRef<llvm::Constant *> constantsRef = constants;
409     return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
410   }
411   if (denseElementsAttr.isSplat())
412     return nullptr;
413 
414   // In case of non-splat, create a constructor for the innermost constant from
415   // a piece of raw data.
416   std::function<llvm::Constant *(StringRef)> buildCstData;
417   if (isa<TensorType>(type)) {
418     auto vectorElementType = dyn_cast<VectorType>(type.getElementType());
419     if (vectorElementType && vectorElementType.getRank() == 1) {
420       buildCstData = [&](StringRef data) {
421         return llvm::ConstantDataVector::getRaw(
422             data, vectorElementType.getShape().back(), innermostLLVMType);
423       };
424     } else if (!vectorElementType) {
425       buildCstData = [&](StringRef data) {
426         return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
427                                                innermostLLVMType);
428       };
429     }
430   } else if (isa<VectorType>(type)) {
431     buildCstData = [&](StringRef data) {
432       return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
433                                               innermostLLVMType);
434     };
435   }
436   if (!buildCstData)
437     return nullptr;
438 
439   // Create innermost constants and defer to the default constant creation
440   // mechanism for other dimensions.
441   SmallVector<llvm::Constant *> constants;
442   int64_t aggregateSize = denseElementsAttr.getType().getShape().back() *
443                           (innermostLLVMType->getScalarSizeInBits() / 8);
444   constants.reserve(numAggregates);
445   for (unsigned i = 0; i < numAggregates; ++i) {
446     StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize,
447                    aggregateSize);
448     constants.push_back(buildCstData(data));
449   }
450 
451   ArrayRef<llvm::Constant *> constantsRef = constants;
452   return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
453 }
454 
455 /// Convert a dense resource elements attribute to an LLVM IR constant using its
456 /// raw data storage if possible. This supports elements attributes of tensor or
457 /// vector type and avoids constructing separate objects for individual values
458 /// of the innermost dimension. Constants for other dimensions are still
459 /// constructed recursively. Returns nullptr on failure and emits errors at
460 /// `loc`.
461 static llvm::Constant *convertDenseResourceElementsAttr(
462     Location loc, DenseResourceElementsAttr denseResourceAttr,
463     llvm::Type *llvmType, const ModuleTranslation &moduleTranslation) {
464   assert(denseResourceAttr && "expected non-null attribute");
465 
466   llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
467   if (!llvm::ConstantDataSequential::isElementTypeCompatible(
468           innermostLLVMType)) {
469     emitError(loc, "no known conversion for innermost element type");
470     return nullptr;
471   }
472 
473   ShapedType type = denseResourceAttr.getType();
474   assert(type.getNumElements() > 0 && "Expected non-empty elements attribute");
475 
476   AsmResourceBlob *blob = denseResourceAttr.getRawHandle().getBlob();
477   if (!blob) {
478     emitError(loc, "resource does not exist");
479     return nullptr;
480   }
481 
482   ArrayRef<char> rawData = blob->getData();
483 
484   // Check that the raw data size matches what is expected for the scalar size.
485   // TODO: in theory, we could repack the data here to keep constructing from
486   // raw data.
487   // TODO: we may also need to consider endianness when cross-compiling to an
488   // architecture where it is different.
489   int64_t numElements = denseResourceAttr.getType().getNumElements();
490   int64_t elementByteSize = rawData.size() / numElements;
491   if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits()) {
492     emitError(loc, "raw data size does not match element type size");
493     return nullptr;
494   }
495 
496   // Compute the shape of all dimensions but the innermost. Note that the
497   // innermost dimension may be that of the vector element type.
498   bool hasVectorElementType = isa<VectorType>(type.getElementType());
499   int64_t numAggregates =
500       numElements / (hasVectorElementType
501                          ? 1
502                          : denseResourceAttr.getType().getShape().back());
503   ArrayRef<int64_t> outerShape = type.getShape();
504   if (!hasVectorElementType)
505     outerShape = outerShape.drop_back();
506 
507   // Create a constructor for the innermost constant from a piece of raw data.
508   std::function<llvm::Constant *(StringRef)> buildCstData;
509   if (isa<TensorType>(type)) {
510     auto vectorElementType = dyn_cast<VectorType>(type.getElementType());
511     if (vectorElementType && vectorElementType.getRank() == 1) {
512       buildCstData = [&](StringRef data) {
513         return llvm::ConstantDataVector::getRaw(
514             data, vectorElementType.getShape().back(), innermostLLVMType);
515       };
516     } else if (!vectorElementType) {
517       buildCstData = [&](StringRef data) {
518         return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
519                                                innermostLLVMType);
520       };
521     }
522   } else if (isa<VectorType>(type)) {
523     buildCstData = [&](StringRef data) {
524       return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
525                                               innermostLLVMType);
526     };
527   }
528   if (!buildCstData) {
529     emitError(loc, "unsupported dense_resource type");
530     return nullptr;
531   }
532 
533   // Create innermost constants and defer to the default constant creation
534   // mechanism for other dimensions.
535   SmallVector<llvm::Constant *> constants;
536   int64_t aggregateSize = denseResourceAttr.getType().getShape().back() *
537                           (innermostLLVMType->getScalarSizeInBits() / 8);
538   constants.reserve(numAggregates);
539   for (unsigned i = 0; i < numAggregates; ++i) {
540     StringRef data(rawData.data() + i * aggregateSize, aggregateSize);
541     constants.push_back(buildCstData(data));
542   }
543 
544   ArrayRef<llvm::Constant *> constantsRef = constants;
545   return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
546 }
547 
548 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
549 /// This currently supports integer, floating point, splat and dense element
550 /// attributes and combinations thereof. Also, an array attribute with two
551 /// elements is supported to represent a complex constant.  In case of error,
552 /// report it to `loc` and return nullptr.
553 llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
554     llvm::Type *llvmType, Attribute attr, Location loc,
555     const ModuleTranslation &moduleTranslation) {
556   if (!attr)
557     return llvm::UndefValue::get(llvmType);
558   if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) {
559     auto arrayAttr = dyn_cast<ArrayAttr>(attr);
560     if (!arrayAttr || arrayAttr.size() != 2) {
561       emitError(loc, "expected struct type to be a complex number");
562       return nullptr;
563     }
564     llvm::Type *elementType = structType->getElementType(0);
565     llvm::Constant *real =
566         getLLVMConstant(elementType, arrayAttr[0], loc, moduleTranslation);
567     if (!real)
568       return nullptr;
569     llvm::Constant *imag =
570         getLLVMConstant(elementType, arrayAttr[1], loc, moduleTranslation);
571     if (!imag)
572       return nullptr;
573     return llvm::ConstantStruct::get(structType, {real, imag});
574   }
575   // For integer types, we allow a mismatch in sizes as the index type in
576   // MLIR might have a different size than the index type in the LLVM module.
577   if (auto intAttr = dyn_cast<IntegerAttr>(attr))
578     return llvm::ConstantInt::get(
579         llvmType,
580         intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
581   if (auto floatAttr = dyn_cast<FloatAttr>(attr)) {
582     const llvm::fltSemantics &sem = floatAttr.getValue().getSemantics();
583     // Special case for 8-bit floats, which are represented by integers due to
584     // the lack of native fp8 types in LLVM at the moment. Additionally, handle
585     // targets (like AMDGPU) that don't implement bfloat and convert all bfloats
586     // to i16.
587     unsigned floatWidth = APFloat::getSizeInBits(sem);
588     if (llvmType->isIntegerTy(floatWidth))
589       return llvm::ConstantInt::get(llvmType,
590                                     floatAttr.getValue().bitcastToAPInt());
591     if (llvmType !=
592         llvm::Type::getFloatingPointTy(llvmType->getContext(),
593                                        floatAttr.getValue().getSemantics())) {
594       emitError(loc, "FloatAttr does not match expected type of the constant");
595       return nullptr;
596     }
597     return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
598   }
599   if (auto funcAttr = dyn_cast<FlatSymbolRefAttr>(attr))
600     return llvm::ConstantExpr::getBitCast(
601         moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
602   if (auto splatAttr = dyn_cast<SplatElementsAttr>(attr)) {
603     llvm::Type *elementType;
604     uint64_t numElements;
605     bool isScalable = false;
606     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
607       elementType = arrayTy->getElementType();
608       numElements = arrayTy->getNumElements();
609     } else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) {
610       elementType = fVectorTy->getElementType();
611       numElements = fVectorTy->getNumElements();
612     } else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) {
613       elementType = sVectorTy->getElementType();
614       numElements = sVectorTy->getMinNumElements();
615       isScalable = true;
616     } else {
617       llvm_unreachable("unrecognized constant vector type");
618     }
619     // Splat value is a scalar. Extract it only if the element type is not
620     // another sequence type. The recursion terminates because each step removes
621     // one outer sequential type.
