xref: /llvm-project/mlir/lib/Target/LLVMIR/ModuleTranslation.cpp (revision cd12ffb622df5392020d0793e3fff7c3bf8385a2)
1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the translation between an MLIR LLVM dialect module and
10 // the corresponding LLVMIR module. It only handles core LLVM IR operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Target/LLVMIR/ModuleTranslation.h"
15 
16 #include "AttrKindDetail.h"
17 #include "DebugTranslation.h"
18 #include "LoopAnnotationTranslation.h"
19 #include "mlir/Analysis/TopologicalSortUtils.h"
20 #include "mlir/Dialect/DLTI/DLTI.h"
21 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
22 #include "mlir/Dialect/LLVMIR/LLVMInterfaces.h"
23 #include "mlir/Dialect/LLVMIR/Transforms/DIExpressionLegalization.h"
24 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
25 #include "mlir/Dialect/OpenMP/OpenMPDialect.h"
26 #include "mlir/Dialect/OpenMP/OpenMPInterfaces.h"
27 #include "mlir/IR/AttrTypeSubElements.h"
28 #include "mlir/IR/Attributes.h"
29 #include "mlir/IR/BuiltinOps.h"
30 #include "mlir/IR/BuiltinTypes.h"
31 #include "mlir/IR/DialectResourceBlobManager.h"
32 #include "mlir/IR/RegionGraphTraits.h"
33 #include "mlir/Support/LLVM.h"
34 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
35 #include "mlir/Target/LLVMIR/TypeToLLVM.h"
36 
37 #include "llvm/ADT/PostOrderIterator.h"
38 #include "llvm/ADT/SetVector.h"
39 #include "llvm/ADT/StringExtras.h"
40 #include "llvm/ADT/TypeSwitch.h"
41 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/IRBuilder.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/IntrinsicsNVPTX.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Verifier.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/Cloning.h"
57 #include "llvm/Transforms/Utils/ModuleUtils.h"
58 #include <optional>
59 
60 #define DEBUG_TYPE "llvm-dialect-to-llvm-ir"
61 
62 using namespace mlir;
63 using namespace mlir::LLVM;
64 using namespace mlir::LLVM::detail;
65 
66 extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
67 
68 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
69 
70 namespace {
71 /// A customized inserter for LLVM's IRBuilder that captures all LLVM IR
72 /// instructions that are created for future reference.
73 ///
74 /// This is intended to be used with the `CollectionScope` RAII object:
75 ///
76 ///     llvm::IRBuilder<..., InstructionCapturingInserter> builder;
77 ///     {
78 ///       InstructionCapturingInserter::CollectionScope scope(builder);
79 ///       // Call IRBuilder methods as usual.
80 ///
81 ///       // This will return a list of all instructions created by the builder,
82 ///       // in order of creation.
83 ///       builder.getInserter().getCapturedInstructions();
84 ///     }
85 ///     // This will return an empty list.
86 ///     builder.getInserter().getCapturedInstructions();
87 ///
88 /// The capturing functionality is _disabled_ by default for performance
89 /// consideration. It needs to be explicitly enabled, which is achieved by
90 /// creating a `CollectionScope`.
91 class InstructionCapturingInserter : public llvm::IRBuilderCallbackInserter {
92 public:
93   /// Constructs the inserter.
94   InstructionCapturingInserter()
95       : llvm::IRBuilderCallbackInserter([this](llvm::Instruction *instruction) {
96           if (LLVM_LIKELY(enabled))
97             capturedInstructions.push_back(instruction);
98         }) {}
99 
100   /// Returns the list of LLVM IR instructions captured since the last cleanup.
101   ArrayRef<llvm::Instruction *> getCapturedInstructions() const {
102     return capturedInstructions;
103   }
104 
105   /// Clears the list of captured LLVM IR instructions.
106   void clearCapturedInstructions() { capturedInstructions.clear(); }
107 
108   /// RAII object enabling the capture of created LLVM IR instructions.
109   class CollectionScope {
110   public:
111     /// Creates the scope for the given inserter.
112     CollectionScope(llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing);
113 
114     /// Ends the scope.
115     ~CollectionScope();
116 
117     ArrayRef<llvm::Instruction *> getCapturedInstructions() {
118       if (!inserter)
119         return {};
120       return inserter->getCapturedInstructions();
121     }
122 
123   private:
124     /// Back reference to the inserter.
125     InstructionCapturingInserter *inserter = nullptr;
126 
127     /// List of instructions in the inserter prior to this scope.
128     SmallVector<llvm::Instruction *> previouslyCollectedInstructions;
129 
130     /// Whether the inserter was enabled prior to this scope.
131     bool wasEnabled;
132   };
133 
134   /// Enable or disable the capturing mechanism.
135   void setEnabled(bool enabled = true) { this->enabled = enabled; }
136 
137 private:
138   /// List of captured instructions.
139   SmallVector<llvm::Instruction *> capturedInstructions;
140 
141   /// Whether the collection is enabled.
142   bool enabled = false;
143 };
144 
145 using CapturingIRBuilder =
146     llvm::IRBuilder<llvm::ConstantFolder, InstructionCapturingInserter>;
147 } // namespace
148 
149 InstructionCapturingInserter::CollectionScope::CollectionScope(
150     llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing) {
151 
152   if (!isBuilderCapturing)
153     return;
154 
155   auto &capturingIRBuilder = static_cast<CapturingIRBuilder &>(irBuilder);
156   inserter = &capturingIRBuilder.getInserter();
157   wasEnabled = inserter->enabled;
158   if (wasEnabled)
159     previouslyCollectedInstructions.swap(inserter->capturedInstructions);
160   inserter->setEnabled(true);
161 }
162 
163 InstructionCapturingInserter::CollectionScope::~CollectionScope() {
164   if (!inserter)
165     return;
166 
167   previouslyCollectedInstructions.swap(inserter->capturedInstructions);
168   // If collection was enabled (likely in another, surrounding scope), keep
169   // the instructions collected in this scope.
170   if (wasEnabled) {
171     llvm::append_range(inserter->capturedInstructions,
172                        previouslyCollectedInstructions);
173   }
174   inserter->setEnabled(wasEnabled);
175 }
176 
177 /// Translates the given data layout spec attribute to the LLVM IR data layout.
178 /// Only integer, float, pointer and endianness entries are currently supported.
179 static FailureOr<llvm::DataLayout>
180 translateDataLayout(DataLayoutSpecInterface attribute,
181                     const DataLayout &dataLayout,
182                     std::optional<Location> loc = std::nullopt) {
183   if (!loc)
184     loc = UnknownLoc::get(attribute.getContext());
185 
186   // Translate the endianness attribute.
187   std::string llvmDataLayout;
188   llvm::raw_string_ostream layoutStream(llvmDataLayout);
189   for (DataLayoutEntryInterface entry : attribute.getEntries()) {
190     auto key = llvm::dyn_cast_if_present<StringAttr>(entry.getKey());
191     if (!key)
192       continue;
193     if (key.getValue() == DLTIDialect::kDataLayoutEndiannessKey) {
194       auto value = cast<StringAttr>(entry.getValue());
195       bool isLittleEndian =
196           value.getValue() == DLTIDialect::kDataLayoutEndiannessLittle;
197       layoutStream << "-" << (isLittleEndian ? "e" : "E");
198       continue;
199     }
200     if (key.getValue() == DLTIDialect::kDataLayoutProgramMemorySpaceKey) {
201       auto value = cast<IntegerAttr>(entry.getValue());
202       uint64_t space = value.getValue().getZExtValue();
203       // Skip the default address space.
204       if (space == 0)
205         continue;
206       layoutStream << "-P" << space;
207       continue;
208     }
209     if (key.getValue() == DLTIDialect::kDataLayoutGlobalMemorySpaceKey) {
210       auto value = cast<IntegerAttr>(entry.getValue());
211       uint64_t space = value.getValue().getZExtValue();
212       // Skip the default address space.
213       if (space == 0)
214         continue;
215       layoutStream << "-G" << space;
216       continue;
217     }
218     if (key.getValue() == DLTIDialect::kDataLayoutAllocaMemorySpaceKey) {
219       auto value = cast<IntegerAttr>(entry.getValue());
220       uint64_t space = value.getValue().getZExtValue();
221       // Skip the default address space.
222       if (space == 0)
223         continue;
224       layoutStream << "-A" << space;
225       continue;
226     }
227     if (key.getValue() == DLTIDialect::kDataLayoutStackAlignmentKey) {
228       auto value = cast<IntegerAttr>(entry.getValue());
229       uint64_t alignment = value.getValue().getZExtValue();
230       // Skip the default stack alignment.
231       if (alignment == 0)
232         continue;
233       layoutStream << "-S" << alignment;
234       continue;
235     }
236     emitError(*loc) << "unsupported data layout key " << key;
237     return failure();
238   }
239 
240   // Go through the list of entries to check which types are explicitly
241   // specified in entries. Where possible, data layout queries are used instead
242   // of directly inspecting the entries.
243   for (DataLayoutEntryInterface entry : attribute.getEntries()) {
244     auto type = llvm::dyn_cast_if_present<Type>(entry.getKey());
245     if (!type)
246       continue;
247     // Data layout for the index type is irrelevant at this point.
248     if (isa<IndexType>(type))
249       continue;
250     layoutStream << "-";
251     LogicalResult result =
252         llvm::TypeSwitch<Type, LogicalResult>(type)
253             .Case<IntegerType, Float16Type, Float32Type, Float64Type,
254                   Float80Type, Float128Type>([&](Type type) -> LogicalResult {
255               if (auto intType = dyn_cast<IntegerType>(type)) {
256                 if (intType.getSignedness() != IntegerType::Signless)
257                   return emitError(*loc)
258                          << "unsupported data layout for non-signless integer "
259                          << intType;
260                 layoutStream << "i";
261               } else {
262                 layoutStream << "f";
263               }
264               uint64_t size = dataLayout.getTypeSizeInBits(type);
265               uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u;
266               uint64_t preferred =
267                   dataLayout.getTypePreferredAlignment(type) * 8u;
268               layoutStream << size << ":" << abi;
269               if (abi != preferred)
270                 layoutStream << ":" << preferred;
271               return success();
272             })
273             .Case([&](LLVMPointerType type) {
274               layoutStream << "p" << type.getAddressSpace() << ":";
275               uint64_t size = dataLayout.getTypeSizeInBits(type);
276               uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u;
277               uint64_t preferred =
278                   dataLayout.getTypePreferredAlignment(type) * 8u;
279               uint64_t index = *dataLayout.getTypeIndexBitwidth(type);
280               layoutStream << size << ":" << abi << ":" << preferred << ":"
281                            << index;
282               return success();
283             })
284             .Default([loc](Type type) {
285               return emitError(*loc)
286                      << "unsupported type in data layout: " << type;
287             });
288     if (failed(result))
289       return failure();
290   }
291   StringRef layoutSpec(llvmDataLayout);
292   if (layoutSpec.starts_with("-"))
293     layoutSpec = layoutSpec.drop_front();
294 
295   return llvm::DataLayout(layoutSpec);
296 }
297 
298 /// Builds a constant of a sequential LLVM type `type`, potentially containing
299 /// other sequential types recursively, from the individual constant values
300 /// provided in `constants`. `shape` contains the number of elements in nested
301 /// sequential types. Reports errors at `loc` and returns nullptr on error.
