1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "AttrKindDetail.h" 17 #include "DebugTranslation.h" 18 #include "LoopAnnotationTranslation.h" 19 #include "mlir/Dialect/DLTI/DLTI.h" 20 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 21 #include "mlir/Dialect/LLVMIR/LLVMInterfaces.h" 22 #include "mlir/Dialect/LLVMIR/Transforms/DIExpressionLegalization.h" 23 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h" 24 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 25 #include "mlir/Dialect/OpenMP/OpenMPInterfaces.h" 26 #include "mlir/IR/AttrTypeSubElements.h" 27 #include "mlir/IR/Attributes.h" 28 #include "mlir/IR/BuiltinOps.h" 29 #include "mlir/IR/BuiltinTypes.h" 30 #include "mlir/IR/DialectResourceBlobManager.h" 31 #include "mlir/IR/RegionGraphTraits.h" 32 #include "mlir/Support/LLVM.h" 33 #include "mlir/Support/LogicalResult.h" 34 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h" 35 #include "mlir/Target/LLVMIR/TypeToLLVM.h" 36 #include "mlir/Transforms/RegionUtils.h" 37 38 #include "llvm/ADT/PostOrderIterator.h" 39 #include "llvm/ADT/SetVector.h" 40 #include "llvm/ADT/StringExtras.h" 41 #include "llvm/ADT/TypeSwitch.h" 42 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/CFG.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DerivedTypes.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/IntrinsicsNVPTX.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/Verifier.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 57 #include "llvm/Transforms/Utils/Cloning.h" 58 #include "llvm/Transforms/Utils/ModuleUtils.h" 59 #include <optional> 60 61 #define DEBUG_TYPE "llvm-dialect-to-llvm-ir" 62 63 using namespace mlir; 64 using namespace mlir::LLVM; 65 using namespace mlir::LLVM::detail; 66 67 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 68 69 namespace { 70 /// A customized inserter for LLVM's IRBuilder that captures all LLVM IR 71 /// instructions that are created for future reference. 72 /// 73 /// This is intended to be used with the `CollectionScope` RAII object: 74 /// 75 /// llvm::IRBuilder<..., InstructionCapturingInserter> builder; 76 /// { 77 /// InstructionCapturingInserter::CollectionScope scope(builder); 78 /// // Call IRBuilder methods as usual. 79 /// 80 /// // This will return a list of all instructions created by the builder, 81 /// // in order of creation. 82 /// builder.getInserter().getCapturedInstructions(); 83 /// } 84 /// // This will return an empty list. 85 /// builder.getInserter().getCapturedInstructions(); 86 /// 87 /// The capturing functionality is _disabled_ by default for performance 88 /// consideration. It needs to be explicitly enabled, which is achieved by 89 /// creating a `CollectionScope`. 90 class InstructionCapturingInserter : public llvm::IRBuilderCallbackInserter { 91 public: 92 /// Constructs the inserter. 93 InstructionCapturingInserter() 94 : llvm::IRBuilderCallbackInserter([this](llvm::Instruction *instruction) { 95 if (LLVM_LIKELY(enabled)) 96 capturedInstructions.push_back(instruction); 97 }) {} 98 99 /// Returns the list of LLVM IR instructions captured since the last cleanup. 100 ArrayRef<llvm::Instruction *> getCapturedInstructions() const { 101 return capturedInstructions; 102 } 103 104 /// Clears the list of captured LLVM IR instructions. 105 void clearCapturedInstructions() { capturedInstructions.clear(); } 106 107 /// RAII object enabling the capture of created LLVM IR instructions. 108 class CollectionScope { 109 public: 110 /// Creates the scope for the given inserter. 111 CollectionScope(llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing); 112 113 /// Ends the scope. 114 ~CollectionScope(); 115 116 ArrayRef<llvm::Instruction *> getCapturedInstructions() { 117 if (!inserter) 118 return {}; 119 return inserter->getCapturedInstructions(); 120 } 121 122 private: 123 /// Back reference to the inserter. 124 InstructionCapturingInserter *inserter = nullptr; 125 126 /// List of instructions in the inserter prior to this scope. 127 SmallVector<llvm::Instruction *> previouslyCollectedInstructions; 128 129 /// Whether the inserter was enabled prior to this scope. 130 bool wasEnabled; 131 }; 132 133 /// Enable or disable the capturing mechanism. 134 void setEnabled(bool enabled = true) { this->enabled = enabled; } 135 136 private: 137 /// List of captured instructions. 138 SmallVector<llvm::Instruction *> capturedInstructions; 139 140 /// Whether the collection is enabled. 141 bool enabled = false; 142 }; 143 144 using CapturingIRBuilder = 145 llvm::IRBuilder<llvm::ConstantFolder, InstructionCapturingInserter>; 146 } // namespace 147 148 InstructionCapturingInserter::CollectionScope::CollectionScope( 149 llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing) { 150 151 if (!isBuilderCapturing) 152 return; 153 154 auto &capturingIRBuilder = static_cast<CapturingIRBuilder &>(irBuilder); 155 inserter = &capturingIRBuilder.getInserter(); 156 wasEnabled = inserter->enabled; 157 if (wasEnabled) 158 previouslyCollectedInstructions.swap(inserter->capturedInstructions); 159 inserter->setEnabled(true); 160 } 161 162 InstructionCapturingInserter::CollectionScope::~CollectionScope() { 163 if (!inserter) 164 return; 165 166 previouslyCollectedInstructions.swap(inserter->capturedInstructions); 167 // If collection was enabled (likely in another, surrounding scope), keep 168 // the instructions collected in this scope. 169 if (wasEnabled) { 170 llvm::append_range(inserter->capturedInstructions, 171 previouslyCollectedInstructions); 172 } 173 inserter->setEnabled(wasEnabled); 174 } 175 176 /// Translates the given data layout spec attribute to the LLVM IR data layout. 177 /// Only integer, float, pointer and endianness entries are currently supported. 178 static FailureOr<llvm::DataLayout> 179 translateDataLayout(DataLayoutSpecInterface attribute, 180 const DataLayout &dataLayout, 181 std::optional<Location> loc = std::nullopt) { 182 if (!loc) 183 loc = UnknownLoc::get(attribute.getContext()); 184 185 // Translate the endianness attribute. 186 std::string llvmDataLayout; 187 llvm::raw_string_ostream layoutStream(llvmDataLayout); 188 for (DataLayoutEntryInterface entry : attribute.getEntries()) { 189 auto key = llvm::dyn_cast_if_present<StringAttr>(entry.getKey()); 190 if (!key) 191 continue; 192 if (key.getValue() == DLTIDialect::kDataLayoutEndiannessKey) { 193 auto value = cast<StringAttr>(entry.getValue()); 194 bool isLittleEndian = 195 value.getValue() == DLTIDialect::kDataLayoutEndiannessLittle; 196 layoutStream << "-" << (isLittleEndian ? "e" : "E"); 197 layoutStream.flush(); 198 continue; 199 } 200 if (key.getValue() == DLTIDialect::kDataLayoutProgramMemorySpaceKey) { 201 auto value = cast<IntegerAttr>(entry.getValue()); 202 uint64_t space = value.getValue().getZExtValue(); 203 // Skip the default address space. 204 if (space == 0) 205 continue; 206 layoutStream << "-P" << space; 207 layoutStream.flush(); 208 continue; 209 } 210 if (key.getValue() == DLTIDialect::kDataLayoutGlobalMemorySpaceKey) { 211 auto value = cast<IntegerAttr>(entry.getValue()); 212 uint64_t space = value.getValue().getZExtValue(); 213 // Skip the default address space. 214 if (space == 0) 215 continue; 216 layoutStream << "-G" << space; 217 layoutStream.flush(); 218 continue; 219 } 220 if (key.getValue() == DLTIDialect::kDataLayoutAllocaMemorySpaceKey) { 221 auto value = cast<IntegerAttr>(entry.getValue()); 222 uint64_t space = value.getValue().getZExtValue(); 223 // Skip the default address space. 224 if (space == 0) 225 continue; 226 layoutStream << "-A" << space; 227 layoutStream.flush(); 228 continue; 229 } 230 if (key.getValue() == DLTIDialect::kDataLayoutStackAlignmentKey) { 231 auto value = cast<IntegerAttr>(entry.getValue()); 232 uint64_t alignment = value.getValue().getZExtValue(); 233 // Skip the default stack alignment. 234 if (alignment == 0) 235 continue; 236 layoutStream << "-S" << alignment; 237 layoutStream.flush(); 238 continue; 239 } 240 emitError(*loc) << "unsupported data layout key " << key; 241 return failure(); 242 } 243 244 // Go through the list of entries to check which types are explicitly 245 // specified in entries. Where possible, data layout queries are used instead 246 // of directly inspecting the entries. 247 for (DataLayoutEntryInterface entry : attribute.getEntries()) { 248 auto type = llvm::dyn_cast_if_present<Type>(entry.getKey()); 249 if (!type) 250 continue; 251 // Data layout for the index type is irrelevant at this point. 