1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "AttrKindDetail.h" 17 #include "DebugTranslation.h" 18 #include "LoopAnnotationTranslation.h" 19 #include "mlir/Analysis/TopologicalSortUtils.h" 20 #include "mlir/Dialect/DLTI/DLTI.h" 21 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 22 #include "mlir/Dialect/LLVMIR/LLVMInterfaces.h" 23 #include "mlir/Dialect/LLVMIR/Transforms/DIExpressionLegalization.h" 24 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h" 25 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 26 #include "mlir/Dialect/OpenMP/OpenMPInterfaces.h" 27 #include "mlir/IR/AttrTypeSubElements.h" 28 #include "mlir/IR/Attributes.h" 29 #include "mlir/IR/BuiltinOps.h" 30 #include "mlir/IR/BuiltinTypes.h" 31 #include "mlir/IR/DialectResourceBlobManager.h" 32 #include "mlir/IR/RegionGraphTraits.h" 33 #include "mlir/Support/LLVM.h" 34 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h" 35 #include "mlir/Target/LLVMIR/TypeToLLVM.h" 36 37 #include "llvm/ADT/PostOrderIterator.h" 38 #include "llvm/ADT/SetVector.h" 39 #include "llvm/ADT/StringExtras.h" 40 #include "llvm/ADT/TypeSwitch.h" 41 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/IRBuilder.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/IntrinsicsNVPTX.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Verifier.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 56 #include "llvm/Transforms/Utils/Cloning.h" 57 #include "llvm/Transforms/Utils/ModuleUtils.h" 58 #include <optional> 59 60 #define DEBUG_TYPE "llvm-dialect-to-llvm-ir" 61 62 using namespace mlir; 63 using namespace mlir::LLVM; 64 using namespace mlir::LLVM::detail; 65 66 extern llvm::cl::opt<bool> UseNewDbgInfoFormat; 67 68 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 69 70 namespace { 71 /// A customized inserter for LLVM's IRBuilder that captures all LLVM IR 72 /// instructions that are created for future reference. 73 /// 74 /// This is intended to be used with the `CollectionScope` RAII object: 75 /// 76 /// llvm::IRBuilder<..., InstructionCapturingInserter> builder; 77 /// { 78 /// InstructionCapturingInserter::CollectionScope scope(builder); 79 /// // Call IRBuilder methods as usual. 80 /// 81 /// // This will return a list of all instructions created by the builder, 82 /// // in order of creation. 83 /// builder.getInserter().getCapturedInstructions(); 84 /// } 85 /// // This will return an empty list. 86 /// builder.getInserter().getCapturedInstructions(); 87 /// 88 /// The capturing functionality is _disabled_ by default for performance 89 /// consideration. It needs to be explicitly enabled, which is achieved by 90 /// creating a `CollectionScope`. 91 class InstructionCapturingInserter : public llvm::IRBuilderCallbackInserter { 92 public: 93 /// Constructs the inserter. 94 InstructionCapturingInserter() 95 : llvm::IRBuilderCallbackInserter([this](llvm::Instruction *instruction) { 96 if (LLVM_LIKELY(enabled)) 97 capturedInstructions.push_back(instruction); 98 }) {} 99 100 /// Returns the list of LLVM IR instructions captured since the last cleanup. 101 ArrayRef<llvm::Instruction *> getCapturedInstructions() const { 102 return capturedInstructions; 103 } 104 105 /// Clears the list of captured LLVM IR instructions. 106 void clearCapturedInstructions() { capturedInstructions.clear(); } 107 108 /// RAII object enabling the capture of created LLVM IR instructions. 109 class CollectionScope { 110 public: 111 /// Creates the scope for the given inserter. 112 CollectionScope(llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing); 113 114 /// Ends the scope. 115 ~CollectionScope(); 116 117 ArrayRef<llvm::Instruction *> getCapturedInstructions() { 118 if (!inserter) 119 return {}; 120 return inserter->getCapturedInstructions(); 121 } 122 123 private: 124 /// Back reference to the inserter. 125 InstructionCapturingInserter *inserter = nullptr; 126 127 /// List of instructions in the inserter prior to this scope. 128 SmallVector<llvm::Instruction *> previouslyCollectedInstructions; 129 130 /// Whether the inserter was enabled prior to this scope. 131 bool wasEnabled; 132 }; 133 134 /// Enable or disable the capturing mechanism. 135 void setEnabled(bool enabled = true) { this->enabled = enabled; } 136 137 private: 138 /// List of captured instructions. 139 SmallVector<llvm::Instruction *> capturedInstructions; 140 141 /// Whether the collection is enabled. 142 bool enabled = false; 143 }; 144 145 using CapturingIRBuilder = 146 llvm::IRBuilder<llvm::ConstantFolder, InstructionCapturingInserter>; 147 } // namespace 148 149 InstructionCapturingInserter::CollectionScope::CollectionScope( 150 llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing) { 151 152 if (!isBuilderCapturing) 153 return; 154 155 auto &capturingIRBuilder = static_cast<CapturingIRBuilder &>(irBuilder); 156 inserter = &capturingIRBuilder.getInserter(); 157 wasEnabled = inserter->enabled; 158 if (wasEnabled) 159 previouslyCollectedInstructions.swap(inserter->capturedInstructions); 160 inserter->setEnabled(true); 161 } 162 163 InstructionCapturingInserter::CollectionScope::~CollectionScope() { 164 if (!inserter) 165 return; 166 167 previouslyCollectedInstructions.swap(inserter->capturedInstructions); 168 // If collection was enabled (likely in another, surrounding scope), keep 169 // the instructions collected in this scope. 170 if (wasEnabled) { 171 llvm::append_range(inserter->capturedInstructions, 172 previouslyCollectedInstructions); 173 } 174 inserter->setEnabled(wasEnabled); 175 } 176 177 /// Translates the given data layout spec attribute to the LLVM IR data layout. 178 /// Only integer, float, pointer and endianness entries are currently supported. 179 static FailureOr<llvm::DataLayout> 180 translateDataLayout(DataLayoutSpecInterface attribute, 181 const DataLayout &dataLayout, 182 std::optional<Location> loc = std::nullopt) { 183 if (!loc) 184 loc = UnknownLoc::get(attribute.getContext()); 185 186 // Translate the endianness attribute. 187 std::string llvmDataLayout; 188 llvm::raw_string_ostream layoutStream(llvmDataLayout); 189 for (DataLayoutEntryInterface entry : attribute.getEntries()) { 190 auto key = llvm::dyn_cast_if_present<StringAttr>(entry.getKey()); 191 if (!key) 192 continue; 193 if (key.getValue() == DLTIDialect::kDataLayoutEndiannessKey) { 194 auto value = cast<StringAttr>(entry.getValue()); 195 bool isLittleEndian = 196 value.getValue() == DLTIDialect::kDataLayoutEndiannessLittle; 197 layoutStream << "-" << (isLittleEndian ? "e" : "E"); 198 layoutStream.flush(); 199 continue; 200 } 201 if (key.getValue() == DLTIDialect::kDataLayoutProgramMemorySpaceKey) { 202 auto value = cast<IntegerAttr>(entry.getValue()); 203 uint64_t space = value.getValue().getZExtValue(); 204 // Skip the default address space. 205 if (space == 0) 206 continue; 207 layoutStream << "-P" << space; 208 layoutStream.flush(); 209 continue; 210 } 211 if (key.getValue() == DLTIDialect::kDataLayoutGlobalMemorySpaceKey) { 212 auto value = cast<IntegerAttr>(entry.getValue()); 213 uint64_t space = value.getValue().getZExtValue(); 214 // Skip the default address space. 215 if (space == 0) 216 continue; 217 layoutStream << "-G" << space; 218 layoutStream.flush(); 219 continue; 220 } 221 if (key.getValue() == DLTIDialect::kDataLayoutAllocaMemorySpaceKey) { 222 auto value = cast<IntegerAttr>(entry.getValue()); 223 uint64_t space = value.getValue().getZExtValue(); 224 // Skip the default address space. 225 if (space == 0) 226 continue; 227 layoutStream << "-A" << space; 228 layoutStream.flush(); 229 continue; 230 } 231 if (key.getValue() == DLTIDialect::kDataLayoutStackAlignmentKey) { 232 auto value = cast<IntegerAttr>(entry.getValue()); 233 uint64_t alignment = value.getValue().getZExtValue(); 234 // Skip the default stack alignment. 235 if (alignment == 0) 236 continue; 237 layoutStream << "-S" << alignment; 238 layoutStream.flush(); 239 continue; 240 } 241 emitError(*loc) << "unsupported data layout key " << key; 242 return failure(); 243 } 244 245 // Go through the list of entries to check which types are explicitly 246 // specified in entries. Where possible, data layout queries are used instead 247 // of directly inspecting the entries. 248 for (DataLayoutEntryInterface entry : attribute.getEntries()) { 249 auto type = llvm::dyn_cast_if_present<Type>(entry.getKey()); 250 if (!type) 251 continue; 252 // Data layout for the index type is irrelevant at this point. 253 if (isa<IndexType>(type)) 254 continue; 255 layoutStream << "-"; 256 LogicalResult result = 257 llvm::TypeSwitch<Type, LogicalResult>(type) 258 .Case<IntegerType, Float16Type, Float32Type, Float64Type, 259 Float80Type, Float128Type>([&](Type type) -> LogicalResult { 260 if (auto intType = dyn_cast<IntegerType>(type)) { 261 if (intType.getSignedness() != IntegerType::Signless) 262 return emitError(*loc) 263 << "unsupported data layout for non-signless integer " 264 << intType; 265 layoutStream << "i"; 266 } else { 267 layoutStream << "f"; 268 } 269 uint64_t size = dataLayout.getTypeSizeInBits(type); 270 uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u; 271 uint64_t preferred = 272 dataLayout.getTypePreferredAlignment(type) * 8u; 273 layoutStream << size << ":" << abi; 274 if (abi != preferred) 275 layoutStream << ":" << preferred; 276 return success(); 277 }) 278 .Case([&](LLVMPointerType type) { 279 layoutStream << "p" << type.getAddressSpace() << ":"; 280 uint64_t size = dataLayout.getTypeSizeInBits(type); 281 uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u; 282 uint64_t preferred = 283 dataLayout.getTypePreferredAlignment(type) * 8u; 284 uint64_t index = *dataLayout.getTypeIndexBitwidth(type); 285 layoutStream << size << ":" << abi << ":" << preferred << ":" 286 << index; 287 return success(); 288 }) 289 .Default([loc](Type type) { 290 return emitError(*loc) 291 << "unsupported type in data layout: " << type; 292 }); 293 if (failed(result)) 294 return failure(); 295 } 296 layoutStream.flush(); 297 StringRef layoutSpec(llvmDataLayout); 298 if (layoutSpec.starts_with("-")) 299 layoutSpec = layoutSpec.drop_front(); 300 301 return llvm::DataLayout(layoutSpec); 302 } 303 304 /// Builds a constant of a sequential LLVM type `type`, potentially containing 305 /// other sequential types recursively, from the individual constant values 306 /// provided in `constants`. `shape` contains the number of elements in nested 307 /// sequential types. Reports errors at `loc` and returns nullptr on error. 