302 static llvm::Constant *
303 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
304                         ArrayRef<int64_t> shape, llvm::Type *type,
305                         Location loc) {
306   if (shape.empty()) {
307     llvm::Constant *result = constants.front();
308     constants = constants.drop_front();
309     return result;
310   }
311 
312   llvm::Type *elementType;
313   if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
314     elementType = arrayTy->getElementType();
315   } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
316     elementType = vectorTy->getElementType();
317   } else {
318     emitError(loc) << "expected sequential LLVM types wrapping a scalar";
319     return nullptr;
320   }
321 
322   SmallVector<llvm::Constant *, 8> nested;
323   nested.reserve(shape.front());
324   for (int64_t i = 0; i < shape.front(); ++i) {
325     nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
326                                              elementType, loc));
327     if (!nested.back())
328       return nullptr;
329   }
330 
331   if (shape.size() == 1 && type->isVectorTy())
332     return llvm::ConstantVector::get(nested);
333   return llvm::ConstantArray::get(
334       llvm::ArrayType::get(elementType, shape.front()), nested);
335 }
336 
337 /// Returns the first non-sequential type nested in sequential types.
338 static llvm::Type *getInnermostElementType(llvm::Type *type) {
339   do {
340     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
341       type = arrayTy->getElementType();
342     } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
343       type = vectorTy->getElementType();
344     } else {
345       return type;
346     }
347   } while (true);
348 }
349 
350 /// Convert a dense elements attribute to an LLVM IR constant using its raw data
351 /// storage if possible. This supports elements attributes of tensor or vector
352 /// type and avoids constructing separate objects for individual values of the
353 /// innermost dimension. Constants for other dimensions are still constructed
354 /// recursively. Returns null if constructing from raw data is not supported for
355 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports
356 /// other errors at `loc`.
357 static llvm::Constant *
358 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr,
359                          llvm::Type *llvmType,
360                          const ModuleTranslation &moduleTranslation) {
361   if (!denseElementsAttr)
362     return nullptr;
363 
364   llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
365   if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType))
366     return nullptr;
367 
368   ShapedType type = denseElementsAttr.getType();
369   if (type.getNumElements() == 0)
370     return nullptr;
371 
372   // Check that the raw data size matches what is expected for the scalar size.
373   // TODO: in theory, we could repack the data here to keep constructing from
374   // raw data.
375   // TODO: we may also need to consider endianness when cross-compiling to an
376   // architecture where it is different.
377   int64_t elementByteSize = denseElementsAttr.getRawData().size() /
378                             denseElementsAttr.getNumElements();
379   if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits())
380     return nullptr;
381 
382   // Compute the shape of all dimensions but the innermost. Note that the
383   // innermost dimension may be that of the vector element type.
384   bool hasVectorElementType = isa<VectorType>(type.getElementType());
385   int64_t numAggregates =
386       denseElementsAttr.getNumElements() /
387       (hasVectorElementType ? 1
388                             : denseElementsAttr.getType().getShape().back());
389   ArrayRef<int64_t> outerShape = type.getShape();
390   if (!hasVectorElementType)
391     outerShape = outerShape.drop_back();
392 
393   // Handle the case of vector splat, LLVM has special support for it.
394   if (denseElementsAttr.isSplat() &&
395       (isa<VectorType>(type) || hasVectorElementType)) {
396     llvm::Constant *splatValue = LLVM::detail::getLLVMConstant(
397         innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc,
398         moduleTranslation);
399     llvm::Constant *splatVector =
400         llvm::ConstantDataVector::getSplat(0, splatValue);
401     SmallVector<llvm::Constant *> constants(numAggregates, splatVector);
402     ArrayRef<llvm::Constant *> constantsRef = constants;
403     return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
404   }
405   if (denseElementsAttr.isSplat())
406     return nullptr;
407 
408   // In case of non-splat, create a constructor for the innermost constant from
409   // a piece of raw data.
410   std::function<llvm::Constant *(StringRef)> buildCstData;
411   if (isa<TensorType>(type)) {
412     auto vectorElementType = dyn_cast<VectorType>(type.getElementType());
413     if (vectorElementType && vectorElementType.getRank() == 1) {
414       buildCstData = [&](StringRef data) {
415         return llvm::ConstantDataVector::getRaw(
416             data, vectorElementType.getShape().back(), innermostLLVMType);
417       };
418     } else if (!vectorElementType) {
419       buildCstData = [&](StringRef data) {
420         return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
421                                                innermostLLVMType);
422       };
423     }
424   } else if (isa<VectorType>(type)) {
425     buildCstData = [&](StringRef data) {
426       return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
427                                               innermostLLVMType);
428     };
429   }
430   if (!buildCstData)
431     return nullptr;
432 
433   // Create innermost constants and defer to the default constant creation
434   // mechanism for other dimensions.
435   SmallVector<llvm::Constant *> constants;
436   int64_t aggregateSize = denseElementsAttr.getType().getShape().back() *
437                           (innermostLLVMType->getScalarSizeInBits() / 8);
438   constants.reserve(numAggregates);
439   for (unsigned i = 0; i < numAggregates; ++i) {
440     StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize,
441                    aggregateSize);
442     constants.push_back(buildCstData(data));
443   }
444 
445   ArrayRef<llvm::Constant *> constantsRef = constants;
446   return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
447 }
448 
449 /// Convert a dense resource elements attribute to an LLVM IR constant using its
450 /// raw data storage if possible. This supports elements attributes of tensor or
451 /// vector type and avoids constructing separate objects for individual values
452 /// of the innermost dimension. Constants for other dimensions are still
453 /// constructed recursively. Returns nullptr on failure and emits errors at
454 /// `loc`.
455 static llvm::Constant *convertDenseResourceElementsAttr(
456     Location loc, DenseResourceElementsAttr denseResourceAttr,
457     llvm::Type *llvmType, const ModuleTranslation &moduleTranslation) {
458   assert(denseResourceAttr && "expected non-null attribute");
459 
460   llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
461   if (!llvm::ConstantDataSequential::isElementTypeCompatible(
462           innermostLLVMType)) {
463     emitError(loc, "no known conversion for innermost element type");
464     return nullptr;
465   }
466 
467   ShapedType type = denseResourceAttr.getType();
468   assert(type.getNumElements() > 0 && "Expected non-empty elements attribute");
469 
470   AsmResourceBlob *blob = denseResourceAttr.getRawHandle().getBlob();
471   if (!blob) {
472     emitError(loc, "resource does not exist");
473     return nullptr;
474   }
475 
476   ArrayRef<char> rawData = blob->getData();
477 
478   // Check that the raw data size matches what is expected for the scalar size.
479   // TODO: in theory, we could repack the data here to keep constructing from
480   // raw data.
481   // TODO: we may also need to consider endianness when cross-compiling to an
482   // architecture where it is different.
483   int64_t numElements = denseResourceAttr.getType().getNumElements();
484   int64_t elementByteSize = rawData.size() / numElements;
485   if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits()) {
486     emitError(loc, "raw data size does not match element type size");
487     return nullptr;
488   }
489 
490   // Compute the shape of all dimensions but the innermost. Note that the
491   // innermost dimension may be that of the vector element type.
492   bool hasVectorElementType = isa<VectorType>(type.getElementType());
493   int64_t numAggregates =
494       numElements / (hasVectorElementType
495                          ? 1
496                          : denseResourceAttr.getType().getShape().back());
497   ArrayRef<int64_t> outerShape = type.getShape();
498   if (!hasVectorElementType)
499     outerShape = outerShape.drop_back();
500 
501   // Create a constructor for the innermost constant from a piece of raw data.
502   std::function<llvm::Constant *(StringRef)> buildCstData;
503   if (isa<TensorType>(type)) {
504     auto vectorElementType = dyn_cast<VectorType>(type.getElementType());
505     if (vectorElementType && vectorElementType.getRank() == 1) {
506       buildCstData = [&](StringRef data) {
507         return llvm::ConstantDataVector::getRaw(
508             data, vectorElementType.getShape().back(), innermostLLVMType);
509       };
510     } else if (!vectorElementType) {
511       buildCstData = [&](StringRef data) {
512         return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
513                                                innermostLLVMType);
514       };
515     }
516   } else if (isa<VectorType>(type)) {
517     buildCstData = [&](StringRef data) {
518       return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
519                                               innermostLLVMType);
520     };
521   }
522   if (!buildCstData) {
523     emitError(loc, "unsupported dense_resource type");
524     return nullptr;
525   }
526 
527   // Create innermost constants and defer to the default constant creation
528   // mechanism for other dimensions.
529   SmallVector<llvm::Constant *> constants;
530   int64_t aggregateSize = denseResourceAttr.getType().getShape().back() *
531                           (innermostLLVMType->getScalarSizeInBits() / 8);
532   constants.reserve(numAggregates);
533   for (unsigned i = 0; i < numAggregates; ++i) {
534     StringRef data(rawData.data() + i * aggregateSize, aggregateSize);
535     constants.push_back(buildCstData(data));
536   }
537 
538   ArrayRef<llvm::Constant *> constantsRef = constants;
539   return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
540 }
541 
542 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
543 /// This currently supports integer, floating point, splat and dense element
544 /// attributes and combinations thereof. Also, an array attribute with two
545 /// elements is supported to represent a complex constant.  In case of error,
546 /// report it to `loc` and return nullptr.
547 llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
548     llvm::Type *llvmType, Attribute attr, Location loc,
549     const ModuleTranslation &moduleTranslation) {
550   if (!attr)
551     return llvm::UndefValue::get(llvmType);
552   if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) {
553     auto arrayAttr = dyn_cast<ArrayAttr>(attr);
554     if (!arrayAttr) {
555       emitError(loc, "expected an array attribute for a struct constant");
556       return nullptr;
557     }
558     SmallVector<llvm::Constant *> structElements;
559     structElements.reserve(structType->getNumElements());
560     for (auto [elemType, elemAttr] :
561          zip_equal(structType->elements(), arrayAttr)) {
562       llvm::Constant *element =
563           getLLVMConstant(elemType, elemAttr, loc, moduleTranslation);
564       if (!element)
565         return nullptr;
566       structElements.push_back(element);
567     }
568     return llvm::ConstantStruct::get(structType, structElements);
569   }
570   // For integer types, we allow a mismatch in sizes as the index type in
571   // MLIR might have a different size than the index type in the LLVM module.