252 if (isa<IndexType>(type)) 253 continue; 254 layoutStream << "-"; 255 LogicalResult result = 256 llvm::TypeSwitch<Type, LogicalResult>(type) 257 .Case<IntegerType, Float16Type, Float32Type, Float64Type, 258 Float80Type, Float128Type>([&](Type type) -> LogicalResult { 259 if (auto intType = dyn_cast<IntegerType>(type)) { 260 if (intType.getSignedness() != IntegerType::Signless) 261 return emitError(*loc) 262 << "unsupported data layout for non-signless integer " 263 << intType; 264 layoutStream << "i"; 265 } else { 266 layoutStream << "f"; 267 } 268 uint64_t size = dataLayout.getTypeSizeInBits(type); 269 uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u; 270 uint64_t preferred = 271 dataLayout.getTypePreferredAlignment(type) * 8u; 272 layoutStream << size << ":" << abi; 273 if (abi != preferred) 274 layoutStream << ":" << preferred; 275 return success(); 276 }) 277 .Case([&](LLVMPointerType ptrType) { 278 layoutStream << "p" << ptrType.getAddressSpace() << ":"; 279 uint64_t size = dataLayout.getTypeSizeInBits(type); 280 uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u; 281 uint64_t preferred = 282 dataLayout.getTypePreferredAlignment(type) * 8u; 283 layoutStream << size << ":" << abi << ":" << preferred; 284 if (std::optional<uint64_t> index = extractPointerSpecValue( 285 entry.getValue(), PtrDLEntryPos::Index)) 286 layoutStream << ":" << *index; 287 return success(); 288 }) 289 .Default([loc](Type type) { 290 return emitError(*loc) 291 << "unsupported type in data layout: " << type; 292 }); 293 if (failed(result)) 294 return failure(); 295 } 296 layoutStream.flush(); 297 StringRef layoutSpec(llvmDataLayout); 298 if (layoutSpec.starts_with("-")) 299 layoutSpec = layoutSpec.drop_front(); 300 301 return llvm::DataLayout(layoutSpec); 302 } 303 304 /// Builds a constant of a sequential LLVM type `type`, potentially containing 305 /// other sequential types recursively, from the individual constant values 306 /// provided in `constants`. `shape` contains the number of elements in nested 307 /// sequential types. Reports errors at `loc` and returns nullptr on error. 308 static llvm::Constant * 309 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 310 ArrayRef<int64_t> shape, llvm::Type *type, 311 Location loc) { 312 if (shape.empty()) { 313 llvm::Constant *result = constants.front(); 314 constants = constants.drop_front(); 315 return result; 316 } 317 318 llvm::Type *elementType; 319 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 320 elementType = arrayTy->getElementType(); 321 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 322 elementType = vectorTy->getElementType(); 323 } else { 324 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 325 return nullptr; 326 } 327 328 SmallVector<llvm::Constant *, 8> nested; 329 nested.reserve(shape.front()); 330 for (int64_t i = 0; i < shape.front(); ++i) { 331 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 332 elementType, loc)); 333 if (!nested.back()) 334 return nullptr; 335 } 336 337 if (shape.size() == 1 && type->isVectorTy()) 338 return llvm::ConstantVector::get(nested); 339 return llvm::ConstantArray::get( 340 llvm::ArrayType::get(elementType, shape.front()), nested); 341 } 342 343 /// Returns the first non-sequential type nested in sequential types. 344 static llvm::Type *getInnermostElementType(llvm::Type *type) { 345 do { 346 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 347 type = arrayTy->getElementType(); 348 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 349 type = vectorTy->getElementType(); 350 } else { 351 return type; 352 } 353 } while (true); 354 } 355 356 /// Convert a dense elements attribute to an LLVM IR constant using its raw data 357 /// storage if possible. This supports elements attributes of tensor or vector 358 /// type and avoids constructing separate objects for individual values of the 359 /// innermost dimension. Constants for other dimensions are still constructed 360 /// recursively. Returns null if constructing from raw data is not supported for 361 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports 362 /// other errors at `loc`. 363 static llvm::Constant * 364 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr, 365 llvm::Type *llvmType, 366 const ModuleTranslation &moduleTranslation) { 367 if (!denseElementsAttr) 368 return nullptr; 369 370 llvm::Type *innermostLLVMType = getInnermostElementType(llvmType); 371 if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType)) 372 return nullptr; 373 374 ShapedType type = denseElementsAttr.getType(); 375 if (type.getNumElements() == 0) 376 return nullptr; 377 378 // Check that the raw data size matches what is expected for the scalar size. 379 // TODO: in theory, we could repack the data here to keep constructing from 380 // raw data. 381 // TODO: we may also need to consider endianness when cross-compiling to an 382 // architecture where it is different. 383 int64_t elementByteSize = denseElementsAttr.getRawData().size() / 384 denseElementsAttr.getNumElements(); 385 if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits()) 386 return nullptr; 387 388 // Compute the shape of all dimensions but the innermost. Note that the 389 // innermost dimension may be that of the vector element type. 390 bool hasVectorElementType = isa<VectorType>(type.getElementType()); 391 int64_t numAggregates = 392 denseElementsAttr.getNumElements() / 393 (hasVectorElementType ? 1 394 : denseElementsAttr.getType().getShape().back()); 395 ArrayRef<int64_t> outerShape = type.getShape(); 396 if (!hasVectorElementType) 397 outerShape = outerShape.drop_back(); 398 399 // Handle the case of vector splat, LLVM has special support for it. 400 if (denseElementsAttr.isSplat() && 401 (isa<VectorType>(type) || hasVectorElementType)) { 402 llvm::Constant *splatValue = LLVM::detail::getLLVMConstant( 403 innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc, 404 moduleTranslation); 405 llvm::Constant *splatVector = 406 llvm::ConstantDataVector::getSplat(0, splatValue); 407 SmallVector<llvm::Constant *> constants(numAggregates, splatVector); 408 ArrayRef<llvm::Constant *> constantsRef = constants; 409 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 410 } 411 if (denseElementsAttr.isSplat()) 412 return nullptr; 413 414 // In case of non-splat, create a constructor for the innermost constant from 415 // a piece of raw data. 416 std::function<llvm::Constant *(StringRef)> buildCstData; 417 if (isa<TensorType>(type)) { 418 auto vectorElementType = dyn_cast<VectorType>(type.getElementType()); 419 if (vectorElementType && vectorElementType.getRank() == 1) { 420 buildCstData = [&](StringRef data) { 421 return llvm::ConstantDataVector::getRaw( 422 data, vectorElementType.getShape().back(), innermostLLVMType); 423 }; 424 } else if (!vectorElementType) { 425 buildCstData = [&](StringRef data) { 426 return llvm::ConstantDataArray::getRaw(data, type.getShape().back(), 427 innermostLLVMType); 428 }; 429 } 430 } else if (isa<VectorType>(type)) { 431 buildCstData = [&](StringRef data) { 432 return llvm::ConstantDataVector::getRaw(data, type.getShape().back(), 433 innermostLLVMType); 434 }; 435 } 436 if (!buildCstData) 437 return nullptr; 438 439 // Create innermost constants and defer to the default constant creation 440 // mechanism for other dimensions. 441 SmallVector<llvm::Constant *> constants; 442 int64_t aggregateSize = denseElementsAttr.getType().getShape().back() * 443 (innermostLLVMType->getScalarSizeInBits() / 8); 444 constants.reserve(numAggregates); 445 for (unsigned i = 0; i < numAggregates; ++i) { 446 StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize, 447 aggregateSize); 448 constants.push_back(buildCstData(data)); 449 } 450 451 ArrayRef<llvm::Constant *> constantsRef = constants; 452 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 453 } 454 455 /// Convert a dense resource elements attribute to an LLVM IR constant using its 456 /// raw data storage if possible. This supports elements attributes of tensor or 457 /// vector type and avoids constructing separate objects for individual values 458 /// of the innermost dimension. Constants for other dimensions are still 459 /// constructed recursively. Returns nullptr on failure and emits errors at 460 /// `loc`. 461 static llvm::Constant *convertDenseResourceElementsAttr( 462 Location loc, DenseResourceElementsAttr denseResourceAttr, 463 llvm::Type *llvmType, const ModuleTranslation &moduleTranslation) { 464 assert(denseResourceAttr && "expected non-null attribute"); 465 466 llvm::Type *innermostLLVMType = getInnermostElementType(llvmType); 467 if (!llvm::ConstantDataSequential::isElementTypeCompatible( 468 innermostLLVMType)) { 469 emitError(loc, "no known conversion for innermost element type"); 470 return nullptr; 471 } 472 473 ShapedType type = denseResourceAttr.getType(); 474 assert(type.getNumElements() > 0 && "Expected non-empty elements attribute"); 475 476 AsmResourceBlob *blob = denseResourceAttr.getRawHandle().getBlob(); 477 if (!blob) { 478 emitError(loc, "resource does not exist"); 479 return nullptr; 480 } 481 482 ArrayRef<char> rawData = blob->getData(); 483 484 // Check that the raw data size matches what is expected for the scalar size. 485 // TODO: in theory, we could repack the data here to keep constructing from 486 // raw data. 487 // TODO: we may also need to consider endianness when cross-compiling to an 488 // architecture where it is different. 