308 static llvm::Constant * 309 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 310 ArrayRef<int64_t> shape, llvm::Type *type, 311 Location loc) { 312 if (shape.empty()) { 313 llvm::Constant *result = constants.front(); 314 constants = constants.drop_front(); 315 return result; 316 } 317 318 llvm::Type *elementType; 319 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 320 elementType = arrayTy->getElementType(); 321 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 322 elementType = vectorTy->getElementType(); 323 } else { 324 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 325 return nullptr; 326 } 327 328 SmallVector<llvm::Constant *, 8> nested; 329 nested.reserve(shape.front()); 330 for (int64_t i = 0; i < shape.front(); ++i) { 331 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 332 elementType, loc)); 333 if (!nested.back()) 334 return nullptr; 335 } 336 337 if (shape.size() == 1 && type->isVectorTy()) 338 return llvm::ConstantVector::get(nested); 339 return llvm::ConstantArray::get( 340 llvm::ArrayType::get(elementType, shape.front()), nested); 341 } 342 343 /// Returns the first non-sequential type nested in sequential types. 344 static llvm::Type *getInnermostElementType(llvm::Type *type) { 345 do { 346 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 347 type = arrayTy->getElementType(); 348 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 349 type = vectorTy->getElementType(); 350 } else { 351 return type; 352 } 353 } while (true); 354 } 355 356 /// Convert a dense elements attribute to an LLVM IR constant using its raw data 357 /// storage if possible. This supports elements attributes of tensor or vector 358 /// type and avoids constructing separate objects for individual values of the 359 /// innermost dimension. Constants for other dimensions are still constructed 360 /// recursively. Returns null if constructing from raw data is not supported for 361 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports 362 /// other errors at `loc`. 363 static llvm::Constant * 364 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr, 365 llvm::Type *llvmType, 366 const ModuleTranslation &moduleTranslation) { 367 if (!denseElementsAttr) 368 return nullptr; 369 370 llvm::Type *innermostLLVMType = getInnermostElementType(llvmType); 371 if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType)) 372 return nullptr; 373 374 ShapedType type = denseElementsAttr.getType(); 375 if (type.getNumElements() == 0) 376 return nullptr; 377 378 // Check that the raw data size matches what is expected for the scalar size. 379 // TODO: in theory, we could repack the data here to keep constructing from 380 // raw data. 381 // TODO: we may also need to consider endianness when cross-compiling to an 382 // architecture where it is different. 383 int64_t elementByteSize = denseElementsAttr.getRawData().size() / 384 denseElementsAttr.getNumElements(); 385 if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits()) 386 return nullptr; 387 388 // Compute the shape of all dimensions but the innermost. Note that the 389 // innermost dimension may be that of the vector element type. 390 bool hasVectorElementType = isa<VectorType>(type.getElementType()); 391 int64_t numAggregates = 392 denseElementsAttr.getNumElements() / 393 (hasVectorElementType ? 1 394 : denseElementsAttr.getType().getShape().back()); 395 ArrayRef<int64_t> outerShape = type.getShape(); 396 if (!hasVectorElementType) 397 outerShape = outerShape.drop_back(); 398 399 // Handle the case of vector splat, LLVM has special support for it. 400 if (denseElementsAttr.isSplat() && 401 (isa<VectorType>(type) || hasVectorElementType)) { 402 llvm::Constant *splatValue = LLVM::detail::getLLVMConstant( 403 innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc, 404 moduleTranslation); 405 llvm::Constant *splatVector = 406 llvm::ConstantDataVector::getSplat(0, splatValue); 407 SmallVector<llvm::Constant *> constants(numAggregates, splatVector); 408 ArrayRef<llvm::Constant *> constantsRef = constants; 409 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 410 } 411 if (denseElementsAttr.isSplat()) 412 return nullptr; 413 414 // In case of non-splat, create a constructor for the innermost constant from 415 // a piece of raw data. 416 std::function<llvm::Constant *(StringRef)> buildCstData; 417 if (isa<TensorType>(type)) { 418 auto vectorElementType = dyn_cast<VectorType>(type.getElementType()); 419 if (vectorElementType && vectorElementType.getRank() == 1) { 420 buildCstData = [&](StringRef data) { 421 return llvm::ConstantDataVector::getRaw( 422 data, vectorElementType.getShape().back(), innermostLLVMType); 423 }; 424 } else if (!vectorElementType) { 425 buildCstData = [&](StringRef data) { 426 return llvm::ConstantDataArray::getRaw(data, type.getShape().back(), 427 innermostLLVMType); 428 }; 429 } 430 } else if (isa<VectorType>(type)) { 431 buildCstData = [&](StringRef data) { 432 return llvm::ConstantDataVector::getRaw(data, type.getShape().back(), 433 innermostLLVMType); 434 }; 435 } 436 if (!buildCstData) 437 return nullptr; 438 439 // Create innermost constants and defer to the default constant creation 440 // mechanism for other dimensions. 441 SmallVector<llvm::Constant *> constants; 442 int64_t aggregateSize = denseElementsAttr.getType().getShape().back() * 443 (innermostLLVMType->getScalarSizeInBits() / 8); 444 constants.reserve(numAggregates); 445 for (unsigned i = 0; i < numAggregates; ++i) { 446 StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize, 447 aggregateSize); 448 constants.push_back(buildCstData(data)); 449 } 450 451 ArrayRef<llvm::Constant *> constantsRef = constants; 452 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 453 } 454 455 /// Convert a dense resource elements attribute to an LLVM IR constant using its 456 /// raw data storage if possible. This supports elements attributes of tensor or 457 /// vector type and avoids constructing separate objects for individual values 458 /// of the innermost dimension. Constants for other dimensions are still 459 /// constructed recursively. Returns nullptr on failure and emits errors at 460 /// `loc`. 461 static llvm::Constant *convertDenseResourceElementsAttr( 462 Location loc, DenseResourceElementsAttr denseResourceAttr, 463 llvm::Type *llvmType, const ModuleTranslation &moduleTranslation) { 464 assert(denseResourceAttr && "expected non-null attribute"); 465 466 llvm::Type *innermostLLVMType = getInnermostElementType(llvmType); 467 if (!llvm::ConstantDataSequential::isElementTypeCompatible( 468 innermostLLVMType)) { 469 emitError(loc, "no known conversion for innermost element type"); 470 return nullptr; 471 } 472 473 ShapedType type = denseResourceAttr.getType(); 474 assert(type.getNumElements() > 0 && "Expected non-empty elements attribute"); 475 476 AsmResourceBlob *blob = denseResourceAttr.getRawHandle().getBlob(); 477 if (!blob) { 478 emitError(loc, "resource does not exist"); 479 return nullptr; 480 } 481 482 ArrayRef<char> rawData = blob->getData(); 483 484 // Check that the raw data size matches what is expected for the scalar size. 485 // TODO: in theory, we could repack the data here to keep constructing from 486 // raw data. 487 // TODO: we may also need to consider endianness when cross-compiling to an 488 // architecture where it is different. 489 int64_t numElements = denseResourceAttr.getType().getNumElements(); 490 int64_t elementByteSize = rawData.size() / numElements; 491 if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits()) { 492 emitError(loc, "raw data size does not match element type size"); 493 return nullptr; 494 } 495 496 // Compute the shape of all dimensions but the innermost. Note that the 497 // innermost dimension may be that of the vector element type. 498 bool hasVectorElementType = isa<VectorType>(type.getElementType()); 499 int64_t numAggregates = 500 numElements / (hasVectorElementType 501 ? 