572   if (auto intAttr = dyn_cast<IntegerAttr>(attr))
573     return llvm::ConstantInt::get(
574         llvmType,
575         intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
576   if (auto floatAttr = dyn_cast<FloatAttr>(attr)) {
577     const llvm::fltSemantics &sem = floatAttr.getValue().getSemantics();
578     // Special case for 8-bit floats, which are represented by integers due to
579     // the lack of native fp8 types in LLVM at the moment. Additionally, handle
580     // targets (like AMDGPU) that don't implement bfloat and convert all bfloats
581     // to i16.
582     unsigned floatWidth = APFloat::getSizeInBits(sem);
583     if (llvmType->isIntegerTy(floatWidth))
584       return llvm::ConstantInt::get(llvmType,
585                                     floatAttr.getValue().bitcastToAPInt());
586     if (llvmType !=
587         llvm::Type::getFloatingPointTy(llvmType->getContext(),
588                                        floatAttr.getValue().getSemantics())) {
589       emitError(loc, "FloatAttr does not match expected type of the constant");
590       return nullptr;
591     }
592     return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
593   }
594   if (auto funcAttr = dyn_cast<FlatSymbolRefAttr>(attr))
595     return llvm::ConstantExpr::getBitCast(
596         moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
597   if (auto splatAttr = dyn_cast<SplatElementsAttr>(attr)) {
598     llvm::Type *elementType;
599     uint64_t numElements;
600     bool isScalable = false;
601     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
602       elementType = arrayTy->getElementType();
603       numElements = arrayTy->getNumElements();
604     } else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) {
605       elementType = fVectorTy->getElementType();
606       numElements = fVectorTy->getNumElements();
607     } else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) {
608       elementType = sVectorTy->getElementType();
609       numElements = sVectorTy->getMinNumElements();
610       isScalable = true;
611     } else {
612       llvm_unreachable("unrecognized constant vector type");
613     }
614     // Splat value is a scalar. Extract it only if the element type is not
615     // another sequence type. The recursion terminates because each step removes
616     // one outer sequential type.
617     bool elementTypeSequential =
618         isa<llvm::ArrayType, llvm::VectorType>(elementType);
619     llvm::Constant *child = getLLVMConstant(
620         elementType,
621         elementTypeSequential ? splatAttr
622                               : splatAttr.getSplatValue<Attribute>(),
623         loc, moduleTranslation);
624     if (!child)
625       return nullptr;
626     if (llvmType->isVectorTy())
627       return llvm::ConstantVector::getSplat(
628           llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child);
629     if (llvmType->isArrayTy()) {
630       auto *arrayType = llvm::ArrayType::get(elementType, numElements);
631       if (child->isZeroValue()) {
632         return llvm::ConstantAggregateZero::get(arrayType);
633       } else {
634         if (llvm::ConstantDataSequential::isElementTypeCompatible(
635                 elementType)) {
636           // TODO: Handle all compatible types. This code only handles integer.
637           if (isa<llvm::IntegerType>(elementType)) {
638             if (llvm::ConstantInt *ci = dyn_cast<llvm::ConstantInt>(child)) {
639               if (ci->getBitWidth() == 8) {
640                 SmallVector<int8_t> constants(numElements, ci->getZExtValue());
641                 return llvm::ConstantDataArray::get(elementType->getContext(),
642                                                     constants);
643               }
644               if (ci->getBitWidth() == 16) {
645                 SmallVector<int16_t> constants(numElements, ci->getZExtValue());
646                 return llvm::ConstantDataArray::get(elementType->getContext(),
647                                                     constants);
648               }
649               if (ci->getBitWidth() == 32) {
650                 SmallVector<int32_t> constants(numElements, ci->getZExtValue());
651                 return llvm::ConstantDataArray::get(elementType->getContext(),
652                                                     constants);
653               }
654               if (ci->getBitWidth() == 64) {
655                 SmallVector<int64_t> constants(numElements, ci->getZExtValue());
656                 return llvm::ConstantDataArray::get(elementType->getContext(),
657                                                     constants);
658               }
659             }
660           }
661         }
662         // std::vector is used here to accomodate large number of elements that
663         // exceed SmallVector capacity.
664         std::vector<llvm::Constant *> constants(numElements, child);
665         return llvm::ConstantArray::get(arrayType, constants);
666       }
667     }
668   }
669 
670   // Try using raw elements data if possible.
671   if (llvm::Constant *result =
672           convertDenseElementsAttr(loc, dyn_cast<DenseElementsAttr>(attr),
673                                    llvmType, moduleTranslation)) {
674     return result;
675   }
676 
677   if (auto denseResourceAttr = dyn_cast<DenseResourceElementsAttr>(attr)) {
678     return convertDenseResourceElementsAttr(loc, denseResourceAttr, llvmType,
679                                             moduleTranslation);
680   }
681 
682   // Fall back to element-by-element construction otherwise.
683   if (auto elementsAttr = dyn_cast<ElementsAttr>(attr)) {
684     assert(elementsAttr.getShapedType().hasStaticShape());
685     assert(!elementsAttr.getShapedType().getShape().empty() &&
686            "unexpected empty elements attribute shape");
687 
688     SmallVector<llvm::Constant *, 8> constants;
689     constants.reserve(elementsAttr.getNumElements());
690     llvm::Type *innermostType = getInnermostElementType(llvmType);
691     for (auto n : elementsAttr.getValues<Attribute>()) {
692       constants.push_back(
693           getLLVMConstant(innermostType, n, loc, moduleTranslation));
694       if (!constants.back())
695         return nullptr;
696     }
697     ArrayRef<llvm::Constant *> constantsRef = constants;
698     llvm::Constant *result = buildSequentialConstant(
699         constantsRef, elementsAttr.getShapedType().getShape(), llvmType, loc);
700     assert(constantsRef.empty() && "did not consume all elemental constants");
701     return result;
702   }
703 
704   if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
705     return llvm::ConstantDataArray::get(
706         moduleTranslation.getLLVMContext(),
707         ArrayRef<char>{stringAttr.getValue().data(),
708                        stringAttr.getValue().size()});
709   }
710   emitError(loc, "unsupported constant value");
711   return nullptr;
712 }
713 
714 ModuleTranslation::ModuleTranslation(Operation *module,
715                                      std::unique_ptr<llvm::Module> llvmModule)
716     : mlirModule(module), llvmModule(std::move(llvmModule)),
717       debugTranslation(
718           std::make_unique<DebugTranslation>(module, *this->llvmModule)),
719       loopAnnotationTranslation(std::make_unique<LoopAnnotationTranslation>(
720           *this, *this->llvmModule)),
721       typeTranslator(this->llvmModule->getContext()),
722       iface(module->getContext()) {
723   assert(satisfiesLLVMModule(mlirModule) &&
724          "mlirModule should honor LLVM's module semantics.");
725 }
726 
727 ModuleTranslation::~ModuleTranslation() {
728   if (ompBuilder)
729     ompBuilder->finalize();
730 }
731 
732 void ModuleTranslation::forgetMapping(Region &region) {
733   SmallVector<Region *> toProcess;
734   toProcess.push_back(&region);
735   while (!toProcess.empty()) {
736     Region *current = toProcess.pop_back_val();
737     for (Block &block : *current) {
738       blockMapping.erase(&block);
739       for (Value arg : block.getArguments())
740         valueMapping.erase(arg);
741       for (Operation &op : block) {
742         for (Value value : op.getResults())
743           valueMapping.erase(value);
744         if (op.hasSuccessors())
745           branchMapping.erase(&op);
746         if (isa<LLVM::GlobalOp>(op))
747           globalsMapping.erase(&op);
748         if (isa<LLVM::CallOp>(op))
749           callMapping.erase(&op);
750         llvm::append_range(
751             toProcess,
752             llvm::map_range(op.getRegions(), [](Region &r) { return &r; }));
753       }
754     }
755   }
756 }
757 
758 /// Get the SSA value passed to the current block from the terminator operation
759 /// of its predecessor.
760 static Value getPHISourceValue(Block *current, Block *pred,
761                                unsigned numArguments, unsigned index) {
762   Operation &terminator = *pred->getTerminator();
763   if (isa<LLVM::BrOp>(terminator))
764     return terminator.getOperand(index);
765 
766 #ifndef NDEBUG
767   llvm::SmallPtrSet<Block *, 4> seenSuccessors;
768   for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) {
769     Block *successor = terminator.getSuccessor(i);
770     auto branch = cast<BranchOpInterface>(terminator);
771     SuccessorOperands successorOperands = branch.getSuccessorOperands(i);
772     assert(
773         (!seenSuccessors.contains(successor) || successorOperands.empty()) &&
774         "successors with arguments in LLVM branches must be different blocks");
775     seenSuccessors.insert(successor);
776   }
777 #endif
778 
779   // For instructions that branch based on a condition value, we need to take
780   // the operands for the branch that was taken.
781   if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
782     // For conditional branches, we take the operands from either the "true" or
783     // the "false" branch.
784     return condBranchOp.getSuccessor(0) == current
785                ? condBranchOp.getTrueDestOperands()[index]
786                : condBranchOp.getFalseDestOperands()[index];
787   }
788 
789   if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
790     // For switches, we take the operands from either the default case, or from
791     // the case branch that was taken.
792     if (switchOp.getDefaultDestination() == current)
793       return switchOp.getDefaultOperands()[index];
794     for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations()))
795       if (i.value() == current)
796         return switchOp.getCaseOperands(i.index())[index];
797   }
798 
799   if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) {
800     return invokeOp.getNormalDest() == current
801                ? invokeOp.getNormalDestOperands()[index]
802                : invokeOp.getUnwindDestOperands()[index];
803   }
804 
805   llvm_unreachable(
806       "only branch, switch or invoke operations can be terminators "
807       "of a block that has successors");
808 }
809 
810 /// Connect the PHI nodes to the results of preceding blocks.
811 void mlir::LLVM::detail::connectPHINodes(Region &region,
812                                          const ModuleTranslation &state) {
813   // Skip the first block, it cannot be branched to and its arguments correspond
814   // to the arguments of the LLVM function.
815   for (Block &bb : llvm::drop_begin(region)) {
816     llvm::BasicBlock *llvmBB = state.lookupBlock(&bb);
817     auto phis = llvmBB->phis();
818     auto numArguments = bb.getNumArguments();
819     assert(numArguments == std::distance(phis.begin(), phis.end()));
820     for (auto [index, phiNode] : llvm::enumerate(phis)) {
821       for (auto *pred : bb.getPredecessors()) {
822         // Find the LLVM IR block that contains the converted terminator
823         // instruction and use it in the PHI node. Note that this block is not
824         // necessarily the same as state.lookupBlock(pred), some operations
825         // (in particular, OpenMP operations using OpenMPIRBuilder) may have
826         // split the blocks.