489 int64_t numElements = denseResourceAttr.getType().getNumElements(); 490 int64_t elementByteSize = rawData.size() / numElements; 491 if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits()) { 492 emitError(loc, "raw data size does not match element type size"); 493 return nullptr; 494 } 495 496 // Compute the shape of all dimensions but the innermost. Note that the 497 // innermost dimension may be that of the vector element type. 498 bool hasVectorElementType = isa<VectorType>(type.getElementType()); 499 int64_t numAggregates = 500 numElements / (hasVectorElementType 501 ? 1 502 : denseResourceAttr.getType().getShape().back()); 503 ArrayRef<int64_t> outerShape = type.getShape(); 504 if (!hasVectorElementType) 505 outerShape = outerShape.drop_back(); 506 507 // Create a constructor for the innermost constant from a piece of raw data. 508 std::function<llvm::Constant *(StringRef)> buildCstData; 509 if (isa<TensorType>(type)) { 510 auto vectorElementType = dyn_cast<VectorType>(type.getElementType()); 511 if (vectorElementType && vectorElementType.getRank() == 1) { 512 buildCstData = [&](StringRef data) { 513 return llvm::ConstantDataVector::getRaw( 514 data, vectorElementType.getShape().back(), innermostLLVMType); 515 }; 516 } else if (!vectorElementType) { 517 buildCstData = [&](StringRef data) { 518 return llvm::ConstantDataArray::getRaw(data, type.getShape().back(), 519 innermostLLVMType); 520 }; 521 } 522 } else if (isa<VectorType>(type)) { 523 buildCstData = [&](StringRef data) { 524 return llvm::ConstantDataVector::getRaw(data, type.getShape().back(), 525 innermostLLVMType); 526 }; 527 } 528 if (!buildCstData) { 529 emitError(loc, "unsupported dense_resource type"); 530 return nullptr; 531 } 532 533 // Create innermost constants and defer to the default constant creation 534 // mechanism for other dimensions. 535 SmallVector<llvm::Constant *> constants; 536 int64_t aggregateSize = denseResourceAttr.getType().getShape().back() * 537 (innermostLLVMType->getScalarSizeInBits() / 8); 538 constants.reserve(numAggregates); 539 for (unsigned i = 0; i < numAggregates; ++i) { 540 StringRef data(rawData.data() + i * aggregateSize, aggregateSize); 541 constants.push_back(buildCstData(data)); 542 } 543 544 ArrayRef<llvm::Constant *> constantsRef = constants; 545 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 546 } 547 548 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 549 /// This currently supports integer, floating point, splat and dense element 550 /// attributes and combinations thereof. Also, an array attribute with two 551 /// elements is supported to represent a complex constant. In case of error, 552 /// report it to `loc` and return nullptr. 553 llvm::Constant *mlir::LLVM::detail::getLLVMConstant( 554 llvm::Type *llvmType, Attribute attr, Location loc, 555 const ModuleTranslation &moduleTranslation) { 556 if (!attr) 557 return llvm::UndefValue::get(llvmType); 558 if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) { 559 auto arrayAttr = dyn_cast<ArrayAttr>(attr); 560 if (!arrayAttr || arrayAttr.size() != 2) { 561 emitError(loc, "expected struct type to be a complex number"); 562 return nullptr; 563 } 564 llvm::Type *elementType = structType->getElementType(0); 565 llvm::Constant *real = 566 getLLVMConstant(elementType, arrayAttr[0], loc, moduleTranslation); 567 if (!real) 568 return nullptr; 569 llvm::Constant *imag = 570 getLLVMConstant(elementType, arrayAttr[1], loc, moduleTranslation); 571 if (!imag) 572 return nullptr; 573 return llvm::ConstantStruct::get(structType, {real, imag}); 574 } 575 // For integer types, we allow a mismatch in sizes as the index type in 576 // MLIR might have a different size than the index type in the LLVM module. 577 if (auto intAttr = dyn_cast<IntegerAttr>(attr)) 578 return llvm::ConstantInt::get( 579 llvmType, 580 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); 581 if (auto floatAttr = dyn_cast<FloatAttr>(attr)) { 582 const llvm::fltSemantics &sem = floatAttr.getValue().getSemantics(); 583 // Special case for 8-bit floats, which are represented by integers due to 584 // the lack of native fp8 types in LLVM at the moment. Additionally, handle 585 // targets (like AMDGPU) that don't implement bfloat and convert all bfloats 586 // to i16. 587 unsigned floatWidth = APFloat::getSizeInBits(sem); 588 if (llvmType->isIntegerTy(floatWidth)) 589 return llvm::ConstantInt::get(llvmType, 590 floatAttr.getValue().bitcastToAPInt()); 591 if (llvmType != 592 llvm::Type::getFloatingPointTy(llvmType->getContext(), 593 floatAttr.getValue().getSemantics())) { 594 emitError(loc, "FloatAttr does not match expected type of the constant"); 595 return nullptr; 596 } 597 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 598 } 599 if (auto funcAttr = dyn_cast<FlatSymbolRefAttr>(attr)) 600 return llvm::ConstantExpr::getBitCast( 601 moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType); 602 if (auto splatAttr = dyn_cast<SplatElementsAttr>(attr)) { 603 llvm::Type *elementType; 604 uint64_t numElements; 605 bool isScalable = false; 606 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) { 607 elementType = arrayTy->getElementType(); 608 numElements = arrayTy->getNumElements(); 609 } else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) { 610 elementType = fVectorTy->getElementType(); 611 numElements = fVectorTy->getNumElements(); 612 } else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) { 613 elementType = sVectorTy->getElementType(); 614 numElements = sVectorTy->getMinNumElements(); 615 isScalable = true; 616 } else { 617 llvm_unreachable("unrecognized constant vector type"); 618 } 619 // Splat value is a scalar. Extract it only if the element type is not 620 // another sequence type. The recursion terminates because each step removes 621 // one outer sequential type. 622 bool elementTypeSequential = 623 isa<llvm::ArrayType, llvm::VectorType>(elementType); 624 llvm::Constant *child = getLLVMConstant( 625 elementType, 626 elementTypeSequential ? splatAttr 627 : splatAttr.getSplatValue<Attribute>(), 628 loc, moduleTranslation); 629 if (!child) 630 return nullptr; 631 if (llvmType->isVectorTy()) 632 return llvm::ConstantVector::getSplat( 633 llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child); 634 if (llvmType->isArrayTy()) { 635 auto *arrayType = llvm::ArrayType::get(elementType, numElements); 636 SmallVector<llvm::Constant *, 8> constants(numElements, child); 637 return llvm::ConstantArray::get(arrayType, constants); 638 } 639 } 640 641 // Try using raw elements data if possible. 642 if (llvm::Constant *result = 643 convertDenseElementsAttr(loc, dyn_cast<DenseElementsAttr>(attr), 644 llvmType, moduleTranslation)) { 645 return result; 646 } 647 648 if (auto denseResourceAttr = dyn_cast<DenseResourceElementsAttr>(attr)) { 649 return convertDenseResourceElementsAttr(loc, denseResourceAttr, llvmType, 650 moduleTranslation); 651 } 652 653 // Fall back to element-by-element construction otherwise. 654 if (auto elementsAttr = dyn_cast<ElementsAttr>(attr)) { 655 assert(elementsAttr.getShapedType().hasStaticShape()); 656 assert(!elementsAttr.getShapedType().getShape().empty() && 657 "unexpected empty elements attribute shape"); 658 659 SmallVector<llvm::Constant *, 8> constants; 660 constants.reserve(elementsAttr.getNumElements()); 661 llvm::Type *innermostType = getInnermostElementType(llvmType); 662 for (auto n : elementsAttr.getValues<Attribute>()) { 663 constants.push_back( 664 getLLVMConstant(innermostType, n, loc, moduleTranslation)); 665 if (!constants.back()) 666 return nullptr; 667 } 668 ArrayRef<llvm::Constant *> constantsRef = constants; 669 llvm::Constant *result = buildSequentialConstant( 670 constantsRef, elementsAttr.getShapedType().getShape(), llvmType, loc); 671 assert(constantsRef.empty() && "did not consume all elemental constants"); 672 return result; 673 } 674 675 if (auto stringAttr = dyn_cast<StringAttr>(attr)) { 676 return llvm::ConstantDataArray::get( 677 moduleTranslation.getLLVMContext(), 678 ArrayRef<char>{stringAttr.getValue().data(), 679 stringAttr.getValue().size()}); 680 } 681 emitError(loc, "unsupported constant value"); 682 return nullptr; 683 } 684 685 ModuleTranslation::ModuleTranslation(Operation *module, 686 std::unique_ptr<llvm::Module> llvmModule) 687 : mlirModule(module), llvmModule(std::move(llvmModule)), 688 debugTranslation( 689 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 690 loopAnnotationTranslation(std::make_unique<LoopAnnotationTranslation>( 691 *this, *this->llvmModule)), 692 typeTranslator(this->llvmModule->getContext()), 693 iface(module->getContext()) { 694 assert(satisfiesLLVMModule(mlirModule) && 695 "mlirModule should honor LLVM's module semantics."); 696 } 697 698 ModuleTranslation::~ModuleTranslation() { 699 if (ompBuilder) 700 ompBuilder->finalize(); 701 } 702 703 void ModuleTranslation::forgetMapping(Region ®ion) { 704 SmallVector<Region *> toProcess; 705 toProcess.push_back(®ion); 706 while (!toProcess.empty()) { 707 Region *current = toProcess.pop_back_val(); 708 for (Block &block : *current) { 709 blockMapping.erase(&block); 710 for (Value arg : block.getArguments()) 711 valueMapping.erase(arg); 712 for (Operation &op : block) { 713 for (Value value : op.getResults()) 714 valueMapping.erase(value); 715 if (op.hasSuccessors()) 716 branchMapping.erase(&op); 717 if (isa<LLVM::GlobalOp>(op)) 718 globalsMapping.erase(&op); 719 llvm::append_range( 720 toProcess, 721 llvm::map_range(op.getRegions(), [](Region &r) { return &r; })); 722 } 723 } 724 } 725 } 726 727 /// Get the SSA value passed to the current block from the terminator operation 728 /// of its predecessor. 