1 502 : denseResourceAttr.getType().getShape().back()); 503 ArrayRef<int64_t> outerShape = type.getShape(); 504 if (!hasVectorElementType) 505 outerShape = outerShape.drop_back(); 506 507 // Create a constructor for the innermost constant from a piece of raw data. 508 std::function<llvm::Constant *(StringRef)> buildCstData; 509 if (isa<TensorType>(type)) { 510 auto vectorElementType = dyn_cast<VectorType>(type.getElementType()); 511 if (vectorElementType && vectorElementType.getRank() == 1) { 512 buildCstData = [&](StringRef data) { 513 return llvm::ConstantDataVector::getRaw( 514 data, vectorElementType.getShape().back(), innermostLLVMType); 515 }; 516 } else if (!vectorElementType) { 517 buildCstData = [&](StringRef data) { 518 return llvm::ConstantDataArray::getRaw(data, type.getShape().back(), 519 innermostLLVMType); 520 }; 521 } 522 } else if (isa<VectorType>(type)) { 523 buildCstData = [&](StringRef data) { 524 return llvm::ConstantDataVector::getRaw(data, type.getShape().back(), 525 innermostLLVMType); 526 }; 527 } 528 if (!buildCstData) { 529 emitError(loc, "unsupported dense_resource type"); 530 return nullptr; 531 } 532 533 // Create innermost constants and defer to the default constant creation 534 // mechanism for other dimensions. 535 SmallVector<llvm::Constant *> constants; 536 int64_t aggregateSize = denseResourceAttr.getType().getShape().back() * 537 (innermostLLVMType->getScalarSizeInBits() / 8); 538 constants.reserve(numAggregates); 539 for (unsigned i = 0; i < numAggregates; ++i) { 540 StringRef data(rawData.data() + i * aggregateSize, aggregateSize); 541 constants.push_back(buildCstData(data)); 542 } 543 544 ArrayRef<llvm::Constant *> constantsRef = constants; 545 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 546 } 547 548 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 549 /// This currently supports integer, floating point, splat and dense element 550 /// attributes and combinations thereof. Also, an array attribute with two 551 /// elements is supported to represent a complex constant. In case of error, 552 /// report it to `loc` and return nullptr. 553 llvm::Constant *mlir::LLVM::detail::getLLVMConstant( 554 llvm::Type *llvmType, Attribute attr, Location loc, 555 const ModuleTranslation &moduleTranslation) { 556 if (!attr) 557 return llvm::UndefValue::get(llvmType); 558 if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) { 559 auto arrayAttr = dyn_cast<ArrayAttr>(attr); 560 if (!arrayAttr || arrayAttr.size() != 2) { 561 emitError(loc, "expected struct type to be a complex number"); 562 return nullptr; 563 } 564 llvm::Type *elementType = structType->getElementType(0); 565 llvm::Constant *real = 566 getLLVMConstant(elementType, arrayAttr[0], loc, moduleTranslation); 567 if (!real) 568 return nullptr; 569 llvm::Constant *imag = 570 getLLVMConstant(elementType, arrayAttr[1], loc, moduleTranslation); 571 if (!imag) 572 return nullptr; 573 return llvm::ConstantStruct::get(structType, {real, imag}); 574 } 575 // For integer types, we allow a mismatch in sizes as the index type in 576 // MLIR might have a different size than the index type in the LLVM module. 577 if (auto intAttr = dyn_cast<IntegerAttr>(attr)) 578 return llvm::ConstantInt::get( 579 llvmType, 580 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); 581 if (auto floatAttr = dyn_cast<FloatAttr>(attr)) { 582 const llvm::fltSemantics &sem = floatAttr.getValue().getSemantics(); 583 // Special case for 8-bit floats, which are represented by integers due to 584 // the lack of native fp8 types in LLVM at the moment. Additionally, handle 585 // targets (like AMDGPU) that don't implement bfloat and convert all bfloats 586 // to i16. 587 unsigned floatWidth = APFloat::getSizeInBits(sem); 588 if (llvmType->isIntegerTy(floatWidth)) 589 return llvm::ConstantInt::get(llvmType, 590 floatAttr.getValue().bitcastToAPInt()); 591 if (llvmType != 592 llvm::Type::getFloatingPointTy(llvmType->getContext(), 593 floatAttr.getValue().getSemantics())) { 594 emitError(loc, "FloatAttr does not match expected type of the constant"); 595 return nullptr; 596 } 597 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 598 } 599 if (auto funcAttr = dyn_cast<FlatSymbolRefAttr>(attr)) 600 return llvm::ConstantExpr::getBitCast( 601 moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType); 602 if (auto splatAttr = dyn_cast<SplatElementsAttr>(attr)) { 603 llvm::Type *elementType; 604 uint64_t numElements; 605 bool isScalable = false; 606 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) { 607 elementType = arrayTy->getElementType(); 608 numElements = arrayTy->getNumElements(); 609 } else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) { 610 elementType = fVectorTy->getElementType(); 611 numElements = fVectorTy->getNumElements(); 612 } else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) { 613 elementType = sVectorTy->getElementType(); 614 numElements = sVectorTy->getMinNumElements(); 615 isScalable = true; 616 } else { 617 llvm_unreachable("unrecognized constant vector type"); 618 } 619 // Splat value is a scalar. Extract it only if the element type is not 620 // another sequence type. The recursion terminates because each step removes 621 // one outer sequential type. 622 bool elementTypeSequential = 623 isa<llvm::ArrayType, llvm::VectorType>(elementType); 624 llvm::Constant *child = getLLVMConstant( 625 elementType, 626 elementTypeSequential ? splatAttr 627 : splatAttr.getSplatValue<Attribute>(), 628 loc, moduleTranslation); 629 if (!child) 630 return nullptr; 631 if (llvmType->isVectorTy()) 632 return llvm::ConstantVector::getSplat( 633 llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child); 634 if (llvmType->isArrayTy()) { 635 auto *arrayType = llvm::ArrayType::get(elementType, numElements); 636 if (child->isZeroValue()) { 637 return llvm::ConstantAggregateZero::get(arrayType); 638 } else { 639 if (llvm::ConstantDataSequential::isElementTypeCompatible( 640 elementType)) { 641 // TODO: Handle all compatible types. This code only handles integer. 642 if (isa<llvm::IntegerType>(elementType)) { 643 if (llvm::ConstantInt *ci = dyn_cast<llvm::ConstantInt>(child)) { 644 if (ci->getBitWidth() == 8) { 645 SmallVector<int8_t> constants(numElements, ci->getZExtValue()); 646 return llvm::ConstantDataArray::get(elementType->getContext(), 647 constants); 648 } 649 if (ci->getBitWidth() == 16) { 650 SmallVector<int16_t> constants(numElements, ci->getZExtValue()); 651 return llvm::ConstantDataArray::get(elementType->getContext(), 652 constants); 653 } 654 if (ci->getBitWidth() == 32) { 655 SmallVector<int32_t> constants(numElements, ci->getZExtValue()); 656 return llvm::ConstantDataArray::get(elementType->getContext(), 657 constants); 658 } 659 if (ci->getBitWidth() == 64) { 660 SmallVector<int64_t> constants(numElements, ci->getZExtValue()); 661 return llvm::ConstantDataArray::get(elementType->getContext(), 662 constants); 663 } 664 } 665 } 666 } 667 // std::vector is used here to accomodate large number of elements that 668 // exceed SmallVector capacity. 669 std::vector<llvm::Constant *> constants(numElements, child); 670 return llvm::ConstantArray::get(arrayType, constants); 671 } 672 } 673 } 674 675 // Try using raw elements data if possible. 676 if (llvm::Constant *result = 677 convertDenseElementsAttr(loc, dyn_cast<DenseElementsAttr>(attr), 678 llvmType, moduleTranslation)) { 679 return result; 680 } 681 682 if (auto denseResourceAttr = dyn_cast<DenseResourceElementsAttr>(attr)) { 683 return convertDenseResourceElementsAttr(loc, denseResourceAttr, llvmType, 684 moduleTranslation); 685 } 686 687 // Fall back to element-by-element construction otherwise. 688 if (auto elementsAttr = dyn_cast<ElementsAttr>(attr)) { 689 assert(elementsAttr.getShapedType().hasStaticShape()); 690 assert(!elementsAttr.getShapedType().getShape().empty() && 691 "unexpected empty elements attribute shape"); 692 693 SmallVector<llvm::Constant *, 8> constants; 694 constants.reserve(elementsAttr.getNumElements()); 695 llvm::Type *innermostType = getInnermostElementType(llvmType); 696 for (auto n : elementsAttr.getValues<Attribute>()) { 697 constants.push_back( 698 getLLVMConstant(innermostType, n, loc, moduleTranslation)); 699 if (!constants.back()) 700 return nullptr; 701 } 702 ArrayRef<llvm::Constant *> constantsRef = constants; 703 llvm::Constant *result = buildSequentialConstant( 704 constantsRef, elementsAttr.getShapedType().getShape(), llvmType, loc); 705 assert(constantsRef.empty() && "did not consume all elemental constants"); 706 return result; 707 } 708 709 if (auto stringAttr = dyn_cast<StringAttr>(attr)) { 710 return llvm::ConstantDataArray::get( 711 moduleTranslation.getLLVMContext(), 712 ArrayRef<char>{stringAttr.getValue().data(), 713 stringAttr.getValue().size()}); 714 } 715 emitError(loc, "unsupported constant value"); 716 return nullptr; 717 } 718 719 ModuleTranslation::ModuleTranslation(Operation *module, 720 std::unique_ptr<llvm::Module> llvmModule) 721 : mlirModule(module), llvmModule(std::move(llvmModule)), 722 debugTranslation( 723 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 724 loopAnnotationTranslation(std::make_unique<LoopAnnotationTranslation>( 725 *this, *this->llvmModule)), 726 typeTranslator(this->llvmModule->getContext()), 727 iface(module->getContext()) { 728 assert(satisfiesLLVMModule(mlirModule) && 729 "mlirModule should honor LLVM's module semantics."); 730 } 731 732 ModuleTranslation::~ModuleTranslation() { 733 if (ompBuilder) 734 ompBuilder->finalize(); 735 } 736 737 void ModuleTranslation::forgetMapping(Region ®ion) { 738 SmallVector<Region *> toProcess; 739 toProcess.push_back(®ion); 740 while (!toProcess.empty()) { 741 Region *current = toProcess.pop_back_val(); 742 for (Block &block : *current) { 743 blockMapping.erase(&block); 744 for (Value arg : block.getArguments()) 745 valueMapping.erase(arg); 746 for (Operation &op : block) { 747 for (Value value : op.getResults()) 748 valueMapping.erase(value); 749 if (op.hasSuccessors()) 750 branchMapping.erase(&op); 751 if (isa<LLVM::GlobalOp>(op)) 752 globalsMapping.erase(&op); 753 if (isa<LLVM::CallOp>(op)) 754 callMapping.erase(&op); 755 llvm::append_range( 756 toProcess, 757 llvm::map_range(op.getRegions(), [](Region &r) { return &r; })); 758 } 759 } 760 } 761 } 762 763 /// Get the SSA value passed to the current block from the terminator operation 764 /// of its predecessor. 