xref: /llvm-project/mlir/lib/Target/LLVMIR/ModuleTranslation.cpp (revision c1ed45a271145acbfad81d87706aeebf361809c3)
1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the translation between an MLIR LLVM dialect module and
10 // the corresponding LLVMIR module. It only handles core LLVM IR operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Target/LLVMIR/ModuleTranslation.h"
15 
16 #include "AttrKindDetail.h"
17 #include "DebugTranslation.h"
18 #include "LoopAnnotationTranslation.h"
19 #include "mlir/Dialect/DLTI/DLTI.h"
20 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
21 #include "mlir/Dialect/LLVMIR/LLVMInterfaces.h"
22 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
23 #include "mlir/Dialect/OpenMP/OpenMPDialect.h"
24 #include "mlir/Dialect/OpenMP/OpenMPInterfaces.h"
25 #include "mlir/IR/AttrTypeSubElements.h"
26 #include "mlir/IR/Attributes.h"
27 #include "mlir/IR/BuiltinOps.h"
28 #include "mlir/IR/BuiltinTypes.h"
29 #include "mlir/IR/RegionGraphTraits.h"
30 #include "mlir/Support/LLVM.h"
31 #include "mlir/Support/LogicalResult.h"
32 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
33 #include "mlir/Target/LLVMIR/TypeToLLVM.h"
34 #include "mlir/Transforms/RegionUtils.h"
35 
36 #include "llvm/ADT/PostOrderIterator.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/ADT/TypeSwitch.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/CFG.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/IntrinsicsNVPTX.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/MDBuilder.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/Verifier.h"
51 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
52 #include "llvm/Transforms/Utils/Cloning.h"
53 #include "llvm/Transforms/Utils/ModuleUtils.h"
54 #include <optional>
55 
56 using namespace mlir;
57 using namespace mlir::LLVM;
58 using namespace mlir::LLVM::detail;
59 
60 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
61 
62 namespace {
63 /// A customized inserter for LLVM's IRBuilder that captures all LLVM IR
64 /// instructions that are created for future reference.
65 ///
66 /// This is intended to be used with the `CollectionScope` RAII object:
67 ///
68 ///     llvm::IRBuilder<..., InstructionCapturingInserter> builder;
69 ///     {
70 ///       InstructionCapturingInserter::CollectionScope scope(builder);
71 ///       // Call IRBuilder methods as usual.
72 ///
73 ///       // This will return a list of all instructions created by the builder,
74 ///       // in order of creation.
75 ///       builder.getInserter().getCapturedInstructions();
76 ///     }
77 ///     // This will return an empty list.
78 ///     builder.getInserter().getCapturedInstructions();
79 ///
80 /// The capturing functionality is _disabled_ by default for performance
81 /// consideration. It needs to be explicitly enabled, which is achieved by
82 /// creating a `CollectionScope`.
83 class InstructionCapturingInserter : public llvm::IRBuilderCallbackInserter {
84 public:
85   /// Constructs the inserter.
86   InstructionCapturingInserter()
87       : llvm::IRBuilderCallbackInserter([this](llvm::Instruction *instruction) {
88           if (LLVM_LIKELY(enabled))
89             capturedInstructions.push_back(instruction);
90         }) {}
91 
92   /// Returns the list of LLVM IR instructions captured since the last cleanup.
93   ArrayRef<llvm::Instruction *> getCapturedInstructions() const {
94     return capturedInstructions;
95   }
96 
97   /// Clears the list of captured LLVM IR instructions.
98   void clearCapturedInstructions() { capturedInstructions.clear(); }
99 
100   /// RAII object enabling the capture of created LLVM IR instructions.
101   class CollectionScope {
102   public:
103     /// Creates the scope for the given inserter.
104     CollectionScope(llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing);
105 
106     /// Ends the scope.
107     ~CollectionScope();
108 
109     ArrayRef<llvm::Instruction *> getCapturedInstructions() {
110       if (!inserter)
111         return {};
112       return inserter->getCapturedInstructions();
113     }
114 
115   private:
116     /// Back reference to the inserter.
117     InstructionCapturingInserter *inserter = nullptr;
118 
119     /// List of instructions in the inserter prior to this scope.
120     SmallVector<llvm::Instruction *> previouslyCollectedInstructions;
121 
122     /// Whether the inserter was enabled prior to this scope.
123     bool wasEnabled;
124   };
125 
126   /// Enable or disable the capturing mechanism.
127   void setEnabled(bool enabled = true) { this->enabled = enabled; }
128 
129 private:
130   /// List of captured instructions.
131   SmallVector<llvm::Instruction *> capturedInstructions;
132 
133   /// Whether the collection is enabled.
134   bool enabled = false;
135 };
136 
137 using CapturingIRBuilder =
138     llvm::IRBuilder<llvm::ConstantFolder, InstructionCapturingInserter>;
139 } // namespace
140 
141 InstructionCapturingInserter::CollectionScope::CollectionScope(
142     llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing) {
143 
144   if (!isBuilderCapturing)
145     return;
146 
147   auto &capturingIRBuilder = static_cast<CapturingIRBuilder &>(irBuilder);
148   inserter = &capturingIRBuilder.getInserter();
149   wasEnabled = inserter->enabled;
150   if (wasEnabled)
151     previouslyCollectedInstructions.swap(inserter->capturedInstructions);
152   inserter->setEnabled(true);
153 }
154 
155 InstructionCapturingInserter::CollectionScope::~CollectionScope() {
156   if (!inserter)
157     return;
158 
159   previouslyCollectedInstructions.swap(inserter->capturedInstructions);
160   // If collection was enabled (likely in another, surrounding scope), keep
161   // the instructions collected in this scope.
162   if (wasEnabled) {
163     llvm::append_range(inserter->capturedInstructions,
164                        previouslyCollectedInstructions);
165   }
166   inserter->setEnabled(wasEnabled);
167 }
168 
169 /// Translates the given data layout spec attribute to the LLVM IR data layout.
170 /// Only integer, float, pointer and endianness entries are currently supported.
171 static FailureOr<llvm::DataLayout>
172 translateDataLayout(DataLayoutSpecInterface attribute,
173                     const DataLayout &dataLayout,
174                     std::optional<Location> loc = std::nullopt) {
175   if (!loc)
176     loc = UnknownLoc::get(attribute.getContext());
177 
178   // Translate the endianness attribute.
179   std::string llvmDataLayout;
180   llvm::raw_string_ostream layoutStream(llvmDataLayout);
181   for (DataLayoutEntryInterface entry : attribute.getEntries()) {
182     auto key = llvm::dyn_cast_if_present<StringAttr>(entry.getKey());
183     if (!key)
184       continue;
185     if (key.getValue() == DLTIDialect::kDataLayoutEndiannessKey) {
186       auto value = cast<StringAttr>(entry.getValue());
187       bool isLittleEndian =
188           value.getValue() == DLTIDialect::kDataLayoutEndiannessLittle;
189       layoutStream << "-" << (isLittleEndian ? "e" : "E");
190       layoutStream.flush();
191       continue;
192     }
193     if (key.getValue() == DLTIDialect::kDataLayoutProgramMemorySpaceKey) {
194       auto value = cast<IntegerAttr>(entry.getValue());
195       uint64_t space = value.getValue().getZExtValue();
196       // Skip the default address space.
197       if (space == 0)
198         continue;
199       layoutStream << "-P" << space;
200       layoutStream.flush();
201       continue;
202     }
203     if (key.getValue() == DLTIDialect::kDataLayoutGlobalMemorySpaceKey) {
204       auto value = cast<IntegerAttr>(entry.getValue());
205       uint64_t space = value.getValue().getZExtValue();
206       // Skip the default address space.
207       if (space == 0)
208         continue;
209       layoutStream << "-G" << space;
210       layoutStream.flush();
211       continue;
212     }
213     if (key.getValue() == DLTIDialect::kDataLayoutAllocaMemorySpaceKey) {
214       auto value = cast<IntegerAttr>(entry.getValue());
215       uint64_t space = value.getValue().getZExtValue();
216       // Skip the default address space.
217       if (space == 0)
218         continue;
219       layoutStream << "-A" << space;
220       layoutStream.flush();
221       continue;
222     }
223     if (key.getValue() == DLTIDialect::kDataLayoutStackAlignmentKey) {
224       auto value = cast<IntegerAttr>(entry.getValue());
225       uint64_t alignment = value.getValue().getZExtValue();
226       // Skip the default stack alignment.