729 static Value getPHISourceValue(Block *current, Block *pred, 730 unsigned numArguments, unsigned index) { 731 Operation &terminator = *pred->getTerminator(); 732 if (isa<LLVM::BrOp>(terminator)) 733 return terminator.getOperand(index); 734 735 #ifndef NDEBUG 736 llvm::SmallPtrSet<Block *, 4> seenSuccessors; 737 for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) { 738 Block *successor = terminator.getSuccessor(i); 739 auto branch = cast<BranchOpInterface>(terminator); 740 SuccessorOperands successorOperands = branch.getSuccessorOperands(i); 741 assert( 742 (!seenSuccessors.contains(successor) || successorOperands.empty()) && 743 "successors with arguments in LLVM branches must be different blocks"); 744 seenSuccessors.insert(successor); 745 } 746 #endif 747 748 // For instructions that branch based on a condition value, we need to take 749 // the operands for the branch that was taken. 750 if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) { 751 // For conditional branches, we take the operands from either the "true" or 752 // the "false" branch. 753 return condBranchOp.getSuccessor(0) == current 754 ? condBranchOp.getTrueDestOperands()[index] 755 : condBranchOp.getFalseDestOperands()[index]; 756 } 757 758 if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) { 759 // For switches, we take the operands from either the default case, or from 760 // the case branch that was taken. 761 if (switchOp.getDefaultDestination() == current) 762 return switchOp.getDefaultOperands()[index]; 763 for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations())) 764 if (i.value() == current) 765 return switchOp.getCaseOperands(i.index())[index]; 766 } 767 768 if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) { 769 return invokeOp.getNormalDest() == current 770 ? invokeOp.getNormalDestOperands()[index] 771 : invokeOp.getUnwindDestOperands()[index]; 772 } 773 774 llvm_unreachable( 775 "only branch, switch or invoke operations can be terminators " 776 "of a block that has successors"); 777 } 778 779 /// Connect the PHI nodes to the results of preceding blocks. 780 void mlir::LLVM::detail::connectPHINodes(Region ®ion, 781 const ModuleTranslation &state) { 782 // Skip the first block, it cannot be branched to and its arguments correspond 783 // to the arguments of the LLVM function. 784 for (Block &bb : llvm::drop_begin(region)) { 785 llvm::BasicBlock *llvmBB = state.lookupBlock(&bb); 786 auto phis = llvmBB->phis(); 787 auto numArguments = bb.getNumArguments(); 788 assert(numArguments == std::distance(phis.begin(), phis.end())); 789 for (auto [index, phiNode] : llvm::enumerate(phis)) { 790 for (auto *pred : bb.getPredecessors()) { 791 // Find the LLVM IR block that contains the converted terminator 792 // instruction and use it in the PHI node. Note that this block is not 793 // necessarily the same as state.lookupBlock(pred), some operations 794 // (in particular, OpenMP operations using OpenMPIRBuilder) may have 795 // split the blocks. 796 llvm::Instruction *terminator = 797 state.lookupBranch(pred->getTerminator()); 798 assert(terminator && "missing the mapping for a terminator"); 799 phiNode.addIncoming(state.lookupValue(getPHISourceValue( 800 &bb, pred, numArguments, index)), 801 terminator->getParent()); 802 } 803 } 804 } 805 } 806 807 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall( 808 llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic, 809 ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) { 810 llvm::Module *module = builder.GetInsertBlock()->getModule(); 811 llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys); 812 return builder.CreateCall(fn, args); 813 } 814 815 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall( 816 llvm::IRBuilderBase &builder, ModuleTranslation &moduleTranslation, 817 Operation *intrOp, llvm::Intrinsic::ID intrinsic, unsigned numResults, 818 ArrayRef<unsigned> overloadedResults, ArrayRef<unsigned> overloadedOperands, 819 ArrayRef<unsigned> immArgPositions, 820 ArrayRef<StringLiteral> immArgAttrNames) { 821 assert(immArgPositions.size() == immArgAttrNames.size() && 822 "LLVM `immArgPositions` and MLIR `immArgAttrNames` should have equal " 823 "length"); 824 825 // Map operands and attributes to LLVM values. 826 auto operands = moduleTranslation.lookupValues(intrOp->getOperands()); 827 SmallVector<llvm::Value *> args(immArgPositions.size() + operands.size()); 828 for (auto [immArgPos, immArgName] : 829 llvm::zip(immArgPositions, immArgAttrNames)) { 830 auto attr = llvm::cast<TypedAttr>(intrOp->getAttr(immArgName)); 831 assert(attr.getType().isIntOrFloat() && "expected int or float immarg"); 832 auto *type = moduleTranslation.convertType(attr.getType()); 833 args[immArgPos] = LLVM::detail::getLLVMConstant( 834 type, attr, intrOp->getLoc(), moduleTranslation); 835 } 836 unsigned opArg = 0; 837 for (auto &arg : args) { 838 if (!arg) 839 arg = operands[opArg++]; 840 } 841 842 // Resolve overloaded intrinsic declaration. 843 SmallVector<llvm::Type *> overloadedTypes; 844 for (unsigned overloadedResultIdx : overloadedResults) { 845 if (numResults > 1) { 846 // More than one result is mapped to an LLVM struct. 847 overloadedTypes.push_back(moduleTranslation.convertType( 848 llvm::cast<LLVM::LLVMStructType>(intrOp->getResult(0).getType()) 849 .getBody()[overloadedResultIdx])); 850 } else { 851 overloadedTypes.push_back( 852 moduleTranslation.convertType(intrOp->getResult(0).getType())); 853 } 854 } 855 for (unsigned overloadedOperandIdx : overloadedOperands) 856 overloadedTypes.push_back(args[overloadedOperandIdx]->getType()); 857 llvm::Module *module = builder.GetInsertBlock()->getModule(); 858 llvm::Function *llvmIntr = 859 llvm::Intrinsic::getDeclaration(module, intrinsic, overloadedTypes); 860 861 return builder.CreateCall(llvmIntr, args); 862 } 863 864 /// Given a single MLIR operation, create the corresponding LLVM IR operation 865 /// using the `builder`. 866 LogicalResult ModuleTranslation::convertOperation(Operation &op, 867 llvm::IRBuilderBase &builder, 868 bool recordInsertions) { 869 const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op); 870 if (!opIface) 871 return op.emitError("cannot be converted to LLVM IR: missing " 872 "`LLVMTranslationDialectInterface` registration for " 873 "dialect for op: ") 874 << op.getName(); 875 876 InstructionCapturingInserter::CollectionScope scope(builder, 877 recordInsertions); 878 if (failed(opIface->convertOperation(&op, builder, *this))) 879 return op.emitError("LLVM Translation failed for operation: ") 880 << op.getName(); 881 882 return convertDialectAttributes(&op, scope.getCapturedInstructions()); 883 } 884 885 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 886 /// to define values corresponding to the MLIR block arguments. These nodes 887 /// are not connected to the source basic blocks, which may not exist yet. Uses 888 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have 889 /// been created for `bb` and included in the block mapping. Inserts new 890 /// instructions at the end of the block and leaves `builder` in a state 891 /// suitable for further insertion into the end of the block. 892 LogicalResult ModuleTranslation::convertBlockImpl(Block &bb, 893 bool ignoreArguments, 894 llvm::IRBuilderBase &builder, 895 bool recordInsertions) { 896 builder.SetInsertPoint(lookupBlock(&bb)); 897 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 898 899 // Before traversing operations, make block arguments available through 900 // value remapping and PHI nodes, but do not add incoming edges for the PHI 901 // nodes just yet: those values may be defined by this or following blocks. 902 // This step is omitted if "ignoreArguments" is set. The arguments of the 903 // first block have been already made available through the remapping of 904 // LLVM function arguments. 905 if (!ignoreArguments) { 906 auto predecessors = bb.getPredecessors(); 907 unsigned numPredecessors = 908 std::distance(predecessors.begin(), predecessors.end()); 909 for (auto arg : bb.getArguments()) { 910 auto wrappedType = arg.getType(); 911 if (!isCompatibleType(wrappedType)) 912 return emitError(bb.front().getLoc(), 913 "block argument does not have an LLVM type"); 914 llvm::Type *type = convertType(wrappedType); 915 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 916 mapValue(arg, phi); 917 } 918 } 919 920 // Traverse operations. 