765 static Value getPHISourceValue(Block *current, Block *pred, 766 unsigned numArguments, unsigned index) { 767 Operation &terminator = *pred->getTerminator(); 768 if (isa<LLVM::BrOp>(terminator)) 769 return terminator.getOperand(index); 770 771 #ifndef NDEBUG 772 llvm::SmallPtrSet<Block *, 4> seenSuccessors; 773 for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) { 774 Block *successor = terminator.getSuccessor(i); 775 auto branch = cast<BranchOpInterface>(terminator); 776 SuccessorOperands successorOperands = branch.getSuccessorOperands(i); 777 assert( 778 (!seenSuccessors.contains(successor) || successorOperands.empty()) && 779 "successors with arguments in LLVM branches must be different blocks"); 780 seenSuccessors.insert(successor); 781 } 782 #endif 783 784 // For instructions that branch based on a condition value, we need to take 785 // the operands for the branch that was taken. 786 if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) { 787 // For conditional branches, we take the operands from either the "true" or 788 // the "false" branch. 789 return condBranchOp.getSuccessor(0) == current 790 ? condBranchOp.getTrueDestOperands()[index] 791 : condBranchOp.getFalseDestOperands()[index]; 792 } 793 794 if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) { 795 // For switches, we take the operands from either the default case, or from 796 // the case branch that was taken. 797 if (switchOp.getDefaultDestination() == current) 798 return switchOp.getDefaultOperands()[index]; 799 for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations())) 800 if (i.value() == current) 801 return switchOp.getCaseOperands(i.index())[index]; 802 } 803 804 if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) { 805 return invokeOp.getNormalDest() == current 806 ? invokeOp.getNormalDestOperands()[index] 807 : invokeOp.getUnwindDestOperands()[index]; 808 } 809 810 llvm_unreachable( 811 "only branch, switch or invoke operations can be terminators " 812 "of a block that has successors"); 813 } 814 815 /// Connect the PHI nodes to the results of preceding blocks. 816 void mlir::LLVM::detail::connectPHINodes(Region ®ion, 817 const ModuleTranslation &state) { 818 // Skip the first block, it cannot be branched to and its arguments correspond 819 // to the arguments of the LLVM function. 820 for (Block &bb : llvm::drop_begin(region)) { 821 llvm::BasicBlock *llvmBB = state.lookupBlock(&bb); 822 auto phis = llvmBB->phis(); 823 auto numArguments = bb.getNumArguments(); 824 assert(numArguments == std::distance(phis.begin(), phis.end())); 825 for (auto [index, phiNode] : llvm::enumerate(phis)) { 826 for (auto *pred : bb.getPredecessors()) { 827 // Find the LLVM IR block that contains the converted terminator 828 // instruction and use it in the PHI node. Note that this block is not 829 // necessarily the same as state.lookupBlock(pred), some operations 830 // (in particular, OpenMP operations using OpenMPIRBuilder) may have 831 // split the blocks. 832 llvm::Instruction *terminator = 833 state.lookupBranch(pred->getTerminator()); 834 assert(terminator && "missing the mapping for a terminator"); 835 phiNode.addIncoming(state.lookupValue(getPHISourceValue( 836 &bb, pred, numArguments, index)), 837 terminator->getParent()); 838 } 839 } 840 } 841 } 842 843 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall( 844 llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic, 845 ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) { 846 llvm::Module *module = builder.GetInsertBlock()->getModule(); 847 llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys); 848 return builder.CreateCall(fn, args); 849 } 850 851 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall( 852 llvm::IRBuilderBase &builder, ModuleTranslation &moduleTranslation, 853 Operation *intrOp, llvm::Intrinsic::ID intrinsic, unsigned numResults, 854 ArrayRef<unsigned> overloadedResults, ArrayRef<unsigned> overloadedOperands, 855 ArrayRef<unsigned> immArgPositions, 856 ArrayRef<StringLiteral> immArgAttrNames) { 857 assert(immArgPositions.size() == immArgAttrNames.size() && 858 "LLVM `immArgPositions` and MLIR `immArgAttrNames` should have equal " 859 "length"); 860 861 // Map operands and attributes to LLVM values. 862 auto operands = moduleTranslation.lookupValues(intrOp->getOperands()); 863 SmallVector<llvm::Value *> args(immArgPositions.size() + operands.size()); 864 for (auto [immArgPos, immArgName] : 865 llvm::zip(immArgPositions, immArgAttrNames)) { 866 auto attr = llvm::cast<TypedAttr>(intrOp->getAttr(immArgName)); 867 assert(attr.getType().isIntOrFloat() && "expected int or float immarg"); 868 auto *type = moduleTranslation.convertType(attr.getType()); 869 args[immArgPos] = LLVM::detail::getLLVMConstant( 870 type, attr, intrOp->getLoc(), moduleTranslation); 871 } 872 unsigned opArg = 0; 873 for (auto &arg : args) { 874 if (!arg) 875 arg = operands[opArg++]; 876 } 877 878 // Resolve overloaded intrinsic declaration. 879 SmallVector<llvm::Type *> overloadedTypes; 880 for (unsigned overloadedResultIdx : overloadedResults) { 881 if (numResults > 1) { 882 // More than one result is mapped to an LLVM struct. 883 overloadedTypes.push_back(moduleTranslation.convertType( 884 llvm::cast<LLVM::LLVMStructType>(intrOp->getResult(0).getType()) 885 .getBody()[overloadedResultIdx])); 886 } else { 887 overloadedTypes.push_back( 888 moduleTranslation.convertType(intrOp->getResult(0).getType())); 889 } 890 } 891 for (unsigned overloadedOperandIdx : overloadedOperands) 892 overloadedTypes.push_back(args[overloadedOperandIdx]->getType()); 893 llvm::Module *module = builder.GetInsertBlock()->getModule(); 894 llvm::Function *llvmIntr = 895 llvm::Intrinsic::getDeclaration(module, intrinsic, overloadedTypes); 896 897 return builder.CreateCall(llvmIntr, args); 898 } 899 900 /// Given a single MLIR operation, create the corresponding LLVM IR operation 901 /// using the `builder`. 902 LogicalResult ModuleTranslation::convertOperation(Operation &op, 903 llvm::IRBuilderBase &builder, 904 bool recordInsertions) { 905 const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op); 906 if (!opIface) 907 return op.emitError("cannot be converted to LLVM IR: missing " 908 "`LLVMTranslationDialectInterface` registration for " 909 "dialect for op: ") 910 << op.getName(); 911 912 InstructionCapturingInserter::CollectionScope scope(builder, 913 recordInsertions); 914 if (failed(opIface->convertOperation(&op, builder, *this))) 915 return op.emitError("LLVM Translation failed for operation: ") 916 << op.getName(); 917 918 return convertDialectAttributes(&op, scope.getCapturedInstructions()); 919 } 920 921 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 922 /// to define values corresponding to the MLIR block arguments. These nodes 923 /// are not connected to the source basic blocks, which may not exist yet. Uses 924 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have 925 /// been created for `bb` and included in the block mapping. Inserts new 926 /// instructions at the end of the block and leaves `builder` in a state 927 /// suitable for further insertion into the end of the block. 928 LogicalResult ModuleTranslation::convertBlockImpl(Block &bb, 929 bool ignoreArguments, 930 llvm::IRBuilderBase &builder, 931 bool recordInsertions) { 932 builder.SetInsertPoint(lookupBlock(&bb)); 933 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 934 935 // Before traversing operations, make block arguments available through 936 // value remapping and PHI nodes, but do not add incoming edges for the PHI 937 // nodes just yet: those values may be defined by this or following blocks. 938 // This step is omitted if "ignoreArguments" is set. The arguments of the 939 // first block have been already made available through the remapping of 940 // LLVM function arguments. 941 if (!ignoreArguments) { 942 auto predecessors = bb.getPredecessors(); 943 unsigned numPredecessors = 944 std::distance(predecessors.begin(), predecessors.end()); 945 for (auto arg : bb.getArguments()) { 946 auto wrappedType = arg.getType(); 947 if (!isCompatibleType(wrappedType)) 948 return emitError(bb.front().getLoc(), 949 "block argument does not have an LLVM type"); 950 llvm::Type *type = convertType(wrappedType); 951 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 952 mapValue(arg, phi); 953 } 954 } 955 956 // Traverse operations. 957 for (auto &op : bb) { 958 // Set the current debug location within the builder. 959 builder.SetCurrentDebugLocation( 960 debugTranslation->translateLoc(op.getLoc(), subprogram)); 961 962 if (failed(convertOperation(op, builder, recordInsertions))) 963 return failure(); 964 965 // Set the branch weight metadata on the translated instruction. 966 if (auto iface = dyn_cast<BranchWeightOpInterface>(op)) 967 setBranchWeightsMetadata(iface); 968 } 969 970 return success(); 971 } 972 973 /// A helper method to get the single Block in an operation honoring LLVM's 974 /// module requirements. 