xref: /llvm-project/mlir/lib/Target/LLVMIR/ModuleTranslation.cpp (revision e39e30e95237bee53346acf16d197de8fdf4825e)
1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the translation between an MLIR LLVM dialect module and
10 // the corresponding LLVMIR module. It only handles core LLVM IR operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Target/LLVMIR/ModuleTranslation.h"
15 
16 #include "AttrKindDetail.h"
17 #include "DebugTranslation.h"
18 #include "LoopAnnotationTranslation.h"
19 #include "mlir/Dialect/DLTI/DLTI.h"
20 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
21 #include "mlir/Dialect/LLVMIR/LLVMInterfaces.h"
22 #include "mlir/Dialect/LLVMIR/Transforms/DIExpressionLegalization.h"
23 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
24 #include "mlir/Dialect/OpenMP/OpenMPDialect.h"
25 #include "mlir/Dialect/OpenMP/OpenMPInterfaces.h"
26 #include "mlir/IR/AttrTypeSubElements.h"
27 #include "mlir/IR/Attributes.h"
28 #include "mlir/IR/BuiltinOps.h"
29 #include "mlir/IR/BuiltinTypes.h"
30 #include "mlir/IR/DialectResourceBlobManager.h"
31 #include "mlir/IR/RegionGraphTraits.h"
32 #include "mlir/Support/LLVM.h"
33 #include "mlir/Support/LogicalResult.h"
34 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
35 #include "mlir/Target/LLVMIR/TypeToLLVM.h"
36 #include "mlir/Transforms/RegionUtils.h"
37 
38 #include "llvm/ADT/PostOrderIterator.h"
39 #include "llvm/ADT/SetVector.h"
40 #include "llvm/ADT/StringExtras.h"
41 #include "llvm/ADT/TypeSwitch.h"
42 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/CFG.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/IntrinsicsNVPTX.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/Verifier.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
57 #include "llvm/Transforms/Utils/Cloning.h"
58 #include "llvm/Transforms/Utils/ModuleUtils.h"
59 #include <optional>
60 
61 #define DEBUG_TYPE "llvm-dialect-to-llvm-ir"
62 
63 using namespace mlir;
64 using namespace mlir::LLVM;
65 using namespace mlir::LLVM::detail;
66 
67 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
68 
69 namespace {
70 /// A customized inserter for LLVM's IRBuilder that captures all LLVM IR
71 /// instructions that are created for future reference.
72 ///
73 /// This is intended to be used with the `CollectionScope` RAII object:
74 ///
75 ///     llvm::IRBuilder<..., InstructionCapturingInserter> builder;
76 ///     {
77 ///       InstructionCapturingInserter::CollectionScope scope(builder);
78 ///       // Call IRBuilder methods as usual.
79 ///
80 ///       // This will return a list of all instructions created by the builder,
81 ///       // in order of creation.
82 ///       builder.getInserter().getCapturedInstructions();
83 ///     }
84 ///     // This will return an empty list.
85 ///     builder.getInserter().getCapturedInstructions();
86 ///
87 /// The capturing functionality is _disabled_ by default for performance
88 /// consideration. It needs to be explicitly enabled, which is achieved by
89 /// creating a `CollectionScope`.
90 class InstructionCapturingInserter : public llvm::IRBuilderCallbackInserter {
91 public:
92   /// Constructs the inserter.
93   InstructionCapturingInserter()
94       : llvm::IRBuilderCallbackInserter([this](llvm::Instruction *instruction) {
95           if (LLVM_LIKELY(enabled))
96             capturedInstructions.push_back(instruction);
97         }) {}
98 
99   /// Returns the list of LLVM IR instructions captured since the last cleanup.
100   ArrayRef<llvm::Instruction *> getCapturedInstructions() const {
101     return capturedInstructions;
102   }
103 
104   /// Clears the list of captured LLVM IR instructions.
105   void clearCapturedInstructions() { capturedInstructions.clear(); }
106 
107   /// RAII object enabling the capture of created LLVM IR instructions.
108   class CollectionScope {
109   public:
110     /// Creates the scope for the given inserter.
111     CollectionScope(llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing);
112 
113     /// Ends the scope.
114     ~CollectionScope();
115 
116     ArrayRef<llvm::Instruction *> getCapturedInstructions() {
117       if (!inserter)
118         return {};
119       return inserter->getCapturedInstructions();
120     }
121 
122   private:
123     /// Back reference to the inserter.
124     InstructionCapturingInserter *inserter = nullptr;
125 
126     /// List of instructions in the inserter prior to this scope.
127     SmallVector<llvm::Instruction *> previouslyCollectedInstructions;
128 
129     /// Whether the inserter was enabled prior to this scope.
130     bool wasEnabled;
131   };
132 
133   /// Enable or disable the capturing mechanism.
134   void setEnabled(bool enabled = true) { this->enabled = enabled; }
135 
136 private:
137   /// List of captured instructions.
138   SmallVector<llvm::Instruction *> capturedInstructions;
139 
140   /// Whether the collection is enabled.
141   bool enabled = false;
142 };
143 
144 using CapturingIRBuilder =
145     llvm::IRBuilder<llvm::ConstantFolder, InstructionCapturingInserter>;
146 } // namespace
147 
148 InstructionCapturingInserter::CollectionScope::CollectionScope(
149     llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing) {
150 
151   if (!isBuilderCapturing)
152     return;
153 
154   auto &capturingIRBuilder = static_cast<CapturingIRBuilder &>(irBuilder);
155   inserter = &capturingIRBuilder.getInserter();
156   wasEnabled = inserter->enabled;
157   if (wasEnabled)
158     previouslyCollectedInstructions.swap(inserter->capturedInstructions);
159   inserter->setEnabled(true);
160 }
161 
162 InstructionCapturingInserter::CollectionScope::~CollectionScope() {
163   if (!inserter)
164     return;
165 
166   previouslyCollectedInstructions.swap(inserter->capturedInstructions);
167   // If collection was enabled (likely in another, surrounding scope), keep
168   // the instructions collected in this scope.
169   if (wasEnabled) {
170     llvm::append_range(inserter->capturedInstructions,
171                        previouslyCollectedInstructions);
172   }
173   inserter->setEnabled(wasEnabled);
174 }
175 
176 /// Translates the given data layout spec attribute to the LLVM IR data layout.
177 /// Only integer, float, pointer and endianness entries are currently supported.
178 static FailureOr<llvm::DataLayout>
179 translateDataLayout(DataLayoutSpecInterface attribute,
180                     const DataLayout &dataLayout,
181                     std::optional<Location> loc = std::nullopt) {
182   if (!loc)
183     loc = UnknownLoc::get(attribute.getContext());
184 
185   // Translate the endianness attribute.
186   std::string llvmDataLayout;
187   llvm::raw_string_ostream layoutStream(llvmDataLayout);
188   for (DataLayoutEntryInterface entry : attribute.getEntries()) {
189     auto key = llvm::dyn_cast_if_present<StringAttr>(entry.getKey());
190     if (!key)
191       continue;
192     if (key.getValue() == DLTIDialect::kDataLayoutEndiannessKey) {
193       auto value = cast<StringAttr>(entry.getValue());
194       bool isLittleEndian =
195           value.getValue() == DLTIDialect::kDataLayoutEndiannessLittle;
196       layoutStream << "-" << (isLittleEndian ? "e" : "E");
197       layoutStream.flush();
198       continue;
199     }
200     if (key.getValue() == DLTIDialect::kDataLayoutProgramMemorySpaceKey) {
201       auto value = cast<IntegerAttr>(entry.getValue());
202       uint64_t space = value.getValue().getZExtValue();
203       // Skip the default address space.
204       if (space == 0)
205         continue;
206       layoutStream << "-P" << space;
207       layoutStream.flush();
208       continue;
209     }
210     if (key.getValue() == DLTIDialect::kDataLayoutGlobalMemorySpaceKey) {
211       auto value = cast<IntegerAttr>(entry.getValue());
212       uint64_t space = value.getValue().getZExtValue();
213       // Skip the default address space.
214       if (space == 0)
215         continue;
216       layoutStream << "-G" << space;
217       layoutStream.flush();
218       continue;
219     }
220     if (key.getValue() == DLTIDialect::kDataLayoutAllocaMemorySpaceKey) {
221       auto value = cast<IntegerAttr>(entry.getValue());
222       uint64_t space = value.getValue().getZExtValue();
223       // Skip the default address space.
224       if (space == 0)
225         continue;
226       layoutStream << "-A" << space;
227       layoutStream.flush();
228       continue;
229     }
230     if (key.getValue() == DLTIDialect::kDataLayoutStackAlignmentKey) {
231       auto value = cast<IntegerAttr>(entry.getValue());
232       uint64_t alignment = value.getValue().getZExtValue();
233       // Skip the default stack alignment.
234       if (alignment == 0)
235         continue;
236       layoutStream << "-S" << alignment;
237       layoutStream.flush();
238       continue;
239     }
240     emitError(*loc) << "unsupported data layout key " << key;
241     return failure();
242   }
243 
244   // Go through the list of entries to check which types are explicitly
245   // specified in entries. Where possible, data layout queries are used instead
246   // of directly inspecting the entries.
247   for (DataLayoutEntryInterface entry : attribute.getEntries()) {
248     auto type = llvm::dyn_cast_if_present<Type>(entry.getKey());
249     if (!type)
250       continue;
251     // Data layout for the index type is irrelevant at this point.