622     bool elementTypeSequential =
623         isa<llvm::ArrayType, llvm::VectorType>(elementType);
624     llvm::Constant *child = getLLVMConstant(
625         elementType,
626         elementTypeSequential ? splatAttr
627                               : splatAttr.getSplatValue<Attribute>(),
628         loc, moduleTranslation);
629     if (!child)
630       return nullptr;
631     if (llvmType->isVectorTy())
632       return llvm::ConstantVector::getSplat(
633           llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child);
634     if (llvmType->isArrayTy()) {
635       auto *arrayType = llvm::ArrayType::get(elementType, numElements);
636       if (child->isZeroValue()) {
637         return llvm::ConstantAggregateZero::get(arrayType);
638       } else {
639         if (llvm::ConstantDataSequential::isElementTypeCompatible(
640                 elementType)) {
641           // TODO: Handle all compatible types. This code only handles integer.
642           if (llvm::IntegerType *iTy =
643                   dyn_cast<llvm::IntegerType>(elementType)) {
644             if (llvm::ConstantInt *ci = dyn_cast<llvm::ConstantInt>(child)) {
645               if (ci->getBitWidth() == 8) {
646                 SmallVector<int8_t> constants(numElements, ci->getZExtValue());
647                 return llvm::ConstantDataArray::get(elementType->getContext(),
648                                                     constants);
649               }
650               if (ci->getBitWidth() == 16) {
651                 SmallVector<int16_t> constants(numElements, ci->getZExtValue());
652                 return llvm::ConstantDataArray::get(elementType->getContext(),
653                                                     constants);
654               }
655               if (ci->getBitWidth() == 32) {
656                 SmallVector<int32_t> constants(numElements, ci->getZExtValue());
657                 return llvm::ConstantDataArray::get(elementType->getContext(),
658                                                     constants);
659               }
660               if (ci->getBitWidth() == 64) {
661                 SmallVector<int64_t> constants(numElements, ci->getZExtValue());
662                 return llvm::ConstantDataArray::get(elementType->getContext(),
663                                                     constants);
664               }
665             }
666           }
667         }
668         // std::vector is used here to accomodate large number of elements that
669         // exceed SmallVector capacity.
670         std::vector<llvm::Constant *> constants(numElements, child);
671         return llvm::ConstantArray::get(arrayType, constants);
672       }
673     }
674   }
675 
676   // Try using raw elements data if possible.
677   if (llvm::Constant *result =
678           convertDenseElementsAttr(loc, dyn_cast<DenseElementsAttr>(attr),
679                                    llvmType, moduleTranslation)) {
680     return result;
681   }
682 
683   if (auto denseResourceAttr = dyn_cast<DenseResourceElementsAttr>(attr)) {
684     return convertDenseResourceElementsAttr(loc, denseResourceAttr, llvmType,
685                                             moduleTranslation);
686   }
687 
688   // Fall back to element-by-element construction otherwise.
689   if (auto elementsAttr = dyn_cast<ElementsAttr>(attr)) {
690     assert(elementsAttr.getShapedType().hasStaticShape());
691     assert(!elementsAttr.getShapedType().getShape().empty() &&
692            "unexpected empty elements attribute shape");
693 
694     SmallVector<llvm::Constant *, 8> constants;
695     constants.reserve(elementsAttr.getNumElements());
696     llvm::Type *innermostType = getInnermostElementType(llvmType);
697     for (auto n : elementsAttr.getValues<Attribute>()) {
698       constants.push_back(
699           getLLVMConstant(innermostType, n, loc, moduleTranslation));
700       if (!constants.back())
701         return nullptr;
702     }
703     ArrayRef<llvm::Constant *> constantsRef = constants;
704     llvm::Constant *result = buildSequentialConstant(
705         constantsRef, elementsAttr.getShapedType().getShape(), llvmType, loc);
706     assert(constantsRef.empty() && "did not consume all elemental constants");
707     return result;
708   }
709 
710   if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
711     return llvm::ConstantDataArray::get(
712         moduleTranslation.getLLVMContext(),
713         ArrayRef<char>{stringAttr.getValue().data(),
714                        stringAttr.getValue().size()});
715   }
716   emitError(loc, "unsupported constant value");
717   return nullptr;
718 }
719 
720 ModuleTranslation::ModuleTranslation(Operation *module,
721                                      std::unique_ptr<llvm::Module> llvmModule)
722     : mlirModule(module), llvmModule(std::move(llvmModule)),
723       debugTranslation(
724           std::make_unique<DebugTranslation>(module, *this->llvmModule)),
725       loopAnnotationTranslation(std::make_unique<LoopAnnotationTranslation>(
726           *this, *this->llvmModule)),
727       typeTranslator(this->llvmModule->getContext()),
728       iface(module->getContext()) {
729   assert(satisfiesLLVMModule(mlirModule) &&
730          "mlirModule should honor LLVM's module semantics.");
731 }
732 
733 ModuleTranslation::~ModuleTranslation() {
734   if (ompBuilder)
735     ompBuilder->finalize();
736 }
737 
738 void ModuleTranslation::forgetMapping(Region &region) {
739   SmallVector<Region *> toProcess;
740   toProcess.push_back(&region);
741   while (!toProcess.empty()) {
742     Region *current = toProcess.pop_back_val();
743     for (Block &block : *current) {
744       blockMapping.erase(&block);
745       for (Value arg : block.getArguments())
746         valueMapping.erase(arg);
747       for (Operation &op : block) {
748         for (Value value : op.getResults())
749           valueMapping.erase(value);
750         if (op.hasSuccessors())
751           branchMapping.erase(&op);
752         if (isa<LLVM::GlobalOp>(op))
753           globalsMapping.erase(&op);
754         if (isa<LLVM::CallOp>(op))
755           callMapping.erase(&op);
756         llvm::append_range(
757             toProcess,
758             llvm::map_range(op.getRegions(), [](Region &r) { return &r; }));
759       }
760     }
761   }
762 }
763 
764 /// Get the SSA value passed to the current block from the terminator operation
765 /// of its predecessor.
766 static Value getPHISourceValue(Block *current, Block *pred,
767                                unsigned numArguments, unsigned index) {
768   Operation &terminator = *pred->getTerminator();
769   if (isa<LLVM::BrOp>(terminator))
770     return terminator.getOperand(index);
771 
772 #ifndef NDEBUG
773   llvm::SmallPtrSet<Block *, 4> seenSuccessors;
774   for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) {
775     Block *successor = terminator.getSuccessor(i);
776     auto branch = cast<BranchOpInterface>(terminator);
777     SuccessorOperands successorOperands = branch.getSuccessorOperands(i);
778     assert(
779         (!seenSuccessors.contains(successor) || successorOperands.empty()) &&
780         "successors with arguments in LLVM branches must be different blocks");
781     seenSuccessors.insert(successor);
782   }
783 #endif
784 
785   // For instructions that branch based on a condition value, we need to take
786   // the operands for the branch that was taken.
787   if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
788     // For conditional branches, we take the operands from either the "true" or
789     // the "false" branch.
790     return condBranchOp.getSuccessor(0) == current
791                ? condBranchOp.getTrueDestOperands()[index]
792                : condBranchOp.getFalseDestOperands()[index];
793   }
794 
795   if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
796     // For switches, we take the operands from either the default case, or from
797     // the case branch that was taken.
798     if (switchOp.getDefaultDestination() == current)
799       return switchOp.getDefaultOperands()[index];
800     for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations()))
801       if (i.value() == current)
802         return switchOp.getCaseOperands(i.index())[index];
803   }
804 
805   if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) {
806     return invokeOp.getNormalDest() == current
807                ? invokeOp.getNormalDestOperands()[index]
808                : invokeOp.getUnwindDestOperands()[index];
809   }
810 
811   llvm_unreachable(
812       "only branch, switch or invoke operations can be terminators "
813       "of a block that has successors");
814 }
815 
816 /// Connect the PHI nodes to the results of preceding blocks.