975 static Block &getModuleBody(Operation *module) { 976 return module->getRegion(0).front(); 977 } 978 979 /// A helper method to decide if a constant must not be set as a global variable 980 /// initializer. For an external linkage variable, the variable with an 981 /// initializer is considered externally visible and defined in this module, the 982 /// variable without an initializer is externally available and is defined 983 /// elsewhere. 984 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage, 985 llvm::Constant *cst) { 986 return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) || 987 linkage == llvm::GlobalVariable::ExternalWeakLinkage; 988 } 989 990 /// Sets the runtime preemption specifier of `gv` to dso_local if 991 /// `dsoLocalRequested` is true, otherwise it is left unchanged. 992 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested, 993 llvm::GlobalValue *gv) { 994 if (dsoLocalRequested) 995 gv->setDSOLocal(true); 996 } 997 998 /// Create named global variables that correspond to llvm.mlir.global 999 /// definitions. Convert llvm.global_ctors and global_dtors ops. 1000 LogicalResult ModuleTranslation::convertGlobals() { 1001 // Mapping from compile unit to its respective set of global variables. 1002 DenseMap<llvm::DICompileUnit *, SmallVector<llvm::Metadata *>> allGVars; 1003 1004 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 1005 llvm::Type *type = convertType(op.getType()); 1006 llvm::Constant *cst = nullptr; 1007 if (op.getValueOrNull()) { 1008 // String attributes are treated separately because they cannot appear as 1009 // in-function constants and are thus not supported by getLLVMConstant. 1010 if (auto strAttr = dyn_cast_or_null<StringAttr>(op.getValueOrNull())) { 1011 cst = llvm::ConstantDataArray::getString( 1012 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 1013 type = cst->getType(); 1014 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(), 1015 *this))) { 1016 return failure(); 1017 } 1018 } 1019 1020 auto linkage = convertLinkageToLLVM(op.getLinkage()); 1021 auto addrSpace = op.getAddrSpace(); 1022 1023 // LLVM IR requires constant with linkage other than external or weak 1024 // external to have initializers. If MLIR does not provide an initializer, 1025 // default to undef. 1026 bool dropInitializer = shouldDropGlobalInitializer(linkage, cst); 1027 if (!dropInitializer && !cst) 1028 cst = llvm::UndefValue::get(type); 1029 else if (dropInitializer && cst) 1030 cst = nullptr; 1031 1032 auto *var = new llvm::GlobalVariable( 1033 *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(), 1034 /*InsertBefore=*/nullptr, 1035 op.getThreadLocal_() ? llvm::GlobalValue::GeneralDynamicTLSModel 1036 : llvm::GlobalValue::NotThreadLocal, 1037 addrSpace); 1038 1039 if (std::optional<mlir::SymbolRefAttr> comdat = op.getComdat()) { 1040 auto selectorOp = cast<ComdatSelectorOp>( 1041 SymbolTable::lookupNearestSymbolFrom(op, *comdat)); 1042 var->setComdat(comdatMapping.lookup(selectorOp)); 1043 } 1044 1045 if (op.getUnnamedAddr().has_value()) 1046 var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr())); 1047 1048 if (op.getSection().has_value()) 1049 var->setSection(*op.getSection()); 1050 1051 addRuntimePreemptionSpecifier(op.getDsoLocal(), var); 1052 1053 std::optional<uint64_t> alignment = op.getAlignment(); 1054 if (alignment.has_value()) 1055 var->setAlignment(llvm::MaybeAlign(alignment.value())); 1056 1057 var->setVisibility(convertVisibilityToLLVM(op.getVisibility_())); 1058 1059 globalsMapping.try_emplace(op, var); 1060 1061 // Add debug information if present. 1062 if (op.getDbgExpr()) { 1063 llvm::DIGlobalVariableExpression *diGlobalExpr = 1064 debugTranslation->translateGlobalVariableExpression(op.getDbgExpr()); 1065 llvm::DIGlobalVariable *diGlobalVar = diGlobalExpr->getVariable(); 1066 var->addDebugInfo(diGlobalExpr); 1067 1068 // There is no `globals` field in DICompileUnitAttr which can be directly 1069 // assigned to DICompileUnit. We have to build the list by looking at the 1070 // dbgExpr of all the GlobalOps. The scope of the variable is used to get 1071 // the DICompileUnit in which to add it. But for the languages that 1072 // support modules, the scope hierarchy can be 1073 // variable -> module -> compile unit 1074 // If a variable scope points to the module then we use the scope of the 1075 // module to get the compile unit. 1076 // Global variables are also used for things like static local variables 1077 // in C and local variables with the save attribute in Fortran. The scope 1078 // of the variable is the parent function. We use the compile unit of the 1079 // parent function in this case. 1080 llvm::DIScope *scope = diGlobalVar->getScope(); 1081 if (auto *mod = dyn_cast_if_present<llvm::DIModule>(scope)) 1082 scope = mod->getScope(); 1083 else if (auto *sp = dyn_cast_if_present<llvm::DISubprogram>(scope)) 1084 scope = sp->getUnit(); 1085 1086 // Get the compile unit (scope) of the the global variable. 1087 if (llvm::DICompileUnit *compileUnit = 1088 dyn_cast_if_present<llvm::DICompileUnit>(scope)) { 1089 // Update the compile unit with this incoming global variable expression 1090 // during the finalizing step later. 1091 allGVars[compileUnit].push_back(diGlobalExpr); 1092 } 1093 } 1094 } 1095 1096 // Convert global variable bodies. This is done after all global variables 1097 // have been created in LLVM IR because a global body may refer to another 1098 // global or itself. So all global variables need to be mapped first. 1099 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 1100 if (Block *initializer = op.getInitializerBlock()) { 1101 llvm::IRBuilder<> builder(llvmModule->getContext()); 1102 1103 [[maybe_unused]] int numConstantsHit = 0; 1104 [[maybe_unused]] int numConstantsErased = 0; 1105 DenseMap<llvm::ConstantAggregate *, int> constantAggregateUseMap; 1106 1107 for (auto &op : initializer->without_terminator()) { 1108 if (failed(convertOperation(op, builder))) 1109 return emitError(op.getLoc(), "fail to convert global initializer"); 1110 auto *cst = dyn_cast<llvm::Constant>(lookupValue(op.getResult(0))); 1111 if (!cst) 1112 return emitError(op.getLoc(), "unemittable constant value"); 1113 1114 // When emitting an LLVM constant, a new constant is created and the old 1115 // constant may become dangling and take space. We should remove the 1116 // dangling constants to avoid memory explosion especially for constant 1117 // arrays whose number of elements is large. 1118 // Because multiple operations may refer to the same constant, we need 1119 // to count the number of uses of each constant array and remove it only 1120 // when the count becomes zero. 1121 if (auto *agg = dyn_cast<llvm::ConstantAggregate>(cst)) { 1122 numConstantsHit++; 1123 Value result = op.getResult(0); 1124 int numUsers = std::distance(result.use_begin(), result.use_end()); 1125 auto [iterator, inserted] = 1126 constantAggregateUseMap.try_emplace(agg, numUsers); 1127 if (!inserted) { 1128 // Key already exists, update the value 1129 iterator->second += numUsers; 1130 } 1131 } 1132 // Scan the operands of the operation to decrement the use count of 1133 // constants. Erase the constant if the use count becomes zero. 1134 for (Value v : op.getOperands()) { 1135 auto cst = dyn_cast<llvm::ConstantAggregate>(lookupValue(v)); 1136 if (!cst) 1137 continue; 1138 auto iter = constantAggregateUseMap.find(cst); 1139 assert(iter != constantAggregateUseMap.end() && "constant not found"); 1140 iter->second--; 1141 if (iter->second == 0) { 1142 // NOTE: cannot call removeDeadConstantUsers() here because it 1143 // may remove the constant which has uses not be converted yet. 1144 if (cst->user_empty()) { 1145 cst->destroyConstant(); 1146 numConstantsErased++; 1147 } 1148 constantAggregateUseMap.erase(iter); 1149 } 1150 } 1151 } 1152 1153 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 1154 llvm::Constant *cst = 1155 cast<llvm::Constant>(lookupValue(ret.getOperand(0))); 1156 auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op)); 1157 if (!shouldDropGlobalInitializer(global->getLinkage(), cst)) 1158 global->setInitializer(cst); 1159 1160 // Try to remove the dangling constants again after all operations are 1161 // converted. 1162 for (auto it : constantAggregateUseMap) { 1163 auto cst = it.first; 1164 cst->removeDeadConstantUsers(); 1165 if (cst->user_empty()) { 1166 cst->destroyConstant(); 1167 numConstantsErased++; 1168 } 1169 } 1170 1171 LLVM_DEBUG(llvm::dbgs() 1172 << "Convert initializer for " << op.getName() << "\n"; 1173 llvm::dbgs() << numConstantsHit << " new constants hit\n"; 1174 llvm::dbgs() 1175 << numConstantsErased << " dangling constants erased\n";); 1176 } 1177 } 1178 1179 // Convert llvm.mlir.global_ctors and dtors. 1180 for (Operation &op : getModuleBody(mlirModule)) { 1181 auto ctorOp = dyn_cast<GlobalCtorsOp>(op); 1182 auto dtorOp = dyn_cast<GlobalDtorsOp>(op); 1183 if (!ctorOp && !dtorOp) 1184 continue; 1185 auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities()) 1186 : llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities()); 1187 auto appendGlobalFn = 1188 ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors; 1189 for (auto symbolAndPriority : range) { 1190 llvm::Function *f = lookupFunction( 1191 cast<FlatSymbolRefAttr>(std::get<0>(symbolAndPriority)).getValue()); 1192 appendGlobalFn(*llvmModule, f, 1193 cast<IntegerAttr>(std::get<1>(symbolAndPriority)).getInt(), 1194 /*Data=*/nullptr); 1195 } 1196 } 1197 1198 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) 1199 if (failed(convertDialectAttributes(op, {}))) 1200 return failure(); 1201 1202 // Finally, update the compile units their respective sets of global variables 1203 // created earlier. 