252     if (isa<IndexType>(type))
253       continue;
254     layoutStream << "-";
255     LogicalResult result =
256         llvm::TypeSwitch<Type, LogicalResult>(type)
257             .Case<IntegerType, Float16Type, Float32Type, Float64Type,
258                   Float80Type, Float128Type>([&](Type type) -> LogicalResult {
259               if (auto intType = dyn_cast<IntegerType>(type)) {
260                 if (intType.getSignedness() != IntegerType::Signless)
261                   return emitError(*loc)
262                          << "unsupported data layout for non-signless integer "
263                          << intType;
264                 layoutStream << "i";
265               } else {
266                 layoutStream << "f";
267               }
268               uint64_t size = dataLayout.getTypeSizeInBits(type);
269               uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u;
270               uint64_t preferred =
271                   dataLayout.getTypePreferredAlignment(type) * 8u;
272               layoutStream << size << ":" << abi;
273               if (abi != preferred)
274                 layoutStream << ":" << preferred;
275               return success();
276             })
277             .Case([&](LLVMPointerType ptrType) {
278               layoutStream << "p" << ptrType.getAddressSpace() << ":";
279               uint64_t size = dataLayout.getTypeSizeInBits(type);
280               uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u;
281               uint64_t preferred =
282                   dataLayout.getTypePreferredAlignment(type) * 8u;
283               layoutStream << size << ":" << abi << ":" << preferred;
284               if (std::optional<uint64_t> index = extractPointerSpecValue(
285                       entry.getValue(), PtrDLEntryPos::Index))
286                 layoutStream << ":" << *index;
287               return success();
288             })
289             .Default([loc](Type type) {
290               return emitError(*loc)
291                      << "unsupported type in data layout: " << type;
292             });
293     if (failed(result))
294       return failure();
295   }
296   layoutStream.flush();
297   StringRef layoutSpec(llvmDataLayout);
298   if (layoutSpec.starts_with("-"))
299     layoutSpec = layoutSpec.drop_front();
300 
301   return llvm::DataLayout(layoutSpec);
302 }
303 
304 /// Builds a constant of a sequential LLVM type `type`, potentially containing
305 /// other sequential types recursively, from the individual constant values
306 /// provided in `constants`. `shape` contains the number of elements in nested
307 /// sequential types. Reports errors at `loc` and returns nullptr on error.
308 static llvm::Constant *
309 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
310                         ArrayRef<int64_t> shape, llvm::Type *type,
311                         Location loc) {
312   if (shape.empty()) {
313     llvm::Constant *result = constants.front();
314     constants = constants.drop_front();
315     return result;
316   }
317 
318   llvm::Type *elementType;
319   if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
320     elementType = arrayTy->getElementType();
321   } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
322     elementType = vectorTy->getElementType();
323   } else {
324     emitError(loc) << "expected sequential LLVM types wrapping a scalar";
325     return nullptr;
326   }
327 
328   SmallVector<llvm::Constant *, 8> nested;
329   nested.reserve(shape.front());
330   for (int64_t i = 0; i < shape.front(); ++i) {
331     nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
332                                              elementType, loc));
333     if (!nested.back())
334       return nullptr;
335   }
336 
337   if (shape.size() == 1 && type->isVectorTy())
338     return llvm::ConstantVector::get(nested);
339   return llvm::ConstantArray::get(
340       llvm::ArrayType::get(elementType, shape.front()), nested);
341 }
342 
343 /// Returns the first non-sequential type nested in sequential types.
344 static llvm::Type *getInnermostElementType(llvm::Type *type) {
345   do {
346     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
347       type = arrayTy->getElementType();
348     } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
349       type = vectorTy->getElementType();
350     } else {
351       return type;
352     }
353   } while (true);
354 }
355 
356 /// Convert a dense elements attribute to an LLVM IR constant using its raw data
357 /// storage if possible. This supports elements attributes of tensor or vector
358 /// type and avoids constructing separate objects for individual values of the
359 /// innermost dimension. Constants for other dimensions are still constructed
360 /// recursively. Returns null if constructing from raw data is not supported for
361 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports
362 /// other errors at `loc`.
363 static llvm::Constant *
364 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr,
365                          llvm::Type *llvmType,
366                          const ModuleTranslation &moduleTranslation) {
367   if (!denseElementsAttr)
368     return nullptr;
369 
370   llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
371   if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType))
372     return nullptr;
373 
374   ShapedType type = denseElementsAttr.getType();
375   if (type.getNumElements() == 0)
376     return nullptr;
377 
378   // Check that the raw data size matches what is expected for the scalar size.
379   // TODO: in theory, we could repack the data here to keep constructing from
380   // raw data.
381   // TODO: we may also need to consider endianness when cross-compiling to an
382   // architecture where it is different.
383   int64_t elementByteSize = denseElementsAttr.getRawData().size() /
384                             denseElementsAttr.getNumElements();
385   if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits())
386     return nullptr;
387 
388   // Compute the shape of all dimensions but the innermost. Note that the
389   // innermost dimension may be that of the vector element type.
390   bool hasVectorElementType = isa<VectorType>(type.getElementType());
391   int64_t numAggregates =
392       denseElementsAttr.getNumElements() /
393       (hasVectorElementType ? 1
394                             : denseElementsAttr.getType().getShape().back());
395   ArrayRef<int64_t> outerShape = type.getShape();
396   if (!hasVectorElementType)
397     outerShape = outerShape.drop_back();
398 
399   // Handle the case of vector splat, LLVM has special support for it.
400   if (denseElementsAttr.isSplat() &&
401       (isa<VectorType>(type) || hasVectorElementType)) {
402     llvm::Constant *splatValue = LLVM::detail::getLLVMConstant(
403         innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc,
404         moduleTranslation);
405     llvm::Constant *splatVector =
406         llvm::ConstantDataVector::getSplat(0, splatValue);
407     SmallVector<llvm::Constant *> constants(numAggregates, splatVector);
408     ArrayRef<llvm::Constant *> constantsRef = constants;
409     return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
410   }
411   if (denseElementsAttr.isSplat())
412     return nullptr;
413 
414   // In case of non-splat, create a constructor for the innermost constant from
415   // a piece of raw data.
416   std::function<llvm::Constant *(StringRef)> buildCstData;
417   if (isa<TensorType>(type)) {
418     auto vectorElementType = dyn_cast<VectorType>(type.getElementType());
419     if (vectorElementType && vectorElementType.getRank() == 1) {
420       buildCstData = [&](StringRef data) {
421         return llvm::ConstantDataVector::getRaw(
422             data, vectorElementType.getShape().back(), innermostLLVMType);
423       };
424     } else if (!vectorElementType) {
425       buildCstData = [&](StringRef data) {
426         return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
427                                                innermostLLVMType);
428       };
429     }
430   } else if (isa<VectorType>(type)) {
431     buildCstData = [&](StringRef data) {
432       return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
433                                               innermostLLVMType);
434     };
435   }
436   if (!buildCstData)
437     return nullptr;
438 
439   // Create innermost constants and defer to the default constant creation
440   // mechanism for other dimensions.
441   SmallVector<llvm::Constant *> constants;
442   int64_t aggregateSize = denseElementsAttr.getType().getShape().back() *
443                           (innermostLLVMType->getScalarSizeInBits() / 8);
444   constants.reserve(numAggregates);
445   for (unsigned i = 0; i < numAggregates; ++i) {
446     StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize,
447                    aggregateSize);
448     constants.push_back(buildCstData(data));
449   }
450 
451   ArrayRef<llvm::Constant *> constantsRef = constants;
452   return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
453 }
454 
455 /// Convert a dense resource elements attribute to an LLVM IR constant using its
456 /// raw data storage if possible. This supports elements attributes of tensor or
457 /// vector type and avoids constructing separate objects for individual values
458 /// of the innermost dimension. Constants for other dimensions are still
459 /// constructed recursively. Returns nullptr on failure and emits errors at
460 /// `loc`.
461 static llvm::Constant *convertDenseResourceElementsAttr(
462     Location loc, DenseResourceElementsAttr denseResourceAttr,
463     llvm::Type *llvmType, const ModuleTranslation &moduleTranslation) {
464   assert(denseResourceAttr && "expected non-null attribute");
465 
466   llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
467   if (!llvm::ConstantDataSequential::isElementTypeCompatible(
468           innermostLLVMType)) {
469     emitError(loc, "no known conversion for innermost element type");
470     return nullptr;
471   }
472 
473   ShapedType type = denseResourceAttr.getType();
474   assert(type.getNumElements() > 0 && "Expected non-empty elements attribute");
475 
476   AsmResourceBlob *blob = denseResourceAttr.getRawHandle().getBlob();
477   if (!blob) {
478     emitError(loc, "resource does not exist");
479     return nullptr;
480   }
481 
482   ArrayRef<char> rawData = blob->getData();
483 
484   // Check that the raw data size matches what is expected for the scalar size.
485   // TODO: in theory, we could repack the data here to keep constructing from
486   // raw data.
487   // TODO: we may also need to consider endianness when cross-compiling to an
488   // architecture where it is different.
489   int64_t numElements = denseResourceAttr.getType().getNumElements();
490   int64_t elementByteSize = rawData.size() / numElements;
491   if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits()) {
492     emitError(loc, "raw data size does not match element type size");
493     return nullptr;
494   }
495 
496   // Compute the shape of all dimensions but the innermost. Note that the
497   // innermost dimension may be that of the vector element type.
498   bool hasVectorElementType = isa<VectorType>(type.getElementType());
499   int64_t numAggregates =
500       numElements / (hasVectorElementType
501                          ? 1
502                          : denseResourceAttr.getType().getShape().back());
503   ArrayRef<int64_t> outerShape = type.getShape();
504   if (!hasVectorElementType)
505     outerShape = outerShape.drop_back();
506 
507   // Create a constructor for the innermost constant from a piece of raw data.