921 for (auto &op : bb) { 922 // Set the current debug location within the builder. 923 builder.SetCurrentDebugLocation( 924 debugTranslation->translateLoc(op.getLoc(), subprogram)); 925 926 if (failed(convertOperation(op, builder, recordInsertions))) 927 return failure(); 928 929 // Set the branch weight metadata on the translated instruction. 930 if (auto iface = dyn_cast<BranchWeightOpInterface>(op)) 931 setBranchWeightsMetadata(iface); 932 } 933 934 return success(); 935 } 936 937 /// A helper method to get the single Block in an operation honoring LLVM's 938 /// module requirements. 939 static Block &getModuleBody(Operation *module) { 940 return module->getRegion(0).front(); 941 } 942 943 /// A helper method to decide if a constant must not be set as a global variable 944 /// initializer. For an external linkage variable, the variable with an 945 /// initializer is considered externally visible and defined in this module, the 946 /// variable without an initializer is externally available and is defined 947 /// elsewhere. 948 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage, 949 llvm::Constant *cst) { 950 return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) || 951 linkage == llvm::GlobalVariable::ExternalWeakLinkage; 952 } 953 954 /// Sets the runtime preemption specifier of `gv` to dso_local if 955 /// `dsoLocalRequested` is true, otherwise it is left unchanged. 956 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested, 957 llvm::GlobalValue *gv) { 958 if (dsoLocalRequested) 959 gv->setDSOLocal(true); 960 } 961 962 /// Create named global variables that correspond to llvm.mlir.global 963 /// definitions. Convert llvm.global_ctors and global_dtors ops. 964 LogicalResult ModuleTranslation::convertGlobals() { 965 // Mapping from compile unit to its respective set of global variables. 966 DenseMap<llvm::DICompileUnit *, SmallVector<llvm::Metadata *>> allGVars; 967 968 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 969 llvm::Type *type = convertType(op.getType()); 970 llvm::Constant *cst = nullptr; 971 if (op.getValueOrNull()) { 972 // String attributes are treated separately because they cannot appear as 973 // in-function constants and are thus not supported by getLLVMConstant. 974 if (auto strAttr = dyn_cast_or_null<StringAttr>(op.getValueOrNull())) { 975 cst = llvm::ConstantDataArray::getString( 976 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 977 type = cst->getType(); 978 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(), 979 *this))) { 980 return failure(); 981 } 982 } 983 984 auto linkage = convertLinkageToLLVM(op.getLinkage()); 985 auto addrSpace = op.getAddrSpace(); 986 987 // LLVM IR requires constant with linkage other than external or weak 988 // external to have initializers. If MLIR does not provide an initializer, 989 // default to undef. 990 bool dropInitializer = shouldDropGlobalInitializer(linkage, cst); 991 if (!dropInitializer && !cst) 992 cst = llvm::UndefValue::get(type); 993 else if (dropInitializer && cst) 994 cst = nullptr; 995 996 auto *var = new llvm::GlobalVariable( 997 *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(), 998 /*InsertBefore=*/nullptr, 999 op.getThreadLocal_() ? llvm::GlobalValue::GeneralDynamicTLSModel 1000 : llvm::GlobalValue::NotThreadLocal, 1001 addrSpace); 1002 1003 if (std::optional<mlir::SymbolRefAttr> comdat = op.getComdat()) { 1004 auto selectorOp = cast<ComdatSelectorOp>( 1005 SymbolTable::lookupNearestSymbolFrom(op, *comdat)); 1006 var->setComdat(comdatMapping.lookup(selectorOp)); 1007 } 1008 1009 if (op.getUnnamedAddr().has_value()) 1010 var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr())); 1011 1012 if (op.getSection().has_value()) 1013 var->setSection(*op.getSection()); 1014 1015 addRuntimePreemptionSpecifier(op.getDsoLocal(), var); 1016 1017 std::optional<uint64_t> alignment = op.getAlignment(); 1018 if (alignment.has_value()) 1019 var->setAlignment(llvm::MaybeAlign(alignment.value())); 1020 1021 var->setVisibility(convertVisibilityToLLVM(op.getVisibility_())); 1022 1023 globalsMapping.try_emplace(op, var); 1024 1025 // Add debug information if present. 1026 if (op.getDbgExpr()) { 1027 llvm::DIGlobalVariableExpression *diGlobalExpr = 1028 debugTranslation->translateGlobalVariableExpression(op.getDbgExpr()); 1029 llvm::DIGlobalVariable *diGlobalVar = diGlobalExpr->getVariable(); 1030 var->addDebugInfo(diGlobalExpr); 1031 1032 // Get the compile unit (scope) of the the global variable. 1033 if (llvm::DICompileUnit *compileUnit = 1034 dyn_cast_if_present<llvm::DICompileUnit>( 1035 diGlobalVar->getScope())) { 1036 // Update the compile unit with this incoming global variable expression 1037 // during the finalizing step later. 1038 allGVars[compileUnit].push_back(diGlobalExpr); 1039 } 1040 } 1041 } 1042 1043 // Convert global variable bodies. This is done after all global variables 1044 // have been created in LLVM IR because a global body may refer to another 1045 // global or itself. So all global variables need to be mapped first. 1046 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 1047 if (Block *initializer = op.getInitializerBlock()) { 1048 llvm::IRBuilder<> builder(llvmModule->getContext()); 1049 1050 [[maybe_unused]] int numConstantsHit = 0; 1051 [[maybe_unused]] int numConstantsErased = 0; 1052 DenseMap<llvm::ConstantAggregate *, int> constantAggregateUseMap; 1053 1054 for (auto &op : initializer->without_terminator()) { 1055 if (failed(convertOperation(op, builder))) 1056 return emitError(op.getLoc(), "fail to convert global initializer"); 1057 auto *cst = dyn_cast<llvm::Constant>(lookupValue(op.getResult(0))); 1058 if (!cst) 1059 return emitError(op.getLoc(), "unemittable constant value"); 1060 1061 // When emitting an LLVM constant, a new constant is created and the old 1062 // constant may become dangling and take space. We should remove the 1063 // dangling constants to avoid memory explosion especially for constant 1064 // arrays whose number of elements is large. 1065 // Because multiple operations may refer to the same constant, we need 1066 // to count the number of uses of each constant array and remove it only 1067 // when the count becomes zero. 1068 if (auto *agg = dyn_cast<llvm::ConstantAggregate>(cst)) { 1069 numConstantsHit++; 1070 Value result = op.getResult(0); 1071 int numUsers = std::distance(result.use_begin(), result.use_end()); 1072 auto [iterator, inserted] = 1073 constantAggregateUseMap.try_emplace(agg, numUsers); 1074 if (!inserted) { 1075 // Key already exists, update the value 1076 iterator->second += numUsers; 1077 } 1078 } 1079 // Scan the operands of the operation to decrement the use count of 1080 // constants. Erase the constant if the use count becomes zero. 1081 for (Value v : op.getOperands()) { 1082 auto cst = dyn_cast<llvm::ConstantAggregate>(lookupValue(v)); 1083 if (!cst) 1084 continue; 1085 auto iter = constantAggregateUseMap.find(cst); 1086 assert(iter != constantAggregateUseMap.end() && "constant not found"); 1087 iter->second--; 1088 if (iter->second == 0) { 1089 // NOTE: cannot call removeDeadConstantUsers() here because it 1090 // may remove the constant which has uses not be converted yet. 1091 if (cst->user_empty()) { 1092 cst->destroyConstant(); 1093 numConstantsErased++; 1094 } 1095 constantAggregateUseMap.erase(iter); 1096 } 1097 } 1098 } 1099 1100 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 1101 llvm::Constant *cst = 1102 cast<llvm::Constant>(lookupValue(ret.getOperand(0))); 1103 auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op)); 1104 if (!shouldDropGlobalInitializer(global->getLinkage(), cst)) 1105 global->setInitializer(cst); 1106 1107 // Try to remove the dangling constants again after all operations are 1108 // converted. 1109 for (auto it : constantAggregateUseMap) { 1110 auto cst = it.first; 1111 cst->removeDeadConstantUsers(); 1112 if (cst->user_empty()) { 1113 cst->destroyConstant(); 1114 numConstantsErased++; 1115 } 1116 } 1117 1118 LLVM_DEBUG(llvm::dbgs() 1119 << "Convert initializer for " << op.getName() << "\n"; 1120 llvm::dbgs() << numConstantsHit << " new constants hit\n"; 1121 llvm::dbgs() 1122 << numConstantsErased << " dangling constants erased\n";); 1123 } 1124 } 1125 1126 // Convert llvm.mlir.global_ctors and dtors. 