227       if (alignment == 0)
228         continue;
229       layoutStream << "-S" << alignment;
230       layoutStream.flush();
231       continue;
232     }
233     emitError(*loc) << "unsupported data layout key " << key;
234     return failure();
235   }
236 
237   // Go through the list of entries to check which types are explicitly
238   // specified in entries. Where possible, data layout queries are used instead
239   // of directly inspecting the entries.
240   for (DataLayoutEntryInterface entry : attribute.getEntries()) {
241     auto type = llvm::dyn_cast_if_present<Type>(entry.getKey());
242     if (!type)
243       continue;
244     // Data layout for the index type is irrelevant at this point.
245     if (isa<IndexType>(type))
246       continue;
247     layoutStream << "-";
248     LogicalResult result =
249         llvm::TypeSwitch<Type, LogicalResult>(type)
250             .Case<IntegerType, Float16Type, Float32Type, Float64Type,
251                   Float80Type, Float128Type>([&](Type type) -> LogicalResult {
252               if (auto intType = dyn_cast<IntegerType>(type)) {
253                 if (intType.getSignedness() != IntegerType::Signless)
254                   return emitError(*loc)
255                          << "unsupported data layout for non-signless integer "
256                          << intType;
257                 layoutStream << "i";
258               } else {
259                 layoutStream << "f";
260               }
261               uint64_t size = dataLayout.getTypeSizeInBits(type);
262               uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u;
263               uint64_t preferred =
264                   dataLayout.getTypePreferredAlignment(type) * 8u;
265               layoutStream << size << ":" << abi;
266               if (abi != preferred)
267                 layoutStream << ":" << preferred;
268               return success();
269             })
270             .Case([&](LLVMPointerType ptrType) {
271               layoutStream << "p" << ptrType.getAddressSpace() << ":";
272               uint64_t size = dataLayout.getTypeSizeInBits(type);
273               uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u;
274               uint64_t preferred =
275                   dataLayout.getTypePreferredAlignment(type) * 8u;
276               layoutStream << size << ":" << abi << ":" << preferred;
277               if (std::optional<uint64_t> index = extractPointerSpecValue(
278                       entry.getValue(), PtrDLEntryPos::Index))
279                 layoutStream << ":" << *index;
280               return success();
281             })
282             .Default([loc](Type type) {
283               return emitError(*loc)
284                      << "unsupported type in data layout: " << type;
285             });
286     if (failed(result))
287       return failure();
288   }
289   layoutStream.flush();
290   StringRef layoutSpec(llvmDataLayout);
291   if (layoutSpec.starts_with("-"))
292     layoutSpec = layoutSpec.drop_front();
293 
294   return llvm::DataLayout(layoutSpec);
295 }
296 
297 /// Builds a constant of a sequential LLVM type `type`, potentially containing
298 /// other sequential types recursively, from the individual constant values
299 /// provided in `constants`. `shape` contains the number of elements in nested
300 /// sequential types. Reports errors at `loc` and returns nullptr on error.
301 static llvm::Constant *
302 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
303                         ArrayRef<int64_t> shape, llvm::Type *type,
304                         Location loc) {
305   if (shape.empty()) {
306     llvm::Constant *result = constants.front();
307     constants = constants.drop_front();
308     return result;
309   }
310 
311   llvm::Type *elementType;
312   if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
313     elementType = arrayTy->getElementType();
314   } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
315     elementType = vectorTy->getElementType();
316   } else {
317     emitError(loc) << "expected sequential LLVM types wrapping a scalar";
318     return nullptr;
319   }
320 
321   SmallVector<llvm::Constant *, 8> nested;
322   nested.reserve(shape.front());
323   for (int64_t i = 0; i < shape.front(); ++i) {
324     nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
325                                              elementType, loc));
326     if (!nested.back())
327       return nullptr;
328   }
329 
330   if (shape.size() == 1 && type->isVectorTy())
331     return llvm::ConstantVector::get(nested);
332   return llvm::ConstantArray::get(
333       llvm::ArrayType::get(elementType, shape.front()), nested);
334 }
335 
336 /// Returns the first non-sequential type nested in sequential types.
337 static llvm::Type *getInnermostElementType(llvm::Type *type) {
338   do {
339     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
340       type = arrayTy->getElementType();
341     } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
342       type = vectorTy->getElementType();
343     } else {
344       return type;
345     }
346   } while (true);
347 }
348 
349 /// Convert a dense elements attribute to an LLVM IR constant using its raw data
350 /// storage if possible. This supports elements attributes of tensor or vector
351 /// type and avoids constructing separate objects for individual values of the
352 /// innermost dimension. Constants for other dimensions are still constructed
353 /// recursively. Returns null if constructing from raw data is not supported for
354 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports
355 /// other errors at `loc`.
356 static llvm::Constant *
357 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr,
358                          llvm::Type *llvmType,
359                          const ModuleTranslation &moduleTranslation) {
360   if (!denseElementsAttr)
361     return nullptr;
362 
363   llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
364   if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType))
365     return nullptr;
366 
367   ShapedType type = denseElementsAttr.getType();
368   if (type.getNumElements() == 0)
369     return nullptr;
370 
371   // Check that the raw data size matches what is expected for the scalar size.
372   // TODO: in theory, we could repack the data here to keep constructing from
373   // raw data.
374   // TODO: we may also need to consider endianness when cross-compiling to an
375   // architecture where it is different.
376   int64_t elementByteSize = denseElementsAttr.getRawData().size() /
377                             denseElementsAttr.getNumElements();
378   if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits())
379     return nullptr;
380 
381   // Compute the shape of all dimensions but the innermost. Note that the
382   // innermost dimension may be that of the vector element type.
383   bool hasVectorElementType = isa<VectorType>(type.getElementType());
384   int64_t numAggregates =
385       denseElementsAttr.getNumElements() /
386       (hasVectorElementType ? 1
387                             : denseElementsAttr.getType().getShape().back());
388   ArrayRef<int64_t> outerShape = type.getShape();
389   if (!hasVectorElementType)
390     outerShape = outerShape.drop_back();
391 
392   // Handle the case of vector splat, LLVM has special support for it.
393   if (denseElementsAttr.isSplat() &&
394       (isa<VectorType>(type) || hasVectorElementType)) {
395     llvm::Constant *splatValue = LLVM::detail::getLLVMConstant(
396         innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc,
397         moduleTranslation);
398     llvm::Constant *splatVector =
399         llvm::ConstantDataVector::getSplat(0, splatValue);
400     SmallVector<llvm::Constant *> constants(numAggregates, splatVector);
401     ArrayRef<llvm::Constant *> constantsRef = constants;
402     return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
403   }
404   if (denseElementsAttr.isSplat())
405     return nullptr;
406 
407   // In case of non-splat, create a constructor for the innermost constant from
408   // a piece of raw data.
409   std::function<llvm::Constant *(StringRef)> buildCstData;
410   if (isa<TensorType>(type)) {
411     auto vectorElementType = dyn_cast<VectorType>(type.getElementType());
412     if (vectorElementType && vectorElementType.getRank() == 1) {
413       buildCstData = [&](StringRef data) {
414         return llvm::ConstantDataVector::getRaw(
415             data, vectorElementType.getShape().back(), innermostLLVMType);
416       };
417     } else if (!vectorElementType) {
418       buildCstData = [&](StringRef data) {
419         return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
420                                                innermostLLVMType);
421       };
422     }
423   } else if (isa<VectorType>(type)) {
424     buildCstData = [&](StringRef data) {
425       return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
426                                               innermostLLVMType);
427     };
428   }
429   if (!buildCstData)
430     return nullptr;
431 
432   // Create innermost constants and defer to the default constant creation
433   // mechanism for other dimensions.
434   SmallVector<llvm::Constant *> constants;
435   int64_t aggregateSize = denseElementsAttr.getType().getShape().back() *
436                           (innermostLLVMType->getScalarSizeInBits() / 8);
437   constants.reserve(numAggregates);
438   for (unsigned i = 0; i < numAggregates; ++i) {
439     StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize,
440                    aggregateSize);
441     constants.push_back(buildCstData(data));
442   }
443 
444   ArrayRef<llvm::Constant *> constantsRef = constants;
445   return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
446 }
447 
448 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
449 /// This currently supports integer, floating point, splat and dense element
450 /// attributes and combinations thereof. Also, an array attribute with two
451 /// elements is supported to represent a complex constant.  In case of error,
452 /// report it to `loc` and return nullptr.