1204 for (const auto &[compileUnit, globals] : allGVars) { 1205 compileUnit->replaceGlobalVariables( 1206 llvm::MDTuple::get(getLLVMContext(), globals)); 1207 } 1208 1209 return success(); 1210 } 1211 1212 /// Attempts to add an attribute identified by `key`, optionally with the given 1213 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the 1214 /// attribute has a kind known to LLVM IR, create the attribute of this kind, 1215 /// otherwise keep it as a string attribute. Performs additional checks for 1216 /// attributes known to have or not have a value in order to avoid assertions 1217 /// inside LLVM upon construction. 1218 static LogicalResult checkedAddLLVMFnAttribute(Location loc, 1219 llvm::Function *llvmFunc, 1220 StringRef key, 1221 StringRef value = StringRef()) { 1222 auto kind = llvm::Attribute::getAttrKindFromName(key); 1223 if (kind == llvm::Attribute::None) { 1224 llvmFunc->addFnAttr(key, value); 1225 return success(); 1226 } 1227 1228 if (llvm::Attribute::isIntAttrKind(kind)) { 1229 if (value.empty()) 1230 return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; 1231 1232 int64_t result; 1233 if (!value.getAsInteger(/*Radix=*/0, result)) 1234 llvmFunc->addFnAttr( 1235 llvm::Attribute::get(llvmFunc->getContext(), kind, result)); 1236 else 1237 llvmFunc->addFnAttr(key, value); 1238 return success(); 1239 } 1240 1241 if (!value.empty()) 1242 return emitError(loc) << "LLVM attribute '" << key 1243 << "' does not expect a value, found '" << value 1244 << "'"; 1245 1246 llvmFunc->addFnAttr(kind); 1247 return success(); 1248 } 1249 1250 /// Attaches the attributes listed in the given array attribute to `llvmFunc`. 1251 /// Reports error to `loc` if any and returns immediately. Expects `attributes` 1252 /// to be an array attribute containing either string attributes, treated as 1253 /// value-less LLVM attributes, or array attributes containing two string 1254 /// attributes, with the first string being the name of the corresponding LLVM 1255 /// attribute and the second string beings its value. Note that even integer 1256 /// attributes are expected to have their values expressed as strings. 1257 static LogicalResult 1258 forwardPassthroughAttributes(Location loc, std::optional<ArrayAttr> attributes, 1259 llvm::Function *llvmFunc) { 1260 if (!attributes) 1261 return success(); 1262 1263 for (Attribute attr : *attributes) { 1264 if (auto stringAttr = dyn_cast<StringAttr>(attr)) { 1265 if (failed( 1266 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) 1267 return failure(); 1268 continue; 1269 } 1270 1271 auto arrayAttr = dyn_cast<ArrayAttr>(attr); 1272 if (!arrayAttr || arrayAttr.size() != 2) 1273 return emitError(loc) 1274 << "expected 'passthrough' to contain string or array attributes"; 1275 1276 auto keyAttr = dyn_cast<StringAttr>(arrayAttr[0]); 1277 auto valueAttr = dyn_cast<StringAttr>(arrayAttr[1]); 1278 if (!keyAttr || !valueAttr) 1279 return emitError(loc) 1280 << "expected arrays within 'passthrough' to contain two strings"; 1281 1282 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), 1283 valueAttr.getValue()))) 1284 return failure(); 1285 } 1286 return success(); 1287 } 1288 1289 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 1290 // Clear the block, branch value mappings, they are only relevant within one 1291 // function. 1292 blockMapping.clear(); 1293 valueMapping.clear(); 1294 branchMapping.clear(); 1295 llvm::Function *llvmFunc = lookupFunction(func.getName()); 1296 1297 // Add function arguments to the value remapping table. 1298 for (auto [mlirArg, llvmArg] : 1299 llvm::zip(func.getArguments(), llvmFunc->args())) 1300 mapValue(mlirArg, &llvmArg); 1301 1302 // Check the personality and set it. 1303 if (func.getPersonality()) { 1304 llvm::Type *ty = llvm::PointerType::getUnqual(llvmFunc->getContext()); 1305 if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(), 1306 func.getLoc(), *this)) 1307 llvmFunc->setPersonalityFn(pfunc); 1308 } 1309 1310 if (std::optional<StringRef> section = func.getSection()) 1311 llvmFunc->setSection(*section); 1312 1313 if (func.getArmStreaming()) 1314 llvmFunc->addFnAttr("aarch64_pstate_sm_enabled"); 1315 else if (func.getArmLocallyStreaming()) 1316 llvmFunc->addFnAttr("aarch64_pstate_sm_body"); 1317 else if (func.getArmStreamingCompatible()) 1318 llvmFunc->addFnAttr("aarch64_pstate_sm_compatible"); 1319 1320 if (func.getArmNewZa()) 1321 llvmFunc->addFnAttr("aarch64_new_za"); 1322 else if (func.getArmInZa()) 1323 llvmFunc->addFnAttr("aarch64_in_za"); 1324 else if (func.getArmOutZa()) 1325 llvmFunc->addFnAttr("aarch64_out_za"); 1326 else if (func.getArmInoutZa()) 1327 llvmFunc->addFnAttr("aarch64_inout_za"); 1328 else if (func.getArmPreservesZa()) 1329 llvmFunc->addFnAttr("aarch64_preserves_za"); 1330 1331 if (auto targetCpu = func.getTargetCpu()) 1332 llvmFunc->addFnAttr("target-cpu", *targetCpu); 1333 1334 if (auto targetFeatures = func.getTargetFeatures()) 1335 llvmFunc->addFnAttr("target-features", targetFeatures->getFeaturesString()); 1336 1337 if (auto attr = func.getVscaleRange()) 1338 llvmFunc->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 1339 getLLVMContext(), attr->getMinRange().getInt(), 1340 attr->getMaxRange().getInt())); 1341 1342 if (auto unsafeFpMath = func.getUnsafeFpMath()) 1343 llvmFunc->addFnAttr("unsafe-fp-math", llvm::toStringRef(*unsafeFpMath)); 1344 1345 if (auto noInfsFpMath = func.getNoInfsFpMath()) 1346 llvmFunc->addFnAttr("no-infs-fp-math", llvm::toStringRef(*noInfsFpMath)); 1347 1348 if (auto noNansFpMath = func.getNoNansFpMath()) 1349 llvmFunc->addFnAttr("no-nans-fp-math", llvm::toStringRef(*noNansFpMath)); 1350 1351 if (auto approxFuncFpMath = func.getApproxFuncFpMath()) 1352 llvmFunc->addFnAttr("approx-func-fp-math", 1353 llvm::toStringRef(*approxFuncFpMath)); 1354 1355 if (auto noSignedZerosFpMath = func.getNoSignedZerosFpMath()) 1356 llvmFunc->addFnAttr("no-signed-zeros-fp-math", 1357 llvm::toStringRef(*noSignedZerosFpMath)); 1358 1359 if (auto denormalFpMath = func.getDenormalFpMath()) 1360 llvmFunc->addFnAttr("denormal-fp-math", *denormalFpMath); 1361 1362 if (auto denormalFpMathF32 = func.getDenormalFpMathF32()) 1363 llvmFunc->addFnAttr("denormal-fp-math-f32", *denormalFpMathF32); 1364 1365 if (auto fpContract = func.getFpContract()) 1366 llvmFunc->addFnAttr("fp-contract", *fpContract); 1367 1368 // Add function attribute frame-pointer, if found. 1369 if (FramePointerKindAttr attr = func.getFramePointerAttr()) 1370 llvmFunc->addFnAttr("frame-pointer", 1371 LLVM::framePointerKind::stringifyFramePointerKind( 1372 (attr.getFramePointerKind()))); 1373 1374 // First, create all blocks so we can jump to them. 1375 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 1376 for (auto &bb : func) { 1377 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 1378 llvmBB->insertInto(llvmFunc); 1379 mapBlock(&bb, llvmBB); 1380 } 1381 1382 // Then, convert blocks one by one in topological order to ensure defs are 1383 // converted before uses. 1384 auto blocks = getBlocksSortedByDominance(func.getBody()); 1385 for (Block *bb : blocks) { 1386 CapturingIRBuilder builder(llvmContext); 1387 if (failed(convertBlockImpl(*bb, bb->isEntryBlock(), builder, 1388 /*recordInsertions=*/true))) 1389 return failure(); 1390 } 1391 1392 // After all blocks have been traversed and values mapped, connect the PHI 1393 // nodes to the results of preceding blocks. 1394 detail::connectPHINodes(func.getBody(), *this); 1395 1396 // Finally, convert dialect attributes attached to the function. 1397 return convertDialectAttributes(func, {}); 1398 } 1399 1400 LogicalResult ModuleTranslation::convertDialectAttributes( 1401 Operation *op, ArrayRef<llvm::Instruction *> instructions) { 1402 for (NamedAttribute attribute : op->getDialectAttrs()) 1403 if (failed(iface.amendOperation(op, instructions, attribute, *this))) 1404 return failure(); 1405 return success(); 1406 } 1407 1408 /// Converts memory effect attributes from `func` and attaches them to 1409 /// `llvmFunc`. 1410 static void convertFunctionMemoryAttributes(LLVMFuncOp func, 1411 llvm::Function *llvmFunc) { 1412 if (!func.getMemory()) 1413 return; 1414 1415 MemoryEffectsAttr memEffects = func.getMemoryAttr(); 1416 1417 // Add memory effects incrementally. 1418 llvm::MemoryEffects newMemEffects = 1419 llvm::MemoryEffects(llvm::MemoryEffects::Location::ArgMem, 1420 convertModRefInfoToLLVM(memEffects.getArgMem())); 1421 newMemEffects |= llvm::MemoryEffects( 1422 llvm::MemoryEffects::Location::InaccessibleMem, 1423 convertModRefInfoToLLVM(memEffects.getInaccessibleMem())); 1424 newMemEffects |= 1425 llvm::MemoryEffects(llvm::MemoryEffects::Location::Other, 1426 convertModRefInfoToLLVM(memEffects.getOther())); 1427 llvmFunc->setMemoryEffects(newMemEffects); 1428 } 1429 1430 /// Converts function attributes from `func` and attaches them to `llvmFunc`. 