1127 for (Operation &op : getModuleBody(mlirModule)) { 1128 auto ctorOp = dyn_cast<GlobalCtorsOp>(op); 1129 auto dtorOp = dyn_cast<GlobalDtorsOp>(op); 1130 if (!ctorOp && !dtorOp) 1131 continue; 1132 auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities()) 1133 : llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities()); 1134 auto appendGlobalFn = 1135 ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors; 1136 for (auto symbolAndPriority : range) { 1137 llvm::Function *f = lookupFunction( 1138 cast<FlatSymbolRefAttr>(std::get<0>(symbolAndPriority)).getValue()); 1139 appendGlobalFn(*llvmModule, f, 1140 cast<IntegerAttr>(std::get<1>(symbolAndPriority)).getInt(), 1141 /*Data=*/nullptr); 1142 } 1143 } 1144 1145 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) 1146 if (failed(convertDialectAttributes(op, {}))) 1147 return failure(); 1148 1149 // Finally, update the compile units their respective sets of global variables 1150 // created earlier. 1151 for (const auto &[compileUnit, globals] : allGVars) { 1152 compileUnit->replaceGlobalVariables( 1153 llvm::MDTuple::get(getLLVMContext(), globals)); 1154 } 1155 1156 return success(); 1157 } 1158 1159 /// Attempts to add an attribute identified by `key`, optionally with the given 1160 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the 1161 /// attribute has a kind known to LLVM IR, create the attribute of this kind, 1162 /// otherwise keep it as a string attribute. Performs additional checks for 1163 /// attributes known to have or not have a value in order to avoid assertions 1164 /// inside LLVM upon construction. 1165 static LogicalResult checkedAddLLVMFnAttribute(Location loc, 1166 llvm::Function *llvmFunc, 1167 StringRef key, 1168 StringRef value = StringRef()) { 1169 auto kind = llvm::Attribute::getAttrKindFromName(key); 1170 if (kind == llvm::Attribute::None) { 1171 llvmFunc->addFnAttr(key, value); 1172 return success(); 1173 } 1174 1175 if (llvm::Attribute::isIntAttrKind(kind)) { 1176 if (value.empty()) 1177 return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; 1178 1179 int64_t result; 1180 if (!value.getAsInteger(/*Radix=*/0, result)) 1181 llvmFunc->addFnAttr( 1182 llvm::Attribute::get(llvmFunc->getContext(), kind, result)); 1183 else 1184 llvmFunc->addFnAttr(key, value); 1185 return success(); 1186 } 1187 1188 if (!value.empty()) 1189 return emitError(loc) << "LLVM attribute '" << key 1190 << "' does not expect a value, found '" << value 1191 << "'"; 1192 1193 llvmFunc->addFnAttr(kind); 1194 return success(); 1195 } 1196 1197 /// Attaches the attributes listed in the given array attribute to `llvmFunc`. 1198 /// Reports error to `loc` if any and returns immediately. Expects `attributes` 1199 /// to be an array attribute containing either string attributes, treated as 1200 /// value-less LLVM attributes, or array attributes containing two string 1201 /// attributes, with the first string being the name of the corresponding LLVM 1202 /// attribute and the second string beings its value. Note that even integer 1203 /// attributes are expected to have their values expressed as strings. 1204 static LogicalResult 1205 forwardPassthroughAttributes(Location loc, std::optional<ArrayAttr> attributes, 1206 llvm::Function *llvmFunc) { 1207 if (!attributes) 1208 return success(); 1209 1210 for (Attribute attr : *attributes) { 1211 if (auto stringAttr = dyn_cast<StringAttr>(attr)) { 1212 if (failed( 1213 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) 1214 return failure(); 1215 continue; 1216 } 1217 1218 auto arrayAttr = dyn_cast<ArrayAttr>(attr); 1219 if (!arrayAttr || arrayAttr.size() != 2) 1220 return emitError(loc) 1221 << "expected 'passthrough' to contain string or array attributes"; 1222 1223 auto keyAttr = dyn_cast<StringAttr>(arrayAttr[0]); 1224 auto valueAttr = dyn_cast<StringAttr>(arrayAttr[1]); 1225 if (!keyAttr || !valueAttr) 1226 return emitError(loc) 1227 << "expected arrays within 'passthrough' to contain two strings"; 1228 1229 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), 1230 valueAttr.getValue()))) 1231 return failure(); 1232 } 1233 return success(); 1234 } 1235 1236 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 1237 // Clear the block, branch value mappings, they are only relevant within one 1238 // function. 1239 blockMapping.clear(); 1240 valueMapping.clear(); 1241 branchMapping.clear(); 1242 llvm::Function *llvmFunc = lookupFunction(func.getName()); 1243 1244 // Add function arguments to the value remapping table. 1245 for (auto [mlirArg, llvmArg] : 1246 llvm::zip(func.getArguments(), llvmFunc->args())) 1247 mapValue(mlirArg, &llvmArg); 1248 1249 // Check the personality and set it. 1250 if (func.getPersonality()) { 1251 llvm::Type *ty = llvm::PointerType::getUnqual(llvmFunc->getContext()); 1252 if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(), 1253 func.getLoc(), *this)) 1254 llvmFunc->setPersonalityFn(pfunc); 1255 } 1256 1257 if (std::optional<StringRef> section = func.getSection()) 1258 llvmFunc->setSection(*section); 1259 1260 if (func.getArmStreaming()) 1261 llvmFunc->addFnAttr("aarch64_pstate_sm_enabled"); 1262 else if (func.getArmLocallyStreaming()) 1263 llvmFunc->addFnAttr("aarch64_pstate_sm_body"); 1264 else if (func.getArmStreamingCompatible()) 1265 llvmFunc->addFnAttr("aarch64_pstate_sm_compatible"); 1266 1267 if (func.getArmNewZa()) 1268 llvmFunc->addFnAttr("aarch64_new_za"); 1269 else if (func.getArmInZa()) 1270 llvmFunc->addFnAttr("aarch64_in_za"); 1271 else if (func.getArmOutZa()) 1272 llvmFunc->addFnAttr("aarch64_out_za"); 1273 else if (func.getArmInoutZa()) 1274 llvmFunc->addFnAttr("aarch64_inout_za"); 1275 else if (func.getArmPreservesZa()) 1276 llvmFunc->addFnAttr("aarch64_preserves_za"); 1277 1278 if (auto targetCpu = func.getTargetCpu()) 1279 llvmFunc->addFnAttr("target-cpu", *targetCpu); 1280 1281 if (auto targetFeatures = func.getTargetFeatures()) 1282 llvmFunc->addFnAttr("target-features", targetFeatures->getFeaturesString()); 1283 1284 if (auto attr = func.getVscaleRange()) 1285 llvmFunc->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 1286 getLLVMContext(), attr->getMinRange().getInt(), 1287 attr->getMaxRange().getInt())); 1288 1289 if (auto unsafeFpMath = func.getUnsafeFpMath()) 1290 llvmFunc->addFnAttr("unsafe-fp-math", llvm::toStringRef(*unsafeFpMath)); 1291 1292 if (auto noInfsFpMath = func.getNoInfsFpMath()) 1293 llvmFunc->addFnAttr("no-infs-fp-math", llvm::toStringRef(*noInfsFpMath)); 1294 1295 if (auto noNansFpMath = func.getNoNansFpMath()) 1296 llvmFunc->addFnAttr("no-nans-fp-math", llvm::toStringRef(*noNansFpMath)); 1297 1298 if (auto approxFuncFpMath = func.getApproxFuncFpMath()) 1299 llvmFunc->addFnAttr("approx-func-fp-math", 1300 llvm::toStringRef(*approxFuncFpMath)); 1301 1302 if (auto noSignedZerosFpMath = func.getNoSignedZerosFpMath()) 1303 llvmFunc->addFnAttr("no-signed-zeros-fp-math", 1304 llvm::toStringRef(*noSignedZerosFpMath)); 1305 1306 // Add function attribute frame-pointer, if found. 1307 if (FramePointerKindAttr attr = func.getFramePointerAttr()) 1308 llvmFunc->addFnAttr("frame-pointer", 1309 LLVM::framePointerKind::stringifyFramePointerKind( 1310 (attr.getFramePointerKind()))); 1311 1312 // First, create all blocks so we can jump to them. 1313 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 1314 for (auto &bb : func) { 1315 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 1316 llvmBB->insertInto(llvmFunc); 1317 mapBlock(&bb, llvmBB); 1318 } 1319 1320 // Then, convert blocks one by one in topological order to ensure defs are 1321 // converted before uses. 1322 auto blocks = getTopologicallySortedBlocks(func.getBody()); 1323 for (Block *bb : blocks) { 1324 CapturingIRBuilder builder(llvmContext); 1325 if (failed(convertBlockImpl(*bb, bb->isEntryBlock(), builder, 1326 /*recordInsertions=*/true))) 1327 return failure(); 1328 } 1329 1330 // After all blocks have been traversed and values mapped, connect the PHI 1331 // nodes to the results of preceding blocks. 1332 detail::connectPHINodes(func.getBody(), *this); 1333 1334 // Finally, convert dialect attributes attached to the function. 1335 return convertDialectAttributes(func, {}); 1336 } 1337 1338 LogicalResult ModuleTranslation::convertDialectAttributes( 1339 Operation *op, ArrayRef<llvm::Instruction *> instructions) { 1340 for (NamedAttribute attribute : op->getDialectAttrs()) 1341 if (failed(iface.amendOperation(op, instructions, attribute, *this))) 1342 return failure(); 1343 return success(); 1344 } 1345 1346 /// Converts the function attributes from LLVMFuncOp and attaches them to the 1347 /// llvm::Function. 1348 static void convertFunctionAttributes(LLVMFuncOp func, 1349 llvm::Function *llvmFunc) { 1350 if (!func.getMemory()) 1351 return; 1352 1353 MemoryEffectsAttr memEffects = func.getMemoryAttr(); 1354 1355 // Add memory effects incrementally. 