453 llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
454     llvm::Type *llvmType, Attribute attr, Location loc,
455     const ModuleTranslation &moduleTranslation) {
456   if (!attr)
457     return llvm::UndefValue::get(llvmType);
458   if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) {
459     auto arrayAttr = dyn_cast<ArrayAttr>(attr);
460     if (!arrayAttr || arrayAttr.size() != 2) {
461       emitError(loc, "expected struct type to be a complex number");
462       return nullptr;
463     }
464     llvm::Type *elementType = structType->getElementType(0);
465     llvm::Constant *real =
466         getLLVMConstant(elementType, arrayAttr[0], loc, moduleTranslation);
467     if (!real)
468       return nullptr;
469     llvm::Constant *imag =
470         getLLVMConstant(elementType, arrayAttr[1], loc, moduleTranslation);
471     if (!imag)
472       return nullptr;
473     return llvm::ConstantStruct::get(structType, {real, imag});
474   }
475   // For integer types, we allow a mismatch in sizes as the index type in
476   // MLIR might have a different size than the index type in the LLVM module.
477   if (auto intAttr = dyn_cast<IntegerAttr>(attr))
478     return llvm::ConstantInt::get(
479         llvmType,
480         intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
481   if (auto floatAttr = dyn_cast<FloatAttr>(attr)) {
482     const llvm::fltSemantics &sem = floatAttr.getValue().getSemantics();
483     // Special case for 8-bit floats, which are represented by integers due to
484     // the lack of native fp8 types in LLVM at the moment. Additionally, handle
485     // targets (like AMDGPU) that don't implement bfloat and convert all bfloats
486     // to i16.
487     unsigned floatWidth = APFloat::getSizeInBits(sem);
488     if (llvmType->isIntegerTy(floatWidth))
489       return llvm::ConstantInt::get(llvmType,
490                                     floatAttr.getValue().bitcastToAPInt());
491     if (llvmType !=
492         llvm::Type::getFloatingPointTy(llvmType->getContext(),
493                                        floatAttr.getValue().getSemantics())) {
494       emitError(loc, "FloatAttr does not match expected type of the constant");
495       return nullptr;
496     }
497     return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
498   }
499   if (auto funcAttr = dyn_cast<FlatSymbolRefAttr>(attr))
500     return llvm::ConstantExpr::getBitCast(
501         moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
502   if (auto splatAttr = dyn_cast<SplatElementsAttr>(attr)) {
503     llvm::Type *elementType;
504     uint64_t numElements;
505     bool isScalable = false;
506     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
507       elementType = arrayTy->getElementType();
508       numElements = arrayTy->getNumElements();
509     } else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) {
510       elementType = fVectorTy->getElementType();
511       numElements = fVectorTy->getNumElements();
512     } else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) {
513       elementType = sVectorTy->getElementType();
514       numElements = sVectorTy->getMinNumElements();
515       isScalable = true;
516     } else {
517       llvm_unreachable("unrecognized constant vector type");
518     }
519     // Splat value is a scalar. Extract it only if the element type is not
520     // another sequence type. The recursion terminates because each step removes
521     // one outer sequential type.
522     bool elementTypeSequential =
523         isa<llvm::ArrayType, llvm::VectorType>(elementType);
524     llvm::Constant *child = getLLVMConstant(
525         elementType,
526         elementTypeSequential ? splatAttr
527                               : splatAttr.getSplatValue<Attribute>(),
528         loc, moduleTranslation);
529     if (!child)
530       return nullptr;
531     if (llvmType->isVectorTy())
532       return llvm::ConstantVector::getSplat(
533           llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child);
534     if (llvmType->isArrayTy()) {
535       auto *arrayType = llvm::ArrayType::get(elementType, numElements);
536       SmallVector<llvm::Constant *, 8> constants(numElements, child);
537       return llvm::ConstantArray::get(arrayType, constants);
538     }
539   }
540 
541   // Try using raw elements data if possible.
542   if (llvm::Constant *result =
543           convertDenseElementsAttr(loc, dyn_cast<DenseElementsAttr>(attr),
544                                    llvmType, moduleTranslation)) {
545     return result;
546   }
547 
548   // Fall back to element-by-element construction otherwise.
549   if (auto elementsAttr = dyn_cast<ElementsAttr>(attr)) {
550     assert(elementsAttr.getShapedType().hasStaticShape());
551     assert(!elementsAttr.getShapedType().getShape().empty() &&
552            "unexpected empty elements attribute shape");
553 
554     SmallVector<llvm::Constant *, 8> constants;
555     constants.reserve(elementsAttr.getNumElements());
556     llvm::Type *innermostType = getInnermostElementType(llvmType);
557     for (auto n : elementsAttr.getValues<Attribute>()) {
558       constants.push_back(
559           getLLVMConstant(innermostType, n, loc, moduleTranslation));
560       if (!constants.back())
561         return nullptr;
562     }
563     ArrayRef<llvm::Constant *> constantsRef = constants;
564     llvm::Constant *result = buildSequentialConstant(
565         constantsRef, elementsAttr.getShapedType().getShape(), llvmType, loc);
566     assert(constantsRef.empty() && "did not consume all elemental constants");
567     return result;
568   }
569 
570   if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
571     return llvm::ConstantDataArray::get(
572         moduleTranslation.getLLVMContext(),
573         ArrayRef<char>{stringAttr.getValue().data(),
574                        stringAttr.getValue().size()});
575   }
576   emitError(loc, "unsupported constant value");
577   return nullptr;
578 }
579 
580 ModuleTranslation::ModuleTranslation(Operation *module,
581                                      std::unique_ptr<llvm::Module> llvmModule)
582     : mlirModule(module), llvmModule(std::move(llvmModule)),
583       debugTranslation(
584           std::make_unique<DebugTranslation>(module, *this->llvmModule)),
585       loopAnnotationTranslation(std::make_unique<LoopAnnotationTranslation>(
586           *this, *this->llvmModule)),
587       typeTranslator(this->llvmModule->getContext()),
588       iface(module->getContext()) {
589   assert(satisfiesLLVMModule(mlirModule) &&
590          "mlirModule should honor LLVM's module semantics.");
591 }
592 
593 ModuleTranslation::~ModuleTranslation() {
594   if (ompBuilder)
595     ompBuilder->finalize();
596 }
597 
598 void ModuleTranslation::forgetMapping(Region &region) {
599   SmallVector<Region *> toProcess;
600   toProcess.push_back(&region);
601   while (!toProcess.empty()) {
602     Region *current = toProcess.pop_back_val();
603     for (Block &block : *current) {
604       blockMapping.erase(&block);
605       for (Value arg : block.getArguments())
606         valueMapping.erase(arg);
607       for (Operation &op : block) {
608         for (Value value : op.getResults())
609           valueMapping.erase(value);
610         if (op.hasSuccessors())
611           branchMapping.erase(&op);
612         if (isa<LLVM::GlobalOp>(op))
613           globalsMapping.erase(&op);
614         llvm::append_range(
615             toProcess,
616             llvm::map_range(op.getRegions(), [](Region &r) { return &r; }));
617       }
618     }
619   }
620 }
621 
622 /// Get the SSA value passed to the current block from the terminator operation
623 /// of its predecessor.
624 static Value getPHISourceValue(Block *current, Block *pred,
625                                unsigned numArguments, unsigned index) {
626   Operation &terminator = *pred->getTerminator();
627   if (isa<LLVM::BrOp>(terminator))
628     return terminator.getOperand(index);
629 
630 #ifndef NDEBUG
631   llvm::SmallPtrSet<Block *, 4> seenSuccessors;
632   for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) {
633     Block *successor = terminator.getSuccessor(i);
634     auto branch = cast<BranchOpInterface>(terminator);
635     SuccessorOperands successorOperands = branch.getSuccessorOperands(i);
636     assert(
637         (!seenSuccessors.contains(successor) || successorOperands.empty()) &&
638         "successors with arguments in LLVM branches must be different blocks");
639     seenSuccessors.insert(successor);
640   }
641 #endif
642 
643   // For instructions that branch based on a condition value, we need to take
644   // the operands for the branch that was taken.
645   if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
646     // For conditional branches, we take the operands from either the "true" or
647     // the "false" branch.
648     return condBranchOp.getSuccessor(0) == current
649                ? condBranchOp.getTrueDestOperands()[index]
650                : condBranchOp.getFalseDestOperands()[index];
651   }
652 
653   if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
654     // For switches, we take the operands from either the default case, or from
655     // the case branch that was taken.