508   std::function<llvm::Constant *(StringRef)> buildCstData;
509   if (isa<TensorType>(type)) {
510     auto vectorElementType = dyn_cast<VectorType>(type.getElementType());
511     if (vectorElementType && vectorElementType.getRank() == 1) {
512       buildCstData = [&](StringRef data) {
513         return llvm::ConstantDataVector::getRaw(
514             data, vectorElementType.getShape().back(), innermostLLVMType);
515       };
516     } else if (!vectorElementType) {
517       buildCstData = [&](StringRef data) {
518         return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
519                                                innermostLLVMType);
520       };
521     }
522   } else if (isa<VectorType>(type)) {
523     buildCstData = [&](StringRef data) {
524       return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
525                                               innermostLLVMType);
526     };
527   }
528   if (!buildCstData) {
529     emitError(loc, "unsupported dense_resource type");
530     return nullptr;
531   }
532 
533   // Create innermost constants and defer to the default constant creation
534   // mechanism for other dimensions.
535   SmallVector<llvm::Constant *> constants;
536   int64_t aggregateSize = denseResourceAttr.getType().getShape().back() *
537                           (innermostLLVMType->getScalarSizeInBits() / 8);
538   constants.reserve(numAggregates);
539   for (unsigned i = 0; i < numAggregates; ++i) {
540     StringRef data(rawData.data() + i * aggregateSize, aggregateSize);
541     constants.push_back(buildCstData(data));
542   }
543 
544   ArrayRef<llvm::Constant *> constantsRef = constants;
545   return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
546 }
547 
548 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
549 /// This currently supports integer, floating point, splat and dense element
550 /// attributes and combinations thereof. Also, an array attribute with two
551 /// elements is supported to represent a complex constant.  In case of error,
552 /// report it to `loc` and return nullptr.
553 llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
554     llvm::Type *llvmType, Attribute attr, Location loc,
555     const ModuleTranslation &moduleTranslation) {
556   if (!attr)
557     return llvm::UndefValue::get(llvmType);
558   if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) {
559     auto arrayAttr = dyn_cast<ArrayAttr>(attr);
560     if (!arrayAttr || arrayAttr.size() != 2) {
561       emitError(loc, "expected struct type to be a complex number");
562       return nullptr;
563     }
564     llvm::Type *elementType = structType->getElementType(0);
565     llvm::Constant *real =
566         getLLVMConstant(elementType, arrayAttr[0], loc, moduleTranslation);
567     if (!real)
568       return nullptr;
569     llvm::Constant *imag =
570         getLLVMConstant(elementType, arrayAttr[1], loc, moduleTranslation);
571     if (!imag)
572       return nullptr;
573     return llvm::ConstantStruct::get(structType, {real, imag});
574   }
575   // For integer types, we allow a mismatch in sizes as the index type in
576   // MLIR might have a different size than the index type in the LLVM module.
577   if (auto intAttr = dyn_cast<IntegerAttr>(attr))
578     return llvm::ConstantInt::get(
579         llvmType,
580         intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
581   if (auto floatAttr = dyn_cast<FloatAttr>(attr)) {
582     const llvm::fltSemantics &sem = floatAttr.getValue().getSemantics();
583     // Special case for 8-bit floats, which are represented by integers due to
584     // the lack of native fp8 types in LLVM at the moment. Additionally, handle
585     // targets (like AMDGPU) that don't implement bfloat and convert all bfloats
586     // to i16.
587     unsigned floatWidth = APFloat::getSizeInBits(sem);
588     if (llvmType->isIntegerTy(floatWidth))
589       return llvm::ConstantInt::get(llvmType,
590                                     floatAttr.getValue().bitcastToAPInt());
591     if (llvmType !=
592         llvm::Type::getFloatingPointTy(llvmType->getContext(),
593                                        floatAttr.getValue().getSemantics())) {
594       emitError(loc, "FloatAttr does not match expected type of the constant");
595       return nullptr;
596     }
597     return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
598   }
599   if (auto funcAttr = dyn_cast<FlatSymbolRefAttr>(attr))
600     return llvm::ConstantExpr::getBitCast(
601         moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
602   if (auto splatAttr = dyn_cast<SplatElementsAttr>(attr)) {
603     llvm::Type *elementType;
604     uint64_t numElements;
605     bool isScalable = false;
606     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
607       elementType = arrayTy->getElementType();
608       numElements = arrayTy->getNumElements();
609     } else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) {
610       elementType = fVectorTy->getElementType();
611       numElements = fVectorTy->getNumElements();
612     } else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) {
613       elementType = sVectorTy->getElementType();
614       numElements = sVectorTy->getMinNumElements();
615       isScalable = true;
616     } else {
617       llvm_unreachable("unrecognized constant vector type");
618     }
619     // Splat value is a scalar. Extract it only if the element type is not
620     // another sequence type. The recursion terminates because each step removes
621     // one outer sequential type.
622     bool elementTypeSequential =
623         isa<llvm::ArrayType, llvm::VectorType>(elementType);
624     llvm::Constant *child = getLLVMConstant(
625         elementType,
626         elementTypeSequential ? splatAttr
627                               : splatAttr.getSplatValue<Attribute>(),
628         loc, moduleTranslation);
629     if (!child)
630       return nullptr;
631     if (llvmType->isVectorTy())
632       return llvm::ConstantVector::getSplat(
633           llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child);
634     if (llvmType->isArrayTy()) {
635       auto *arrayType = llvm::ArrayType::get(elementType, numElements);
636       SmallVector<llvm::Constant *, 8> constants(numElements, child);
637       return llvm::ConstantArray::get(arrayType, constants);
638     }
639   }
640 
641   // Try using raw elements data if possible.
642   if (llvm::Constant *result =
643           convertDenseElementsAttr(loc, dyn_cast<DenseElementsAttr>(attr),
644                                    llvmType, moduleTranslation)) {
645     return result;
646   }
647 
648   if (auto denseResourceAttr = dyn_cast<DenseResourceElementsAttr>(attr)) {
649     return convertDenseResourceElementsAttr(loc, denseResourceAttr, llvmType,
650                                             moduleTranslation);
651   }
652 
653   // Fall back to element-by-element construction otherwise.
654   if (auto elementsAttr = dyn_cast<ElementsAttr>(attr)) {
655     assert(elementsAttr.getShapedType().hasStaticShape());
656     assert(!elementsAttr.getShapedType().getShape().empty() &&
657            "unexpected empty elements attribute shape");
658 
659     SmallVector<llvm::Constant *, 8> constants;
660     constants.reserve(elementsAttr.getNumElements());
661     llvm::Type *innermostType = getInnermostElementType(llvmType);
662     for (auto n : elementsAttr.getValues<Attribute>()) {
663       constants.push_back(
664           getLLVMConstant(innermostType, n, loc, moduleTranslation));
665       if (!constants.back())
666         return nullptr;
667     }
668     ArrayRef<llvm::Constant *> constantsRef = constants;
669     llvm::Constant *result = buildSequentialConstant(
670         constantsRef, elementsAttr.getShapedType().getShape(), llvmType, loc);
671     assert(constantsRef.empty() && "did not consume all elemental constants");
672     return result;
673   }
674 
675   if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
676     return llvm::ConstantDataArray::get(
677         moduleTranslation.getLLVMContext(),
678         ArrayRef<char>{stringAttr.getValue().data(),
679                        stringAttr.getValue().size()});
680   }
681   emitError(loc, "unsupported constant value");
682   return nullptr;
683 }
684 
685 ModuleTranslation::ModuleTranslation(Operation *module,
686                                      std::unique_ptr<llvm::Module> llvmModule)
687     : mlirModule(module), llvmModule(std::move(llvmModule)),
688       debugTranslation(
689           std::make_unique<DebugTranslation>(module, *this->llvmModule)),
690       loopAnnotationTranslation(std::make_unique<LoopAnnotationTranslation>(
691           *this, *this->llvmModule)),
692       typeTranslator(this->llvmModule->getContext()),
693       iface(module->getContext()) {
694   assert(satisfiesLLVMModule(mlirModule) &&
695          "mlirModule should honor LLVM's module semantics.");
696 }
697 
698 ModuleTranslation::~ModuleTranslation() {
699   if (ompBuilder)
700     ompBuilder->finalize();
701 }
702 
703 void ModuleTranslation::forgetMapping(Region &region) {
704   SmallVector<Region *> toProcess;
705   toProcess.push_back(&region);
706   while (!toProcess.empty()) {
707     Region *current = toProcess.pop_back_val();
708     for (Block &block : *current) {
709       blockMapping.erase(&block);
710       for (Value arg : block.getArguments())
711         valueMapping.erase(arg);
712       for (Operation &op : block) {
713         for (Value value : op.getResults())
714           valueMapping.erase(value);
715         if (op.hasSuccessors())
716           branchMapping.erase(&op);
717         if (isa<LLVM::GlobalOp>(op))
718           globalsMapping.erase(&op);
719         llvm::append_range(
720             toProcess,
721             llvm::map_range(op.getRegions(), [](Region &r) { return &r; }));
722       }
723     }
724   }
725 }
726 
727 /// Get the SSA value passed to the current block from the terminator operation
728 /// of its predecessor.