1431 static void convertFunctionAttributes(LLVMFuncOp func, 1432 llvm::Function *llvmFunc) { 1433 if (func.getNoInlineAttr()) 1434 llvmFunc->addFnAttr(llvm::Attribute::NoInline); 1435 if (func.getAlwaysInlineAttr()) 1436 llvmFunc->addFnAttr(llvm::Attribute::AlwaysInline); 1437 if (func.getOptimizeNoneAttr()) 1438 llvmFunc->addFnAttr(llvm::Attribute::OptimizeNone); 1439 if (func.getConvergentAttr()) 1440 llvmFunc->addFnAttr(llvm::Attribute::Convergent); 1441 convertFunctionMemoryAttributes(func, llvmFunc); 1442 } 1443 1444 FailureOr<llvm::AttrBuilder> 1445 ModuleTranslation::convertParameterAttrs(LLVMFuncOp func, int argIdx, 1446 DictionaryAttr paramAttrs) { 1447 llvm::AttrBuilder attrBuilder(llvmModule->getContext()); 1448 auto attrNameToKindMapping = getAttrNameToKindMapping(); 1449 1450 for (auto namedAttr : paramAttrs) { 1451 auto it = attrNameToKindMapping.find(namedAttr.getName()); 1452 if (it != attrNameToKindMapping.end()) { 1453 llvm::Attribute::AttrKind llvmKind = it->second; 1454 1455 llvm::TypeSwitch<Attribute>(namedAttr.getValue()) 1456 .Case<TypeAttr>([&](auto typeAttr) { 1457 attrBuilder.addTypeAttr(llvmKind, convertType(typeAttr.getValue())); 1458 }) 1459 .Case<IntegerAttr>([&](auto intAttr) { 1460 attrBuilder.addRawIntAttr(llvmKind, intAttr.getInt()); 1461 }) 1462 .Case<UnitAttr>([&](auto) { attrBuilder.addAttribute(llvmKind); }); 1463 } else if (namedAttr.getNameDialect()) { 1464 if (failed(iface.convertParameterAttr(func, argIdx, namedAttr, *this))) 1465 return failure(); 1466 } 1467 } 1468 1469 return attrBuilder; 1470 } 1471 1472 LogicalResult ModuleTranslation::convertFunctionSignatures() { 1473 // Declare all functions first because there may be function calls that form a 1474 // call graph with cycles, or global initializers that reference functions. 1475 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 1476 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 1477 function.getName(), 1478 cast<llvm::FunctionType>(convertType(function.getFunctionType()))); 1479 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); 1480 llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage())); 1481 llvmFunc->setCallingConv(convertCConvToLLVM(function.getCConv())); 1482 mapFunction(function.getName(), llvmFunc); 1483 addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc); 1484 1485 // Convert function attributes. 1486 convertFunctionAttributes(function, llvmFunc); 1487 1488 // Convert function_entry_count attribute to metadata. 1489 if (std::optional<uint64_t> entryCount = function.getFunctionEntryCount()) 1490 llvmFunc->setEntryCount(entryCount.value()); 1491 1492 // Convert result attributes. 1493 if (ArrayAttr allResultAttrs = function.getAllResultAttrs()) { 1494 DictionaryAttr resultAttrs = cast<DictionaryAttr>(allResultAttrs[0]); 1495 FailureOr<llvm::AttrBuilder> attrBuilder = 1496 convertParameterAttrs(function, -1, resultAttrs); 1497 if (failed(attrBuilder)) 1498 return failure(); 1499 llvmFunc->addRetAttrs(*attrBuilder); 1500 } 1501 1502 // Convert argument attributes. 1503 for (auto [argIdx, llvmArg] : llvm::enumerate(llvmFunc->args())) { 1504 if (DictionaryAttr argAttrs = function.getArgAttrDict(argIdx)) { 1505 FailureOr<llvm::AttrBuilder> attrBuilder = 1506 convertParameterAttrs(function, argIdx, argAttrs); 1507 if (failed(attrBuilder)) 1508 return failure(); 1509 llvmArg.addAttrs(*attrBuilder); 1510 } 1511 } 1512 1513 // Forward the pass-through attributes to LLVM. 1514 if (failed(forwardPassthroughAttributes( 1515 function.getLoc(), function.getPassthrough(), llvmFunc))) 1516 return failure(); 1517 1518 // Convert visibility attribute. 1519 llvmFunc->setVisibility(convertVisibilityToLLVM(function.getVisibility_())); 1520 1521 // Convert the comdat attribute. 1522 if (std::optional<mlir::SymbolRefAttr> comdat = function.getComdat()) { 1523 auto selectorOp = cast<ComdatSelectorOp>( 1524 SymbolTable::lookupNearestSymbolFrom(function, *comdat)); 1525 llvmFunc->setComdat(comdatMapping.lookup(selectorOp)); 1526 } 1527 1528 if (auto gc = function.getGarbageCollector()) 1529 llvmFunc->setGC(gc->str()); 1530 1531 if (auto unnamedAddr = function.getUnnamedAddr()) 1532 llvmFunc->setUnnamedAddr(convertUnnamedAddrToLLVM(*unnamedAddr)); 1533 1534 if (auto alignment = function.getAlignment()) 1535 llvmFunc->setAlignment(llvm::MaybeAlign(*alignment)); 1536 1537 // Translate the debug information for this function. 1538 debugTranslation->translate(function, *llvmFunc); 1539 } 1540 1541 return success(); 1542 } 1543 1544 LogicalResult ModuleTranslation::convertFunctions() { 1545 // Convert functions. 1546 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 1547 // Do not convert external functions, but do process dialect attributes 1548 // attached to them. 1549 if (function.isExternal()) { 1550 if (failed(convertDialectAttributes(function, {}))) 1551 return failure(); 1552 continue; 1553 } 1554 1555 if (failed(convertOneFunction(function))) 1556 return failure(); 1557 } 1558 1559 return success(); 1560 } 1561 1562 LogicalResult ModuleTranslation::convertComdats() { 1563 for (auto comdatOp : getModuleBody(mlirModule).getOps<ComdatOp>()) { 1564 for (auto selectorOp : comdatOp.getOps<ComdatSelectorOp>()) { 1565 llvm::Module *module = getLLVMModule(); 1566 if (module->getComdatSymbolTable().contains(selectorOp.getSymName())) 1567 return emitError(selectorOp.getLoc()) 1568 << "comdat selection symbols must be unique even in different " 1569 "comdat regions"; 1570 llvm::Comdat *comdat = module->getOrInsertComdat(selectorOp.getSymName()); 1571 comdat->setSelectionKind(convertComdatToLLVM(selectorOp.getComdat())); 1572 comdatMapping.try_emplace(selectorOp, comdat); 1573 } 1574 } 1575 return success(); 1576 } 1577 1578 void ModuleTranslation::setAccessGroupsMetadata(AccessGroupOpInterface op, 1579 llvm::Instruction *inst) { 1580 if (llvm::MDNode *node = loopAnnotationTranslation->getAccessGroups(op)) 1581 inst->setMetadata(llvm::LLVMContext::MD_access_group, node); 1582 } 1583 1584 llvm::MDNode * 1585 ModuleTranslation::getOrCreateAliasScope(AliasScopeAttr aliasScopeAttr) { 1586 auto [scopeIt, scopeInserted] = 1587 aliasScopeMetadataMapping.try_emplace(aliasScopeAttr, nullptr); 1588 if (!scopeInserted) 1589 return scopeIt->second; 1590 llvm::LLVMContext &ctx = llvmModule->getContext(); 1591 auto dummy = llvm::MDNode::getTemporary(ctx, std::nullopt); 1592 // Convert the domain metadata node if necessary. 1593 auto [domainIt, insertedDomain] = aliasDomainMetadataMapping.try_emplace( 1594 aliasScopeAttr.getDomain(), nullptr); 1595 if (insertedDomain) { 1596 llvm::SmallVector<llvm::Metadata *, 2> operands; 1597 // Placeholder for self-reference. 1598 operands.push_back(dummy.get()); 1599 if (StringAttr description = aliasScopeAttr.getDomain().getDescription()) 1600 operands.push_back(llvm::MDString::get(ctx, description)); 1601 domainIt->second = llvm::MDNode::get(ctx, operands); 1602 // Self-reference for uniqueness. 1603 domainIt->second->replaceOperandWith(0, domainIt->second); 1604 } 1605 // Convert the scope metadata node. 1606 assert(domainIt->second && "Scope's domain should already be valid"); 1607 llvm::SmallVector<llvm::Metadata *, 3> operands; 1608 // Placeholder for self-reference. 1609 operands.push_back(dummy.get()); 1610 operands.push_back(domainIt->second); 1611 if (StringAttr description = aliasScopeAttr.getDescription()) 1612 operands.push_back(llvm::MDString::get(ctx, description)); 1613 scopeIt->second = llvm::MDNode::get(ctx, operands); 1614 // Self-reference for uniqueness. 1615 scopeIt->second->replaceOperandWith(0, scopeIt->second); 1616 return scopeIt->second; 1617 } 1618 1619 llvm::MDNode *ModuleTranslation::getOrCreateAliasScopes( 1620 ArrayRef<AliasScopeAttr> aliasScopeAttrs) { 1621 SmallVector<llvm::Metadata *> nodes; 1622 nodes.reserve(aliasScopeAttrs.size()); 1623 for (AliasScopeAttr aliasScopeAttr : aliasScopeAttrs) 1624 nodes.push_back(getOrCreateAliasScope(aliasScopeAttr)); 1625 return llvm::MDNode::get(getLLVMContext(), nodes); 1626 } 1627 1628 void ModuleTranslation::setAliasScopeMetadata(AliasAnalysisOpInterface op, 1629 llvm::Instruction *inst) { 1630 auto populateScopeMetadata = [&](ArrayAttr aliasScopeAttrs, unsigned kind) { 1631 if (!aliasScopeAttrs || aliasScopeAttrs.empty()) 1632 return; 1633 llvm::MDNode *node = getOrCreateAliasScopes( 1634 llvm::to_vector(aliasScopeAttrs.getAsRange<AliasScopeAttr>())); 1635 inst->setMetadata(kind, node); 1636 }; 1637 1638 populateScopeMetadata(op.getAliasScopesOrNull(), 1639 llvm::LLVMContext::MD_alias_scope); 1640 populateScopeMetadata(op.getNoAliasScopesOrNull(), 1641 llvm::LLVMContext::MD_noalias); 1642 } 1643 1644 llvm::MDNode *ModuleTranslation::getTBAANode(TBAATagAttr tbaaAttr) const { 1645 return tbaaMetadataMapping.lookup(tbaaAttr); 1646 } 1647 1648 void ModuleTranslation::setTBAAMetadata(AliasAnalysisOpInterface op, 1649 llvm::Instruction *inst) { 1650 ArrayAttr tagRefs = op.getTBAATagsOrNull(); 1651 if (!tagRefs || tagRefs.empty()) 1652 return; 1653 1654 // LLVM IR currently does not support attaching more than one TBAA access tag 1655 // to a memory accessing instruction. It may be useful to support this in 1656 // future, but for the time being just ignore the metadata if MLIR operation 1657 // has multiple access tags. 1658 if (tagRefs.size() > 1) { 1659 op.emitWarning() << "TBAA access tags were not translated, because LLVM " 1660 "IR only supports a single tag per instruction"; 1661 return; 1662 } 1663 1664 llvm::MDNode *node = getTBAANode(cast<TBAATagAttr>(tagRefs[0])); 1665 inst->setMetadata(llvm::LLVMContext::MD_tbaa, node); 1666 } 1667 1668 void ModuleTranslation::setBranchWeightsMetadata(BranchWeightOpInterface op) { 1669 DenseI32ArrayAttr weightsAttr = op.getBranchWeightsOrNull(); 1670 if (!weightsAttr) 1671 return; 1672 1673 llvm::Instruction *inst = isa<CallOp>(op) ? lookupCall(op) : lookupBranch(op); 1674 assert(inst && "expected the operation to have a mapping to an instruction"); 1675 SmallVector<uint32_t> weights(weightsAttr.asArrayRef()); 1676 inst->setMetadata( 1677 llvm::LLVMContext::MD_prof, 1678 llvm::MDBuilder(getLLVMContext()).createBranchWeights(weights)); 1679 } 1680 1681 LogicalResult ModuleTranslation::createTBAAMetadata() { 1682 llvm::LLVMContext &ctx = llvmModule->getContext(); 1683 llvm::IntegerType *offsetTy = llvm::IntegerType::get(ctx, 64); 1684 1685 // Walk the entire module and create all metadata nodes for the TBAA 1686 // attributes. The code below relies on two invariants of the 1687 // `AttrTypeWalker`: 1688 // 1. Attributes are visited in post-order: Since the attributes create a DAG, 1689 // this ensures that any lookups into `tbaaMetadataMapping` for child 1690 // attributes succeed. 