1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "AttrKindDetail.h" 17 #include "DebugTranslation.h" 18 #include "LoopAnnotationTranslation.h" 19 #include "mlir/Analysis/TopologicalSortUtils.h" 20 #include "mlir/Dialect/DLTI/DLTI.h" 21 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 22 #include "mlir/Dialect/LLVMIR/LLVMInterfaces.h" 23 #include "mlir/Dialect/LLVMIR/Transforms/DIExpressionLegalization.h" 24 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h" 25 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 26 #include "mlir/Dialect/OpenMP/OpenMPInterfaces.h" 27 #include "mlir/IR/AttrTypeSubElements.h" 28 #include "mlir/IR/Attributes.h" 29 #include "mlir/IR/BuiltinOps.h" 30 #include "mlir/IR/BuiltinTypes.h" 31 #include "mlir/IR/DialectResourceBlobManager.h" 32 #include "mlir/IR/RegionGraphTraits.h" 33 #include "mlir/Support/LLVM.h" 34 #include "mlir/Support/LogicalResult.h" 35 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h" 36 #include "mlir/Target/LLVMIR/TypeToLLVM.h" 37 38 #include "llvm/ADT/PostOrderIterator.h" 39 #include "llvm/ADT/SetVector.h" 40 #include "llvm/ADT/StringExtras.h" 41 #include "llvm/ADT/TypeSwitch.h" 42 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/CFG.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DerivedTypes.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/IntrinsicsNVPTX.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/Verifier.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 57 #include "llvm/Transforms/Utils/Cloning.h" 58 #include "llvm/Transforms/Utils/ModuleUtils.h" 59 #include <optional> 60 61 #define DEBUG_TYPE "llvm-dialect-to-llvm-ir" 62 63 using namespace mlir; 64 using namespace mlir::LLVM; 65 using namespace mlir::LLVM::detail; 66 67 extern llvm::cl::opt<bool> UseNewDbgInfoFormat; 68 69 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 70 71 namespace { 72 /// A customized inserter for LLVM's IRBuilder that captures all LLVM IR 73 /// instructions that are created for future reference. 74 /// 75 /// This is intended to be used with the `CollectionScope` RAII object: 76 /// 77 /// llvm::IRBuilder<..., InstructionCapturingInserter> builder; 78 /// { 79 /// InstructionCapturingInserter::CollectionScope scope(builder); 80 /// // Call IRBuilder methods as usual. 81 /// 82 /// // This will return a list of all instructions created by the builder, 83 /// // in order of creation. 84 /// builder.getInserter().getCapturedInstructions(); 85 /// } 86 /// // This will return an empty list. 87 /// builder.getInserter().getCapturedInstructions(); 88 /// 89 /// The capturing functionality is _disabled_ by default for performance 90 /// consideration. It needs to be explicitly enabled, which is achieved by 91 /// creating a `CollectionScope`. 92 class InstructionCapturingInserter : public llvm::IRBuilderCallbackInserter { 93 public: 94 /// Constructs the inserter. 95 InstructionCapturingInserter() 96 : llvm::IRBuilderCallbackInserter([this](llvm::Instruction *instruction) { 97 if (LLVM_LIKELY(enabled)) 98 capturedInstructions.push_back(instruction); 99 }) {} 100 101 /// Returns the list of LLVM IR instructions captured since the last cleanup. 102 ArrayRef<llvm::Instruction *> getCapturedInstructions() const { 103 return capturedInstructions; 104 } 105 106 /// Clears the list of captured LLVM IR instructions. 107 void clearCapturedInstructions() { capturedInstructions.clear(); } 108 109 /// RAII object enabling the capture of created LLVM IR instructions. 110 class CollectionScope { 111 public: 112 /// Creates the scope for the given inserter. 113 CollectionScope(llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing); 114 115 /// Ends the scope. 116 ~CollectionScope(); 117 118 ArrayRef<llvm::Instruction *> getCapturedInstructions() { 119 if (!inserter) 120 return {}; 121 return inserter->getCapturedInstructions(); 122 } 123 124 private: 125 /// Back reference to the inserter. 126 InstructionCapturingInserter *inserter = nullptr; 127 128 /// List of instructions in the inserter prior to this scope. 129 SmallVector<llvm::Instruction *> previouslyCollectedInstructions; 130 131 /// Whether the inserter was enabled prior to this scope. 