817 void mlir::LLVM::detail::connectPHINodes(Region &region,
818                                          const ModuleTranslation &state) {
819   // Skip the first block, it cannot be branched to and its arguments correspond
820   // to the arguments of the LLVM function.
821   for (Block &bb : llvm::drop_begin(region)) {
822     llvm::BasicBlock *llvmBB = state.lookupBlock(&bb);
823     auto phis = llvmBB->phis();
824     auto numArguments = bb.getNumArguments();
825     assert(numArguments == std::distance(phis.begin(), phis.end()));
826     for (auto [index, phiNode] : llvm::enumerate(phis)) {
827       for (auto *pred : bb.getPredecessors()) {
828         // Find the LLVM IR block that contains the converted terminator
829         // instruction and use it in the PHI node. Note that this block is not
830         // necessarily the same as state.lookupBlock(pred), some operations
831         // (in particular, OpenMP operations using OpenMPIRBuilder) may have
832         // split the blocks.
833         llvm::Instruction *terminator =
834             state.lookupBranch(pred->getTerminator());
835         assert(terminator && "missing the mapping for a terminator");
836         phiNode.addIncoming(state.lookupValue(getPHISourceValue(
837                                 &bb, pred, numArguments, index)),
838                             terminator->getParent());
839       }
840     }
841   }
842 }
843 
844 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall(
845     llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
846     ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
847   llvm::Module *module = builder.GetInsertBlock()->getModule();
848   llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys);
849   return builder.CreateCall(fn, args);
850 }
851 
852 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall(
853     llvm::IRBuilderBase &builder, ModuleTranslation &moduleTranslation,
854     Operation *intrOp, llvm::Intrinsic::ID intrinsic, unsigned numResults,
855     ArrayRef<unsigned> overloadedResults, ArrayRef<unsigned> overloadedOperands,
856     ArrayRef<unsigned> immArgPositions,
857     ArrayRef<StringLiteral> immArgAttrNames) {
858   assert(immArgPositions.size() == immArgAttrNames.size() &&
859          "LLVM `immArgPositions` and MLIR `immArgAttrNames` should have equal "
860          "length");
861 
862   // Map operands and attributes to LLVM values.
863   auto operands = moduleTranslation.lookupValues(intrOp->getOperands());
864   SmallVector<llvm::Value *> args(immArgPositions.size() + operands.size());
865   for (auto [immArgPos, immArgName] :
866        llvm::zip(immArgPositions, immArgAttrNames)) {
867     auto attr = llvm::cast<TypedAttr>(intrOp->getAttr(immArgName));
868     assert(attr.getType().isIntOrFloat() && "expected int or float immarg");
869     auto *type = moduleTranslation.convertType(attr.getType());
870     args[immArgPos] = LLVM::detail::getLLVMConstant(
871         type, attr, intrOp->getLoc(), moduleTranslation);
872   }
873   unsigned opArg = 0;
874   for (auto &arg : args) {
875     if (!arg)
876       arg = operands[opArg++];
877   }
878 
879   // Resolve overloaded intrinsic declaration.
880   SmallVector<llvm::Type *> overloadedTypes;
881   for (unsigned overloadedResultIdx : overloadedResults) {
882     if (numResults > 1) {
883       // More than one result is mapped to an LLVM struct.
884       overloadedTypes.push_back(moduleTranslation.convertType(
885           llvm::cast<LLVM::LLVMStructType>(intrOp->getResult(0).getType())
886               .getBody()[overloadedResultIdx]));
887     } else {
888       overloadedTypes.push_back(
889           moduleTranslation.convertType(intrOp->getResult(0).getType()));
890     }
891   }
892   for (unsigned overloadedOperandIdx : overloadedOperands)
893     overloadedTypes.push_back(args[overloadedOperandIdx]->getType());
894   llvm::Module *module = builder.GetInsertBlock()->getModule();
895   llvm::Function *llvmIntr =
896       llvm::Intrinsic::getDeclaration(module, intrinsic, overloadedTypes);
897 
898   return builder.CreateCall(llvmIntr, args);
899 }
900 
901 /// Given a single MLIR operation, create the corresponding LLVM IR operation
902 /// using the `builder`.
903 LogicalResult ModuleTranslation::convertOperation(Operation &op,
904                                                   llvm::IRBuilderBase &builder,
905                                                   bool recordInsertions) {
906   const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
907   if (!opIface)
908     return op.emitError("cannot be converted to LLVM IR: missing "
909                         "`LLVMTranslationDialectInterface` registration for "
910                         "dialect for op: ")
911            << op.getName();
912 
913   InstructionCapturingInserter::CollectionScope scope(builder,
914                                                       recordInsertions);
915   if (failed(opIface->convertOperation(&op, builder, *this)))
916     return op.emitError("LLVM Translation failed for operation: ")
917            << op.getName();
918 
919   return convertDialectAttributes(&op, scope.getCapturedInstructions());
920 }
921 
922 /// Convert block to LLVM IR.  Unless `ignoreArguments` is set, emit PHI nodes
923 /// to define values corresponding to the MLIR block arguments.  These nodes
924 /// are not connected to the source basic blocks, which may not exist yet.  Uses
925 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
926 /// been created for `bb` and included in the block mapping.  Inserts new
927 /// instructions at the end of the block and leaves `builder` in a state
928 /// suitable for further insertion into the end of the block.
929 LogicalResult ModuleTranslation::convertBlockImpl(Block &bb,
930                                                   bool ignoreArguments,
931                                                   llvm::IRBuilderBase &builder,
932                                                   bool recordInsertions) {
933   builder.SetInsertPoint(lookupBlock(&bb));
934   auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
935 
936   // Before traversing operations, make block arguments available through
937   // value remapping and PHI nodes, but do not add incoming edges for the PHI
938   // nodes just yet: those values may be defined by this or following blocks.
939   // This step is omitted if "ignoreArguments" is set.  The arguments of the
940   // first block have been already made available through the remapping of
941   // LLVM function arguments.
942   if (!ignoreArguments) {
943     auto predecessors = bb.getPredecessors();
944     unsigned numPredecessors =
945         std::distance(predecessors.begin(), predecessors.end());
946     for (auto arg : bb.getArguments()) {
947       auto wrappedType = arg.getType();
948       if (!isCompatibleType(wrappedType))
949         return emitError(bb.front().getLoc(),
950                          "block argument does not have an LLVM type");
951       llvm::Type *type = convertType(wrappedType);
952       llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
953       mapValue(arg, phi);
954     }
955   }
956 
957   // Traverse operations.
958   for (auto &op : bb) {
959     // Set the current debug location within the builder.
960     builder.SetCurrentDebugLocation(
961         debugTranslation->translateLoc(op.getLoc(), subprogram));
962 
963     if (failed(convertOperation(op, builder, recordInsertions)))
964       return failure();
965 
966     // Set the branch weight metadata on the translated instruction.
967     if (auto iface = dyn_cast<BranchWeightOpInterface>(op))
968       setBranchWeightsMetadata(iface);
969   }
970 
971   return success();
972 }
973 
974 /// A helper method to get the single Block in an operation honoring LLVM's
975 /// module requirements.
976 static Block &getModuleBody(Operation *module) {
977   return module->getRegion(0).front();
978 }
979 
980 /// A helper method to decide if a constant must not be set as a global variable
981 /// initializer. For an external linkage variable, the variable with an
982 /// initializer is considered externally visible and defined in this module, the
983 /// variable without an initializer is externally available and is defined
984 /// elsewhere.
985 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
986                                         llvm::Constant *cst) {
987   return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) ||
988          linkage == llvm::GlobalVariable::ExternalWeakLinkage;
989 }
990 
991 /// Sets the runtime preemption specifier of `gv` to dso_local if
992 /// `dsoLocalRequested` is true, otherwise it is left unchanged.
993 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested,
994                                           llvm::GlobalValue *gv) {
995   if (dsoLocalRequested)
996     gv->setDSOLocal(true);
997 }
998 
999 /// Create named global variables that correspond to llvm.mlir.global
1000 /// definitions. Convert llvm.global_ctors and global_dtors ops.
1001 LogicalResult ModuleTranslation::convertGlobals() {
1002   // Mapping from compile unit to its respective set of global variables.