729 static Value getPHISourceValue(Block *current, Block *pred,
730                                unsigned numArguments, unsigned index) {
731   Operation &terminator = *pred->getTerminator();
732   if (isa<LLVM::BrOp>(terminator))
733     return terminator.getOperand(index);
734 
735 #ifndef NDEBUG
736   llvm::SmallPtrSet<Block *, 4> seenSuccessors;
737   for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) {
738     Block *successor = terminator.getSuccessor(i);
739     auto branch = cast<BranchOpInterface>(terminator);
740     SuccessorOperands successorOperands = branch.getSuccessorOperands(i);
741     assert(
742         (!seenSuccessors.contains(successor) || successorOperands.empty()) &&
743         "successors with arguments in LLVM branches must be different blocks");
744     seenSuccessors.insert(successor);
745   }
746 #endif
747 
748   // For instructions that branch based on a condition value, we need to take
749   // the operands for the branch that was taken.
750   if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
751     // For conditional branches, we take the operands from either the "true" or
752     // the "false" branch.
753     return condBranchOp.getSuccessor(0) == current
754                ? condBranchOp.getTrueDestOperands()[index]
755                : condBranchOp.getFalseDestOperands()[index];
756   }
757 
758   if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
759     // For switches, we take the operands from either the default case, or from
760     // the case branch that was taken.
761     if (switchOp.getDefaultDestination() == current)
762       return switchOp.getDefaultOperands()[index];
763     for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations()))
764       if (i.value() == current)
765         return switchOp.getCaseOperands(i.index())[index];
766   }
767 
768   if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) {
769     return invokeOp.getNormalDest() == current
770                ? invokeOp.getNormalDestOperands()[index]
771                : invokeOp.getUnwindDestOperands()[index];
772   }
773 
774   llvm_unreachable(
775       "only branch, switch or invoke operations can be terminators "
776       "of a block that has successors");
777 }
778 
779 /// Connect the PHI nodes to the results of preceding blocks.
780 void mlir::LLVM::detail::connectPHINodes(Region &region,
781                                          const ModuleTranslation &state) {
782   // Skip the first block, it cannot be branched to and its arguments correspond
783   // to the arguments of the LLVM function.
784   for (Block &bb : llvm::drop_begin(region)) {
785     llvm::BasicBlock *llvmBB = state.lookupBlock(&bb);
786     auto phis = llvmBB->phis();
787     auto numArguments = bb.getNumArguments();
788     assert(numArguments == std::distance(phis.begin(), phis.end()));
789     for (auto [index, phiNode] : llvm::enumerate(phis)) {
790       for (auto *pred : bb.getPredecessors()) {
791         // Find the LLVM IR block that contains the converted terminator
792         // instruction and use it in the PHI node. Note that this block is not
793         // necessarily the same as state.lookupBlock(pred), some operations
794         // (in particular, OpenMP operations using OpenMPIRBuilder) may have
795         // split the blocks.
796         llvm::Instruction *terminator =
797             state.lookupBranch(pred->getTerminator());
798         assert(terminator && "missing the mapping for a terminator");
799         phiNode.addIncoming(state.lookupValue(getPHISourceValue(
800                                 &bb, pred, numArguments, index)),
801                             terminator->getParent());
802       }
803     }
804   }
805 }
806 
807 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall(
808     llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
809     ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
810   llvm::Module *module = builder.GetInsertBlock()->getModule();
811   llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys);
812   return builder.CreateCall(fn, args);
813 }
814 
815 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall(
816     llvm::IRBuilderBase &builder, ModuleTranslation &moduleTranslation,
817     Operation *intrOp, llvm::Intrinsic::ID intrinsic, unsigned numResults,
818     ArrayRef<unsigned> overloadedResults, ArrayRef<unsigned> overloadedOperands,
819     ArrayRef<unsigned> immArgPositions,
820     ArrayRef<StringLiteral> immArgAttrNames) {
821   assert(immArgPositions.size() == immArgAttrNames.size() &&
822          "LLVM `immArgPositions` and MLIR `immArgAttrNames` should have equal "
823          "length");
824 
825   // Map operands and attributes to LLVM values.
826   auto operands = moduleTranslation.lookupValues(intrOp->getOperands());
827   SmallVector<llvm::Value *> args(immArgPositions.size() + operands.size());
828   for (auto [immArgPos, immArgName] :
829        llvm::zip(immArgPositions, immArgAttrNames)) {
830     auto attr = llvm::cast<TypedAttr>(intrOp->getAttr(immArgName));
831     assert(attr.getType().isIntOrFloat() && "expected int or float immarg");
832     auto *type = moduleTranslation.convertType(attr.getType());
833     args[immArgPos] = LLVM::detail::getLLVMConstant(
834         type, attr, intrOp->getLoc(), moduleTranslation);
835   }
836   unsigned opArg = 0;
837   for (auto &arg : args) {
838     if (!arg)
839       arg = operands[opArg++];
840   }
841 
842   // Resolve overloaded intrinsic declaration.
843   SmallVector<llvm::Type *> overloadedTypes;
844   for (unsigned overloadedResultIdx : overloadedResults) {
845     if (numResults > 1) {
846       // More than one result is mapped to an LLVM struct.
847       overloadedTypes.push_back(moduleTranslation.convertType(
848           llvm::cast<LLVM::LLVMStructType>(intrOp->getResult(0).getType())
849               .getBody()[overloadedResultIdx]));
850     } else {
851       overloadedTypes.push_back(
852           moduleTranslation.convertType(intrOp->getResult(0).getType()));
853     }
854   }
855   for (unsigned overloadedOperandIdx : overloadedOperands)
856     overloadedTypes.push_back(args[overloadedOperandIdx]->getType());
857   llvm::Module *module = builder.GetInsertBlock()->getModule();
858   llvm::Function *llvmIntr =
859       llvm::Intrinsic::getDeclaration(module, intrinsic, overloadedTypes);
860 
861   return builder.CreateCall(llvmIntr, args);
862 }
863 
864 /// Given a single MLIR operation, create the corresponding LLVM IR operation
865 /// using the `builder`.
866 LogicalResult ModuleTranslation::convertOperation(Operation &op,
867                                                   llvm::IRBuilderBase &builder,
868                                                   bool recordInsertions) {
869   const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
870   if (!opIface)
871     return op.emitError("cannot be converted to LLVM IR: missing "
872                         "`LLVMTranslationDialectInterface` registration for "
873                         "dialect for op: ")
874            << op.getName();
875 
876   InstructionCapturingInserter::CollectionScope scope(builder,
877                                                       recordInsertions);
878   if (failed(opIface->convertOperation(&op, builder, *this)))
879     return op.emitError("LLVM Translation failed for operation: ")
880            << op.getName();
881 
882   return convertDialectAttributes(&op, scope.getCapturedInstructions());
883 }
884 
885 /// Convert block to LLVM IR.  Unless `ignoreArguments` is set, emit PHI nodes
886 /// to define values corresponding to the MLIR block arguments.  These nodes
887 /// are not connected to the source basic blocks, which may not exist yet.  Uses
888 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
889 /// been created for `bb` and included in the block mapping.  Inserts new
890 /// instructions at the end of the block and leaves `builder` in a state
891 /// suitable for further insertion into the end of the block.
892 LogicalResult ModuleTranslation::convertBlockImpl(Block &bb,
893                                                   bool ignoreArguments,
894                                                   llvm::IRBuilderBase &builder,
895                                                   bool recordInsertions) {
896   builder.SetInsertPoint(lookupBlock(&bb));
897   auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
898 
899   // Before traversing operations, make block arguments available through
900   // value remapping and PHI nodes, but do not add incoming edges for the PHI
901   // nodes just yet: those values may be defined by this or following blocks.
902   // This step is omitted if "ignoreArguments" is set.  The arguments of the
903   // first block have been already made available through the remapping of
904   // LLVM function arguments.
905   if (!ignoreArguments) {
906     auto predecessors = bb.getPredecessors();
907     unsigned numPredecessors =
908         std::distance(predecessors.begin(), predecessors.end());
909     for (auto arg : bb.getArguments()) {
910       auto wrappedType = arg.getType();
911       if (!isCompatibleType(wrappedType))
912         return emitError(bb.front().getLoc(),
913                          "block argument does not have an LLVM type");
914       llvm::Type *type = convertType(wrappedType);
915       llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
916       mapValue(arg, phi);
917     }
918   }
919 
920   // Traverse operations.
921   for (auto &op : bb) {
922     // Set the current debug location within the builder.
923     builder.SetCurrentDebugLocation(
924         debugTranslation->translateLoc(op.getLoc(), subprogram));
925 
926     if (failed(convertOperation(op, builder, recordInsertions)))
927       return failure();
928 
929     // Set the branch weight metadata on the translated instruction.
930     if (auto iface = dyn_cast<BranchWeightOpInterface>(op))
931       setBranchWeightsMetadata(iface);
932   }
933 
934   return success();
935 }
936 
937 /// A helper method to get the single Block in an operation honoring LLVM's
938 /// module requirements.
939 static Block &getModuleBody(Operation *module) {
940   return module->getRegion(0).front();
941 }
942 
943 /// A helper method to decide if a constant must not be set as a global variable
944 /// initializer. For an external linkage variable, the variable with an
945 /// initializer is considered externally visible and defined in this module, the
946 /// variable without an initializer is externally available and is defined
947 /// elsewhere.
948 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
949                                         llvm::Constant *cst) {
950   return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) ||
951          linkage == llvm::GlobalVariable::ExternalWeakLinkage;
952 }
953 
954 /// Sets the runtime preemption specifier of `gv` to dso_local if
955 /// `dsoLocalRequested` is true, otherwise it is left unchanged.
956 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested,
957                                           llvm::GlobalValue *gv) {
958   if (dsoLocalRequested)
959     gv->setDSOLocal(true);
960 }
961 
962 /// Create named global variables that correspond to llvm.mlir.global
963 /// definitions. Convert llvm.global_ctors and global_dtors ops.