656     if (switchOp.getDefaultDestination() == current)
657       return switchOp.getDefaultOperands()[index];
658     for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations()))
659       if (i.value() == current)
660         return switchOp.getCaseOperands(i.index())[index];
661   }
662 
663   if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) {
664     return invokeOp.getNormalDest() == current
665                ? invokeOp.getNormalDestOperands()[index]
666                : invokeOp.getUnwindDestOperands()[index];
667   }
668 
669   llvm_unreachable(
670       "only branch, switch or invoke operations can be terminators "
671       "of a block that has successors");
672 }
673 
674 /// Connect the PHI nodes to the results of preceding blocks.
675 void mlir::LLVM::detail::connectPHINodes(Region &region,
676                                          const ModuleTranslation &state) {
677   // Skip the first block, it cannot be branched to and its arguments correspond
678   // to the arguments of the LLVM function.
679   for (Block &bb : llvm::drop_begin(region)) {
680     llvm::BasicBlock *llvmBB = state.lookupBlock(&bb);
681     auto phis = llvmBB->phis();
682     auto numArguments = bb.getNumArguments();
683     assert(numArguments == std::distance(phis.begin(), phis.end()));
684     for (auto [index, phiNode] : llvm::enumerate(phis)) {
685       for (auto *pred : bb.getPredecessors()) {
686         // Find the LLVM IR block that contains the converted terminator
687         // instruction and use it in the PHI node. Note that this block is not
688         // necessarily the same as state.lookupBlock(pred), some operations
689         // (in particular, OpenMP operations using OpenMPIRBuilder) may have
690         // split the blocks.
691         llvm::Instruction *terminator =
692             state.lookupBranch(pred->getTerminator());
693         assert(terminator && "missing the mapping for a terminator");
694         phiNode.addIncoming(state.lookupValue(getPHISourceValue(
695                                 &bb, pred, numArguments, index)),
696                             terminator->getParent());
697       }
698     }
699   }
700 }
701 
702 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall(
703     llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
704     ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
705   llvm::Module *module = builder.GetInsertBlock()->getModule();
706   llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys);
707   return builder.CreateCall(fn, args);
708 }
709 
710 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall(
711     llvm::IRBuilderBase &builder, ModuleTranslation &moduleTranslation,
712     Operation *intrOp, llvm::Intrinsic::ID intrinsic, unsigned numResults,
713     ArrayRef<unsigned> overloadedResults, ArrayRef<unsigned> overloadedOperands,
714     ArrayRef<unsigned> immArgPositions,
715     ArrayRef<StringLiteral> immArgAttrNames) {
716   assert(immArgPositions.size() == immArgAttrNames.size() &&
717          "LLVM `immArgPositions` and MLIR `immArgAttrNames` should have equal "
718          "length");
719 
720   // Map operands and attributes to LLVM values.
721   auto operands = moduleTranslation.lookupValues(intrOp->getOperands());
722   SmallVector<llvm::Value *> args(immArgPositions.size() + operands.size());
723   for (auto [immArgPos, immArgName] :
724        llvm::zip(immArgPositions, immArgAttrNames)) {
725     auto attr = llvm::cast<TypedAttr>(intrOp->getAttr(immArgName));
726     assert(attr.getType().isIntOrFloat() && "expected int or float immarg");
727     auto *type = moduleTranslation.convertType(attr.getType());
728     args[immArgPos] = LLVM::detail::getLLVMConstant(
729         type, attr, intrOp->getLoc(), moduleTranslation);
730   }
731   unsigned opArg = 0;
732   for (auto &arg : args) {
733     if (!arg)
734       arg = operands[opArg++];
735   }
736 
737   // Resolve overloaded intrinsic declaration.
738   SmallVector<llvm::Type *> overloadedTypes;
739   for (unsigned overloadedResultIdx : overloadedResults) {
740     if (numResults > 1) {
741       // More than one result is mapped to an LLVM struct.
742       overloadedTypes.push_back(moduleTranslation.convertType(
743           llvm::cast<LLVM::LLVMStructType>(intrOp->getResult(0).getType())
744               .getBody()[overloadedResultIdx]));
745     } else {
746       overloadedTypes.push_back(
747           moduleTranslation.convertType(intrOp->getResult(0).getType()));
748     }
749   }
750   for (unsigned overloadedOperandIdx : overloadedOperands)
751     overloadedTypes.push_back(args[overloadedOperandIdx]->getType());
752   llvm::Module *module = builder.GetInsertBlock()->getModule();
753   llvm::Function *llvmIntr =
754       llvm::Intrinsic::getDeclaration(module, intrinsic, overloadedTypes);
755 
756   return builder.CreateCall(llvmIntr, args);
757 }
758 
759 /// Given a single MLIR operation, create the corresponding LLVM IR operation
760 /// using the `builder`.
761 LogicalResult ModuleTranslation::convertOperation(Operation &op,
762                                                   llvm::IRBuilderBase &builder,
763                                                   bool recordInsertions) {
764   const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
765   if (!opIface)
766     return op.emitError("cannot be converted to LLVM IR: missing "
767                         "`LLVMTranslationDialectInterface` registration for "
768                         "dialect for op: ")
769            << op.getName();
770 
771   InstructionCapturingInserter::CollectionScope scope(builder,
772                                                       recordInsertions);
773   if (failed(opIface->convertOperation(&op, builder, *this)))
774     return op.emitError("LLVM Translation failed for operation: ")
775            << op.getName();
776 
777   return convertDialectAttributes(&op, scope.getCapturedInstructions());
778 }
779 
780 /// Convert block to LLVM IR.  Unless `ignoreArguments` is set, emit PHI nodes
781 /// to define values corresponding to the MLIR block arguments.  These nodes
782 /// are not connected to the source basic blocks, which may not exist yet.  Uses
783 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
784 /// been created for `bb` and included in the block mapping.  Inserts new
785 /// instructions at the end of the block and leaves `builder` in a state
786 /// suitable for further insertion into the end of the block.
787 LogicalResult ModuleTranslation::convertBlockImpl(Block &bb,
788                                                   bool ignoreArguments,
789                                                   llvm::IRBuilderBase &builder,
790                                                   bool recordInsertions) {
791   builder.SetInsertPoint(lookupBlock(&bb));
792   auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
793 
794   // Before traversing operations, make block arguments available through
795   // value remapping and PHI nodes, but do not add incoming edges for the PHI
796   // nodes just yet: those values may be defined by this or following blocks.
797   // This step is omitted if "ignoreArguments" is set.  The arguments of the
798   // first block have been already made available through the remapping of
799   // LLVM function arguments.
800   if (!ignoreArguments) {
801     auto predecessors = bb.getPredecessors();
802     unsigned numPredecessors =
803         std::distance(predecessors.begin(), predecessors.end());
804     for (auto arg : bb.getArguments()) {
805       auto wrappedType = arg.getType();
806       if (!isCompatibleType(wrappedType))
807         return emitError(bb.front().getLoc(),
808                          "block argument does not have an LLVM type");
809       llvm::Type *type = convertType(wrappedType);
810       llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
811       mapValue(arg, phi);
812     }
813   }
814 
815   // Traverse operations.
816   for (auto &op : bb) {
817     // Set the current debug location within the builder.
818     builder.SetCurrentDebugLocation(
819         debugTranslation->translateLoc(op.getLoc(), subprogram));
820 
821     if (failed(convertOperation(op, builder, recordInsertions)))
822       return failure();
823 
824     // Set the branch weight metadata on the translated instruction.
825     if (auto iface = dyn_cast<BranchWeightOpInterface>(op))
826       setBranchWeightsMetadata(iface);
827   }
828 
829   return success();
830 }
831 
832 /// A helper method to get the single Block in an operation honoring LLVM's
833 /// module requirements.
834 static Block &getModuleBody(Operation *module) {
835   return module->getRegion(0).front();
836 }
837 
838 /// A helper method to decide if a constant must not be set as a global variable
839 /// initializer. For an external linkage variable, the variable with an
840 /// initializer is considered externally visible and defined in this module, the
841 /// variable without an initializer is externally available and is defined
842 /// elsewhere.
843 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
844                                         llvm::Constant *cst) {
845   return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) ||
846          linkage == llvm::GlobalVariable::ExternalWeakLinkage;
847 }
848 
849 /// Sets the runtime preemption specifier of `gv` to dso_local if
850 /// `dsoLocalRequested` is true, otherwise it is left unchanged.