827         llvm::Instruction *terminator =
828             state.lookupBranch(pred->getTerminator());
829         assert(terminator && "missing the mapping for a terminator");
830         phiNode.addIncoming(state.lookupValue(getPHISourceValue(
831                                 &bb, pred, numArguments, index)),
832                             terminator->getParent());
833       }
834     }
835   }
836 }
837 
838 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall(
839     llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
840     ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
841   llvm::Module *module = builder.GetInsertBlock()->getModule();
842   llvm::Function *fn =
843       llvm::Intrinsic::getOrInsertDeclaration(module, intrinsic, tys);
844   return builder.CreateCall(fn, args);
845 }
846 
847 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall(
848     llvm::IRBuilderBase &builder, ModuleTranslation &moduleTranslation,
849     Operation *intrOp, llvm::Intrinsic::ID intrinsic, unsigned numResults,
850     ArrayRef<unsigned> overloadedResults, ArrayRef<unsigned> overloadedOperands,
851     ArrayRef<unsigned> immArgPositions,
852     ArrayRef<StringLiteral> immArgAttrNames) {
853   assert(immArgPositions.size() == immArgAttrNames.size() &&
854          "LLVM `immArgPositions` and MLIR `immArgAttrNames` should have equal "
855          "length");
856 
857   // Map operands and attributes to LLVM values.
858   auto operands = moduleTranslation.lookupValues(intrOp->getOperands());
859   SmallVector<llvm::Value *> args(immArgPositions.size() + operands.size());
860   for (auto [immArgPos, immArgName] :
861        llvm::zip(immArgPositions, immArgAttrNames)) {
862     auto attr = llvm::cast<TypedAttr>(intrOp->getAttr(immArgName));
863     assert(attr.getType().isIntOrFloat() && "expected int or float immarg");
864     auto *type = moduleTranslation.convertType(attr.getType());
865     args[immArgPos] = LLVM::detail::getLLVMConstant(
866         type, attr, intrOp->getLoc(), moduleTranslation);
867   }
868   unsigned opArg = 0;
869   for (auto &arg : args) {
870     if (!arg)
871       arg = operands[opArg++];
872   }
873 
874   // Resolve overloaded intrinsic declaration.
875   SmallVector<llvm::Type *> overloadedTypes;
876   for (unsigned overloadedResultIdx : overloadedResults) {
877     if (numResults > 1) {
878       // More than one result is mapped to an LLVM struct.
879       overloadedTypes.push_back(moduleTranslation.convertType(
880           llvm::cast<LLVM::LLVMStructType>(intrOp->getResult(0).getType())
881               .getBody()[overloadedResultIdx]));
882     } else {
883       overloadedTypes.push_back(
884           moduleTranslation.convertType(intrOp->getResult(0).getType()));
885     }
886   }
887   for (unsigned overloadedOperandIdx : overloadedOperands)
888     overloadedTypes.push_back(args[overloadedOperandIdx]->getType());
889   llvm::Module *module = builder.GetInsertBlock()->getModule();
890   llvm::Function *llvmIntr = llvm::Intrinsic::getOrInsertDeclaration(
891       module, intrinsic, overloadedTypes);
892 
893   return builder.CreateCall(llvmIntr, args);
894 }
895 
896 /// Given a single MLIR operation, create the corresponding LLVM IR operation
897 /// using the `builder`.
898 LogicalResult ModuleTranslation::convertOperation(Operation &op,
899                                                   llvm::IRBuilderBase &builder,
900                                                   bool recordInsertions) {
901   const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
902   if (!opIface)
903     return op.emitError("cannot be converted to LLVM IR: missing "
904                         "`LLVMTranslationDialectInterface` registration for "
905                         "dialect for op: ")
906            << op.getName();
907 
908   InstructionCapturingInserter::CollectionScope scope(builder,
909                                                       recordInsertions);
910   if (failed(opIface->convertOperation(&op, builder, *this)))
911     return op.emitError("LLVM Translation failed for operation: ")
912            << op.getName();
913 
914   return convertDialectAttributes(&op, scope.getCapturedInstructions());
915 }
916 
917 /// Convert block to LLVM IR.  Unless `ignoreArguments` is set, emit PHI nodes
918 /// to define values corresponding to the MLIR block arguments.  These nodes
919 /// are not connected to the source basic blocks, which may not exist yet.  Uses
920 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
921 /// been created for `bb` and included in the block mapping.  Inserts new
922 /// instructions at the end of the block and leaves `builder` in a state
923 /// suitable for further insertion into the end of the block.
924 LogicalResult ModuleTranslation::convertBlockImpl(Block &bb,
925                                                   bool ignoreArguments,
926                                                   llvm::IRBuilderBase &builder,
927                                                   bool recordInsertions) {
928   builder.SetInsertPoint(lookupBlock(&bb));
929   auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
930 
931   // Before traversing operations, make block arguments available through
932   // value remapping and PHI nodes, but do not add incoming edges for the PHI
933   // nodes just yet: those values may be defined by this or following blocks.
934   // This step is omitted if "ignoreArguments" is set.  The arguments of the
935   // first block have been already made available through the remapping of
936   // LLVM function arguments.
937   if (!ignoreArguments) {
938     auto predecessors = bb.getPredecessors();
939     unsigned numPredecessors =
940         std::distance(predecessors.begin(), predecessors.end());
941     for (auto arg : bb.getArguments()) {
942       auto wrappedType = arg.getType();
943       if (!isCompatibleType(wrappedType))
944         return emitError(bb.front().getLoc(),
945                          "block argument does not have an LLVM type");
946       builder.SetCurrentDebugLocation(
947           debugTranslation->translateLoc(arg.getLoc(), subprogram));
948       llvm::Type *type = convertType(wrappedType);
949       llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
950       mapValue(arg, phi);
951     }
952   }
953 
954   // Traverse operations.
955   for (auto &op : bb) {
956     // Set the current debug location within the builder.
957     builder.SetCurrentDebugLocation(
958         debugTranslation->translateLoc(op.getLoc(), subprogram));
959 
960     if (failed(convertOperation(op, builder, recordInsertions)))
961       return failure();
962 
963     // Set the branch weight metadata on the translated instruction.
964     if (auto iface = dyn_cast<BranchWeightOpInterface>(op))
965       setBranchWeightsMetadata(iface);
966   }
967 
968   return success();
969 }
970 
971 /// A helper method to get the single Block in an operation honoring LLVM's
972 /// module requirements.
973 static Block &getModuleBody(Operation *module) {
974   return module->getRegion(0).front();
975 }
976 
977 /// A helper method to decide if a constant must not be set as a global variable
978 /// initializer. For an external linkage variable, the variable with an
979 /// initializer is considered externally visible and defined in this module, the
980 /// variable without an initializer is externally available and is defined
981 /// elsewhere.
982 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
983                                         llvm::Constant *cst) {
984   return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) ||
985          linkage == llvm::GlobalVariable::ExternalWeakLinkage;
986 }
987 
988 /// Sets the runtime preemption specifier of `gv` to dso_local if
989 /// `dsoLocalRequested` is true, otherwise it is left unchanged.
990 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested,
991                                           llvm::GlobalValue *gv) {
992   if (dsoLocalRequested)
993     gv->setDSOLocal(true);
994 }
995 
996 /// Create named global variables that correspond to llvm.mlir.global
997 /// definitions. Convert llvm.global_ctors and global_dtors ops.
998 LogicalResult ModuleTranslation::convertGlobals() {
999   // Mapping from compile unit to its respective set of global variables.
1000   DenseMap<llvm::DICompileUnit *, SmallVector<llvm::Metadata *>> allGVars;
1001 
1002   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
1003     llvm::Type *type = convertType(op.getType());
1004     llvm::Constant *cst = nullptr;
1005     if (op.getValueOrNull()) {
1006       // String attributes are treated separately because they cannot appear as
1007       // in-function constants and are thus not supported by getLLVMConstant.
1008       if (auto strAttr = dyn_cast_or_null<StringAttr>(op.getValueOrNull())) {
1009         cst = llvm::ConstantDataArray::getString(
1010             llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
1011         type = cst->getType();
1012       } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
1013                                          *this))) {
1014         return failure();
1015       }
1016     }
1017 
1018     auto linkage = convertLinkageToLLVM(op.getLinkage());
1019 
1020     // LLVM IR requires constant with linkage other than external or weak
1021     // external to have initializers. If MLIR does not provide an initializer,
1022     // default to undef.
1023     bool dropInitializer = shouldDropGlobalInitializer(linkage, cst);
1024     if (!dropInitializer && !cst)
1025       cst = llvm::UndefValue::get(type);
1026     else if (dropInitializer && cst)
1027       cst = nullptr;
1028 
1029     auto *var = new llvm::GlobalVariable(
1030         *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(),
1031         /*InsertBefore=*/nullptr,
1032         op.getThreadLocal_() ? llvm::GlobalValue::GeneralDynamicTLSModel
1033                              : llvm::GlobalValue::NotThreadLocal,
1034         op.getAddrSpace(), op.getExternallyInitialized());
1035 
1036     if (std::optional<mlir::SymbolRefAttr> comdat = op.getComdat()) {
1037       auto selectorOp = cast<ComdatSelectorOp>(
1038           SymbolTable::lookupNearestSymbolFrom(op, *comdat));
1039       var->setComdat(comdatMapping.lookup(selectorOp));
1040     }
1041 
1042     if (op.getUnnamedAddr().has_value())
1043       var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr()));
1044 
1045     if (op.getSection().has_value())
1046       var->setSection(*op.getSection());
1047 
1048     addRuntimePreemptionSpecifier(op.getDsoLocal(), var);
1049 
1050     std::optional<uint64_t> alignment = op.getAlignment();
1051     if (alignment.has_value())
1052       var->setAlignment(llvm::MaybeAlign(alignment.value()));
1053 
1054     var->setVisibility(convertVisibilityToLLVM(op.getVisibility_()));
1055 
1056     globalsMapping.try_emplace(op, var);
1057 
1058     // Add debug information if present.
1059     if (op.getDbgExprs()) {
1060       for (auto exprAttr :
1061            op.getDbgExprs()->getAsRange<DIGlobalVariableExpressionAttr>()) {
1062         llvm::DIGlobalVariableExpression *diGlobalExpr =
1063             debugTranslation->translateGlobalVariableExpression(exprAttr);
1064         llvm::DIGlobalVariable *diGlobalVar = diGlobalExpr->getVariable();
1065         var->addDebugInfo(diGlobalExpr);
1066 
1067         // There is no `globals` field in DICompileUnitAttr which can be
1068         // directly assigned to DICompileUnit. We have to build the list by
1069         // looking at the dbgExpr of all the GlobalOps. The scope of the
1070         // variable is used to get the DICompileUnit in which to add it. But
1071         // there are cases where the scope of a global does not directly point
1072         // to the DICompileUnit and we have to do a bit more work to get to
1073         // it. Some of those cases are:
1074         //
1075         // 1. For the languages that support modules, the scope hierarchy can
1076         // be variable -> DIModule -> DICompileUnit
1077         //
1078         // 2. For the Fortran common block variable, the scope hierarchy can
1079         // be variable -> DICommonBlock -> DISubprogram -> DICompileUnit
1080         //
1081         // 3. For entities like static local variables in C or variable with
1082         // SAVE attribute in Fortran, the scope hierarchy can be
1083         // variable -> DISubprogram -> DICompileUnit
1084         llvm::DIScope *scope = diGlobalVar->getScope();
1085         if (auto *mod = dyn_cast_if_present<llvm::DIModule>(scope))
1086           scope = mod->getScope();
1087         else if (auto *cb = dyn_cast_if_present<llvm::DICommonBlock>(scope)) {
1088           if (auto *sp =
1089                   dyn_cast_if_present<llvm::DISubprogram>(cb->getScope()))
1090             scope = sp->getUnit();
1091         } else if (auto *sp = dyn_cast_if_present<llvm::DISubprogram>(scope))
1092           scope = sp->getUnit();
1093 
1094         // Get the compile unit (scope) of the the global variable.