1003   DenseMap<llvm::DICompileUnit *, SmallVector<llvm::Metadata *>> allGVars;
1004 
1005   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
1006     llvm::Type *type = convertType(op.getType());
1007     llvm::Constant *cst = nullptr;
1008     if (op.getValueOrNull()) {
1009       // String attributes are treated separately because they cannot appear as
1010       // in-function constants and are thus not supported by getLLVMConstant.
1011       if (auto strAttr = dyn_cast_or_null<StringAttr>(op.getValueOrNull())) {
1012         cst = llvm::ConstantDataArray::getString(
1013             llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
1014         type = cst->getType();
1015       } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
1016                                          *this))) {
1017         return failure();
1018       }
1019     }
1020 
1021     auto linkage = convertLinkageToLLVM(op.getLinkage());
1022     auto addrSpace = op.getAddrSpace();
1023 
1024     // LLVM IR requires constant with linkage other than external or weak
1025     // external to have initializers. If MLIR does not provide an initializer,
1026     // default to undef.
1027     bool dropInitializer = shouldDropGlobalInitializer(linkage, cst);
1028     if (!dropInitializer && !cst)
1029       cst = llvm::UndefValue::get(type);
1030     else if (dropInitializer && cst)
1031       cst = nullptr;
1032 
1033     auto *var = new llvm::GlobalVariable(
1034         *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(),
1035         /*InsertBefore=*/nullptr,
1036         op.getThreadLocal_() ? llvm::GlobalValue::GeneralDynamicTLSModel
1037                              : llvm::GlobalValue::NotThreadLocal,
1038         addrSpace);
1039 
1040     if (std::optional<mlir::SymbolRefAttr> comdat = op.getComdat()) {
1041       auto selectorOp = cast<ComdatSelectorOp>(
1042           SymbolTable::lookupNearestSymbolFrom(op, *comdat));
1043       var->setComdat(comdatMapping.lookup(selectorOp));
1044     }
1045 
1046     if (op.getUnnamedAddr().has_value())
1047       var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr()));
1048 
1049     if (op.getSection().has_value())
1050       var->setSection(*op.getSection());
1051 
1052     addRuntimePreemptionSpecifier(op.getDsoLocal(), var);
1053 
1054     std::optional<uint64_t> alignment = op.getAlignment();
1055     if (alignment.has_value())
1056       var->setAlignment(llvm::MaybeAlign(alignment.value()));
1057 
1058     var->setVisibility(convertVisibilityToLLVM(op.getVisibility_()));
1059 
1060     globalsMapping.try_emplace(op, var);
1061 
1062     // Add debug information if present.
1063     if (op.getDbgExpr()) {
1064       llvm::DIGlobalVariableExpression *diGlobalExpr =
1065           debugTranslation->translateGlobalVariableExpression(op.getDbgExpr());
1066       llvm::DIGlobalVariable *diGlobalVar = diGlobalExpr->getVariable();
1067       var->addDebugInfo(diGlobalExpr);
1068 
1069       // There is no `globals` field in DICompileUnitAttr which can be directly
1070       // assigned to DICompileUnit. We have to build the list by looking at the
1071       // dbgExpr of all the GlobalOps. The scope of the variable is used to get
1072       // the DICompileUnit in which to add it. But for the languages that
1073       // support modules, the scope hierarchy can be
1074       // variable -> module -> compile unit
1075       // If a variable scope points to the module then we use the scope of the
1076       // module to get the compile unit.
1077       llvm::DIScope *scope = diGlobalVar->getScope();
1078       if (llvm::DIModule *mod = dyn_cast_if_present<llvm::DIModule>(scope))
1079         scope = mod->getScope();
1080 
1081       // Get the compile unit (scope) of the the global variable.
1082       if (llvm::DICompileUnit *compileUnit =
1083               dyn_cast_if_present<llvm::DICompileUnit>(scope)) {
1084         // Update the compile unit with this incoming global variable expression
1085         // during the finalizing step later.
1086         allGVars[compileUnit].push_back(diGlobalExpr);
1087       }
1088     }
1089   }
1090 
1091   // Convert global variable bodies. This is done after all global variables
1092   // have been created in LLVM IR because a global body may refer to another
1093   // global or itself. So all global variables need to be mapped first.
1094   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
1095     if (Block *initializer = op.getInitializerBlock()) {
1096       llvm::IRBuilder<> builder(llvmModule->getContext());
1097 
1098       [[maybe_unused]] int numConstantsHit = 0;
1099       [[maybe_unused]] int numConstantsErased = 0;
1100       DenseMap<llvm::ConstantAggregate *, int> constantAggregateUseMap;
1101 
1102       for (auto &op : initializer->without_terminator()) {
1103         if (failed(convertOperation(op, builder)))
1104           return emitError(op.getLoc(), "fail to convert global initializer");
1105         auto *cst = dyn_cast<llvm::Constant>(lookupValue(op.getResult(0)));
1106         if (!cst)
1107           return emitError(op.getLoc(), "unemittable constant value");
1108 
1109         // When emitting an LLVM constant, a new constant is created and the old
1110         // constant may become dangling and take space. We should remove the
1111         // dangling constants to avoid memory explosion especially for constant
1112         // arrays whose number of elements is large.
1113         // Because multiple operations may refer to the same constant, we need
1114         // to count the number of uses of each constant array and remove it only
1115         // when the count becomes zero.
1116         if (auto *agg = dyn_cast<llvm::ConstantAggregate>(cst)) {
1117           numConstantsHit++;
1118           Value result = op.getResult(0);
1119           int numUsers = std::distance(result.use_begin(), result.use_end());
1120           auto [iterator, inserted] =
1121               constantAggregateUseMap.try_emplace(agg, numUsers);
1122           if (!inserted) {
1123             // Key already exists, update the value
1124             iterator->second += numUsers;
1125           }
1126         }
1127         // Scan the operands of the operation to decrement the use count of
1128         // constants. Erase the constant if the use count becomes zero.
1129         for (Value v : op.getOperands()) {
1130           auto cst = dyn_cast<llvm::ConstantAggregate>(lookupValue(v));
1131           if (!cst)
1132             continue;
1133           auto iter = constantAggregateUseMap.find(cst);
1134           assert(iter != constantAggregateUseMap.end() && "constant not found");
1135           iter->second--;
1136           if (iter->second == 0) {
1137             // NOTE: cannot call removeDeadConstantUsers() here because it
1138             // may remove the constant which has uses not be converted yet.
1139             if (cst->user_empty()) {
1140               cst->destroyConstant();
1141               numConstantsErased++;
1142             }
1143             constantAggregateUseMap.erase(iter);
1144           }
1145         }
1146       }
1147 
1148       ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
1149       llvm::Constant *cst =
1150           cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
1151       auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
1152       if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
1153         global->setInitializer(cst);
1154 
1155       // Try to remove the dangling constants again after all operations are
1156       // converted.
1157       for (auto it : constantAggregateUseMap) {
1158         auto cst = it.first;
1159         cst->removeDeadConstantUsers();
1160         if (cst->user_empty()) {
1161           cst->destroyConstant();
1162           numConstantsErased++;
1163         }
1164       }
1165 
1166       LLVM_DEBUG(llvm::dbgs()
1167                      << "Convert initializer for " << op.getName() << "\n";
1168                  llvm::dbgs() << numConstantsHit << " new constants hit\n";
1169                  llvm::dbgs()
1170                  << numConstantsErased << " dangling constants erased\n";);
1171     }
1172   }
1173 
1174   // Convert llvm.mlir.global_ctors and dtors.
1175   for (Operation &op : getModuleBody(mlirModule)) {
1176     auto ctorOp = dyn_cast<GlobalCtorsOp>(op);
1177     auto dtorOp = dyn_cast<GlobalDtorsOp>(op);
1178     if (!ctorOp && !dtorOp)
1179       continue;
1180     auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities())
1181                         : llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities());
1182     auto appendGlobalFn =
1183         ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors;
1184     for (auto symbolAndPriority : range) {
1185       llvm::Function *f = lookupFunction(
1186           cast<FlatSymbolRefAttr>(std::get<0>(symbolAndPriority)).getValue());
1187       appendGlobalFn(*llvmModule, f,
1188                      cast<IntegerAttr>(std::get<1>(symbolAndPriority)).getInt(),
1189                      /*Data=*/nullptr);
1190     }
1191   }
1192 
1193   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>())
1194     if (failed(convertDialectAttributes(op, {})))
1195       return failure();
1196 
1197   // Finally, update the compile units their respective sets of global variables
1198   // created earlier.