851 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested,
852                                           llvm::GlobalValue *gv) {
853   if (dsoLocalRequested)
854     gv->setDSOLocal(true);
855 }
856 
857 /// Create named global variables that correspond to llvm.mlir.global
858 /// definitions. Convert llvm.global_ctors and global_dtors ops.
859 LogicalResult ModuleTranslation::convertGlobals() {
860   // Mapping from compile unit to its respective set of global variables.
861   DenseMap<llvm::DICompileUnit *, SmallVector<llvm::Metadata *>> allGVars;
862 
863   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
864     llvm::Type *type = convertType(op.getType());
865     llvm::Constant *cst = nullptr;
866     if (op.getValueOrNull()) {
867       // String attributes are treated separately because they cannot appear as
868       // in-function constants and are thus not supported by getLLVMConstant.
869       if (auto strAttr = dyn_cast_or_null<StringAttr>(op.getValueOrNull())) {
870         cst = llvm::ConstantDataArray::getString(
871             llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
872         type = cst->getType();
873       } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
874                                          *this))) {
875         return failure();
876       }
877     }
878 
879     auto linkage = convertLinkageToLLVM(op.getLinkage());
880     auto addrSpace = op.getAddrSpace();
881 
882     // LLVM IR requires constant with linkage other than external or weak
883     // external to have initializers. If MLIR does not provide an initializer,
884     // default to undef.
885     bool dropInitializer = shouldDropGlobalInitializer(linkage, cst);
886     if (!dropInitializer && !cst)
887       cst = llvm::UndefValue::get(type);
888     else if (dropInitializer && cst)
889       cst = nullptr;
890 
891     auto *var = new llvm::GlobalVariable(
892         *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(),
893         /*InsertBefore=*/nullptr,
894         op.getThreadLocal_() ? llvm::GlobalValue::GeneralDynamicTLSModel
895                              : llvm::GlobalValue::NotThreadLocal,
896         addrSpace);
897 
898     if (std::optional<mlir::SymbolRefAttr> comdat = op.getComdat()) {
899       auto selectorOp = cast<ComdatSelectorOp>(
900           SymbolTable::lookupNearestSymbolFrom(op, *comdat));
901       var->setComdat(comdatMapping.lookup(selectorOp));
902     }
903 
904     if (op.getUnnamedAddr().has_value())
905       var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr()));
906 
907     if (op.getSection().has_value())
908       var->setSection(*op.getSection());
909 
910     addRuntimePreemptionSpecifier(op.getDsoLocal(), var);
911 
912     std::optional<uint64_t> alignment = op.getAlignment();
913     if (alignment.has_value())
914       var->setAlignment(llvm::MaybeAlign(alignment.value()));
915 
916     var->setVisibility(convertVisibilityToLLVM(op.getVisibility_()));
917 
918     globalsMapping.try_emplace(op, var);
919 
920     // Add debug information if present.
921     if (op.getDbgExpr()) {
922       llvm::DIGlobalVariableExpression *diGlobalExpr =
923           debugTranslation->translateGlobalVariableExpression(op.getDbgExpr());
924       llvm::DIGlobalVariable *diGlobalVar = diGlobalExpr->getVariable();
925       var->addDebugInfo(diGlobalExpr);
926 
927       // Get the compile unit (scope) of the the global variable.
928       if (llvm::DICompileUnit *compileUnit =
929               dyn_cast_if_present<llvm::DICompileUnit>(
930                   diGlobalVar->getScope())) {
931         // Update the compile unit with this incoming global variable expression
932         // during the finalizing step later.
933         allGVars[compileUnit].push_back(diGlobalExpr);
934       }
935     }
936   }
937 
938   // Convert global variable bodies. This is done after all global variables
939   // have been created in LLVM IR because a global body may refer to another
940   // global or itself. So all global variables need to be mapped first.
941   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
942     if (Block *initializer = op.getInitializerBlock()) {
943       llvm::IRBuilder<> builder(llvmModule->getContext());
944       for (auto &op : initializer->without_terminator()) {
945         if (failed(convertOperation(op, builder)) ||
946             !isa<llvm::Constant>(lookupValue(op.getResult(0))))
947           return emitError(op.getLoc(), "unemittable constant value");
948       }
949       ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
950       llvm::Constant *cst =
951           cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
952       auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
953       if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
954         global->setInitializer(cst);
955     }
956   }
957 
958   // Convert llvm.mlir.global_ctors and dtors.
959   for (Operation &op : getModuleBody(mlirModule)) {
960     auto ctorOp = dyn_cast<GlobalCtorsOp>(op);
961     auto dtorOp = dyn_cast<GlobalDtorsOp>(op);
962     if (!ctorOp && !dtorOp)
963       continue;
964     auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities())
965                         : llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities());
966     auto appendGlobalFn =
967         ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors;
968     for (auto symbolAndPriority : range) {
969       llvm::Function *f = lookupFunction(
970           cast<FlatSymbolRefAttr>(std::get<0>(symbolAndPriority)).getValue());
971       appendGlobalFn(*llvmModule, f,
972                      cast<IntegerAttr>(std::get<1>(symbolAndPriority)).getInt(),
973                      /*Data=*/nullptr);
974     }
975   }
976 
977   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>())
978     if (failed(convertDialectAttributes(op, {})))
979       return failure();
980 
981   // Finally, update the compile units their respective sets of global variables
982   // created earlier.
983   for (const auto &[compileUnit, globals] : allGVars) {
984     compileUnit->replaceGlobalVariables(
985         llvm::MDTuple::get(getLLVMContext(), globals));
986   }
987 
988   return success();
989 }
990 
991 /// Attempts to add an attribute identified by `key`, optionally with the given
992 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
993 /// attribute has a kind known to LLVM IR, create the attribute of this kind,
994 /// otherwise keep it as a string attribute. Performs additional checks for
995 /// attributes known to have or not have a value in order to avoid assertions
996 /// inside LLVM upon construction.
997 static LogicalResult checkedAddLLVMFnAttribute(Location loc,
998                                                llvm::Function *llvmFunc,
999                                                StringRef key,
1000                                                StringRef value = StringRef()) {
1001   auto kind = llvm::Attribute::getAttrKindFromName(key);
1002   if (kind == llvm::Attribute::None) {
1003     llvmFunc->addFnAttr(key, value);
1004     return success();
1005   }
1006 
1007   if (llvm::Attribute::isIntAttrKind(kind)) {
1008     if (value.empty())
1009       return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
1010 
1011     int64_t result;
1012     if (!value.getAsInteger(/*Radix=*/0, result))
1013       llvmFunc->addFnAttr(
1014           llvm::Attribute::get(llvmFunc->getContext(), kind, result));
1015     else
1016       llvmFunc->addFnAttr(key, value);
1017     return success();
1018   }
1019 
1020   if (!value.empty())
1021     return emitError(loc) << "LLVM attribute '" << key
1022                           << "' does not expect a value, found '" << value
1023                           << "'";
1024 
1025   llvmFunc->addFnAttr(kind);
1026   return success();
1027 }
1028 
1029 /// Attaches the attributes listed in the given array attribute to `llvmFunc`.
1030 /// Reports error to `loc` if any and returns immediately. Expects `attributes`
1031 /// to be an array attribute containing either string attributes, treated as
1032 /// value-less LLVM attributes, or array attributes containing two string
1033 /// attributes, with the first string being the name of the corresponding LLVM
1034 /// attribute and the second string beings its value. Note that even integer
1035 /// attributes are expected to have their values expressed as strings.
1036 static LogicalResult
1037 forwardPassthroughAttributes(Location loc, std::optional<ArrayAttr> attributes,
1038                              llvm::Function *llvmFunc) {
1039   if (!attributes)
1040     return success();
1041 
1042   for (Attribute attr : *attributes) {
1043     if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
1044       if (failed(
1045               checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
1046         return failure();
1047       continue;
1048     }
1049 
1050     auto arrayAttr = dyn_cast<ArrayAttr>(attr);
1051     if (!arrayAttr || arrayAttr.size() != 2)
1052       return emitError(loc)
1053              << "expected 'passthrough' to contain string or array attributes";
1054 
1055     auto keyAttr = dyn_cast<StringAttr>(arrayAttr[0]);
1056     auto valueAttr = dyn_cast<StringAttr>(arrayAttr[1]);
1057     if (!keyAttr || !valueAttr)
1058       return emitError(loc)
1059              << "expected arrays within 'passthrough' to contain two strings";
1060 
1061     if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
1062                                          valueAttr.getValue())))
1063       return failure();
1064   }
1065   return success();
1066 }
1067 
1068 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
1069   // Clear the block, branch value mappings, they are only relevant within one
1070   // function.