1095         if (llvm::DICompileUnit *compileUnit =
1096                 dyn_cast_if_present<llvm::DICompileUnit>(scope)) {
1097           // Update the compile unit with this incoming global variable
1098           // expression during the finalizing step later.
1099           allGVars[compileUnit].push_back(diGlobalExpr);
1100         }
1101       }
1102     }
1103   }
1104 
1105   // Convert global variable bodies. This is done after all global variables
1106   // have been created in LLVM IR because a global body may refer to another
1107   // global or itself. So all global variables need to be mapped first.
1108   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
1109     if (Block *initializer = op.getInitializerBlock()) {
1110       llvm::IRBuilder<> builder(llvmModule->getContext());
1111 
1112       [[maybe_unused]] int numConstantsHit = 0;
1113       [[maybe_unused]] int numConstantsErased = 0;
1114       DenseMap<llvm::ConstantAggregate *, int> constantAggregateUseMap;
1115 
1116       for (auto &op : initializer->without_terminator()) {
1117         if (failed(convertOperation(op, builder)))
1118           return emitError(op.getLoc(), "fail to convert global initializer");
1119         auto *cst = dyn_cast<llvm::Constant>(lookupValue(op.getResult(0)));
1120         if (!cst)
1121           return emitError(op.getLoc(), "unemittable constant value");
1122 
1123         // When emitting an LLVM constant, a new constant is created and the old
1124         // constant may become dangling and take space. We should remove the
1125         // dangling constants to avoid memory explosion especially for constant
1126         // arrays whose number of elements is large.
1127         // Because multiple operations may refer to the same constant, we need
1128         // to count the number of uses of each constant array and remove it only
1129         // when the count becomes zero.
1130         if (auto *agg = dyn_cast<llvm::ConstantAggregate>(cst)) {
1131           numConstantsHit++;
1132           Value result = op.getResult(0);
1133           int numUsers = std::distance(result.use_begin(), result.use_end());
1134           auto [iterator, inserted] =
1135               constantAggregateUseMap.try_emplace(agg, numUsers);
1136           if (!inserted) {
1137             // Key already exists, update the value
1138             iterator->second += numUsers;
1139           }
1140         }
1141         // Scan the operands of the operation to decrement the use count of
1142         // constants. Erase the constant if the use count becomes zero.
1143         for (Value v : op.getOperands()) {
1144           auto cst = dyn_cast<llvm::ConstantAggregate>(lookupValue(v));
1145           if (!cst)
1146             continue;
1147           auto iter = constantAggregateUseMap.find(cst);
1148           assert(iter != constantAggregateUseMap.end() && "constant not found");
1149           iter->second--;
1150           if (iter->second == 0) {
1151             // NOTE: cannot call removeDeadConstantUsers() here because it
1152             // may remove the constant which has uses not be converted yet.
1153             if (cst->user_empty()) {
1154               cst->destroyConstant();
1155               numConstantsErased++;
1156             }
1157             constantAggregateUseMap.erase(iter);
1158           }
1159         }
1160       }
1161 
1162       ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
1163       llvm::Constant *cst =
1164           cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
1165       auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
1166       if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
1167         global->setInitializer(cst);
1168 
1169       // Try to remove the dangling constants again after all operations are
1170       // converted.
1171       for (auto it : constantAggregateUseMap) {
1172         auto cst = it.first;
1173         cst->removeDeadConstantUsers();
1174         if (cst->user_empty()) {
1175           cst->destroyConstant();
1176           numConstantsErased++;
1177         }
1178       }
1179 
1180       LLVM_DEBUG(llvm::dbgs()
1181                      << "Convert initializer for " << op.getName() << "\n";
1182                  llvm::dbgs() << numConstantsHit << " new constants hit\n";
1183                  llvm::dbgs()
1184                  << numConstantsErased << " dangling constants erased\n";);
1185     }
1186   }
1187 
1188   // Convert llvm.mlir.global_ctors and dtors.
1189   for (Operation &op : getModuleBody(mlirModule)) {
1190     auto ctorOp = dyn_cast<GlobalCtorsOp>(op);
1191     auto dtorOp = dyn_cast<GlobalDtorsOp>(op);
1192     if (!ctorOp && !dtorOp)
1193       continue;
1194     auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities())
1195                         : llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities());
1196     auto appendGlobalFn =
1197         ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors;
1198     for (auto symbolAndPriority : range) {
1199       llvm::Function *f = lookupFunction(
1200           cast<FlatSymbolRefAttr>(std::get<0>(symbolAndPriority)).getValue());
1201       appendGlobalFn(*llvmModule, f,
1202                      cast<IntegerAttr>(std::get<1>(symbolAndPriority)).getInt(),
1203                      /*Data=*/nullptr);
1204     }
1205   }
1206 
1207   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>())
1208     if (failed(convertDialectAttributes(op, {})))
1209       return failure();
1210 
1211   // Finally, update the compile units their respective sets of global variables
1212   // created earlier.
1213   for (const auto &[compileUnit, globals] : allGVars) {
1214     compileUnit->replaceGlobalVariables(
1215         llvm::MDTuple::get(getLLVMContext(), globals));
1216   }
1217 
1218   return success();
1219 }
1220 
1221 /// Attempts to add an attribute identified by `key`, optionally with the given
1222 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
1223 /// attribute has a kind known to LLVM IR, create the attribute of this kind,
1224 /// otherwise keep it as a string attribute. Performs additional checks for
1225 /// attributes known to have or not have a value in order to avoid assertions
1226 /// inside LLVM upon construction.
1227 static LogicalResult checkedAddLLVMFnAttribute(Location loc,
1228                                                llvm::Function *llvmFunc,
1229                                                StringRef key,
1230                                                StringRef value = StringRef()) {
1231   auto kind = llvm::Attribute::getAttrKindFromName(key);
1232   if (kind == llvm::Attribute::None) {
1233     llvmFunc->addFnAttr(key, value);
1234     return success();
1235   }
1236 
1237   if (llvm::Attribute::isIntAttrKind(kind)) {
1238     if (value.empty())
1239       return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
1240 
1241     int64_t result;
1242     if (!value.getAsInteger(/*Radix=*/0, result))
1243       llvmFunc->addFnAttr(
1244           llvm::Attribute::get(llvmFunc->getContext(), kind, result));
1245     else
1246       llvmFunc->addFnAttr(key, value);
1247     return success();
1248   }
1249 
1250   if (!value.empty())
1251     return emitError(loc) << "LLVM attribute '" << key
1252                           << "' does not expect a value, found '" << value
1253                           << "'";
1254 
1255   llvmFunc->addFnAttr(kind);
1256   return success();
1257 }
1258 
1259 /// Return a representation of `value` as metadata.
1260 static llvm::Metadata *convertIntegerToMetadata(llvm::LLVMContext &context,
1261                                                 const llvm::APInt &value) {
1262   llvm::Constant *constant = llvm::ConstantInt::get(context, value);
1263   return llvm::ConstantAsMetadata::get(constant);
1264 }
1265 
1266 /// Return a representation of `value` as an MDNode.
1267 static llvm::MDNode *convertIntegerToMDNode(llvm::LLVMContext &context,
1268                                             const llvm::APInt &value) {
1269   return llvm::MDNode::get(context, convertIntegerToMetadata(context, value));
1270 }
1271 
1272 /// Return an MDNode encoding `vec_type_hint` metadata.
1273 static llvm::MDNode *convertVecTypeHintToMDNode(llvm::LLVMContext &context,
1274                                                 llvm::Type *type,
1275                                                 bool isSigned) {
1276   llvm::Metadata *typeMD =
1277       llvm::ConstantAsMetadata::get(llvm::UndefValue::get(type));
1278   llvm::Metadata *isSignedMD =
1279       convertIntegerToMetadata(context, llvm::APInt(32, isSigned ? 1 : 0));
1280   return llvm::MDNode::get(context, {typeMD, isSignedMD});
1281 }
1282 
1283 /// Return an MDNode with a tuple given by the values in `values`.
1284 static llvm::MDNode *convertIntegerArrayToMDNode(llvm::LLVMContext &context,
1285                                                  ArrayRef<int32_t> values) {
1286   SmallVector<llvm::Metadata *> mdValues;
1287   llvm::transform(
1288       values, std::back_inserter(mdValues), [&context](int32_t value) {
1289         return convertIntegerToMetadata(context, llvm::APInt(32, value));
1290       });
1291   return llvm::MDNode::get(context, mdValues);
1292 }
1293 
1294 /// Attaches the attributes listed in the given array attribute to `llvmFunc`.
1295 /// Reports error to `loc` if any and returns immediately. Expects `attributes`
1296 /// to be an array attribute containing either string attributes, treated as
1297 /// value-less LLVM attributes, or array attributes containing two string
1298 /// attributes, with the first string being the name of the corresponding LLVM
1299 /// attribute and the second string beings its value. Note that even integer
1300 /// attributes are expected to have their values expressed as strings.
1301 static LogicalResult
1302 forwardPassthroughAttributes(Location loc, std::optional<ArrayAttr> attributes,
1303                              llvm::Function *llvmFunc) {
1304   if (!attributes)
1305     return success();
1306 
1307   for (Attribute attr : *attributes) {
1308     if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
1309       if (failed(
1310               checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
1311         return failure();
1312       continue;
1313     }
1314 
1315     auto arrayAttr = dyn_cast<ArrayAttr>(attr);
1316     if (!arrayAttr || arrayAttr.size() != 2)
1317       return emitError(loc)
1318              << "expected 'passthrough' to contain string or array attributes";
1319 
1320     auto keyAttr = dyn_cast<StringAttr>(arrayAttr[0]);
1321     auto valueAttr = dyn_cast<StringAttr>(arrayAttr[1]);
1322     if (!keyAttr || !valueAttr)
1323       return emitError(loc)
1324              << "expected arrays within 'passthrough' to contain two strings";
1325 
1326     if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
1327                                          valueAttr.getValue())))
1328       return failure();
1329   }
1330   return success();
1331 }
1332 
1333 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
1334   // Clear the block, branch value mappings, they are only relevant within one
1335   // function.