964 LogicalResult ModuleTranslation::convertGlobals() {
965   // Mapping from compile unit to its respective set of global variables.
966   DenseMap<llvm::DICompileUnit *, SmallVector<llvm::Metadata *>> allGVars;
967 
968   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
969     llvm::Type *type = convertType(op.getType());
970     llvm::Constant *cst = nullptr;
971     if (op.getValueOrNull()) {
972       // String attributes are treated separately because they cannot appear as
973       // in-function constants and are thus not supported by getLLVMConstant.
974       if (auto strAttr = dyn_cast_or_null<StringAttr>(op.getValueOrNull())) {
975         cst = llvm::ConstantDataArray::getString(
976             llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
977         type = cst->getType();
978       } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
979                                          *this))) {
980         return failure();
981       }
982     }
983 
984     auto linkage = convertLinkageToLLVM(op.getLinkage());
985     auto addrSpace = op.getAddrSpace();
986 
987     // LLVM IR requires constant with linkage other than external or weak
988     // external to have initializers. If MLIR does not provide an initializer,
989     // default to undef.
990     bool dropInitializer = shouldDropGlobalInitializer(linkage, cst);
991     if (!dropInitializer && !cst)
992       cst = llvm::UndefValue::get(type);
993     else if (dropInitializer && cst)
994       cst = nullptr;
995 
996     auto *var = new llvm::GlobalVariable(
997         *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(),
998         /*InsertBefore=*/nullptr,
999         op.getThreadLocal_() ? llvm::GlobalValue::GeneralDynamicTLSModel
1000                              : llvm::GlobalValue::NotThreadLocal,
1001         addrSpace);
1002 
1003     if (std::optional<mlir::SymbolRefAttr> comdat = op.getComdat()) {
1004       auto selectorOp = cast<ComdatSelectorOp>(
1005           SymbolTable::lookupNearestSymbolFrom(op, *comdat));
1006       var->setComdat(comdatMapping.lookup(selectorOp));
1007     }
1008 
1009     if (op.getUnnamedAddr().has_value())
1010       var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr()));
1011 
1012     if (op.getSection().has_value())
1013       var->setSection(*op.getSection());
1014 
1015     addRuntimePreemptionSpecifier(op.getDsoLocal(), var);
1016 
1017     std::optional<uint64_t> alignment = op.getAlignment();
1018     if (alignment.has_value())
1019       var->setAlignment(llvm::MaybeAlign(alignment.value()));
1020 
1021     var->setVisibility(convertVisibilityToLLVM(op.getVisibility_()));
1022 
1023     globalsMapping.try_emplace(op, var);
1024 
1025     // Add debug information if present.
1026     if (op.getDbgExpr()) {
1027       llvm::DIGlobalVariableExpression *diGlobalExpr =
1028           debugTranslation->translateGlobalVariableExpression(op.getDbgExpr());
1029       llvm::DIGlobalVariable *diGlobalVar = diGlobalExpr->getVariable();
1030       var->addDebugInfo(diGlobalExpr);
1031 
1032       // Get the compile unit (scope) of the the global variable.
1033       if (llvm::DICompileUnit *compileUnit =
1034               dyn_cast_if_present<llvm::DICompileUnit>(
1035                   diGlobalVar->getScope())) {
1036         // Update the compile unit with this incoming global variable expression
1037         // during the finalizing step later.
1038         allGVars[compileUnit].push_back(diGlobalExpr);
1039       }
1040     }
1041   }
1042 
1043   // Convert global variable bodies. This is done after all global variables
1044   // have been created in LLVM IR because a global body may refer to another
1045   // global or itself. So all global variables need to be mapped first.
1046   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
1047     if (Block *initializer = op.getInitializerBlock()) {
1048       llvm::IRBuilder<> builder(llvmModule->getContext());
1049 
1050       [[maybe_unused]] int numConstantsHit = 0;
1051       [[maybe_unused]] int numConstantsErased = 0;
1052       DenseMap<llvm::ConstantAggregate *, int> constantAggregateUseMap;
1053 
1054       for (auto &op : initializer->without_terminator()) {
1055         if (failed(convertOperation(op, builder)))
1056           return emitError(op.getLoc(), "fail to convert global initializer");
1057         auto *cst = dyn_cast<llvm::Constant>(lookupValue(op.getResult(0)));
1058         if (!cst)
1059           return emitError(op.getLoc(), "unemittable constant value");
1060 
1061         // When emitting an LLVM constant, a new constant is created and the old
1062         // constant may become dangling and take space. We should remove the
1063         // dangling constants to avoid memory explosion especially for constant
1064         // arrays whose number of elements is large.
1065         // Because multiple operations may refer to the same constant, we need
1066         // to count the number of uses of each constant array and remove it only
1067         // when the count becomes zero.
1068         if (auto *agg = dyn_cast<llvm::ConstantAggregate>(cst)) {
1069           numConstantsHit++;
1070           Value result = op.getResult(0);
1071           int numUsers = std::distance(result.use_begin(), result.use_end());
1072           auto [iterator, inserted] =
1073               constantAggregateUseMap.try_emplace(agg, numUsers);
1074           if (!inserted) {
1075             // Key already exists, update the value
1076             iterator->second += numUsers;
1077           }
1078         }
1079         // Scan the operands of the operation to decrement the use count of
1080         // constants. Erase the constant if the use count becomes zero.
1081         for (Value v : op.getOperands()) {
1082           auto cst = dyn_cast<llvm::ConstantAggregate>(lookupValue(v));
1083           if (!cst)
1084             continue;
1085           auto iter = constantAggregateUseMap.find(cst);
1086           assert(iter != constantAggregateUseMap.end() && "constant not found");
1087           iter->second--;
1088           if (iter->second == 0) {
1089             // NOTE: cannot call removeDeadConstantUsers() here because it
1090             // may remove the constant which has uses not be converted yet.
1091             if (cst->user_empty()) {
1092               cst->destroyConstant();
1093               numConstantsErased++;
1094             }
1095             constantAggregateUseMap.erase(iter);
1096           }
1097         }
1098       }
1099 
1100       ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
1101       llvm::Constant *cst =
1102           cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
1103       auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
1104       if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
1105         global->setInitializer(cst);
1106 
1107       // Try to remove the dangling constants again after all operations are
1108       // converted.
1109       for (auto it : constantAggregateUseMap) {
1110         auto cst = it.first;
1111         cst->removeDeadConstantUsers();
1112         if (cst->user_empty()) {
1113           cst->destroyConstant();
1114           numConstantsErased++;
1115         }
1116       }
1117 
1118       LLVM_DEBUG(llvm::dbgs()
1119                      << "Convert initializer for " << op.getName() << "\n";
1120                  llvm::dbgs() << numConstantsHit << " new constants hit\n";
1121                  llvm::dbgs()
1122                  << numConstantsErased << " dangling constants erased\n";);
1123     }
1124   }
1125 
1126   // Convert llvm.mlir.global_ctors and dtors.
1127   for (Operation &op : getModuleBody(mlirModule)) {
1128     auto ctorOp = dyn_cast<GlobalCtorsOp>(op);
1129     auto dtorOp = dyn_cast<GlobalDtorsOp>(op);
1130     if (!ctorOp && !dtorOp)
1131       continue;
1132     auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities())
1133                         : llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities());
1134     auto appendGlobalFn =
1135         ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors;
1136     for (auto symbolAndPriority : range) {
1137       llvm::Function *f = lookupFunction(
1138           cast<FlatSymbolRefAttr>(std::get<0>(symbolAndPriority)).getValue());
1139       appendGlobalFn(*llvmModule, f,
1140                      cast<IntegerAttr>(std::get<1>(symbolAndPriority)).getInt(),
1141                      /*Data=*/nullptr);
1142     }
1143   }
1144 
1145   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>())
1146     if (failed(convertDialectAttributes(op, {})))
1147       return failure();
1148 
1149   // Finally, update the compile units their respective sets of global variables
1150   // created earlier.
1151   for (const auto &[compileUnit, globals] : allGVars) {
1152     compileUnit->replaceGlobalVariables(
1153         llvm::MDTuple::get(getLLVMContext(), globals));
1154   }
1155 
1156   return success();
1157 }
1158 
1159 /// Attempts to add an attribute identified by `key`, optionally with the given
1160 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
1161 /// attribute has a kind known to LLVM IR, create the attribute of this kind,
1162 /// otherwise keep it as a string attribute. Performs additional checks for
1163 /// attributes known to have or not have a value in order to avoid assertions
1164 /// inside LLVM upon construction.
1165 static LogicalResult checkedAddLLVMFnAttribute(Location loc,
1166                                                llvm::Function *llvmFunc,
1167                                                StringRef key,
1168                                                StringRef value = StringRef()) {
1169   auto kind = llvm::Attribute::getAttrKindFromName(key);
1170   if (kind == llvm::Attribute::None) {
1171     llvmFunc->addFnAttr(key, value);
1172     return success();
1173   }
1174 
1175   if (llvm::Attribute::isIntAttrKind(kind)) {
1176     if (value.empty())
1177       return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
1178 
1179     int64_t result;
1180     if (!value.getAsInteger(/*Radix=*/0, result))
1181       llvmFunc->addFnAttr(
1182           llvm::Attribute::get(llvmFunc->getContext(), kind, result));
1183     else
1184       llvmFunc->addFnAttr(key, value);
1185     return success();
1186   }
1187 
1188   if (!value.empty())
1189     return emitError(loc) << "LLVM attribute '" << key
1190                           << "' does not expect a value, found '" << value
1191                           << "'";
1192 
1193   llvmFunc->addFnAttr(kind);
1194   return success();
1195 }
1196 
1197 /// Attaches the attributes listed in the given array attribute to `llvmFunc`.