1356 llvm::MemoryEffects newMemEffects = 1357 llvm::MemoryEffects(llvm::MemoryEffects::Location::ArgMem, 1358 convertModRefInfoToLLVM(memEffects.getArgMem())); 1359 newMemEffects |= llvm::MemoryEffects( 1360 llvm::MemoryEffects::Location::InaccessibleMem, 1361 convertModRefInfoToLLVM(memEffects.getInaccessibleMem())); 1362 newMemEffects |= 1363 llvm::MemoryEffects(llvm::MemoryEffects::Location::Other, 1364 convertModRefInfoToLLVM(memEffects.getOther())); 1365 llvmFunc->setMemoryEffects(newMemEffects); 1366 } 1367 1368 FailureOr<llvm::AttrBuilder> 1369 ModuleTranslation::convertParameterAttrs(LLVMFuncOp func, int argIdx, 1370 DictionaryAttr paramAttrs) { 1371 llvm::AttrBuilder attrBuilder(llvmModule->getContext()); 1372 auto attrNameToKindMapping = getAttrNameToKindMapping(); 1373 1374 for (auto namedAttr : paramAttrs) { 1375 auto it = attrNameToKindMapping.find(namedAttr.getName()); 1376 if (it != attrNameToKindMapping.end()) { 1377 llvm::Attribute::AttrKind llvmKind = it->second; 1378 1379 llvm::TypeSwitch<Attribute>(namedAttr.getValue()) 1380 .Case<TypeAttr>([&](auto typeAttr) { 1381 attrBuilder.addTypeAttr(llvmKind, convertType(typeAttr.getValue())); 1382 }) 1383 .Case<IntegerAttr>([&](auto intAttr) { 1384 attrBuilder.addRawIntAttr(llvmKind, intAttr.getInt()); 1385 }) 1386 .Case<UnitAttr>([&](auto) { attrBuilder.addAttribute(llvmKind); }); 1387 } else if (namedAttr.getNameDialect()) { 1388 if (failed(iface.convertParameterAttr(func, argIdx, namedAttr, *this))) 1389 return failure(); 1390 } 1391 } 1392 1393 return attrBuilder; 1394 } 1395 1396 LogicalResult ModuleTranslation::convertFunctionSignatures() { 1397 // Declare all functions first because there may be function calls that form a 1398 // call graph with cycles, or global initializers that reference functions. 1399 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 1400 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 1401 function.getName(), 1402 cast<llvm::FunctionType>(convertType(function.getFunctionType()))); 1403 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); 1404 llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage())); 1405 llvmFunc->setCallingConv(convertCConvToLLVM(function.getCConv())); 1406 mapFunction(function.getName(), llvmFunc); 1407 addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc); 1408 1409 // Convert function attributes. 1410 convertFunctionAttributes(function, llvmFunc); 1411 1412 // Convert function_entry_count attribute to metadata. 1413 if (std::optional<uint64_t> entryCount = function.getFunctionEntryCount()) 1414 llvmFunc->setEntryCount(entryCount.value()); 1415 1416 // Convert result attributes. 1417 if (ArrayAttr allResultAttrs = function.getAllResultAttrs()) { 1418 DictionaryAttr resultAttrs = cast<DictionaryAttr>(allResultAttrs[0]); 1419 FailureOr<llvm::AttrBuilder> attrBuilder = 1420 convertParameterAttrs(function, -1, resultAttrs); 1421 if (failed(attrBuilder)) 1422 return failure(); 1423 llvmFunc->addRetAttrs(*attrBuilder); 1424 } 1425 1426 // Convert argument attributes. 1427 for (auto [argIdx, llvmArg] : llvm::enumerate(llvmFunc->args())) { 1428 if (DictionaryAttr argAttrs = function.getArgAttrDict(argIdx)) { 1429 FailureOr<llvm::AttrBuilder> attrBuilder = 1430 convertParameterAttrs(function, argIdx, argAttrs); 1431 if (failed(attrBuilder)) 1432 return failure(); 1433 llvmArg.addAttrs(*attrBuilder); 1434 } 1435 } 1436 1437 // Forward the pass-through attributes to LLVM. 1438 if (failed(forwardPassthroughAttributes( 1439 function.getLoc(), function.getPassthrough(), llvmFunc))) 1440 return failure(); 1441 1442 // Convert visibility attribute. 1443 llvmFunc->setVisibility(convertVisibilityToLLVM(function.getVisibility_())); 1444 1445 // Convert the comdat attribute. 1446 if (std::optional<mlir::SymbolRefAttr> comdat = function.getComdat()) { 1447 auto selectorOp = cast<ComdatSelectorOp>( 1448 SymbolTable::lookupNearestSymbolFrom(function, *comdat)); 1449 llvmFunc->setComdat(comdatMapping.lookup(selectorOp)); 1450 } 1451 1452 if (auto gc = function.getGarbageCollector()) 1453 llvmFunc->setGC(gc->str()); 1454 1455 if (auto unnamedAddr = function.getUnnamedAddr()) 1456 llvmFunc->setUnnamedAddr(convertUnnamedAddrToLLVM(*unnamedAddr)); 1457 1458 if (auto alignment = function.getAlignment()) 1459 llvmFunc->setAlignment(llvm::MaybeAlign(*alignment)); 1460 1461 // Translate the debug information for this function. 1462 debugTranslation->translate(function, *llvmFunc); 1463 } 1464 1465 return success(); 1466 } 1467 1468 LogicalResult ModuleTranslation::convertFunctions() { 1469 // Convert functions. 1470 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 1471 // Do not convert external functions, but do process dialect attributes 1472 // attached to them. 1473 if (function.isExternal()) { 1474 if (failed(convertDialectAttributes(function, {}))) 1475 return failure(); 1476 continue; 1477 } 1478 1479 if (failed(convertOneFunction(function))) 1480 return failure(); 1481 } 1482 1483 return success(); 1484 } 1485 1486 LogicalResult ModuleTranslation::convertComdats() { 1487 for (auto comdatOp : getModuleBody(mlirModule).getOps<ComdatOp>()) { 1488 for (auto selectorOp : comdatOp.getOps<ComdatSelectorOp>()) { 1489 llvm::Module *module = getLLVMModule(); 1490 if (module->getComdatSymbolTable().contains(selectorOp.getSymName())) 1491 return emitError(selectorOp.getLoc()) 1492 << "comdat selection symbols must be unique even in different " 1493 "comdat regions"; 1494 llvm::Comdat *comdat = module->getOrInsertComdat(selectorOp.getSymName()); 1495 comdat->setSelectionKind(convertComdatToLLVM(selectorOp.getComdat())); 1496 comdatMapping.try_emplace(selectorOp, comdat); 1497 } 1498 } 1499 return success(); 1500 } 1501 1502 void ModuleTranslation::setAccessGroupsMetadata(AccessGroupOpInterface op, 1503 llvm::Instruction *inst) { 1504 if (llvm::MDNode *node = loopAnnotationTranslation->getAccessGroups(op)) 1505 inst->setMetadata(llvm::LLVMContext::MD_access_group, node); 1506 } 1507 1508 llvm::MDNode * 1509 ModuleTranslation::getOrCreateAliasScope(AliasScopeAttr aliasScopeAttr) { 1510 auto [scopeIt, scopeInserted] = 1511 aliasScopeMetadataMapping.try_emplace(aliasScopeAttr, nullptr); 1512 if (!scopeInserted) 1513 return scopeIt->second; 1514 llvm::LLVMContext &ctx = llvmModule->getContext(); 1515 auto dummy = llvm::MDNode::getTemporary(ctx, std::nullopt); 1516 // Convert the domain metadata node if necessary. 1517 auto [domainIt, insertedDomain] = aliasDomainMetadataMapping.try_emplace( 1518 aliasScopeAttr.getDomain(), nullptr); 1519 if (insertedDomain) { 1520 llvm::SmallVector<llvm::Metadata *, 2> operands; 1521 // Placeholder for self-reference. 1522 operands.push_back(dummy.get()); 1523 if (StringAttr description = aliasScopeAttr.getDomain().getDescription()) 1524 operands.push_back(llvm::MDString::get(ctx, description)); 1525 domainIt->second = llvm::MDNode::get(ctx, operands); 1526 // Self-reference for uniqueness. 1527 domainIt->second->replaceOperandWith(0, domainIt->second); 1528 } 1529 // Convert the scope metadata node. 1530 assert(domainIt->second && "Scope's domain should already be valid"); 1531 llvm::SmallVector<llvm::Metadata *, 3> operands; 1532 // Placeholder for self-reference. 1533 operands.push_back(dummy.get()); 1534 operands.push_back(domainIt->second); 1535 if (StringAttr description = aliasScopeAttr.getDescription()) 1536 operands.push_back(llvm::MDString::get(ctx, description)); 1537 scopeIt->second = llvm::MDNode::get(ctx, operands); 1538 // Self-reference for uniqueness. 1539 scopeIt->second->replaceOperandWith(0, scopeIt->second); 1540 return scopeIt->second; 1541 } 1542 1543 llvm::MDNode *ModuleTranslation::getOrCreateAliasScopes( 1544 ArrayRef<AliasScopeAttr> aliasScopeAttrs) { 1545 SmallVector<llvm::Metadata *> nodes; 1546 nodes.reserve(aliasScopeAttrs.size()); 1547 for (AliasScopeAttr aliasScopeAttr : aliasScopeAttrs) 1548 nodes.push_back(getOrCreateAliasScope(aliasScopeAttr)); 1549 return llvm::MDNode::get(getLLVMContext(), nodes); 1550 } 1551 1552 void ModuleTranslation::setAliasScopeMetadata(AliasAnalysisOpInterface op, 1553 llvm::Instruction *inst) { 1554 auto populateScopeMetadata = [&](ArrayAttr aliasScopeAttrs, unsigned kind) { 1555 if (!aliasScopeAttrs || aliasScopeAttrs.empty()) 1556 return; 1557 llvm::MDNode *node = getOrCreateAliasScopes( 1558 llvm::to_vector(aliasScopeAttrs.getAsRange<AliasScopeAttr>())); 1559 inst->setMetadata(kind, node); 1560 }; 1561 1562 populateScopeMetadata(op.getAliasScopesOrNull(), 1563 llvm::LLVMContext::MD_alias_scope); 1564 populateScopeMetadata(op.getNoAliasScopesOrNull(), 1565 llvm::LLVMContext::MD_noalias); 1566 } 1567 1568 llvm::MDNode *ModuleTranslation::getTBAANode(TBAATagAttr tbaaAttr) const { 1569 return tbaaMetadataMapping.lookup(tbaaAttr); 1570 } 1571 1572 void ModuleTranslation::setTBAAMetadata(AliasAnalysisOpInterface op, 1573 llvm::Instruction *inst) { 1574 ArrayAttr tagRefs = op.getTBAATagsOrNull(); 1575 if (!tagRefs || tagRefs.empty()) 1576 return; 1577 1578 // LLVM IR currently does not support attaching more than one TBAA access tag 1579 // to a memory accessing instruction. It may be useful to support this in 1580 // future, but for the time being just ignore the metadata if MLIR operation 1581 // has multiple access tags. 1582 if (tagRefs.size() > 1) { 1583 op.emitWarning() << "TBAA access tags were not translated, because LLVM " 1584 "IR only supports a single tag per instruction"; 1585 return; 1586 } 1587 1588 llvm::MDNode *node = getTBAANode(cast<TBAATagAttr>(tagRefs[0])); 1589 inst->setMetadata(llvm::LLVMContext::MD_tbaa, node); 1590 } 1591 1592 void ModuleTranslation::setBranchWeightsMetadata(BranchWeightOpInterface op) { 1593 DenseI32ArrayAttr weightsAttr = op.getBranchWeightsOrNull(); 1594 if (!weightsAttr) 1595 return; 1596 1597 llvm::Instruction *inst = isa<CallOp>(op) ? lookupCall(op) : lookupBranch(op); 1598 assert(inst && "expected the operation to have a mapping to an instruction"); 1599 SmallVector<uint32_t> weights(weightsAttr.asArrayRef()); 1600 inst->setMetadata( 1601 llvm::LLVMContext::MD_prof, 1602 llvm::MDBuilder(getLLVMContext()).createBranchWeights(weights)); 1603 } 1604 1605 LogicalResult ModuleTranslation::createTBAAMetadata() { 1606 llvm::LLVMContext &ctx = llvmModule->getContext(); 1607 llvm::IntegerType *offsetTy = llvm::IntegerType::get(ctx, 64); 1608 1609 // Walk the entire module and create all metadata nodes for the TBAA 1610 // attributes. The code below relies on two invariants of the 1611 // `AttrTypeWalker`: 1612 // 1. Attributes are visited in post-order: Since the attributes create a DAG, 1613 // this ensures that any lookups into `tbaaMetadataMapping` for child 1614 // attributes succeed. 