1199   for (const auto &[compileUnit, globals] : allGVars) {
1200     compileUnit->replaceGlobalVariables(
1201         llvm::MDTuple::get(getLLVMContext(), globals));
1202   }
1203 
1204   return success();
1205 }
1206 
1207 /// Attempts to add an attribute identified by `key`, optionally with the given
1208 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
1209 /// attribute has a kind known to LLVM IR, create the attribute of this kind,
1210 /// otherwise keep it as a string attribute. Performs additional checks for
1211 /// attributes known to have or not have a value in order to avoid assertions
1212 /// inside LLVM upon construction.
1213 static LogicalResult checkedAddLLVMFnAttribute(Location loc,
1214                                                llvm::Function *llvmFunc,
1215                                                StringRef key,
1216                                                StringRef value = StringRef()) {
1217   auto kind = llvm::Attribute::getAttrKindFromName(key);
1218   if (kind == llvm::Attribute::None) {
1219     llvmFunc->addFnAttr(key, value);
1220     return success();
1221   }
1222 
1223   if (llvm::Attribute::isIntAttrKind(kind)) {
1224     if (value.empty())
1225       return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
1226 
1227     int64_t result;
1228     if (!value.getAsInteger(/*Radix=*/0, result))
1229       llvmFunc->addFnAttr(
1230           llvm::Attribute::get(llvmFunc->getContext(), kind, result));
1231     else
1232       llvmFunc->addFnAttr(key, value);
1233     return success();
1234   }
1235 
1236   if (!value.empty())
1237     return emitError(loc) << "LLVM attribute '" << key
1238                           << "' does not expect a value, found '" << value
1239                           << "'";
1240 
1241   llvmFunc->addFnAttr(kind);
1242   return success();
1243 }
1244 
1245 /// Attaches the attributes listed in the given array attribute to `llvmFunc`.
1246 /// Reports error to `loc` if any and returns immediately. Expects `attributes`
1247 /// to be an array attribute containing either string attributes, treated as
1248 /// value-less LLVM attributes, or array attributes containing two string
1249 /// attributes, with the first string being the name of the corresponding LLVM
1250 /// attribute and the second string beings its value. Note that even integer
1251 /// attributes are expected to have their values expressed as strings.
1252 static LogicalResult
1253 forwardPassthroughAttributes(Location loc, std::optional<ArrayAttr> attributes,
1254                              llvm::Function *llvmFunc) {
1255   if (!attributes)
1256     return success();
1257 
1258   for (Attribute attr : *attributes) {
1259     if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
1260       if (failed(
1261               checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
1262         return failure();
1263       continue;
1264     }
1265 
1266     auto arrayAttr = dyn_cast<ArrayAttr>(attr);
1267     if (!arrayAttr || arrayAttr.size() != 2)
1268       return emitError(loc)
1269              << "expected 'passthrough' to contain string or array attributes";
1270 
1271     auto keyAttr = dyn_cast<StringAttr>(arrayAttr[0]);
1272     auto valueAttr = dyn_cast<StringAttr>(arrayAttr[1]);
1273     if (!keyAttr || !valueAttr)
1274       return emitError(loc)
1275              << "expected arrays within 'passthrough' to contain two strings";
1276 
1277     if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
1278                                          valueAttr.getValue())))
1279       return failure();
1280   }
1281   return success();
1282 }
1283 
1284 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
1285   // Clear the block, branch value mappings, they are only relevant within one
1286   // function.
1287   blockMapping.clear();
1288   valueMapping.clear();
1289   branchMapping.clear();
1290   llvm::Function *llvmFunc = lookupFunction(func.getName());
1291 
1292   // Add function arguments to the value remapping table.
1293   for (auto [mlirArg, llvmArg] :
1294        llvm::zip(func.getArguments(), llvmFunc->args()))
1295     mapValue(mlirArg, &llvmArg);
1296 
1297   // Check the personality and set it.
1298   if (func.getPersonality()) {
1299     llvm::Type *ty = llvm::PointerType::getUnqual(llvmFunc->getContext());
1300     if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(),
1301                                                 func.getLoc(), *this))
1302       llvmFunc->setPersonalityFn(pfunc);
1303   }
1304 
1305   if (std::optional<StringRef> section = func.getSection())
1306     llvmFunc->setSection(*section);
1307 
1308   if (func.getArmStreaming())
1309     llvmFunc->addFnAttr("aarch64_pstate_sm_enabled");
1310   else if (func.getArmLocallyStreaming())
1311     llvmFunc->addFnAttr("aarch64_pstate_sm_body");
1312   else if (func.getArmStreamingCompatible())
1313     llvmFunc->addFnAttr("aarch64_pstate_sm_compatible");
1314 
1315   if (func.getArmNewZa())
1316     llvmFunc->addFnAttr("aarch64_new_za");
1317   else if (func.getArmInZa())
1318     llvmFunc->addFnAttr("aarch64_in_za");
1319   else if (func.getArmOutZa())
1320     llvmFunc->addFnAttr("aarch64_out_za");
1321   else if (func.getArmInoutZa())
1322     llvmFunc->addFnAttr("aarch64_inout_za");
1323   else if (func.getArmPreservesZa())
1324     llvmFunc->addFnAttr("aarch64_preserves_za");
1325 
1326   if (auto targetCpu = func.getTargetCpu())
1327     llvmFunc->addFnAttr("target-cpu", *targetCpu);
1328 
1329   if (auto targetFeatures = func.getTargetFeatures())
1330     llvmFunc->addFnAttr("target-features", targetFeatures->getFeaturesString());
1331 
1332   if (auto attr = func.getVscaleRange())
1333     llvmFunc->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
1334         getLLVMContext(), attr->getMinRange().getInt(),
1335         attr->getMaxRange().getInt()));
1336 
1337   if (auto unsafeFpMath = func.getUnsafeFpMath())
1338     llvmFunc->addFnAttr("unsafe-fp-math", llvm::toStringRef(*unsafeFpMath));
1339 
1340   if (auto noInfsFpMath = func.getNoInfsFpMath())
1341     llvmFunc->addFnAttr("no-infs-fp-math", llvm::toStringRef(*noInfsFpMath));
1342 
1343   if (auto noNansFpMath = func.getNoNansFpMath())
1344     llvmFunc->addFnAttr("no-nans-fp-math", llvm::toStringRef(*noNansFpMath));
1345 
1346   if (auto approxFuncFpMath = func.getApproxFuncFpMath())
1347     llvmFunc->addFnAttr("approx-func-fp-math",
1348                         llvm::toStringRef(*approxFuncFpMath));
1349 
1350   if (auto noSignedZerosFpMath = func.getNoSignedZerosFpMath())
1351     llvmFunc->addFnAttr("no-signed-zeros-fp-math",
1352                         llvm::toStringRef(*noSignedZerosFpMath));
1353 
1354   if (auto denormalFpMath = func.getDenormalFpMath())
1355     llvmFunc->addFnAttr("denormal-fp-math", *denormalFpMath);
1356 
1357   if (auto denormalFpMathF32 = func.getDenormalFpMathF32())
1358     llvmFunc->addFnAttr("denormal-fp-math-f32", *denormalFpMathF32);
1359 
1360   if (auto fpContract = func.getFpContract())
1361     llvmFunc->addFnAttr("fp-contract", *fpContract);
1362 
1363   // Add function attribute frame-pointer, if found.
1364   if (FramePointerKindAttr attr = func.getFramePointerAttr())
1365     llvmFunc->addFnAttr("frame-pointer",
1366                         LLVM::framePointerKind::stringifyFramePointerKind(
1367                             (attr.getFramePointerKind())));
1368 
1369   // First, create all blocks so we can jump to them.
1370   llvm::LLVMContext &llvmContext = llvmFunc->getContext();
1371   for (auto &bb : func) {
1372     auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
1373     llvmBB->insertInto(llvmFunc);
1374     mapBlock(&bb, llvmBB);
1375   }
1376 
1377   // Then, convert blocks one by one in topological order to ensure defs are
1378   // converted before uses.