1071   blockMapping.clear();
1072   valueMapping.clear();
1073   branchMapping.clear();
1074   llvm::Function *llvmFunc = lookupFunction(func.getName());
1075 
1076   // Translate the debug information for this function.
1077   debugTranslation->translate(func, *llvmFunc);
1078 
1079   // Add function arguments to the value remapping table.
1080   for (auto [mlirArg, llvmArg] :
1081        llvm::zip(func.getArguments(), llvmFunc->args()))
1082     mapValue(mlirArg, &llvmArg);
1083 
1084   // Check the personality and set it.
1085   if (func.getPersonality()) {
1086     llvm::Type *ty = llvm::PointerType::getUnqual(llvmFunc->getContext());
1087     if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(),
1088                                                 func.getLoc(), *this))
1089       llvmFunc->setPersonalityFn(pfunc);
1090   }
1091 
1092   if (std::optional<StringRef> section = func.getSection())
1093     llvmFunc->setSection(*section);
1094 
1095   if (func.getArmStreaming())
1096     llvmFunc->addFnAttr("aarch64_pstate_sm_enabled");
1097   else if (func.getArmLocallyStreaming())
1098     llvmFunc->addFnAttr("aarch64_pstate_sm_body");
1099   else if (func.getArmStreamingCompatible())
1100     llvmFunc->addFnAttr("aarch64_pstate_sm_compatible");
1101 
1102   if (func.getArmNewZa())
1103     llvmFunc->addFnAttr("aarch64_pstate_za_new");
1104 
1105   if (auto targetFeatures = func.getTargetFeatures())
1106     llvmFunc->addFnAttr("target-features", targetFeatures->getFeaturesString());
1107 
1108   if (auto attr = func.getVscaleRange())
1109     llvmFunc->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
1110         getLLVMContext(), attr->getMinRange().getInt(),
1111         attr->getMaxRange().getInt()));
1112 
1113   // Add function attribute frame-pointer, if found.
1114   if (FramePointerKindAttr attr = func.getFramePointerAttr())
1115     llvmFunc->addFnAttr("frame-pointer",
1116                         LLVM::framePointerKind::stringifyFramePointerKind(
1117                             (attr.getFramePointerKind())));
1118 
1119   // First, create all blocks so we can jump to them.
1120   llvm::LLVMContext &llvmContext = llvmFunc->getContext();
1121   for (auto &bb : func) {
1122     auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
1123     llvmBB->insertInto(llvmFunc);
1124     mapBlock(&bb, llvmBB);
1125   }
1126 
1127   // Then, convert blocks one by one in topological order to ensure defs are
1128   // converted before uses.
1129   auto blocks = getTopologicallySortedBlocks(func.getBody());
1130   for (Block *bb : blocks) {
1131     CapturingIRBuilder builder(llvmContext);
1132     if (failed(convertBlockImpl(*bb, bb->isEntryBlock(), builder,
1133                                 /*recordInsertions=*/true)))
1134       return failure();
1135   }
1136 
1137   // After all blocks have been traversed and values mapped, connect the PHI
1138   // nodes to the results of preceding blocks.
1139   detail::connectPHINodes(func.getBody(), *this);
1140 
1141   // Finally, convert dialect attributes attached to the function.
1142   return convertDialectAttributes(func, {});
1143 }
1144 
1145 LogicalResult ModuleTranslation::convertDialectAttributes(
1146     Operation *op, ArrayRef<llvm::Instruction *> instructions) {
1147   for (NamedAttribute attribute : op->getDialectAttrs())
1148     if (failed(iface.amendOperation(op, instructions, attribute, *this)))
1149       return failure();
1150   return success();
1151 }
1152 
1153 /// Converts the function attributes from LLVMFuncOp and attaches them to the
1154 /// llvm::Function.
1155 static void convertFunctionAttributes(LLVMFuncOp func,
1156                                       llvm::Function *llvmFunc) {
1157   if (!func.getMemory())
1158     return;
1159 
1160   MemoryEffectsAttr memEffects = func.getMemoryAttr();
1161 
1162   // Add memory effects incrementally.
1163   llvm::MemoryEffects newMemEffects =
1164       llvm::MemoryEffects(llvm::MemoryEffects::Location::ArgMem,
1165                           convertModRefInfoToLLVM(memEffects.getArgMem()));
1166   newMemEffects |= llvm::MemoryEffects(
1167       llvm::MemoryEffects::Location::InaccessibleMem,
1168       convertModRefInfoToLLVM(memEffects.getInaccessibleMem()));
1169   newMemEffects |=
1170       llvm::MemoryEffects(llvm::MemoryEffects::Location::Other,
1171                           convertModRefInfoToLLVM(memEffects.getOther()));
1172   llvmFunc->setMemoryEffects(newMemEffects);
1173 }
1174 
1175 llvm::AttrBuilder
1176 ModuleTranslation::convertParameterAttrs(DictionaryAttr paramAttrs) {
1177   llvm::AttrBuilder attrBuilder(llvmModule->getContext());
1178 
1179   for (auto [llvmKind, mlirName] : getAttrKindToNameMapping()) {
1180     Attribute attr = paramAttrs.get(mlirName);
1181     // Skip attributes that are not present.
1182     if (!attr)
1183       continue;
1184 
1185     // NOTE: C++17 does not support capturing structured bindings.
1186     llvm::Attribute::AttrKind llvmKindCap = llvmKind;
1187 
1188     llvm::TypeSwitch<Attribute>(attr)
1189         .Case<TypeAttr>([&](auto typeAttr) {
1190           attrBuilder.addTypeAttr(llvmKindCap,
1191                                   convertType(typeAttr.getValue()));
1192         })
1193         .Case<IntegerAttr>([&](auto intAttr) {
1194           attrBuilder.addRawIntAttr(llvmKindCap, intAttr.getInt());
1195         })
1196         .Case<UnitAttr>([&](auto) { attrBuilder.addAttribute(llvmKindCap); });
1197   }
1198 
1199   return attrBuilder;
1200 }
1201 
1202 LogicalResult ModuleTranslation::convertFunctionSignatures() {
1203   // Declare all functions first because there may be function calls that form a
1204   // call graph with cycles, or global initializers that reference functions.
1205   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
1206     llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
1207         function.getName(),
1208         cast<llvm::FunctionType>(convertType(function.getFunctionType())));
1209     llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
1210     llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage()));
1211     llvmFunc->setCallingConv(convertCConvToLLVM(function.getCConv()));
1212     mapFunction(function.getName(), llvmFunc);
1213     addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc);
1214 
1215     // Convert function attributes.
1216     convertFunctionAttributes(function, llvmFunc);
1217 
1218     // Convert function_entry_count attribute to metadata.
1219     if (std::optional<uint64_t> entryCount = function.getFunctionEntryCount())
1220       llvmFunc->setEntryCount(entryCount.value());
1221 
1222     // Convert result attributes.
1223     if (ArrayAttr allResultAttrs = function.getAllResultAttrs()) {
1224       DictionaryAttr resultAttrs = cast<DictionaryAttr>(allResultAttrs[0]);
1225       llvmFunc->addRetAttrs(convertParameterAttrs(resultAttrs));
1226     }
1227 
1228     // Convert argument attributes.
1229     for (auto [argIdx, llvmArg] : llvm::enumerate(llvmFunc->args())) {
1230       if (DictionaryAttr argAttrs = function.getArgAttrDict(argIdx)) {
1231         llvm::AttrBuilder attrBuilder = convertParameterAttrs(argAttrs);
1232         llvmArg.addAttrs(attrBuilder);
1233       }
1234     }
1235 
1236     // Forward the pass-through attributes to LLVM.
1237     if (failed(forwardPassthroughAttributes(
1238             function.getLoc(), function.getPassthrough(), llvmFunc)))
1239       return failure();
1240 
1241     // Convert visibility attribute.
1242     llvmFunc->setVisibility(convertVisibilityToLLVM(function.getVisibility_()));
1243 
1244     // Convert the comdat attribute.