1615 // 2. Attributes are only ever visited once: This way we don't leak any 1616 // LLVM metadata instances. 1617 AttrTypeWalker walker; 1618 walker.addWalk([&](TBAARootAttr root) { 1619 tbaaMetadataMapping.insert( 1620 {root, llvm::MDNode::get(ctx, llvm::MDString::get(ctx, root.getId()))}); 1621 }); 1622 1623 walker.addWalk([&](TBAATypeDescriptorAttr descriptor) { 1624 SmallVector<llvm::Metadata *> operands; 1625 operands.push_back(llvm::MDString::get(ctx, descriptor.getId())); 1626 for (TBAAMemberAttr member : descriptor.getMembers()) { 1627 operands.push_back(tbaaMetadataMapping.lookup(member.getTypeDesc())); 1628 operands.push_back(llvm::ConstantAsMetadata::get( 1629 llvm::ConstantInt::get(offsetTy, member.getOffset()))); 1630 } 1631 1632 tbaaMetadataMapping.insert({descriptor, llvm::MDNode::get(ctx, operands)}); 1633 }); 1634 1635 walker.addWalk([&](TBAATagAttr tag) { 1636 SmallVector<llvm::Metadata *> operands; 1637 1638 operands.push_back(tbaaMetadataMapping.lookup(tag.getBaseType())); 1639 operands.push_back(tbaaMetadataMapping.lookup(tag.getAccessType())); 1640 1641 operands.push_back(llvm::ConstantAsMetadata::get( 1642 llvm::ConstantInt::get(offsetTy, tag.getOffset()))); 1643 if (tag.getConstant()) 1644 operands.push_back( 1645 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(offsetTy, 1))); 1646 1647 tbaaMetadataMapping.insert({tag, llvm::MDNode::get(ctx, operands)}); 1648 }); 1649 1650 mlirModule->walk([&](AliasAnalysisOpInterface analysisOpInterface) { 1651 if (auto attr = analysisOpInterface.getTBAATagsOrNull()) 1652 walker.walk(attr); 1653 }); 1654 1655 return success(); 1656 } 1657 1658 void ModuleTranslation::setLoopMetadata(Operation *op, 1659 llvm::Instruction *inst) { 1660 LoopAnnotationAttr attr = 1661 TypeSwitch<Operation *, LoopAnnotationAttr>(op) 1662 .Case<LLVM::BrOp, LLVM::CondBrOp>( 1663 [](auto branchOp) { return branchOp.getLoopAnnotationAttr(); }); 1664 if (!attr) 1665 return; 1666 llvm::MDNode *loopMD = 1667 loopAnnotationTranslation->translateLoopAnnotation(attr, op); 1668 inst->setMetadata(llvm::LLVMContext::MD_loop, loopMD); 1669 } 1670 1671 llvm::Type *ModuleTranslation::convertType(Type type) { 1672 return typeTranslator.translateType(type); 1673 } 1674 1675 /// A helper to look up remapped operands in the value remapping table. 1676 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) { 1677 SmallVector<llvm::Value *> remapped; 1678 remapped.reserve(values.size()); 1679 for (Value v : values) 1680 remapped.push_back(lookupValue(v)); 1681 return remapped; 1682 } 1683 1684 llvm::OpenMPIRBuilder *ModuleTranslation::getOpenMPBuilder() { 1685 if (!ompBuilder) { 1686 ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule); 1687 ompBuilder->initialize(); 1688 1689 // Flags represented as top-level OpenMP dialect attributes are set in 1690 // `OpenMPDialectLLVMIRTranslationInterface::amendOperation()`. Here we set 1691 // the default configuration. 1692 ompBuilder->setConfig(llvm::OpenMPIRBuilderConfig( 1693 /* IsTargetDevice = */ false, /* IsGPU = */ false, 1694 /* OpenMPOffloadMandatory = */ false, 1695 /* HasRequiresReverseOffload = */ false, 1696 /* HasRequiresUnifiedAddress = */ false, 1697 /* HasRequiresUnifiedSharedMemory = */ false, 1698 /* HasRequiresDynamicAllocators = */ false)); 1699 } 1700 return ompBuilder.get(); 1701 } 1702 1703 llvm::DILocation *ModuleTranslation::translateLoc(Location loc, 1704 llvm::DILocalScope *scope) { 1705 return debugTranslation->translateLoc(loc, scope); 1706 } 1707 1708 llvm::DIExpression * 1709 ModuleTranslation::translateExpression(LLVM::DIExpressionAttr attr) { 1710 return debugTranslation->translateExpression(attr); 1711 } 1712 1713 llvm::DIGlobalVariableExpression * 1714 ModuleTranslation::translateGlobalVariableExpression( 1715 LLVM::DIGlobalVariableExpressionAttr attr) { 1716 return debugTranslation->translateGlobalVariableExpression(attr); 1717 } 1718 1719 llvm::Metadata *ModuleTranslation::translateDebugInfo(LLVM::DINodeAttr attr) { 1720 return debugTranslation->translate(attr); 1721 } 1722 1723 llvm::NamedMDNode * 1724 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) { 1725 return llvmModule->getOrInsertNamedMetadata(name); 1726 } 1727 1728 void ModuleTranslation::StackFrame::anchor() {} 1729 1730 static std::unique_ptr<llvm::Module> 1731 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext, 1732 StringRef name) { 1733 m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>(); 1734 auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext); 1735 if (auto dataLayoutAttr = 1736 m->getDiscardableAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) { 1737 llvmModule->setDataLayout(cast<StringAttr>(dataLayoutAttr).getValue()); 1738 } else { 1739 FailureOr<llvm::DataLayout> llvmDataLayout(llvm::DataLayout("")); 1740 if (auto iface = dyn_cast<DataLayoutOpInterface>(m)) { 1741 if (DataLayoutSpecInterface spec = iface.getDataLayoutSpec()) { 1742 llvmDataLayout = 1743 translateDataLayout(spec, DataLayout(iface), m->getLoc()); 1744 } 1745 } else if (auto mod = dyn_cast<ModuleOp>(m)) { 1746 if (DataLayoutSpecInterface spec = mod.getDataLayoutSpec()) { 1747 llvmDataLayout = 1748 translateDataLayout(spec, DataLayout(mod), m->getLoc()); 1749 } 1750 } 1751 if (failed(llvmDataLayout)) 1752 return nullptr; 1753 llvmModule->setDataLayout(*llvmDataLayout); 1754 } 1755 if (auto targetTripleAttr = 1756 m->getDiscardableAttr(LLVM::LLVMDialect::getTargetTripleAttrName())) 1757 llvmModule->setTargetTriple(cast<StringAttr>(targetTripleAttr).getValue()); 1758 1759 return llvmModule; 1760 } 1761 1762 std::unique_ptr<llvm::Module> 1763 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext, 1764 StringRef name) { 1765 if (!satisfiesLLVMModule(module)) { 1766 module->emitOpError("can not be translated to an LLVMIR module"); 1767 return nullptr; 1768 } 1769 1770 std::unique_ptr<llvm::Module> llvmModule = 1771 prepareLLVMModule(module, llvmContext, name); 1772 if (!llvmModule) 1773 return nullptr; 1774 1775 LLVM::ensureDistinctSuccessors(module); 1776 LLVM::legalizeDIExpressionsRecursively(module); 1777 1778 ModuleTranslation translator(module, std::move(llvmModule)); 1779 llvm::IRBuilder<> llvmBuilder(llvmContext); 1780 1781 // Convert module before functions and operations inside, so dialect 1782 // attributes can be used to change dialect-specific global configurations via 1783 // `amendOperation()`. These configurations can then influence the translation 1784 // of operations afterwards. 1785 if (failed(translator.convertOperation(*module, llvmBuilder))) 1786 return nullptr; 1787 1788 if (failed(translator.convertComdats())) 1789 return nullptr; 1790 if (failed(translator.convertFunctionSignatures())) 1791 return nullptr; 1792 if (failed(translator.convertGlobals())) 1793 return nullptr; 1794 if (failed(translator.createTBAAMetadata())) 1795 return nullptr; 1796 1797 // Convert other top-level operations if possible. 1798 for (Operation &o : getModuleBody(module).getOperations()) { 1799 if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp, 1800 LLVM::GlobalDtorsOp, LLVM::ComdatOp>(&o) && 1801 !o.hasTrait<OpTrait::IsTerminator>() && 1802 failed(translator.convertOperation(o, llvmBuilder))) { 1803 return nullptr; 1804 } 1805 } 1806 1807 // Operations in function bodies with symbolic references must be converted 1808 // after the top-level operations they refer to are declared, so we do it 1809 // last. 1810 if (failed(translator.convertFunctions())) 1811 return nullptr; 1812 1813 if (llvm::verifyModule(*translator.llvmModule, &llvm::errs())) 1814 return nullptr; 1815 1816 return std::move(translator.llvmModule); 1817 } 1818