1379   auto blocks = getBlocksSortedByDominance(func.getBody());
1380   for (Block *bb : blocks) {
1381     CapturingIRBuilder builder(llvmContext);
1382     if (failed(convertBlockImpl(*bb, bb->isEntryBlock(), builder,
1383                                 /*recordInsertions=*/true)))
1384       return failure();
1385   }
1386 
1387   // After all blocks have been traversed and values mapped, connect the PHI
1388   // nodes to the results of preceding blocks.
1389   detail::connectPHINodes(func.getBody(), *this);
1390 
1391   // Finally, convert dialect attributes attached to the function.
1392   return convertDialectAttributes(func, {});
1393 }
1394 
1395 LogicalResult ModuleTranslation::convertDialectAttributes(
1396     Operation *op, ArrayRef<llvm::Instruction *> instructions) {
1397   for (NamedAttribute attribute : op->getDialectAttrs())
1398     if (failed(iface.amendOperation(op, instructions, attribute, *this)))
1399       return failure();
1400   return success();
1401 }
1402 
1403 /// Converts memory effect attributes from `func` and attaches them to
1404 /// `llvmFunc`.
1405 static void convertFunctionMemoryAttributes(LLVMFuncOp func,
1406                                             llvm::Function *llvmFunc) {
1407   if (!func.getMemory())
1408     return;
1409 
1410   MemoryEffectsAttr memEffects = func.getMemoryAttr();
1411 
1412   // Add memory effects incrementally.
1413   llvm::MemoryEffects newMemEffects =
1414       llvm::MemoryEffects(llvm::MemoryEffects::Location::ArgMem,
1415                           convertModRefInfoToLLVM(memEffects.getArgMem()));
1416   newMemEffects |= llvm::MemoryEffects(
1417       llvm::MemoryEffects::Location::InaccessibleMem,
1418       convertModRefInfoToLLVM(memEffects.getInaccessibleMem()));
1419   newMemEffects |=
1420       llvm::MemoryEffects(llvm::MemoryEffects::Location::Other,
1421                           convertModRefInfoToLLVM(memEffects.getOther()));
1422   llvmFunc->setMemoryEffects(newMemEffects);
1423 }
1424 
1425 /// Converts function attributes from `func` and attaches them to `llvmFunc`.
1426 static void convertFunctionAttributes(LLVMFuncOp func,
1427                                       llvm::Function *llvmFunc) {
1428   if (func.getNoInlineAttr())
1429     llvmFunc->addFnAttr(llvm::Attribute::NoInline);
1430   if (func.getAlwaysInlineAttr())
1431     llvmFunc->addFnAttr(llvm::Attribute::AlwaysInline);
1432   if (func.getOptimizeNoneAttr())
1433     llvmFunc->addFnAttr(llvm::Attribute::OptimizeNone);
1434   if (func.getConvergentAttr())
1435     llvmFunc->addFnAttr(llvm::Attribute::Convergent);
1436   convertFunctionMemoryAttributes(func, llvmFunc);
1437 }
1438 
1439 FailureOr<llvm::AttrBuilder>
1440 ModuleTranslation::convertParameterAttrs(LLVMFuncOp func, int argIdx,
1441                                          DictionaryAttr paramAttrs) {
1442   llvm::AttrBuilder attrBuilder(llvmModule->getContext());
1443   auto attrNameToKindMapping = getAttrNameToKindMapping();
1444 
1445   for (auto namedAttr : paramAttrs) {
1446     auto it = attrNameToKindMapping.find(namedAttr.getName());
1447     if (it != attrNameToKindMapping.end()) {
1448       llvm::Attribute::AttrKind llvmKind = it->second;
1449 
1450       llvm::TypeSwitch<Attribute>(namedAttr.getValue())
1451           .Case<TypeAttr>([&](auto typeAttr) {
1452             attrBuilder.addTypeAttr(llvmKind, convertType(typeAttr.getValue()));
1453           })
1454           .Case<IntegerAttr>([&](auto intAttr) {
1455             attrBuilder.addRawIntAttr(llvmKind, intAttr.getInt());
1456           })
1457           .Case<UnitAttr>([&](auto) { attrBuilder.addAttribute(llvmKind); });
1458     } else if (namedAttr.getNameDialect()) {
1459       if (failed(iface.convertParameterAttr(func, argIdx, namedAttr, *this)))
1460         return failure();
1461     }
1462   }
1463 
1464   return attrBuilder;
1465 }
1466 
1467 LogicalResult ModuleTranslation::convertFunctionSignatures() {
1468   // Declare all functions first because there may be function calls that form a
1469   // call graph with cycles, or global initializers that reference functions.
1470   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
1471     llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
1472         function.getName(),
1473         cast<llvm::FunctionType>(convertType(function.getFunctionType())));
1474     llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
1475     llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage()));
1476     llvmFunc->setCallingConv(convertCConvToLLVM(function.getCConv()));
1477     mapFunction(function.getName(), llvmFunc);
1478     addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc);
1479 
1480     // Convert function attributes.
1481     convertFunctionAttributes(function, llvmFunc);
1482 
1483     // Convert function_entry_count attribute to metadata.
1484     if (std::optional<uint64_t> entryCount = function.getFunctionEntryCount())
1485       llvmFunc->setEntryCount(entryCount.value());
1486 
1487     // Convert result attributes.
1488     if (ArrayAttr allResultAttrs = function.getAllResultAttrs()) {
1489       DictionaryAttr resultAttrs = cast<DictionaryAttr>(allResultAttrs[0]);
1490       FailureOr<llvm::AttrBuilder> attrBuilder =
1491           convertParameterAttrs(function, -1, resultAttrs);
1492       if (failed(attrBuilder))
1493         return failure();
1494       llvmFunc->addRetAttrs(*attrBuilder);
1495     }
1496 
1497     // Convert argument attributes.
1498     for (auto [argIdx, llvmArg] : llvm::enumerate(llvmFunc->args())) {
1499       if (DictionaryAttr argAttrs = function.getArgAttrDict(argIdx)) {
1500         FailureOr<llvm::AttrBuilder> attrBuilder =
1501             convertParameterAttrs(function, argIdx, argAttrs);
1502         if (failed(attrBuilder))
1503           return failure();
1504         llvmArg.addAttrs(*attrBuilder);
1505       }
1506     }
1507 
1508     // Forward the pass-through attributes to LLVM.
1509     if (failed(forwardPassthroughAttributes(
1510             function.getLoc(), function.getPassthrough(), llvmFunc)))
1511       return failure();
1512 
1513     // Convert visibility attribute.
1514     llvmFunc->setVisibility(convertVisibilityToLLVM(function.getVisibility_()));
1515 
1516     // Convert the comdat attribute.
1517     if (std::optional<mlir::SymbolRefAttr> comdat = function.getComdat()) {
1518       auto selectorOp = cast<ComdatSelectorOp>(
1519           SymbolTable::lookupNearestSymbolFrom(function, *comdat));
1520       llvmFunc->setComdat(comdatMapping.lookup(selectorOp));
1521     }
1522 
1523     if (auto gc = function.getGarbageCollector())
1524       llvmFunc->setGC(gc->str());
1525 
1526     if (auto unnamedAddr = function.getUnnamedAddr())
1527       llvmFunc->setUnnamedAddr(convertUnnamedAddrToLLVM(*unnamedAddr));
1528 
1529     if (auto alignment = function.getAlignment())
1530       llvmFunc->setAlignment(llvm::MaybeAlign(*alignment));
1531 
1532     // Translate the debug information for this function.
1533     debugTranslation->translate(function, *llvmFunc);
1534   }
1535 
1536   return success();
1537 }
1538 
1539 LogicalResult ModuleTranslation::convertFunctions() {
1540   // Convert functions.
1541   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
1542     // Do not convert external functions, but do process dialect attributes
1543     // attached to them.