1691 // 2. Attributes are only ever visited once: This way we don't leak any 1692 // LLVM metadata instances. 1693 AttrTypeWalker walker; 1694 walker.addWalk([&](TBAARootAttr root) { 1695 tbaaMetadataMapping.insert( 1696 {root, llvm::MDNode::get(ctx, llvm::MDString::get(ctx, root.getId()))}); 1697 }); 1698 1699 walker.addWalk([&](TBAATypeDescriptorAttr descriptor) { 1700 SmallVector<llvm::Metadata *> operands; 1701 operands.push_back(llvm::MDString::get(ctx, descriptor.getId())); 1702 for (TBAAMemberAttr member : descriptor.getMembers()) { 1703 operands.push_back(tbaaMetadataMapping.lookup(member.getTypeDesc())); 1704 operands.push_back(llvm::ConstantAsMetadata::get( 1705 llvm::ConstantInt::get(offsetTy, member.getOffset()))); 1706 } 1707 1708 tbaaMetadataMapping.insert({descriptor, llvm::MDNode::get(ctx, operands)}); 1709 }); 1710 1711 walker.addWalk([&](TBAATagAttr tag) { 1712 SmallVector<llvm::Metadata *> operands; 1713 1714 operands.push_back(tbaaMetadataMapping.lookup(tag.getBaseType())); 1715 operands.push_back(tbaaMetadataMapping.lookup(tag.getAccessType())); 1716 1717 operands.push_back(llvm::ConstantAsMetadata::get( 1718 llvm::ConstantInt::get(offsetTy, tag.getOffset()))); 1719 if (tag.getConstant()) 1720 operands.push_back( 1721 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(offsetTy, 1))); 1722 1723 tbaaMetadataMapping.insert({tag, llvm::MDNode::get(ctx, operands)}); 1724 }); 1725 1726 mlirModule->walk([&](AliasAnalysisOpInterface analysisOpInterface) { 1727 if (auto attr = analysisOpInterface.getTBAATagsOrNull()) 1728 walker.walk(attr); 1729 }); 1730 1731 return success(); 1732 } 1733 1734 void ModuleTranslation::setLoopMetadata(Operation *op, 1735 llvm::Instruction *inst) { 1736 LoopAnnotationAttr attr = 1737 TypeSwitch<Operation *, LoopAnnotationAttr>(op) 1738 .Case<LLVM::BrOp, LLVM::CondBrOp>( 1739 [](auto branchOp) { return branchOp.getLoopAnnotationAttr(); }); 1740 if (!attr) 1741 return; 1742 llvm::MDNode *loopMD = 1743 loopAnnotationTranslation->translateLoopAnnotation(attr, op); 1744 inst->setMetadata(llvm::LLVMContext::MD_loop, loopMD); 1745 } 1746 1747 llvm::Type *ModuleTranslation::convertType(Type type) { 1748 return typeTranslator.translateType(type); 1749 } 1750 1751 /// A helper to look up remapped operands in the value remapping table. 1752 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) { 1753 SmallVector<llvm::Value *> remapped; 1754 remapped.reserve(values.size()); 1755 for (Value v : values) 1756 remapped.push_back(lookupValue(v)); 1757 return remapped; 1758 } 1759 1760 llvm::OpenMPIRBuilder *ModuleTranslation::getOpenMPBuilder() { 1761 if (!ompBuilder) { 1762 ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule); 1763 ompBuilder->initialize(); 1764 1765 // Flags represented as top-level OpenMP dialect attributes are set in 1766 // `OpenMPDialectLLVMIRTranslationInterface::amendOperation()`. Here we set 1767 // the default configuration. 1768 ompBuilder->setConfig(llvm::OpenMPIRBuilderConfig( 1769 /* IsTargetDevice = */ false, /* IsGPU = */ false, 1770 /* OpenMPOffloadMandatory = */ false, 1771 /* HasRequiresReverseOffload = */ false, 1772 /* HasRequiresUnifiedAddress = */ false, 1773 /* HasRequiresUnifiedSharedMemory = */ false, 1774 /* HasRequiresDynamicAllocators = */ false)); 1775 } 1776 return ompBuilder.get(); 1777 } 1778 1779 llvm::DILocation *ModuleTranslation::translateLoc(Location loc, 1780 llvm::DILocalScope *scope) { 1781 return debugTranslation->translateLoc(loc, scope); 1782 } 1783 1784 llvm::DIExpression * 1785 ModuleTranslation::translateExpression(LLVM::DIExpressionAttr attr) { 1786 return debugTranslation->translateExpression(attr); 1787 } 1788 1789 llvm::DIGlobalVariableExpression * 1790 ModuleTranslation::translateGlobalVariableExpression( 1791 LLVM::DIGlobalVariableExpressionAttr attr) { 1792 return debugTranslation->translateGlobalVariableExpression(attr); 1793 } 1794 1795 llvm::Metadata *ModuleTranslation::translateDebugInfo(LLVM::DINodeAttr attr) { 1796 return debugTranslation->translate(attr); 1797 } 1798 1799 llvm::RoundingMode 1800 ModuleTranslation::translateRoundingMode(LLVM::RoundingMode rounding) { 1801 return convertRoundingModeToLLVM(rounding); 1802 } 1803 1804 llvm::fp::ExceptionBehavior ModuleTranslation::translateFPExceptionBehavior( 1805 LLVM::FPExceptionBehavior exceptionBehavior) { 1806 return convertFPExceptionBehaviorToLLVM(exceptionBehavior); 1807 } 1808 1809 llvm::NamedMDNode * 1810 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) { 1811 return llvmModule->getOrInsertNamedMetadata(name); 1812 } 1813 1814 void ModuleTranslation::StackFrame::anchor() {} 1815 1816 static std::unique_ptr<llvm::Module> 1817 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext, 1818 StringRef name) { 1819 m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>(); 1820 auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext); 1821 // ModuleTranslation can currently only construct modules in the old debug 1822 // info format, so set the flag accordingly. 1823 llvmModule->setNewDbgInfoFormatFlag(false); 1824 if (auto dataLayoutAttr = 1825 m->getDiscardableAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) { 1826 llvmModule->setDataLayout(cast<StringAttr>(dataLayoutAttr).getValue()); 1827 } else { 1828 FailureOr<llvm::DataLayout> llvmDataLayout(llvm::DataLayout("")); 1829 if (auto iface = dyn_cast<DataLayoutOpInterface>(m)) { 1830 if (DataLayoutSpecInterface spec = iface.getDataLayoutSpec()) { 1831 llvmDataLayout = 1832 translateDataLayout(spec, DataLayout(iface), m->getLoc()); 1833 } 1834 } else if (auto mod = dyn_cast<ModuleOp>(m)) { 1835 if (DataLayoutSpecInterface spec = mod.getDataLayoutSpec()) { 1836 llvmDataLayout = 1837 translateDataLayout(spec, DataLayout(mod), m->getLoc()); 1838 } 1839 } 1840 if (failed(llvmDataLayout)) 1841 return nullptr; 1842 llvmModule->setDataLayout(*llvmDataLayout); 1843 } 1844 if (auto targetTripleAttr = 1845 m->getDiscardableAttr(LLVM::LLVMDialect::getTargetTripleAttrName())) 1846 llvmModule->setTargetTriple(cast<StringAttr>(targetTripleAttr).getValue()); 1847 1848 return llvmModule; 1849 } 1850 1851 std::unique_ptr<llvm::Module> 1852 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext, 1853 StringRef name, bool disableVerification) { 1854 if (!satisfiesLLVMModule(module)) { 1855 module->emitOpError("can not be translated to an LLVMIR module"); 1856 return nullptr; 1857 } 1858 1859 std::unique_ptr<llvm::Module> llvmModule = 1860 prepareLLVMModule(module, llvmContext, name); 1861 if (!llvmModule) 1862 return nullptr; 1863 1864 LLVM::ensureDistinctSuccessors(module); 1865 LLVM::legalizeDIExpressionsRecursively(module); 1866 1867 ModuleTranslation translator(module, std::move(llvmModule)); 1868 llvm::IRBuilder<> llvmBuilder(llvmContext); 1869 1870 // Convert module before functions and operations inside, so dialect 1871 // attributes can be used to change dialect-specific global configurations via 1872 // `amendOperation()`. These configurations can then influence the translation 1873 // of operations afterwards. 1874 if (failed(translator.convertOperation(*module, llvmBuilder))) 1875 return nullptr; 1876 1877 if (failed(translator.convertComdats())) 1878 return nullptr; 1879 if (failed(translator.convertFunctionSignatures())) 1880 return nullptr; 1881 if (failed(translator.convertGlobals())) 1882 return nullptr; 1883 if (failed(translator.createTBAAMetadata())) 1884 return nullptr; 1885 1886 // Convert other top-level operations if possible. 1887 for (Operation &o : getModuleBody(module).getOperations()) { 1888 if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp, 1889 LLVM::GlobalDtorsOp, LLVM::ComdatOp>(&o) && 1890 !o.hasTrait<OpTrait::IsTerminator>() && 1891 failed(translator.convertOperation(o, llvmBuilder))) { 1892 return nullptr; 1893 } 1894 } 1895 1896 // Operations in function bodies with symbolic references must be converted 1897 // after the top-level operations they refer to are declared, so we do it 1898 // last. 1899 if (failed(translator.convertFunctions())) 1900 return nullptr; 1901 1902 // Once we've finished constructing elements in the module, we should convert 1903 // it to use the debug info format desired by LLVM. 1904 // See https://llvm.org/docs/RemoveDIsDebugInfo.html 1905 translator.llvmModule->setIsNewDbgInfoFormat(UseNewDbgInfoFormat); 1906 1907 if (!disableVerification && 1908 llvm::verifyModule(*translator.llvmModule, &llvm::errs())) 1909 return nullptr; 1910 1911 return std::move(translator.llvmModule); 1912 } 1913