1336   blockMapping.clear();
1337   valueMapping.clear();
1338   branchMapping.clear();
1339   llvm::Function *llvmFunc = lookupFunction(func.getName());
1340 
1341   // Add function arguments to the value remapping table.
1342   for (auto [mlirArg, llvmArg] :
1343        llvm::zip(func.getArguments(), llvmFunc->args()))
1344     mapValue(mlirArg, &llvmArg);
1345 
1346   // Check the personality and set it.
1347   if (func.getPersonality()) {
1348     llvm::Type *ty = llvm::PointerType::getUnqual(llvmFunc->getContext());
1349     if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(),
1350                                                 func.getLoc(), *this))
1351       llvmFunc->setPersonalityFn(pfunc);
1352   }
1353 
1354   if (std::optional<StringRef> section = func.getSection())
1355     llvmFunc->setSection(*section);
1356 
1357   if (func.getArmStreaming())
1358     llvmFunc->addFnAttr("aarch64_pstate_sm_enabled");
1359   else if (func.getArmLocallyStreaming())
1360     llvmFunc->addFnAttr("aarch64_pstate_sm_body");
1361   else if (func.getArmStreamingCompatible())
1362     llvmFunc->addFnAttr("aarch64_pstate_sm_compatible");
1363 
1364   if (func.getArmNewZa())
1365     llvmFunc->addFnAttr("aarch64_new_za");
1366   else if (func.getArmInZa())
1367     llvmFunc->addFnAttr("aarch64_in_za");
1368   else if (func.getArmOutZa())
1369     llvmFunc->addFnAttr("aarch64_out_za");
1370   else if (func.getArmInoutZa())
1371     llvmFunc->addFnAttr("aarch64_inout_za");
1372   else if (func.getArmPreservesZa())
1373     llvmFunc->addFnAttr("aarch64_preserves_za");
1374 
1375   if (auto targetCpu = func.getTargetCpu())
1376     llvmFunc->addFnAttr("target-cpu", *targetCpu);
1377 
1378   if (auto tuneCpu = func.getTuneCpu())
1379     llvmFunc->addFnAttr("tune-cpu", *tuneCpu);
1380 
1381   if (auto targetFeatures = func.getTargetFeatures())
1382     llvmFunc->addFnAttr("target-features", targetFeatures->getFeaturesString());
1383 
1384   if (auto attr = func.getVscaleRange())
1385     llvmFunc->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
1386         getLLVMContext(), attr->getMinRange().getInt(),
1387         attr->getMaxRange().getInt()));
1388 
1389   if (auto unsafeFpMath = func.getUnsafeFpMath())
1390     llvmFunc->addFnAttr("unsafe-fp-math", llvm::toStringRef(*unsafeFpMath));
1391 
1392   if (auto noInfsFpMath = func.getNoInfsFpMath())
1393     llvmFunc->addFnAttr("no-infs-fp-math", llvm::toStringRef(*noInfsFpMath));
1394 
1395   if (auto noNansFpMath = func.getNoNansFpMath())
1396     llvmFunc->addFnAttr("no-nans-fp-math", llvm::toStringRef(*noNansFpMath));
1397 
1398   if (auto approxFuncFpMath = func.getApproxFuncFpMath())
1399     llvmFunc->addFnAttr("approx-func-fp-math",
1400                         llvm::toStringRef(*approxFuncFpMath));
1401 
1402   if (auto noSignedZerosFpMath = func.getNoSignedZerosFpMath())
1403     llvmFunc->addFnAttr("no-signed-zeros-fp-math",
1404                         llvm::toStringRef(*noSignedZerosFpMath));
1405 
1406   if (auto denormalFpMath = func.getDenormalFpMath())
1407     llvmFunc->addFnAttr("denormal-fp-math", *denormalFpMath);
1408 
1409   if (auto denormalFpMathF32 = func.getDenormalFpMathF32())
1410     llvmFunc->addFnAttr("denormal-fp-math-f32", *denormalFpMathF32);
1411 
1412   if (auto fpContract = func.getFpContract())
1413     llvmFunc->addFnAttr("fp-contract", *fpContract);
1414 
1415   // Add function attribute frame-pointer, if found.
1416   if (FramePointerKindAttr attr = func.getFramePointerAttr())
1417     llvmFunc->addFnAttr("frame-pointer",
1418                         LLVM::framePointerKind::stringifyFramePointerKind(
1419                             (attr.getFramePointerKind())));
1420 
1421   // First, create all blocks so we can jump to them.
1422   llvm::LLVMContext &llvmContext = llvmFunc->getContext();
1423   for (auto &bb : func) {
1424     auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
1425     llvmBB->insertInto(llvmFunc);
1426     mapBlock(&bb, llvmBB);
1427   }
1428 
1429   // Then, convert blocks one by one in topological order to ensure defs are
1430   // converted before uses.
1431   auto blocks = getBlocksSortedByDominance(func.getBody());
1432   for (Block *bb : blocks) {
1433     CapturingIRBuilder builder(llvmContext);
1434     if (failed(convertBlockImpl(*bb, bb->isEntryBlock(), builder,
1435                                 /*recordInsertions=*/true)))
1436       return failure();
1437   }
1438 
1439   // After all blocks have been traversed and values mapped, connect the PHI
1440   // nodes to the results of preceding blocks.
1441   detail::connectPHINodes(func.getBody(), *this);
1442 
1443   // Finally, convert dialect attributes attached to the function.
1444   return convertDialectAttributes(func, {});
1445 }
1446 
1447 LogicalResult ModuleTranslation::convertDialectAttributes(
1448     Operation *op, ArrayRef<llvm::Instruction *> instructions) {
1449   for (NamedAttribute attribute : op->getDialectAttrs())
1450     if (failed(iface.amendOperation(op, instructions, attribute, *this)))
1451       return failure();
1452   return success();
1453 }
1454 
1455 /// Converts memory effect attributes from `func` and attaches them to
1456 /// `llvmFunc`.
1457 static void convertFunctionMemoryAttributes(LLVMFuncOp func,
1458                                             llvm::Function *llvmFunc) {
1459   if (!func.getMemoryEffects())
1460     return;
1461 
1462   MemoryEffectsAttr memEffects = func.getMemoryEffectsAttr();
1463 
1464   // Add memory effects incrementally.
1465   llvm::MemoryEffects newMemEffects =
1466       llvm::MemoryEffects(llvm::MemoryEffects::Location::ArgMem,
1467                           convertModRefInfoToLLVM(memEffects.getArgMem()));
1468   newMemEffects |= llvm::MemoryEffects(
1469       llvm::MemoryEffects::Location::InaccessibleMem,
1470       convertModRefInfoToLLVM(memEffects.getInaccessibleMem()));
1471   newMemEffects |=
1472       llvm::MemoryEffects(llvm::MemoryEffects::Location::Other,
1473                           convertModRefInfoToLLVM(memEffects.getOther()));
1474   llvmFunc->setMemoryEffects(newMemEffects);
1475 }
1476 
1477 /// Converts function attributes from `func` and attaches them to `llvmFunc`.
1478 static void convertFunctionAttributes(LLVMFuncOp func,
1479                                       llvm::Function *llvmFunc) {
1480   if (func.getNoInlineAttr())
1481     llvmFunc->addFnAttr(llvm::Attribute::NoInline);
1482   if (func.getAlwaysInlineAttr())
1483     llvmFunc->addFnAttr(llvm::Attribute::AlwaysInline);
1484   if (func.getOptimizeNoneAttr())
1485     llvmFunc->addFnAttr(llvm::Attribute::OptimizeNone);
1486   if (func.getConvergentAttr())
1487     llvmFunc->addFnAttr(llvm::Attribute::Convergent);
1488   if (func.getNoUnwindAttr())
1489     llvmFunc->addFnAttr(llvm::Attribute::NoUnwind);
1490   if (func.getWillReturnAttr())
1491     llvmFunc->addFnAttr(llvm::Attribute::WillReturn);
1492   convertFunctionMemoryAttributes(func, llvmFunc);
1493 }
1494 
1495 /// Converts function attributes from `func` and attaches them to `llvmFunc`.
1496 static void convertFunctionKernelAttributes(LLVMFuncOp func,
1497                                             llvm::Function *llvmFunc,
1498                                             ModuleTranslation &translation) {
1499   llvm::LLVMContext &llvmContext = llvmFunc->getContext();
1500 
1501   if (VecTypeHintAttr vecTypeHint = func.getVecTypeHintAttr()) {
1502     Type type = vecTypeHint.getHint().getValue();
1503     llvm::Type *llvmType = translation.convertType(type);
1504     bool isSigned = vecTypeHint.getIsSigned();
1505     llvmFunc->setMetadata(
1506         func.getVecTypeHintAttrName(),
1507         convertVecTypeHintToMDNode(llvmContext, llvmType, isSigned));
1508   }
1509 
1510   if (std::optional<ArrayRef<int32_t>> workGroupSizeHint =
1511           func.getWorkGroupSizeHint()) {
1512     llvmFunc->setMetadata(
1513         func.getWorkGroupSizeHintAttrName(),
1514         convertIntegerArrayToMDNode(llvmContext, *workGroupSizeHint));
1515   }
1516 
1517   if (std::optional<ArrayRef<int32_t>> reqdWorkGroupSize =
1518           func.getReqdWorkGroupSize()) {
1519     llvmFunc->setMetadata(
1520         func.getReqdWorkGroupSizeAttrName(),
1521         convertIntegerArrayToMDNode(llvmContext, *reqdWorkGroupSize));
1522   }
1523 
1524   if (std::optional<uint32_t> intelReqdSubGroupSize =
1525           func.getIntelReqdSubGroupSize()) {
1526     llvmFunc->setMetadata(
1527         func.getIntelReqdSubGroupSizeAttrName(),
1528         convertIntegerToMDNode(llvmContext,
1529                                llvm::APInt(32, *intelReqdSubGroupSize)));
1530   }
1531 }
1532 
1533 FailureOr<llvm::AttrBuilder>
1534 ModuleTranslation::convertParameterAttrs(LLVMFuncOp func, int argIdx,
1535                                          DictionaryAttr paramAttrs) {
1536   llvm::AttrBuilder attrBuilder(llvmModule->getContext());
1537   auto attrNameToKindMapping = getAttrNameToKindMapping();
1538 
1539   for (auto namedAttr : paramAttrs) {
1540     auto it = attrNameToKindMapping.find(namedAttr.getName());
1541     if (it != attrNameToKindMapping.end()) {
1542       llvm::Attribute::AttrKind llvmKind = it->second;
1543 
1544       llvm::TypeSwitch<Attribute>(namedAttr.getValue())
1545           .Case<TypeAttr>([&](auto typeAttr) {
1546             attrBuilder.addTypeAttr(llvmKind, convertType(typeAttr.getValue()));
1547           })
1548           .Case<IntegerAttr>([&](auto intAttr) {
1549             attrBuilder.addRawIntAttr(llvmKind, intAttr.getInt());
1550           })
1551           .Case<UnitAttr>([&](auto) { attrBuilder.addAttribute(llvmKind); });
1552     } else if (namedAttr.getNameDialect()) {
1553       if (failed(iface.convertParameterAttr(func, argIdx, namedAttr, *this)))
1554         return failure();
1555     }
1556   }
1557 
1558   return attrBuilder;
1559 }
1560 
1561 LogicalResult ModuleTranslation::convertFunctionSignatures() {
1562   // Declare all functions first because there may be function calls that form a
1563   // call graph with cycles, or global initializers that reference functions.