1544     if (function.isExternal()) {
1545       if (failed(convertDialectAttributes(function, {})))
1546         return failure();
1547       continue;
1548     }
1549 
1550     if (failed(convertOneFunction(function)))
1551       return failure();
1552   }
1553 
1554   return success();
1555 }
1556 
1557 LogicalResult ModuleTranslation::convertComdats() {
1558   for (auto comdatOp : getModuleBody(mlirModule).getOps<ComdatOp>()) {
1559     for (auto selectorOp : comdatOp.getOps<ComdatSelectorOp>()) {
1560       llvm::Module *module = getLLVMModule();
1561       if (module->getComdatSymbolTable().contains(selectorOp.getSymName()))
1562         return emitError(selectorOp.getLoc())
1563                << "comdat selection symbols must be unique even in different "
1564                   "comdat regions";
1565       llvm::Comdat *comdat = module->getOrInsertComdat(selectorOp.getSymName());
1566       comdat->setSelectionKind(convertComdatToLLVM(selectorOp.getComdat()));
1567       comdatMapping.try_emplace(selectorOp, comdat);
1568     }
1569   }
1570   return success();
1571 }
1572 
1573 void ModuleTranslation::setAccessGroupsMetadata(AccessGroupOpInterface op,
1574                                                 llvm::Instruction *inst) {
1575   if (llvm::MDNode *node = loopAnnotationTranslation->getAccessGroups(op))
1576     inst->setMetadata(llvm::LLVMContext::MD_access_group, node);
1577 }
1578 
1579 llvm::MDNode *
1580 ModuleTranslation::getOrCreateAliasScope(AliasScopeAttr aliasScopeAttr) {
1581   auto [scopeIt, scopeInserted] =
1582       aliasScopeMetadataMapping.try_emplace(aliasScopeAttr, nullptr);
1583   if (!scopeInserted)
1584     return scopeIt->second;
1585   llvm::LLVMContext &ctx = llvmModule->getContext();
1586   auto dummy = llvm::MDNode::getTemporary(ctx, std::nullopt);
1587   // Convert the domain metadata node if necessary.
1588   auto [domainIt, insertedDomain] = aliasDomainMetadataMapping.try_emplace(
1589       aliasScopeAttr.getDomain(), nullptr);
1590   if (insertedDomain) {
1591     llvm::SmallVector<llvm::Metadata *, 2> operands;
1592     // Placeholder for self-reference.
1593     operands.push_back(dummy.get());
1594     if (StringAttr description = aliasScopeAttr.getDomain().getDescription())
1595       operands.push_back(llvm::MDString::get(ctx, description));
1596     domainIt->second = llvm::MDNode::get(ctx, operands);
1597     // Self-reference for uniqueness.
1598     domainIt->second->replaceOperandWith(0, domainIt->second);
1599   }
1600   // Convert the scope metadata node.
1601   assert(domainIt->second && "Scope's domain should already be valid");
1602   llvm::SmallVector<llvm::Metadata *, 3> operands;
1603   // Placeholder for self-reference.
1604   operands.push_back(dummy.get());
1605   operands.push_back(domainIt->second);
1606   if (StringAttr description = aliasScopeAttr.getDescription())
1607     operands.push_back(llvm::MDString::get(ctx, description));
1608   scopeIt->second = llvm::MDNode::get(ctx, operands);
1609   // Self-reference for uniqueness.
1610   scopeIt->second->replaceOperandWith(0, scopeIt->second);
1611   return scopeIt->second;
1612 }
1613 
1614 llvm::MDNode *ModuleTranslation::getOrCreateAliasScopes(
1615     ArrayRef<AliasScopeAttr> aliasScopeAttrs) {
1616   SmallVector<llvm::Metadata *> nodes;
1617   nodes.reserve(aliasScopeAttrs.size());
1618   for (AliasScopeAttr aliasScopeAttr : aliasScopeAttrs)
1619     nodes.push_back(getOrCreateAliasScope(aliasScopeAttr));
1620   return llvm::MDNode::get(getLLVMContext(), nodes);
1621 }
1622 
1623 void ModuleTranslation::setAliasScopeMetadata(AliasAnalysisOpInterface op,
1624                                               llvm::Instruction *inst) {
1625   auto populateScopeMetadata = [&](ArrayAttr aliasScopeAttrs, unsigned kind) {
1626     if (!aliasScopeAttrs || aliasScopeAttrs.empty())
1627       return;
1628     llvm::MDNode *node = getOrCreateAliasScopes(
1629         llvm::to_vector(aliasScopeAttrs.getAsRange<AliasScopeAttr>()));
1630     inst->setMetadata(kind, node);
1631   };
1632 
1633   populateScopeMetadata(op.getAliasScopesOrNull(),
1634                         llvm::LLVMContext::MD_alias_scope);
1635   populateScopeMetadata(op.getNoAliasScopesOrNull(),
1636                         llvm::LLVMContext::MD_noalias);
1637 }
1638 
1639 llvm::MDNode *ModuleTranslation::getTBAANode(TBAATagAttr tbaaAttr) const {
1640   return tbaaMetadataMapping.lookup(tbaaAttr);
1641 }
1642 
1643 void ModuleTranslation::setTBAAMetadata(AliasAnalysisOpInterface op,
1644                                         llvm::Instruction *inst) {
1645   ArrayAttr tagRefs = op.getTBAATagsOrNull();
1646   if (!tagRefs || tagRefs.empty())
1647     return;
1648 
1649   // LLVM IR currently does not support attaching more than one TBAA access tag
1650   // to a memory accessing instruction. It may be useful to support this in
1651   // future, but for the time being just ignore the metadata if MLIR operation
1652   // has multiple access tags.
1653   if (tagRefs.size() > 1) {
1654     op.emitWarning() << "TBAA access tags were not translated, because LLVM "
1655                         "IR only supports a single tag per instruction";
1656     return;
1657   }
1658 
1659   llvm::MDNode *node = getTBAANode(cast<TBAATagAttr>(tagRefs[0]));
1660   inst->setMetadata(llvm::LLVMContext::MD_tbaa, node);
1661 }
1662 
1663 void ModuleTranslation::setBranchWeightsMetadata(BranchWeightOpInterface op) {
1664   DenseI32ArrayAttr weightsAttr = op.getBranchWeightsOrNull();
1665   if (!weightsAttr)
1666     return;
1667 
1668   llvm::Instruction *inst = isa<CallOp>(op) ? lookupCall(op) : lookupBranch(op);
1669   assert(inst && "expected the operation to have a mapping to an instruction");
1670   SmallVector<uint32_t> weights(weightsAttr.asArrayRef());
1671   inst->setMetadata(
1672       llvm::LLVMContext::MD_prof,
1673       llvm::MDBuilder(getLLVMContext()).createBranchWeights(weights));
1674 }
1675 
1676 LogicalResult ModuleTranslation::createTBAAMetadata() {
1677   llvm::LLVMContext &ctx = llvmModule->getContext();
1678   llvm::IntegerType *offsetTy = llvm::IntegerType::get(ctx, 64);
1679 
1680   // Walk the entire module and create all metadata nodes for the TBAA
1681   // attributes. The code below relies on two invariants of the
1682   // `AttrTypeWalker`:
1683   // 1. Attributes are visited in post-order: Since the attributes create a DAG,
1684   //    this ensures that any lookups into `tbaaMetadataMapping` for child
1685   //    attributes succeed.
1686   // 2. Attributes are only ever visited once: This way we don't leak any
1687   //    LLVM metadata instances.