1198 /// Reports error to `loc` if any and returns immediately. Expects `attributes`
1199 /// to be an array attribute containing either string attributes, treated as
1200 /// value-less LLVM attributes, or array attributes containing two string
1201 /// attributes, with the first string being the name of the corresponding LLVM
1202 /// attribute and the second string beings its value. Note that even integer
1203 /// attributes are expected to have their values expressed as strings.
1204 static LogicalResult
1205 forwardPassthroughAttributes(Location loc, std::optional<ArrayAttr> attributes,
1206                              llvm::Function *llvmFunc) {
1207   if (!attributes)
1208     return success();
1209 
1210   for (Attribute attr : *attributes) {
1211     if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
1212       if (failed(
1213               checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
1214         return failure();
1215       continue;
1216     }
1217 
1218     auto arrayAttr = dyn_cast<ArrayAttr>(attr);
1219     if (!arrayAttr || arrayAttr.size() != 2)
1220       return emitError(loc)
1221              << "expected 'passthrough' to contain string or array attributes";
1222 
1223     auto keyAttr = dyn_cast<StringAttr>(arrayAttr[0]);
1224     auto valueAttr = dyn_cast<StringAttr>(arrayAttr[1]);
1225     if (!keyAttr || !valueAttr)
1226       return emitError(loc)
1227              << "expected arrays within 'passthrough' to contain two strings";
1228 
1229     if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
1230                                          valueAttr.getValue())))
1231       return failure();
1232   }
1233   return success();
1234 }
1235 
1236 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
1237   // Clear the block, branch value mappings, they are only relevant within one
1238   // function.
1239   blockMapping.clear();
1240   valueMapping.clear();
1241   branchMapping.clear();
1242   llvm::Function *llvmFunc = lookupFunction(func.getName());
1243 
1244   // Add function arguments to the value remapping table.
1245   for (auto [mlirArg, llvmArg] :
1246        llvm::zip(func.getArguments(), llvmFunc->args()))
1247     mapValue(mlirArg, &llvmArg);
1248 
1249   // Check the personality and set it.
1250   if (func.getPersonality()) {
1251     llvm::Type *ty = llvm::PointerType::getUnqual(llvmFunc->getContext());
1252     if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(),
1253                                                 func.getLoc(), *this))
1254       llvmFunc->setPersonalityFn(pfunc);
1255   }
1256 
1257   if (std::optional<StringRef> section = func.getSection())
1258     llvmFunc->setSection(*section);
1259 
1260   if (func.getArmStreaming())
1261     llvmFunc->addFnAttr("aarch64_pstate_sm_enabled");
1262   else if (func.getArmLocallyStreaming())
1263     llvmFunc->addFnAttr("aarch64_pstate_sm_body");
1264   else if (func.getArmStreamingCompatible())
1265     llvmFunc->addFnAttr("aarch64_pstate_sm_compatible");
1266 
1267   if (func.getArmNewZa())
1268     llvmFunc->addFnAttr("aarch64_new_za");
1269   else if (func.getArmInZa())
1270     llvmFunc->addFnAttr("aarch64_in_za");
1271   else if (func.getArmOutZa())
1272     llvmFunc->addFnAttr("aarch64_out_za");
1273   else if (func.getArmInoutZa())
1274     llvmFunc->addFnAttr("aarch64_inout_za");
1275   else if (func.getArmPreservesZa())
1276     llvmFunc->addFnAttr("aarch64_preserves_za");
1277 
1278   if (auto targetCpu = func.getTargetCpu())
1279     llvmFunc->addFnAttr("target-cpu", *targetCpu);
1280 
1281   if (auto targetFeatures = func.getTargetFeatures())
1282     llvmFunc->addFnAttr("target-features", targetFeatures->getFeaturesString());
1283 
1284   if (auto attr = func.getVscaleRange())
1285     llvmFunc->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
1286         getLLVMContext(), attr->getMinRange().getInt(),
1287         attr->getMaxRange().getInt()));
1288 
1289   if (auto unsafeFpMath = func.getUnsafeFpMath())
1290     llvmFunc->addFnAttr("unsafe-fp-math", llvm::toStringRef(*unsafeFpMath));
1291 
1292   if (auto noInfsFpMath = func.getNoInfsFpMath())
1293     llvmFunc->addFnAttr("no-infs-fp-math", llvm::toStringRef(*noInfsFpMath));
1294 
1295   if (auto noNansFpMath = func.getNoNansFpMath())
1296     llvmFunc->addFnAttr("no-nans-fp-math", llvm::toStringRef(*noNansFpMath));
1297 
1298   if (auto approxFuncFpMath = func.getApproxFuncFpMath())
1299     llvmFunc->addFnAttr("approx-func-fp-math",
1300                         llvm::toStringRef(*approxFuncFpMath));
1301 
1302   if (auto noSignedZerosFpMath = func.getNoSignedZerosFpMath())
1303     llvmFunc->addFnAttr("no-signed-zeros-fp-math",
1304                         llvm::toStringRef(*noSignedZerosFpMath));
1305 
1306   // Add function attribute frame-pointer, if found.
1307   if (FramePointerKindAttr attr = func.getFramePointerAttr())
1308     llvmFunc->addFnAttr("frame-pointer",
1309                         LLVM::framePointerKind::stringifyFramePointerKind(
1310                             (attr.getFramePointerKind())));
1311 
1312   // First, create all blocks so we can jump to them.
1313   llvm::LLVMContext &llvmContext = llvmFunc->getContext();
1314   for (auto &bb : func) {
1315     auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
1316     llvmBB->insertInto(llvmFunc);
1317     mapBlock(&bb, llvmBB);
1318   }
1319 
1320   // Then, convert blocks one by one in topological order to ensure defs are
1321   // converted before uses.
1322   auto blocks = getTopologicallySortedBlocks(func.getBody());
1323   for (Block *bb : blocks) {
1324     CapturingIRBuilder builder(llvmContext);
1325     if (failed(convertBlockImpl(*bb, bb->isEntryBlock(), builder,
1326                                 /*recordInsertions=*/true)))
1327       return failure();
1328   }
1329 
1330   // After all blocks have been traversed and values mapped, connect the PHI
1331   // nodes to the results of preceding blocks.
1332   detail::connectPHINodes(func.getBody(), *this);
1333 
1334   // Finally, convert dialect attributes attached to the function.
1335   return convertDialectAttributes(func, {});
1336 }
1337 
1338 LogicalResult ModuleTranslation::convertDialectAttributes(
1339     Operation *op, ArrayRef<llvm::Instruction *> instructions) {
1340   for (NamedAttribute attribute : op->getDialectAttrs())
1341     if (failed(iface.amendOperation(op, instructions, attribute, *this)))
1342       return failure();
1343   return success();
1344 }
1345 
1346 /// Converts the function attributes from LLVMFuncOp and attaches them to the
1347 /// llvm::Function.
1348 static void convertFunctionAttributes(LLVMFuncOp func,
1349                                       llvm::Function *llvmFunc) {
1350   if (!func.getMemory())
1351     return;
1352 
1353   MemoryEffectsAttr memEffects = func.getMemoryAttr();
1354 
1355   // Add memory effects incrementally.
1356   llvm::MemoryEffects newMemEffects =
1357       llvm::MemoryEffects(llvm::MemoryEffects::Location::ArgMem,
1358                           convertModRefInfoToLLVM(memEffects.getArgMem()));
1359   newMemEffects |= llvm::MemoryEffects(
1360       llvm::MemoryEffects::Location::InaccessibleMem,
1361       convertModRefInfoToLLVM(memEffects.getInaccessibleMem()));
1362   newMemEffects |=
1363       llvm::MemoryEffects(llvm::MemoryEffects::Location::Other,
1364                           convertModRefInfoToLLVM(memEffects.getOther()));
1365   llvmFunc->setMemoryEffects(newMemEffects);
1366 }
1367 
1368 FailureOr<llvm::AttrBuilder>
1369 ModuleTranslation::convertParameterAttrs(LLVMFuncOp func, int argIdx,
1370                                          DictionaryAttr paramAttrs) {
1371   llvm::AttrBuilder attrBuilder(llvmModule->getContext());
1372   auto attrNameToKindMapping = getAttrNameToKindMapping();
1373 
1374   for (auto namedAttr : paramAttrs) {
1375     auto it = attrNameToKindMapping.find(namedAttr.getName());
1376     if (it != attrNameToKindMapping.end()) {
1377       llvm::Attribute::AttrKind llvmKind = it->second;
1378 
1379       llvm::TypeSwitch<Attribute>(namedAttr.getValue())
1380           .Case<TypeAttr>([&](auto typeAttr) {
1381             attrBuilder.addTypeAttr(llvmKind, convertType(typeAttr.getValue()));
1382           })
1383           .Case<IntegerAttr>([&](auto intAttr) {
1384             attrBuilder.addRawIntAttr(llvmKind, intAttr.getInt());
1385           })
1386           .Case<UnitAttr>([&](auto) { attrBuilder.addAttribute(llvmKind); });
1387     } else if (namedAttr.getNameDialect()) {
1388       if (failed(iface.convertParameterAttr(func, argIdx, namedAttr, *this)))
1389         return failure();
1390     }
1391   }
1392 
1393   return attrBuilder;
1394 }
1395 
1396 LogicalResult ModuleTranslation::convertFunctionSignatures() {
1397   // Declare all functions first because there may be function calls that form a
1398   // call graph with cycles, or global initializers that reference functions.