1564   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
1565     llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
1566         function.getName(),
1567         cast<llvm::FunctionType>(convertType(function.getFunctionType())));
1568     llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
1569     llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage()));
1570     llvmFunc->setCallingConv(convertCConvToLLVM(function.getCConv()));
1571     mapFunction(function.getName(), llvmFunc);
1572     addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc);
1573 
1574     // Convert function attributes.
1575     convertFunctionAttributes(function, llvmFunc);
1576 
1577     // Convert function kernel attributes to metadata.
1578     convertFunctionKernelAttributes(function, llvmFunc, *this);
1579 
1580     // Convert function_entry_count attribute to metadata.
1581     if (std::optional<uint64_t> entryCount = function.getFunctionEntryCount())
1582       llvmFunc->setEntryCount(entryCount.value());
1583 
1584     // Convert result attributes.
1585     if (ArrayAttr allResultAttrs = function.getAllResultAttrs()) {
1586       DictionaryAttr resultAttrs = cast<DictionaryAttr>(allResultAttrs[0]);
1587       FailureOr<llvm::AttrBuilder> attrBuilder =
1588           convertParameterAttrs(function, -1, resultAttrs);
1589       if (failed(attrBuilder))
1590         return failure();
1591       llvmFunc->addRetAttrs(*attrBuilder);
1592     }
1593 
1594     // Convert argument attributes.
1595     for (auto [argIdx, llvmArg] : llvm::enumerate(llvmFunc->args())) {
1596       if (DictionaryAttr argAttrs = function.getArgAttrDict(argIdx)) {
1597         FailureOr<llvm::AttrBuilder> attrBuilder =
1598             convertParameterAttrs(function, argIdx, argAttrs);
1599         if (failed(attrBuilder))
1600           return failure();
1601         llvmArg.addAttrs(*attrBuilder);
1602       }
1603     }
1604 
1605     // Forward the pass-through attributes to LLVM.
1606     if (failed(forwardPassthroughAttributes(
1607             function.getLoc(), function.getPassthrough(), llvmFunc)))
1608       return failure();
1609 
1610     // Convert visibility attribute.
1611     llvmFunc->setVisibility(convertVisibilityToLLVM(function.getVisibility_()));
1612 
1613     // Convert the comdat attribute.
1614     if (std::optional<mlir::SymbolRefAttr> comdat = function.getComdat()) {
1615       auto selectorOp = cast<ComdatSelectorOp>(
1616           SymbolTable::lookupNearestSymbolFrom(function, *comdat));
1617       llvmFunc->setComdat(comdatMapping.lookup(selectorOp));
1618     }
1619 
1620     if (auto gc = function.getGarbageCollector())
1621       llvmFunc->setGC(gc->str());
1622 
1623     if (auto unnamedAddr = function.getUnnamedAddr())
1624       llvmFunc->setUnnamedAddr(convertUnnamedAddrToLLVM(*unnamedAddr));
1625 
1626     if (auto alignment = function.getAlignment())
1627       llvmFunc->setAlignment(llvm::MaybeAlign(*alignment));
1628 
1629     // Translate the debug information for this function.
1630     debugTranslation->translate(function, *llvmFunc);
1631   }
1632 
1633   return success();
1634 }
1635 
1636 LogicalResult ModuleTranslation::convertFunctions() {
1637   // Convert functions.
1638   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
1639     // Do not convert external functions, but do process dialect attributes
1640     // attached to them.
1641     if (function.isExternal()) {
1642       if (failed(convertDialectAttributes(function, {})))
1643         return failure();
1644       continue;
1645     }
1646 
1647     if (failed(convertOneFunction(function)))
1648       return failure();
1649   }
1650 
1651   return success();
1652 }
1653 
1654 LogicalResult ModuleTranslation::convertComdats() {
1655   for (auto comdatOp : getModuleBody(mlirModule).getOps<ComdatOp>()) {
1656     for (auto selectorOp : comdatOp.getOps<ComdatSelectorOp>()) {
1657       llvm::Module *module = getLLVMModule();
1658       if (module->getComdatSymbolTable().contains(selectorOp.getSymName()))
1659         return emitError(selectorOp.getLoc())
1660                << "comdat selection symbols must be unique even in different "
1661                   "comdat regions";
1662       llvm::Comdat *comdat = module->getOrInsertComdat(selectorOp.getSymName());
1663       comdat->setSelectionKind(convertComdatToLLVM(selectorOp.getComdat()));
1664       comdatMapping.try_emplace(selectorOp, comdat);
1665     }
1666   }
1667   return success();
1668 }
1669 
1670 void ModuleTranslation::setAccessGroupsMetadata(AccessGroupOpInterface op,
1671                                                 llvm::Instruction *inst) {
1672   if (llvm::MDNode *node = loopAnnotationTranslation->getAccessGroups(op))
1673     inst->setMetadata(llvm::LLVMContext::MD_access_group, node);
1674 }
1675 
1676 llvm::MDNode *
1677 ModuleTranslation::getOrCreateAliasScope(AliasScopeAttr aliasScopeAttr) {
1678   auto [scopeIt, scopeInserted] =
1679       aliasScopeMetadataMapping.try_emplace(aliasScopeAttr, nullptr);
1680   if (!scopeInserted)
1681     return scopeIt->second;
1682   llvm::LLVMContext &ctx = llvmModule->getContext();
1683   auto dummy = llvm::MDNode::getTemporary(ctx, std::nullopt);
1684   // Convert the domain metadata node if necessary.
1685   auto [domainIt, insertedDomain] = aliasDomainMetadataMapping.try_emplace(
1686       aliasScopeAttr.getDomain(), nullptr);
1687   if (insertedDomain) {
1688     llvm::SmallVector<llvm::Metadata *, 2> operands;
1689     // Placeholder for self-reference.
1690     operands.push_back(dummy.get());
1691     if (StringAttr description = aliasScopeAttr.getDomain().getDescription())
1692       operands.push_back(llvm::MDString::get(ctx, description));
1693     domainIt->second = llvm::MDNode::get(ctx, operands);
1694     // Self-reference for uniqueness.
1695     domainIt->second->replaceOperandWith(0, domainIt->second);
1696   }
1697   // Convert the scope metadata node.
1698   assert(domainIt->second && "Scope's domain should already be valid");
1699   llvm::SmallVector<llvm::Metadata *, 3> operands;
1700   // Placeholder for self-reference.
1701   operands.push_back(dummy.get());
1702   operands.push_back(domainIt->second);
1703   if (StringAttr description = aliasScopeAttr.getDescription())
1704     operands.push_back(llvm::MDString::get(ctx, description));
1705   scopeIt->second = llvm::MDNode::get(ctx, operands);
1706   // Self-reference for uniqueness.
1707   scopeIt->second->replaceOperandWith(0, scopeIt->second);
1708   return scopeIt->second;
1709 }
1710 
1711 llvm::MDNode *ModuleTranslation::getOrCreateAliasScopes(
1712     ArrayRef<AliasScopeAttr> aliasScopeAttrs) {
1713   SmallVector<llvm::Metadata *> nodes;
1714   nodes.reserve(aliasScopeAttrs.size());
1715   for (AliasScopeAttr aliasScopeAttr : aliasScopeAttrs)
1716     nodes.push_back(getOrCreateAliasScope(aliasScopeAttr));
1717   return llvm::MDNode::get(getLLVMContext(), nodes);
1718 }
1719 
1720 void ModuleTranslation::setAliasScopeMetadata(AliasAnalysisOpInterface op,
1721                                               llvm::Instruction *inst) {
1722   auto populateScopeMetadata = [&](ArrayAttr aliasScopeAttrs, unsigned kind) {
1723     if (!aliasScopeAttrs || aliasScopeAttrs.empty())
1724       return;
1725     llvm::MDNode *node = getOrCreateAliasScopes(
1726         llvm::to_vector(aliasScopeAttrs.getAsRange<AliasScopeAttr>()));
1727     inst->setMetadata(kind, node);
1728   };
1729 
1730   populateScopeMetadata(op.getAliasScopesOrNull(),
1731                         llvm::LLVMContext::MD_alias_scope);
1732   populateScopeMetadata(op.getNoAliasScopesOrNull(),
1733                         llvm::LLVMContext::MD_noalias);
1734 }
1735 
1736 llvm::MDNode *ModuleTranslation::getTBAANode(TBAATagAttr tbaaAttr) const {
1737   return tbaaMetadataMapping.lookup(tbaaAttr);
1738 }
1739 
1740 void ModuleTranslation::setTBAAMetadata(AliasAnalysisOpInterface op,
1741                                         llvm::Instruction *inst) {
1742   ArrayAttr tagRefs = op.getTBAATagsOrNull();
1743   if (!tagRefs || tagRefs.empty())
1744     return;
1745 
1746   // LLVM IR currently does not support attaching more than one TBAA access tag
1747   // to a memory accessing instruction. It may be useful to support this in
1748   // future, but for the time being just ignore the metadata if MLIR operation
1749   // has multiple access tags.
1750   if (tagRefs.size() > 1) {
1751     op.emitWarning() << "TBAA access tags were not translated, because LLVM "
1752                         "IR only supports a single tag per instruction";
1753     return;
1754   }
1755 
1756   llvm::MDNode *node = getTBAANode(cast<TBAATagAttr>(tagRefs[0]));
1757   inst->setMetadata(llvm::LLVMContext::MD_tbaa, node);
1758 }
1759 
1760 void ModuleTranslation::setBranchWeightsMetadata(BranchWeightOpInterface op) {
1761   DenseI32ArrayAttr weightsAttr = op.getBranchWeightsOrNull();
1762   if (!weightsAttr)
1763     return;
1764 
1765   llvm::Instruction *inst = isa<CallOp>(op) ? lookupCall(op) : lookupBranch(op);
1766   assert(inst && "expected the operation to have a mapping to an instruction");
1767   SmallVector<uint32_t> weights(weightsAttr.asArrayRef());
1768   inst->setMetadata(
1769       llvm::LLVMContext::MD_prof,
1770       llvm::MDBuilder(getLLVMContext()).createBranchWeights(weights));
1771 }
1772 
1773 LogicalResult ModuleTranslation::createTBAAMetadata() {
1774   llvm::LLVMContext &ctx = llvmModule->getContext();
1775   llvm::IntegerType *offsetTy = llvm::IntegerType::get(ctx, 64);
1776 
1777   // Walk the entire module and create all metadata nodes for the TBAA
1778   // attributes. The code below relies on two invariants of the
1779   // `AttrTypeWalker`:
1780   // 1. Attributes are visited in post-order: Since the attributes create a DAG,
1781   //    this ensures that any lookups into `tbaaMetadataMapping` for child
1782   //    attributes succeed.