1688   AttrTypeWalker walker;
1689   walker.addWalk([&](TBAARootAttr root) {
1690     tbaaMetadataMapping.insert(
1691         {root, llvm::MDNode::get(ctx, llvm::MDString::get(ctx, root.getId()))});
1692   });
1693 
1694   walker.addWalk([&](TBAATypeDescriptorAttr descriptor) {
1695     SmallVector<llvm::Metadata *> operands;
1696     operands.push_back(llvm::MDString::get(ctx, descriptor.getId()));
1697     for (TBAAMemberAttr member : descriptor.getMembers()) {
1698       operands.push_back(tbaaMetadataMapping.lookup(member.getTypeDesc()));
1699       operands.push_back(llvm::ConstantAsMetadata::get(
1700           llvm::ConstantInt::get(offsetTy, member.getOffset())));
1701     }
1702 
1703     tbaaMetadataMapping.insert({descriptor, llvm::MDNode::get(ctx, operands)});
1704   });
1705 
1706   walker.addWalk([&](TBAATagAttr tag) {
1707     SmallVector<llvm::Metadata *> operands;
1708 
1709     operands.push_back(tbaaMetadataMapping.lookup(tag.getBaseType()));
1710     operands.push_back(tbaaMetadataMapping.lookup(tag.getAccessType()));
1711 
1712     operands.push_back(llvm::ConstantAsMetadata::get(
1713         llvm::ConstantInt::get(offsetTy, tag.getOffset())));
1714     if (tag.getConstant())
1715       operands.push_back(
1716           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(offsetTy, 1)));
1717 
1718     tbaaMetadataMapping.insert({tag, llvm::MDNode::get(ctx, operands)});
1719   });
1720 
1721   mlirModule->walk([&](AliasAnalysisOpInterface analysisOpInterface) {
1722     if (auto attr = analysisOpInterface.getTBAATagsOrNull())
1723       walker.walk(attr);
1724   });
1725 
1726   return success();
1727 }
1728 
1729 void ModuleTranslation::setLoopMetadata(Operation *op,
1730                                         llvm::Instruction *inst) {
1731   LoopAnnotationAttr attr =
1732       TypeSwitch<Operation *, LoopAnnotationAttr>(op)
1733           .Case<LLVM::BrOp, LLVM::CondBrOp>(
1734               [](auto branchOp) { return branchOp.getLoopAnnotationAttr(); });
1735   if (!attr)
1736     return;
1737   llvm::MDNode *loopMD =
1738       loopAnnotationTranslation->translateLoopAnnotation(attr, op);
1739   inst->setMetadata(llvm::LLVMContext::MD_loop, loopMD);
1740 }
1741 
1742 llvm::Type *ModuleTranslation::convertType(Type type) {
1743   return typeTranslator.translateType(type);
1744 }
1745 
1746 /// A helper to look up remapped operands in the value remapping table.
1747 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) {
1748   SmallVector<llvm::Value *> remapped;
1749   remapped.reserve(values.size());
1750   for (Value v : values)
1751     remapped.push_back(lookupValue(v));
1752   return remapped;
1753 }
1754 
1755 llvm::OpenMPIRBuilder *ModuleTranslation::getOpenMPBuilder() {
1756   if (!ompBuilder) {
1757     ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule);
1758     ompBuilder->initialize();
1759 
1760     // Flags represented as top-level OpenMP dialect attributes are set in
1761     // `OpenMPDialectLLVMIRTranslationInterface::amendOperation()`. Here we set
1762     // the default configuration.
1763     ompBuilder->setConfig(llvm::OpenMPIRBuilderConfig(
1764         /* IsTargetDevice = */ false, /* IsGPU = */ false,
1765         /* OpenMPOffloadMandatory = */ false,
1766         /* HasRequiresReverseOffload = */ false,
1767         /* HasRequiresUnifiedAddress = */ false,
1768         /* HasRequiresUnifiedSharedMemory = */ false,
1769         /* HasRequiresDynamicAllocators = */ false));
1770   }
1771   return ompBuilder.get();
1772 }
1773 
1774 llvm::DILocation *ModuleTranslation::translateLoc(Location loc,
1775                                                   llvm::DILocalScope *scope) {
1776   return debugTranslation->translateLoc(loc, scope);
1777 }
1778 
1779 llvm::DIExpression *
1780 ModuleTranslation::translateExpression(LLVM::DIExpressionAttr attr) {
1781   return debugTranslation->translateExpression(attr);
1782 }
1783 
1784 llvm::DIGlobalVariableExpression *
1785 ModuleTranslation::translateGlobalVariableExpression(
1786     LLVM::DIGlobalVariableExpressionAttr attr) {
1787   return debugTranslation->translateGlobalVariableExpression(attr);
1788 }
1789 
1790 llvm::Metadata *ModuleTranslation::translateDebugInfo(LLVM::DINodeAttr attr) {
1791   return debugTranslation->translate(attr);
1792 }
1793 
1794 llvm::RoundingMode
1795 ModuleTranslation::translateRoundingMode(LLVM::RoundingMode rounding) {
1796   return convertRoundingModeToLLVM(rounding);
1797 }
1798 
1799 llvm::fp::ExceptionBehavior ModuleTranslation::translateFPExceptionBehavior(
1800     LLVM::FPExceptionBehavior exceptionBehavior) {
1801   return convertFPExceptionBehaviorToLLVM(exceptionBehavior);
1802 }
1803 
1804 llvm::NamedMDNode *
1805 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
1806   return llvmModule->getOrInsertNamedMetadata(name);
1807 }
1808 
1809 void ModuleTranslation::StackFrame::anchor() {}
1810 
1811 static std::unique_ptr<llvm::Module>
1812 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
1813                   StringRef name) {
1814   m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
1815   auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
1816   // ModuleTranslation can currently only construct modules in the old debug
1817   // info format, so set the flag accordingly.
1818   llvmModule->setNewDbgInfoFormatFlag(false);
1819   if (auto dataLayoutAttr =
1820           m->getDiscardableAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) {
1821     llvmModule->setDataLayout(cast<StringAttr>(dataLayoutAttr).getValue());
1822   } else {
1823     FailureOr<llvm::DataLayout> llvmDataLayout(llvm::DataLayout(""));
1824     if (auto iface = dyn_cast<DataLayoutOpInterface>(m)) {
1825       if (DataLayoutSpecInterface spec = iface.getDataLayoutSpec()) {
1826         llvmDataLayout =
1827             translateDataLayout(spec, DataLayout(iface), m->getLoc());
1828       }
1829     } else if (auto mod = dyn_cast<ModuleOp>(m)) {
1830       if (DataLayoutSpecInterface spec = mod.getDataLayoutSpec()) {
1831         llvmDataLayout =
1832             translateDataLayout(spec, DataLayout(mod), m->getLoc());
1833       }
1834     }
1835     if (failed(llvmDataLayout))
1836       return nullptr;
1837     llvmModule->setDataLayout(*llvmDataLayout);
1838   }
1839   if (auto targetTripleAttr =
1840           m->getDiscardableAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
1841     llvmModule->setTargetTriple(cast<StringAttr>(targetTripleAttr).getValue());
1842 
1843   return llvmModule;
1844 }
1845 
1846 std::unique_ptr<llvm::Module>
1847 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
1848                               StringRef name, bool disableVerification) {
1849   if (!satisfiesLLVMModule(module)) {
1850     module->emitOpError("can not be translated to an LLVMIR module");
1851     return nullptr;
1852   }
1853 
1854   std::unique_ptr<llvm::Module> llvmModule =
1855       prepareLLVMModule(module, llvmContext, name);
1856   if (!llvmModule)
1857     return nullptr;
1858 
1859   LLVM::ensureDistinctSuccessors(module);
1860   LLVM::legalizeDIExpressionsRecursively(module);
1861 
1862   ModuleTranslation translator(module, std::move(llvmModule));
1863   llvm::IRBuilder<> llvmBuilder(llvmContext);
1864 
1865   // Convert module before functions and operations inside, so dialect
1866   // attributes can be used to change dialect-specific global configurations via
1867   // `amendOperation()`. These configurations can then influence the translation
1868   // of operations afterwards.
1869   if (failed(translator.convertOperation(*module, llvmBuilder)))
1870     return nullptr;
1871 
1872   if (failed(translator.convertComdats()))
1873     return nullptr;
1874   if (failed(translator.convertFunctionSignatures()))
1875     return nullptr;
1876   if (failed(translator.convertGlobals()))
1877     return nullptr;
1878   if (failed(translator.createTBAAMetadata()))
1879     return nullptr;
1880 
1881   // Convert other top-level operations if possible.
1882   for (Operation &o : getModuleBody(module).getOperations()) {
1883     if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp,
1884              LLVM::GlobalDtorsOp, LLVM::ComdatOp>(&o) &&
1885         !o.hasTrait<OpTrait::IsTerminator>() &&
1886         failed(translator.convertOperation(o, llvmBuilder))) {
1887       return nullptr;
1888     }
1889   }
1890 
1891   // Operations in function bodies with symbolic references must be converted
1892   // after the top-level operations they refer to are declared, so we do it
1893   // last.
1894   if (failed(translator.convertFunctions()))
1895     return nullptr;
1896 
1897   // Once we've finished constructing elements in the module, we should convert
1898   // it to use the debug info format desired by LLVM.
1899   // See https://llvm.org/docs/RemoveDIsDebugInfo.html
1900   translator.llvmModule->setIsNewDbgInfoFormat(UseNewDbgInfoFormat);
1901 
1902   if (!disableVerification &&
1903       llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
1904     return nullptr;
1905 
1906   return std::move(translator.llvmModule);
1907 }
1908