1399   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
1400     llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
1401         function.getName(),
1402         cast<llvm::FunctionType>(convertType(function.getFunctionType())));
1403     llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
1404     llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage()));
1405     llvmFunc->setCallingConv(convertCConvToLLVM(function.getCConv()));
1406     mapFunction(function.getName(), llvmFunc);
1407     addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc);
1408 
1409     // Convert function attributes.
1410     convertFunctionAttributes(function, llvmFunc);
1411 
1412     // Convert function_entry_count attribute to metadata.
1413     if (std::optional<uint64_t> entryCount = function.getFunctionEntryCount())
1414       llvmFunc->setEntryCount(entryCount.value());
1415 
1416     // Convert result attributes.
1417     if (ArrayAttr allResultAttrs = function.getAllResultAttrs()) {
1418       DictionaryAttr resultAttrs = cast<DictionaryAttr>(allResultAttrs[0]);
1419       FailureOr<llvm::AttrBuilder> attrBuilder =
1420           convertParameterAttrs(function, -1, resultAttrs);
1421       if (failed(attrBuilder))
1422         return failure();
1423       llvmFunc->addRetAttrs(*attrBuilder);
1424     }
1425 
1426     // Convert argument attributes.
1427     for (auto [argIdx, llvmArg] : llvm::enumerate(llvmFunc->args())) {
1428       if (DictionaryAttr argAttrs = function.getArgAttrDict(argIdx)) {
1429         FailureOr<llvm::AttrBuilder> attrBuilder =
1430             convertParameterAttrs(function, argIdx, argAttrs);
1431         if (failed(attrBuilder))
1432           return failure();
1433         llvmArg.addAttrs(*attrBuilder);
1434       }
1435     }
1436 
1437     // Forward the pass-through attributes to LLVM.
1438     if (failed(forwardPassthroughAttributes(
1439             function.getLoc(), function.getPassthrough(), llvmFunc)))
1440       return failure();
1441 
1442     // Convert visibility attribute.
1443     llvmFunc->setVisibility(convertVisibilityToLLVM(function.getVisibility_()));
1444 
1445     // Convert the comdat attribute.
1446     if (std::optional<mlir::SymbolRefAttr> comdat = function.getComdat()) {
1447       auto selectorOp = cast<ComdatSelectorOp>(
1448           SymbolTable::lookupNearestSymbolFrom(function, *comdat));
1449       llvmFunc->setComdat(comdatMapping.lookup(selectorOp));
1450     }
1451 
1452     if (auto gc = function.getGarbageCollector())
1453       llvmFunc->setGC(gc->str());
1454 
1455     if (auto unnamedAddr = function.getUnnamedAddr())
1456       llvmFunc->setUnnamedAddr(convertUnnamedAddrToLLVM(*unnamedAddr));
1457 
1458     if (auto alignment = function.getAlignment())
1459       llvmFunc->setAlignment(llvm::MaybeAlign(*alignment));
1460 
1461     // Translate the debug information for this function.
1462     debugTranslation->translate(function, *llvmFunc);
1463   }
1464 
1465   return success();
1466 }
1467 
1468 LogicalResult ModuleTranslation::convertFunctions() {
1469   // Convert functions.
1470   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
1471     // Do not convert external functions, but do process dialect attributes
1472     // attached to them.
1473     if (function.isExternal()) {
1474       if (failed(convertDialectAttributes(function, {})))
1475         return failure();
1476       continue;
1477     }
1478 
1479     if (failed(convertOneFunction(function)))
1480       return failure();
1481   }
1482 
1483   return success();
1484 }
1485 
1486 LogicalResult ModuleTranslation::convertComdats() {
1487   for (auto comdatOp : getModuleBody(mlirModule).getOps<ComdatOp>()) {
1488     for (auto selectorOp : comdatOp.getOps<ComdatSelectorOp>()) {
1489       llvm::Module *module = getLLVMModule();
1490       if (module->getComdatSymbolTable().contains(selectorOp.getSymName()))
1491         return emitError(selectorOp.getLoc())
1492                << "comdat selection symbols must be unique even in different "
1493                   "comdat regions";
1494       llvm::Comdat *comdat = module->getOrInsertComdat(selectorOp.getSymName());
1495       comdat->setSelectionKind(convertComdatToLLVM(selectorOp.getComdat()));
1496       comdatMapping.try_emplace(selectorOp, comdat);
1497     }
1498   }
1499   return success();
1500 }
1501 
1502 void ModuleTranslation::setAccessGroupsMetadata(AccessGroupOpInterface op,
1503                                                 llvm::Instruction *inst) {
1504   if (llvm::MDNode *node = loopAnnotationTranslation->getAccessGroups(op))
1505     inst->setMetadata(llvm::LLVMContext::MD_access_group, node);
1506 }
1507 
1508 llvm::MDNode *
1509 ModuleTranslation::getOrCreateAliasScope(AliasScopeAttr aliasScopeAttr) {
1510   auto [scopeIt, scopeInserted] =
1511       aliasScopeMetadataMapping.try_emplace(aliasScopeAttr, nullptr);
1512   if (!scopeInserted)
1513     return scopeIt->second;
1514   llvm::LLVMContext &ctx = llvmModule->getContext();
1515   auto dummy = llvm::MDNode::getTemporary(ctx, std::nullopt);
1516   // Convert the domain metadata node if necessary.
1517   auto [domainIt, insertedDomain] = aliasDomainMetadataMapping.try_emplace(
1518       aliasScopeAttr.getDomain(), nullptr);
1519   if (insertedDomain) {
1520     llvm::SmallVector<llvm::Metadata *, 2> operands;
1521     // Placeholder for self-reference.
1522     operands.push_back(dummy.get());
1523     if (StringAttr description = aliasScopeAttr.getDomain().getDescription())
1524       operands.push_back(llvm::MDString::get(ctx, description));
1525     domainIt->second = llvm::MDNode::get(ctx, operands);
1526     // Self-reference for uniqueness.
1527     domainIt->second->replaceOperandWith(0, domainIt->second);
1528   }
1529   // Convert the scope metadata node.
1530   assert(domainIt->second && "Scope's domain should already be valid");
1531   llvm::SmallVector<llvm::Metadata *, 3> operands;
1532   // Placeholder for self-reference.
1533   operands.push_back(dummy.get());
1534   operands.push_back(domainIt->second);
1535   if (StringAttr description = aliasScopeAttr.getDescription())
1536     operands.push_back(llvm::MDString::get(ctx, description));
1537   scopeIt->second = llvm::MDNode::get(ctx, operands);
1538   // Self-reference for uniqueness.
1539   scopeIt->second->replaceOperandWith(0, scopeIt->second);
1540   return scopeIt->second;
1541 }
1542 
1543 llvm::MDNode *ModuleTranslation::getOrCreateAliasScopes(
1544     ArrayRef<AliasScopeAttr> aliasScopeAttrs) {
1545   SmallVector<llvm::Metadata *> nodes;
1546   nodes.reserve(aliasScopeAttrs.size());
1547   for (AliasScopeAttr aliasScopeAttr : aliasScopeAttrs)
1548     nodes.push_back(getOrCreateAliasScope(aliasScopeAttr));
1549   return llvm::MDNode::get(getLLVMContext(), nodes);
1550 }
1551 
1552 void ModuleTranslation::setAliasScopeMetadata(AliasAnalysisOpInterface op,
1553                                               llvm::Instruction *inst) {
1554   auto populateScopeMetadata = [&](ArrayAttr aliasScopeAttrs, unsigned kind) {
1555     if (!aliasScopeAttrs || aliasScopeAttrs.empty())
1556       return;
1557     llvm::MDNode *node = getOrCreateAliasScopes(
1558         llvm::to_vector(aliasScopeAttrs.getAsRange<AliasScopeAttr>()));
1559     inst->setMetadata(kind, node);
1560   };
1561 
1562   populateScopeMetadata(op.getAliasScopesOrNull(),
1563                         llvm::LLVMContext::MD_alias_scope);
1564   populateScopeMetadata(op.getNoAliasScopesOrNull(),
1565                         llvm::LLVMContext::MD_noalias);
1566 }
1567 
1568 llvm::MDNode *ModuleTranslation::getTBAANode(TBAATagAttr tbaaAttr) const {
1569   return tbaaMetadataMapping.lookup(tbaaAttr);
1570 }
1571 
1572 void ModuleTranslation::setTBAAMetadata(AliasAnalysisOpInterface op,
1573                                         llvm::Instruction *inst) {
1574   ArrayAttr tagRefs = op.getTBAATagsOrNull();
1575   if (!tagRefs || tagRefs.empty())
1576     return;
1577 
1578   // LLVM IR currently does not support attaching more than one TBAA access tag
1579   // to a memory accessing instruction. It may be useful to support this in
1580   // future, but for the time being just ignore the metadata if MLIR operation
1581   // has multiple access tags.