1783   // 2. Attributes are only ever visited once: This way we don't leak any
1784   //    LLVM metadata instances.
1785   AttrTypeWalker walker;
1786   walker.addWalk([&](TBAARootAttr root) {
1787     tbaaMetadataMapping.insert(
1788         {root, llvm::MDNode::get(ctx, llvm::MDString::get(ctx, root.getId()))});
1789   });
1790 
1791   walker.addWalk([&](TBAATypeDescriptorAttr descriptor) {
1792     SmallVector<llvm::Metadata *> operands;
1793     operands.push_back(llvm::MDString::get(ctx, descriptor.getId()));
1794     for (TBAAMemberAttr member : descriptor.getMembers()) {
1795       operands.push_back(tbaaMetadataMapping.lookup(member.getTypeDesc()));
1796       operands.push_back(llvm::ConstantAsMetadata::get(
1797           llvm::ConstantInt::get(offsetTy, member.getOffset())));
1798     }
1799 
1800     tbaaMetadataMapping.insert({descriptor, llvm::MDNode::get(ctx, operands)});
1801   });
1802 
1803   walker.addWalk([&](TBAATagAttr tag) {
1804     SmallVector<llvm::Metadata *> operands;
1805 
1806     operands.push_back(tbaaMetadataMapping.lookup(tag.getBaseType()));
1807     operands.push_back(tbaaMetadataMapping.lookup(tag.getAccessType()));
1808 
1809     operands.push_back(llvm::ConstantAsMetadata::get(
1810         llvm::ConstantInt::get(offsetTy, tag.getOffset())));
1811     if (tag.getConstant())
1812       operands.push_back(
1813           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(offsetTy, 1)));
1814 
1815     tbaaMetadataMapping.insert({tag, llvm::MDNode::get(ctx, operands)});
1816   });
1817 
1818   mlirModule->walk([&](AliasAnalysisOpInterface analysisOpInterface) {
1819     if (auto attr = analysisOpInterface.getTBAATagsOrNull())
1820       walker.walk(attr);
1821   });
1822 
1823   return success();
1824 }
1825 
1826 LogicalResult ModuleTranslation::createIdentMetadata() {
1827   if (auto attr = mlirModule->getAttrOfType<StringAttr>(
1828           LLVMDialect::getIdentAttrName())) {
1829     StringRef ident = attr;
1830     llvm::LLVMContext &ctx = llvmModule->getContext();
1831     llvm::NamedMDNode *namedMd =
1832         llvmModule->getOrInsertNamedMetadata(LLVMDialect::getIdentAttrName());
1833     llvm::MDNode *md = llvm::MDNode::get(ctx, llvm::MDString::get(ctx, ident));
1834     namedMd->addOperand(md);
1835   }
1836 
1837   return success();
1838 }
1839 
1840 void ModuleTranslation::setLoopMetadata(Operation *op,
1841                                         llvm::Instruction *inst) {
1842   LoopAnnotationAttr attr =
1843       TypeSwitch<Operation *, LoopAnnotationAttr>(op)
1844           .Case<LLVM::BrOp, LLVM::CondBrOp>(
1845               [](auto branchOp) { return branchOp.getLoopAnnotationAttr(); });
1846   if (!attr)
1847     return;
1848   llvm::MDNode *loopMD =
1849       loopAnnotationTranslation->translateLoopAnnotation(attr, op);
1850   inst->setMetadata(llvm::LLVMContext::MD_loop, loopMD);
1851 }
1852 
1853 llvm::Type *ModuleTranslation::convertType(Type type) {
1854   return typeTranslator.translateType(type);
1855 }
1856 
1857 /// A helper to look up remapped operands in the value remapping table.
1858 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) {
1859   SmallVector<llvm::Value *> remapped;
1860   remapped.reserve(values.size());
1861   for (Value v : values)
1862     remapped.push_back(lookupValue(v));
1863   return remapped;
1864 }
1865 
1866 llvm::OpenMPIRBuilder *ModuleTranslation::getOpenMPBuilder() {
1867   if (!ompBuilder) {
1868     ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule);
1869     ompBuilder->initialize();
1870 
1871     // Flags represented as top-level OpenMP dialect attributes are set in
1872     // `OpenMPDialectLLVMIRTranslationInterface::amendOperation()`. Here we set
1873     // the default configuration.
1874     ompBuilder->setConfig(llvm::OpenMPIRBuilderConfig(
1875         /* IsTargetDevice = */ false, /* IsGPU = */ false,
1876         /* OpenMPOffloadMandatory = */ false,
1877         /* HasRequiresReverseOffload = */ false,
1878         /* HasRequiresUnifiedAddress = */ false,
1879         /* HasRequiresUnifiedSharedMemory = */ false,
1880         /* HasRequiresDynamicAllocators = */ false));
1881   }
1882   return ompBuilder.get();
1883 }
1884 
1885 llvm::DILocation *ModuleTranslation::translateLoc(Location loc,
1886                                                   llvm::DILocalScope *scope) {
1887   return debugTranslation->translateLoc(loc, scope);
1888 }
1889 
1890 llvm::DIExpression *
1891 ModuleTranslation::translateExpression(LLVM::DIExpressionAttr attr) {
1892   return debugTranslation->translateExpression(attr);
1893 }
1894 
1895 llvm::DIGlobalVariableExpression *
1896 ModuleTranslation::translateGlobalVariableExpression(
1897     LLVM::DIGlobalVariableExpressionAttr attr) {
1898   return debugTranslation->translateGlobalVariableExpression(attr);
1899 }
1900 
1901 llvm::Metadata *ModuleTranslation::translateDebugInfo(LLVM::DINodeAttr attr) {
1902   return debugTranslation->translate(attr);
1903 }
1904 
1905 llvm::RoundingMode
1906 ModuleTranslation::translateRoundingMode(LLVM::RoundingMode rounding) {
1907   return convertRoundingModeToLLVM(rounding);
1908 }
1909 
1910 llvm::fp::ExceptionBehavior ModuleTranslation::translateFPExceptionBehavior(
1911     LLVM::FPExceptionBehavior exceptionBehavior) {
1912   return convertFPExceptionBehaviorToLLVM(exceptionBehavior);
1913 }
1914 
1915 llvm::NamedMDNode *
1916 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
1917   return llvmModule->getOrInsertNamedMetadata(name);
1918 }
1919 
1920 void ModuleTranslation::StackFrame::anchor() {}
1921 
1922 static std::unique_ptr<llvm::Module>
1923 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
1924                   StringRef name) {
1925   m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
1926   auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
1927   // ModuleTranslation can currently only construct modules in the old debug
1928   // info format, so set the flag accordingly.
1929   llvmModule->setNewDbgInfoFormatFlag(false);
1930   if (auto dataLayoutAttr =
1931           m->getDiscardableAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) {
1932     llvmModule->setDataLayout(cast<StringAttr>(dataLayoutAttr).getValue());
1933   } else {
1934     FailureOr<llvm::DataLayout> llvmDataLayout(llvm::DataLayout(""));
1935     if (auto iface = dyn_cast<DataLayoutOpInterface>(m)) {
1936       if (DataLayoutSpecInterface spec = iface.getDataLayoutSpec()) {
1937         llvmDataLayout =
1938             translateDataLayout(spec, DataLayout(iface), m->getLoc());
1939       }
1940     } else if (auto mod = dyn_cast<ModuleOp>(m)) {
1941       if (DataLayoutSpecInterface spec = mod.getDataLayoutSpec()) {
1942         llvmDataLayout =
1943             translateDataLayout(spec, DataLayout(mod), m->getLoc());
1944       }
1945     }
1946     if (failed(llvmDataLayout))
1947       return nullptr;
1948     llvmModule->setDataLayout(*llvmDataLayout);
1949   }
1950   if (auto targetTripleAttr =
1951           m->getDiscardableAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
1952     llvmModule->setTargetTriple(cast<StringAttr>(targetTripleAttr).getValue());
1953 
1954   return llvmModule;
1955 }
1956 
1957 std::unique_ptr<llvm::Module>
1958 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
1959                               StringRef name, bool disableVerification) {
1960   if (!satisfiesLLVMModule(module)) {
1961     module->emitOpError("can not be translated to an LLVMIR module");
1962     return nullptr;
1963   }
1964 
1965   std::unique_ptr<llvm::Module> llvmModule =
1966       prepareLLVMModule(module, llvmContext, name);
1967   if (!llvmModule)
1968     return nullptr;
1969 
1970   LLVM::ensureDistinctSuccessors(module);
1971   LLVM::legalizeDIExpressionsRecursively(module);
1972 
1973   ModuleTranslation translator(module, std::move(llvmModule));
1974   llvm::IRBuilder<> llvmBuilder(llvmContext);
1975 
1976   // Convert module before functions and operations inside, so dialect
1977   // attributes can be used to change dialect-specific global configurations via
1978   // `amendOperation()`. These configurations can then influence the translation
1979   // of operations afterwards.
1980   if (failed(translator.convertOperation(*module, llvmBuilder)))
1981     return nullptr;
1982 
1983   if (failed(translator.convertComdats()))
1984     return nullptr;
1985   if (failed(translator.convertFunctionSignatures()))
1986     return nullptr;
1987   if (failed(translator.convertGlobals()))
1988     return nullptr;
1989   if (failed(translator.createTBAAMetadata()))
1990     return nullptr;
1991   if (failed(translator.createIdentMetadata()))
1992     return nullptr;
1993 
1994   // Convert other top-level operations if possible.
1995   for (Operation &o : getModuleBody(module).getOperations()) {
1996     if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp,
1997              LLVM::GlobalDtorsOp, LLVM::ComdatOp>(&o) &&
1998         !o.hasTrait<OpTrait::IsTerminator>() &&
1999         failed(translator.convertOperation(o, llvmBuilder))) {
2000       return nullptr;
2001     }
2002   }
2003 
2004   // Operations in function bodies with symbolic references must be converted
2005   // after the top-level operations they refer to are declared, so we do it
2006   // last.
2007   if (failed(translator.convertFunctions()))
2008     return nullptr;
2009 
2010   // Once we've finished constructing elements in the module, we should convert
2011   // it to use the debug info format desired by LLVM.
2012   // See https://llvm.org/docs/RemoveDIsDebugInfo.html
2013   translator.llvmModule->setIsNewDbgInfoFormat(UseNewDbgInfoFormat);
2014 
2015   if (!disableVerification &&
2016       llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
2017     return nullptr;
2018 
2019   return std::move(translator.llvmModule);
2020 }
2021