1245     if (std::optional<mlir::SymbolRefAttr> comdat = function.getComdat()) {
1246       auto selectorOp = cast<ComdatSelectorOp>(
1247           SymbolTable::lookupNearestSymbolFrom(function, *comdat));
1248       llvmFunc->setComdat(comdatMapping.lookup(selectorOp));
1249     }
1250 
1251     if (auto gc = function.getGarbageCollector())
1252       llvmFunc->setGC(gc->str());
1253 
1254     if (auto unnamedAddr = function.getUnnamedAddr())
1255       llvmFunc->setUnnamedAddr(convertUnnamedAddrToLLVM(*unnamedAddr));
1256 
1257     if (auto alignment = function.getAlignment())
1258       llvmFunc->setAlignment(llvm::MaybeAlign(*alignment));
1259   }
1260 
1261   return success();
1262 }
1263 
1264 LogicalResult ModuleTranslation::convertFunctions() {
1265   // Convert functions.
1266   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
1267     // Do not convert external functions, but do process dialect attributes
1268     // attached to them.
1269     if (function.isExternal()) {
1270       if (failed(convertDialectAttributes(function, {})))
1271         return failure();
1272       continue;
1273     }
1274 
1275     if (failed(convertOneFunction(function)))
1276       return failure();
1277   }
1278 
1279   return success();
1280 }
1281 
1282 LogicalResult ModuleTranslation::convertComdats() {
1283   for (auto comdatOp : getModuleBody(mlirModule).getOps<ComdatOp>()) {
1284     for (auto selectorOp : comdatOp.getOps<ComdatSelectorOp>()) {
1285       llvm::Module *module = getLLVMModule();
1286       if (module->getComdatSymbolTable().contains(selectorOp.getSymName()))
1287         return emitError(selectorOp.getLoc())
1288                << "comdat selection symbols must be unique even in different "
1289                   "comdat regions";
1290       llvm::Comdat *comdat = module->getOrInsertComdat(selectorOp.getSymName());
1291       comdat->setSelectionKind(convertComdatToLLVM(selectorOp.getComdat()));
1292       comdatMapping.try_emplace(selectorOp, comdat);
1293     }
1294   }
1295   return success();
1296 }
1297 
1298 void ModuleTranslation::setAccessGroupsMetadata(AccessGroupOpInterface op,
1299                                                 llvm::Instruction *inst) {
1300   if (llvm::MDNode *node = loopAnnotationTranslation->getAccessGroups(op))
1301     inst->setMetadata(llvm::LLVMContext::MD_access_group, node);
1302 }
1303 
1304 llvm::MDNode *
1305 ModuleTranslation::getOrCreateAliasScope(AliasScopeAttr aliasScopeAttr) {
1306   auto [scopeIt, scopeInserted] =
1307       aliasScopeMetadataMapping.try_emplace(aliasScopeAttr, nullptr);
1308   if (!scopeInserted)
1309     return scopeIt->second;
1310   llvm::LLVMContext &ctx = llvmModule->getContext();
1311   // Convert the domain metadata node if necessary.
1312   auto [domainIt, insertedDomain] = aliasDomainMetadataMapping.try_emplace(
1313       aliasScopeAttr.getDomain(), nullptr);
1314   if (insertedDomain) {
1315     llvm::SmallVector<llvm::Metadata *, 2> operands;
1316     // Placeholder for self-reference.
1317     operands.push_back({});
1318     if (StringAttr description = aliasScopeAttr.getDomain().getDescription())
1319       operands.push_back(llvm::MDString::get(ctx, description));
1320     domainIt->second = llvm::MDNode::get(ctx, operands);
1321     // Self-reference for uniqueness.
1322     domainIt->second->replaceOperandWith(0, domainIt->second);
1323   }
1324   // Convert the scope metadata node.
1325   assert(domainIt->second && "Scope's domain should already be valid");
1326   llvm::SmallVector<llvm::Metadata *, 3> operands;
1327   // Placeholder for self-reference.
1328   operands.push_back({});
1329   operands.push_back(domainIt->second);
1330   if (StringAttr description = aliasScopeAttr.getDescription())
1331     operands.push_back(llvm::MDString::get(ctx, description));
1332   scopeIt->second = llvm::MDNode::get(ctx, operands);
1333   // Self-reference for uniqueness.
1334   scopeIt->second->replaceOperandWith(0, scopeIt->second);
1335   return scopeIt->second;
1336 }
1337 
1338 llvm::MDNode *ModuleTranslation::getOrCreateAliasScopes(
1339     ArrayRef<AliasScopeAttr> aliasScopeAttrs) {
1340   SmallVector<llvm::Metadata *> nodes;
1341   nodes.reserve(aliasScopeAttrs.size());
1342   for (AliasScopeAttr aliasScopeAttr : aliasScopeAttrs)
1343     nodes.push_back(getOrCreateAliasScope(aliasScopeAttr));
1344   return llvm::MDNode::get(getLLVMContext(), nodes);
1345 }
1346 
1347 void ModuleTranslation::setAliasScopeMetadata(AliasAnalysisOpInterface op,
1348                                               llvm::Instruction *inst) {
1349   auto populateScopeMetadata = [&](ArrayAttr aliasScopeAttrs, unsigned kind) {
1350     if (!aliasScopeAttrs || aliasScopeAttrs.empty())
1351       return;
1352     llvm::MDNode *node = getOrCreateAliasScopes(
1353         llvm::to_vector(aliasScopeAttrs.getAsRange<AliasScopeAttr>()));
1354     inst->setMetadata(kind, node);
1355   };
1356 
1357   populateScopeMetadata(op.getAliasScopesOrNull(),
1358                         llvm::LLVMContext::MD_alias_scope);
1359   populateScopeMetadata(op.getNoAliasScopesOrNull(),
1360                         llvm::LLVMContext::MD_noalias);
1361 }
1362 
1363 llvm::MDNode *ModuleTranslation::getTBAANode(TBAATagAttr tbaaAttr) const {
1364   return tbaaMetadataMapping.lookup(tbaaAttr);
1365 }
1366 
1367 void ModuleTranslation::setTBAAMetadata(AliasAnalysisOpInterface op,
1368                                         llvm::Instruction *inst) {
1369   ArrayAttr tagRefs = op.getTBAATagsOrNull();
1370   if (!tagRefs || tagRefs.empty())
1371     return;
1372 
1373   // LLVM IR currently does not support attaching more than one TBAA access tag
1374   // to a memory accessing instruction. It may be useful to support this in
1375   // future, but for the time being just ignore the metadata if MLIR operation
1376   // has multiple access tags.
1377   if (tagRefs.size() > 1) {
1378     op.emitWarning() << "TBAA access tags were not translated, because LLVM "
1379                         "IR only supports a single tag per instruction";
1380     return;
1381   }
1382 
1383   llvm::MDNode *node = getTBAANode(cast<TBAATagAttr>(tagRefs[0]));
1384   inst->setMetadata(llvm::LLVMContext::MD_tbaa, node);
1385 }
1386 
1387 void ModuleTranslation::setBranchWeightsMetadata(BranchWeightOpInterface op) {
1388   DenseI32ArrayAttr weightsAttr = op.getBranchWeightsOrNull();
1389   if (!weightsAttr)
1390     return;
1391 
1392   llvm::Instruction *inst = isa<CallOp>(op) ? lookupCall(op) : lookupBranch(op);
1393   assert(inst && "expected the operation to have a mapping to an instruction");
1394   SmallVector<uint32_t> weights(weightsAttr.asArrayRef());
1395   inst->setMetadata(
1396       llvm::LLVMContext::MD_prof,
1397       llvm::MDBuilder(getLLVMContext()).createBranchWeights(weights));
1398 }
1399 
1400 LogicalResult ModuleTranslation::createTBAAMetadata() {
1401   llvm::LLVMContext &ctx = llvmModule->getContext();
1402   llvm::IntegerType *offsetTy = llvm::IntegerType::get(ctx, 64);
1403 
1404   // Walk the entire module and create all metadata nodes for the TBAA
1405   // attributes. The code below relies on two invariants of the
1406   // `AttrTypeWalker`:
1407   // 1. Attributes are visited in post-order: Since the attributes create a DAG,
1408   //    this ensures that any lookups into `tbaaMetadataMapping` for child
1409   //    attributes succeed.
1410   // 2. Attributes are only ever visited once: This way we don't leak any
1411   //    LLVM metadata instances.