1582   if (tagRefs.size() > 1) {
1583     op.emitWarning() << "TBAA access tags were not translated, because LLVM "
1584                         "IR only supports a single tag per instruction";
1585     return;
1586   }
1587 
1588   llvm::MDNode *node = getTBAANode(cast<TBAATagAttr>(tagRefs[0]));
1589   inst->setMetadata(llvm::LLVMContext::MD_tbaa, node);
1590 }
1591 
1592 void ModuleTranslation::setBranchWeightsMetadata(BranchWeightOpInterface op) {
1593   DenseI32ArrayAttr weightsAttr = op.getBranchWeightsOrNull();
1594   if (!weightsAttr)
1595     return;
1596 
1597   llvm::Instruction *inst = isa<CallOp>(op) ? lookupCall(op) : lookupBranch(op);
1598   assert(inst && "expected the operation to have a mapping to an instruction");
1599   SmallVector<uint32_t> weights(weightsAttr.asArrayRef());
1600   inst->setMetadata(
1601       llvm::LLVMContext::MD_prof,
1602       llvm::MDBuilder(getLLVMContext()).createBranchWeights(weights));
1603 }
1604 
1605 LogicalResult ModuleTranslation::createTBAAMetadata() {
1606   llvm::LLVMContext &ctx = llvmModule->getContext();
1607   llvm::IntegerType *offsetTy = llvm::IntegerType::get(ctx, 64);
1608 
1609   // Walk the entire module and create all metadata nodes for the TBAA
1610   // attributes. The code below relies on two invariants of the
1611   // `AttrTypeWalker`:
1612   // 1. Attributes are visited in post-order: Since the attributes create a DAG,
1613   //    this ensures that any lookups into `tbaaMetadataMapping` for child
1614   //    attributes succeed.
1615   // 2. Attributes are only ever visited once: This way we don't leak any
1616   //    LLVM metadata instances.
1617   AttrTypeWalker walker;
1618   walker.addWalk([&](TBAARootAttr root) {
1619     tbaaMetadataMapping.insert(
1620         {root, llvm::MDNode::get(ctx, llvm::MDString::get(ctx, root.getId()))});
1621   });
1622 
1623   walker.addWalk([&](TBAATypeDescriptorAttr descriptor) {
1624     SmallVector<llvm::Metadata *> operands;
1625     operands.push_back(llvm::MDString::get(ctx, descriptor.getId()));
1626     for (TBAAMemberAttr member : descriptor.getMembers()) {
1627       operands.push_back(tbaaMetadataMapping.lookup(member.getTypeDesc()));
1628       operands.push_back(llvm::ConstantAsMetadata::get(
1629           llvm::ConstantInt::get(offsetTy, member.getOffset())));
1630     }
1631 
1632     tbaaMetadataMapping.insert({descriptor, llvm::MDNode::get(ctx, operands)});
1633   });
1634 
1635   walker.addWalk([&](TBAATagAttr tag) {
1636     SmallVector<llvm::Metadata *> operands;
1637 
1638     operands.push_back(tbaaMetadataMapping.lookup(tag.getBaseType()));
1639     operands.push_back(tbaaMetadataMapping.lookup(tag.getAccessType()));
1640 
1641     operands.push_back(llvm::ConstantAsMetadata::get(
1642         llvm::ConstantInt::get(offsetTy, tag.getOffset())));
1643     if (tag.getConstant())
1644       operands.push_back(
1645           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(offsetTy, 1)));
1646 
1647     tbaaMetadataMapping.insert({tag, llvm::MDNode::get(ctx, operands)});
1648   });
1649 
1650   mlirModule->walk([&](AliasAnalysisOpInterface analysisOpInterface) {
1651     if (auto attr = analysisOpInterface.getTBAATagsOrNull())
1652       walker.walk(attr);
1653   });
1654 
1655   return success();
1656 }
1657 
1658 void ModuleTranslation::setLoopMetadata(Operation *op,
1659                                         llvm::Instruction *inst) {
1660   LoopAnnotationAttr attr =
1661       TypeSwitch<Operation *, LoopAnnotationAttr>(op)
1662           .Case<LLVM::BrOp, LLVM::CondBrOp>(
1663               [](auto branchOp) { return branchOp.getLoopAnnotationAttr(); });
1664   if (!attr)
1665     return;
1666   llvm::MDNode *loopMD =
1667       loopAnnotationTranslation->translateLoopAnnotation(attr, op);
1668   inst->setMetadata(llvm::LLVMContext::MD_loop, loopMD);
1669 }
1670 
1671 llvm::Type *ModuleTranslation::convertType(Type type) {
1672   return typeTranslator.translateType(type);
1673 }
1674 
1675 /// A helper to look up remapped operands in the value remapping table.
1676 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) {
1677   SmallVector<llvm::Value *> remapped;
1678   remapped.reserve(values.size());
1679   for (Value v : values)
1680     remapped.push_back(lookupValue(v));
1681   return remapped;
1682 }
1683 
1684 llvm::OpenMPIRBuilder *ModuleTranslation::getOpenMPBuilder() {
1685   if (!ompBuilder) {
1686     ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule);
1687     ompBuilder->initialize();
1688 
1689     // Flags represented as top-level OpenMP dialect attributes are set in
1690     // `OpenMPDialectLLVMIRTranslationInterface::amendOperation()`. Here we set
1691     // the default configuration.
1692     ompBuilder->setConfig(llvm::OpenMPIRBuilderConfig(
1693         /* IsTargetDevice = */ false, /* IsGPU = */ false,
1694         /* OpenMPOffloadMandatory = */ false,
1695         /* HasRequiresReverseOffload = */ false,
1696         /* HasRequiresUnifiedAddress = */ false,
1697         /* HasRequiresUnifiedSharedMemory = */ false,
1698         /* HasRequiresDynamicAllocators = */ false));
1699   }
1700   return ompBuilder.get();
1701 }
1702 
1703 llvm::DILocation *ModuleTranslation::translateLoc(Location loc,
1704                                                   llvm::DILocalScope *scope) {
1705   return debugTranslation->translateLoc(loc, scope);
1706 }
1707 
1708 llvm::DIExpression *
1709 ModuleTranslation::translateExpression(LLVM::DIExpressionAttr attr) {
1710   return debugTranslation->translateExpression(attr);
1711 }
1712 
1713 llvm::DIGlobalVariableExpression *
1714 ModuleTranslation::translateGlobalVariableExpression(
1715     LLVM::DIGlobalVariableExpressionAttr attr) {
1716   return debugTranslation->translateGlobalVariableExpression(attr);
1717 }
1718 
1719 llvm::Metadata *ModuleTranslation::translateDebugInfo(LLVM::DINodeAttr attr) {
1720   return debugTranslation->translate(attr);
1721 }
1722 
1723 llvm::NamedMDNode *
1724 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
1725   return llvmModule->getOrInsertNamedMetadata(name);
1726 }
1727 
1728 void ModuleTranslation::StackFrame::anchor() {}
1729 
1730 static std::unique_ptr<llvm::Module>
1731 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
1732                   StringRef name) {
1733   m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
1734   auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
1735   if (auto dataLayoutAttr =
1736           m->getDiscardableAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) {
1737     llvmModule->setDataLayout(cast<StringAttr>(dataLayoutAttr).getValue());
1738   } else {
1739     FailureOr<llvm::DataLayout> llvmDataLayout(llvm::DataLayout(""));
1740     if (auto iface = dyn_cast<DataLayoutOpInterface>(m)) {
1741       if (DataLayoutSpecInterface spec = iface.getDataLayoutSpec()) {
1742         llvmDataLayout =
1743             translateDataLayout(spec, DataLayout(iface), m->getLoc());
1744       }
1745     } else if (auto mod = dyn_cast<ModuleOp>(m)) {
1746       if (DataLayoutSpecInterface spec = mod.getDataLayoutSpec()) {
1747         llvmDataLayout =
1748             translateDataLayout(spec, DataLayout(mod), m->getLoc());
1749       }
1750     }
1751     if (failed(llvmDataLayout))
1752       return nullptr;
1753     llvmModule->setDataLayout(*llvmDataLayout);
1754   }
1755   if (auto targetTripleAttr =
1756           m->getDiscardableAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
1757     llvmModule->setTargetTriple(cast<StringAttr>(targetTripleAttr).getValue());
1758 
1759   return llvmModule;
1760 }
1761 
1762 std::unique_ptr<llvm::Module>
1763 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
1764                               StringRef name) {
1765   if (!satisfiesLLVMModule(module)) {
1766     module->emitOpError("can not be translated to an LLVMIR module");
1767     return nullptr;
1768   }
1769 
1770   std::unique_ptr<llvm::Module> llvmModule =
1771       prepareLLVMModule(module, llvmContext, name);
1772   if (!llvmModule)
1773     return nullptr;
1774 
1775   LLVM::ensureDistinctSuccessors(module);
1776   LLVM::legalizeDIExpressionsRecursively(module);
1777 
1778   ModuleTranslation translator(module, std::move(llvmModule));
1779   llvm::IRBuilder<> llvmBuilder(llvmContext);
1780 
1781   // Convert module before functions and operations inside, so dialect
1782   // attributes can be used to change dialect-specific global configurations via
1783   // `amendOperation()`. These configurations can then influence the translation
1784   // of operations afterwards.
1785   if (failed(translator.convertOperation(*module, llvmBuilder)))
1786     return nullptr;
1787 
1788   if (failed(translator.convertComdats()))
1789     return nullptr;
1790   if (failed(translator.convertFunctionSignatures()))
1791     return nullptr;
1792   if (failed(translator.convertGlobals()))
1793     return nullptr;
1794   if (failed(translator.createTBAAMetadata()))
1795     return nullptr;
1796 
1797   // Convert other top-level operations if possible.
1798   for (Operation &o : getModuleBody(module).getOperations()) {
1799     if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp,
1800              LLVM::GlobalDtorsOp, LLVM::ComdatOp>(&o) &&
1801         !o.hasTrait<OpTrait::IsTerminator>() &&
1802         failed(translator.convertOperation(o, llvmBuilder))) {
1803       return nullptr;
1804     }
1805   }
1806 
1807   // Operations in function bodies with symbolic references must be converted
1808   // after the top-level operations they refer to are declared, so we do it
1809   // last.
1810   if (failed(translator.convertFunctions()))
1811     return nullptr;
1812 
1813   if (llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
1814     return nullptr;
1815 
1816   return std::move(translator.llvmModule);
1817 }
1818