1412   AttrTypeWalker walker;
1413   walker.addWalk([&](TBAARootAttr root) {
1414     tbaaMetadataMapping.insert(
1415         {root, llvm::MDNode::get(ctx, llvm::MDString::get(ctx, root.getId()))});
1416   });
1417 
1418   walker.addWalk([&](TBAATypeDescriptorAttr descriptor) {
1419     SmallVector<llvm::Metadata *> operands;
1420     operands.push_back(llvm::MDString::get(ctx, descriptor.getId()));
1421     for (TBAAMemberAttr member : descriptor.getMembers()) {
1422       operands.push_back(tbaaMetadataMapping.lookup(member.getTypeDesc()));
1423       operands.push_back(llvm::ConstantAsMetadata::get(
1424           llvm::ConstantInt::get(offsetTy, member.getOffset())));
1425     }
1426 
1427     tbaaMetadataMapping.insert({descriptor, llvm::MDNode::get(ctx, operands)});
1428   });
1429 
1430   walker.addWalk([&](TBAATagAttr tag) {
1431     SmallVector<llvm::Metadata *> operands;
1432 
1433     operands.push_back(tbaaMetadataMapping.lookup(tag.getBaseType()));
1434     operands.push_back(tbaaMetadataMapping.lookup(tag.getAccessType()));
1435 
1436     operands.push_back(llvm::ConstantAsMetadata::get(
1437         llvm::ConstantInt::get(offsetTy, tag.getOffset())));
1438     if (tag.getConstant())
1439       operands.push_back(
1440           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(offsetTy, 1)));
1441 
1442     tbaaMetadataMapping.insert({tag, llvm::MDNode::get(ctx, operands)});
1443   });
1444 
1445   mlirModule->walk([&](AliasAnalysisOpInterface analysisOpInterface) {
1446     if (auto attr = analysisOpInterface.getTBAATagsOrNull())
1447       walker.walk(attr);
1448   });
1449 
1450   return success();
1451 }
1452 
1453 void ModuleTranslation::setLoopMetadata(Operation *op,
1454                                         llvm::Instruction *inst) {
1455   LoopAnnotationAttr attr =
1456       TypeSwitch<Operation *, LoopAnnotationAttr>(op)
1457           .Case<LLVM::BrOp, LLVM::CondBrOp>(
1458               [](auto branchOp) { return branchOp.getLoopAnnotationAttr(); });
1459   if (!attr)
1460     return;
1461   llvm::MDNode *loopMD =
1462       loopAnnotationTranslation->translateLoopAnnotation(attr, op);
1463   inst->setMetadata(llvm::LLVMContext::MD_loop, loopMD);
1464 }
1465 
1466 llvm::Type *ModuleTranslation::convertType(Type type) {
1467   return typeTranslator.translateType(type);
1468 }
1469 
1470 /// A helper to look up remapped operands in the value remapping table.
1471 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) {
1472   SmallVector<llvm::Value *> remapped;
1473   remapped.reserve(values.size());
1474   for (Value v : values)
1475     remapped.push_back(lookupValue(v));
1476   return remapped;
1477 }
1478 
1479 llvm::OpenMPIRBuilder *ModuleTranslation::getOpenMPBuilder() {
1480   if (!ompBuilder) {
1481     ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule);
1482     ompBuilder->initialize();
1483 
1484     // Flags represented as top-level OpenMP dialect attributes are set in
1485     // `OpenMPDialectLLVMIRTranslationInterface::amendOperation()`. Here we set
1486     // the default configuration.
1487     ompBuilder->setConfig(llvm::OpenMPIRBuilderConfig(
1488         /* IsTargetDevice = */ false, /* IsGPU = */ false,
1489         /* OpenMPOffloadMandatory = */ false,
1490         /* HasRequiresReverseOffload = */ false,
1491         /* HasRequiresUnifiedAddress = */ false,
1492         /* HasRequiresUnifiedSharedMemory = */ false,
1493         /* HasRequiresDynamicAllocators = */ false));
1494   }
1495   return ompBuilder.get();
1496 }
1497 
1498 llvm::DILocation *ModuleTranslation::translateLoc(Location loc,
1499                                                   llvm::DILocalScope *scope) {
1500   return debugTranslation->translateLoc(loc, scope);
1501 }
1502 
1503 llvm::DIExpression *
1504 ModuleTranslation::translateExpression(LLVM::DIExpressionAttr attr) {
1505   return debugTranslation->translateExpression(attr);
1506 }
1507 
1508 llvm::DIGlobalVariableExpression *
1509 ModuleTranslation::translateGlobalVariableExpression(
1510     LLVM::DIGlobalVariableExpressionAttr attr) {
1511   return debugTranslation->translateGlobalVariableExpression(attr);
1512 }
1513 
1514 llvm::Metadata *ModuleTranslation::translateDebugInfo(LLVM::DINodeAttr attr) {
1515   return debugTranslation->translate(attr);
1516 }
1517 
1518 llvm::NamedMDNode *
1519 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
1520   return llvmModule->getOrInsertNamedMetadata(name);
1521 }
1522 
1523 void ModuleTranslation::StackFrame::anchor() {}
1524 
1525 static std::unique_ptr<llvm::Module>
1526 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
1527                   StringRef name) {
1528   m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
1529   auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
1530   if (auto dataLayoutAttr =
1531           m->getDiscardableAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) {
1532     llvmModule->setDataLayout(cast<StringAttr>(dataLayoutAttr).getValue());
1533   } else {
1534     FailureOr<llvm::DataLayout> llvmDataLayout(llvm::DataLayout(""));
1535     if (auto iface = dyn_cast<DataLayoutOpInterface>(m)) {
1536       if (DataLayoutSpecInterface spec = iface.getDataLayoutSpec()) {
1537         llvmDataLayout =
1538             translateDataLayout(spec, DataLayout(iface), m->getLoc());
1539       }
1540     } else if (auto mod = dyn_cast<ModuleOp>(m)) {
1541       if (DataLayoutSpecInterface spec = mod.getDataLayoutSpec()) {
1542         llvmDataLayout =
1543             translateDataLayout(spec, DataLayout(mod), m->getLoc());
1544       }
1545     }
1546     if (failed(llvmDataLayout))
1547       return nullptr;
1548     llvmModule->setDataLayout(*llvmDataLayout);
1549   }
1550   if (auto targetTripleAttr =
1551           m->getDiscardableAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
1552     llvmModule->setTargetTriple(cast<StringAttr>(targetTripleAttr).getValue());
1553 
1554   return llvmModule;
1555 }
1556 
1557 std::unique_ptr<llvm::Module>
1558 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
1559                               StringRef name) {
1560   if (!satisfiesLLVMModule(module)) {
1561     module->emitOpError("can not be translated to an LLVMIR module");
1562     return nullptr;
1563   }
1564 
1565   std::unique_ptr<llvm::Module> llvmModule =
1566       prepareLLVMModule(module, llvmContext, name);
1567   if (!llvmModule)
1568     return nullptr;
1569 
1570   LLVM::ensureDistinctSuccessors(module);
1571 
1572   ModuleTranslation translator(module, std::move(llvmModule));
1573   llvm::IRBuilder<> llvmBuilder(llvmContext);
1574 
1575   // Convert module before functions and operations inside, so dialect
1576   // attributes can be used to change dialect-specific global configurations via
1577   // `amendOperation()`. These configurations can then influence the translation
1578   // of operations afterwards.
1579   if (failed(translator.convertOperation(*module, llvmBuilder)))
1580     return nullptr;
1581 
1582   if (failed(translator.convertComdats()))
1583     return nullptr;
1584   if (failed(translator.convertFunctionSignatures()))
1585     return nullptr;
1586   if (failed(translator.convertGlobals()))
1587     return nullptr;
1588   if (failed(translator.createTBAAMetadata()))
1589     return nullptr;
1590 
1591   // Convert other top-level operations if possible.
1592   for (Operation &o : getModuleBody(module).getOperations()) {
1593     if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp,
1594              LLVM::GlobalDtorsOp, LLVM::ComdatOp>(&o) &&
1595         !o.hasTrait<OpTrait::IsTerminator>() &&
1596         failed(translator.convertOperation(o, llvmBuilder))) {
1597       return nullptr;
1598     }
1599   }
1600 
1601   // Operations in function bodies with symbolic references must be converted
1602   // after the top-level operations they refer to are declared, so we do it
1603   // last.
1604   if (failed(translator.convertFunctions()))
1605     return nullptr;
1606 
1607   if (llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
1608     return nullptr;
1609 
1610   return std::move(translator.llvmModule);
1611 }
1612