132 bool wasEnabled; 133 }; 134 135 /// Enable or disable the capturing mechanism. 136 void setEnabled(bool enabled = true) { this->enabled = enabled; } 137 138 private: 139 /// List of captured instructions. 140 SmallVector<llvm::Instruction *> capturedInstructions; 141 142 /// Whether the collection is enabled. 143 bool enabled = false; 144 }; 145 146 using CapturingIRBuilder = 147 llvm::IRBuilder<llvm::ConstantFolder, InstructionCapturingInserter>; 148 } // namespace 149 150 InstructionCapturingInserter::CollectionScope::CollectionScope( 151 llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing) { 152 153 if (!isBuilderCapturing) 154 return; 155 156 auto &capturingIRBuilder = static_cast<CapturingIRBuilder &>(irBuilder); 157 inserter = &capturingIRBuilder.getInserter(); 158 wasEnabled = inserter->enabled; 159 if (wasEnabled) 160 previouslyCollectedInstructions.swap(inserter->capturedInstructions); 161 inserter->setEnabled(true); 162 } 163 164 InstructionCapturingInserter::CollectionScope::~CollectionScope() { 165 if (!inserter) 166 return; 167 168 previouslyCollectedInstructions.swap(inserter->capturedInstructions); 169 // If collection was enabled (likely in another, surrounding scope), keep 170 // the instructions collected in this scope. 171 if (wasEnabled) { 172 llvm::append_range(inserter->capturedInstructions, 173 previouslyCollectedInstructions); 174 } 175 inserter->setEnabled(wasEnabled); 176 } 177 178 /// Translates the given data layout spec attribute to the LLVM IR data layout. 179 /// Only integer, float, pointer and endianness entries are currently supported. 180 static FailureOr<llvm::DataLayout> 181 translateDataLayout(DataLayoutSpecInterface attribute, 182 const DataLayout &dataLayout, 183 std::optional<Location> loc = std::nullopt) { 184 if (!loc) 185 loc = UnknownLoc::get(attribute.getContext()); 186 187 // Translate the endianness attribute. 188 std::string llvmDataLayout; 189 llvm::raw_string_ostream layoutStream(llvmDataLayout); 190 for (DataLayoutEntryInterface entry : attribute.getEntries()) { 191 auto key = llvm::dyn_cast_if_present<StringAttr>(entry.getKey()); 192 if (!key) 193 continue; 194 if (key.getValue() == DLTIDialect::kDataLayoutEndiannessKey) { 195 auto value = cast<StringAttr>(entry.getValue()); 196 bool isLittleEndian = 197 value.getValue() == DLTIDialect::kDataLayoutEndiannessLittle; 198 layoutStream << "-" << (isLittleEndian ? "e" : "E"); 199 layoutStream.flush(); 200 continue; 201 } 202 if (key.getValue() == DLTIDialect::kDataLayoutProgramMemorySpaceKey) { 203 auto value = cast<IntegerAttr>(entry.getValue()); 204 uint64_t space = value.getValue().getZExtValue(); 205 // Skip the default address space. 206 if (space == 0) 207 continue; 208 layoutStream << "-P" << space; 209 layoutStream.flush(); 210 continue; 211 } 212 if (key.getValue() == DLTIDialect::kDataLayoutGlobalMemorySpaceKey) { 213 auto value = cast<IntegerAttr>(entry.getValue()); 214 uint64_t space = value.getValue().getZExtValue(); 215 // Skip the default address space. 216 if (space == 0) 217 continue; 218 layoutStream << "-G" << space; 219 layoutStream.flush(); 220 continue; 221 } 222 if (key.getValue() == DLTIDialect::kDataLayoutAllocaMemorySpaceKey) { 223 auto value = cast<IntegerAttr>(entry.getValue()); 224 uint64_t space = value.getValue().getZExtValue(); 225 // Skip the default address space. 226 if (space == 0) 227 continue; 228 layoutStream << "-A" << space; 229 layoutStream.flush(); 230 continue; 231 } 232 if (key.getValue() == DLTIDialect::kDataLayoutStackAlignmentKey) { 233 auto value = cast<IntegerAttr>(entry.getValue()); 234 uint64_t alignment = value.getValue().getZExtValue(); 235 // Skip the default stack alignment. 236 if (alignment == 0) 237 continue; 238 layoutStream << "-S" << alignment; 239 layoutStream.flush(); 240 continue; 241 } 242 emitError(*loc) << "unsupported data layout key " << key; 243 return failure(); 244 } 245 246 // Go through the list of entries to check which types are explicitly 247 // specified in entries. Where possible, data layout queries are used instead 248 // of directly inspecting the entries. 249 for (DataLayoutEntryInterface entry : attribute.getEntries()) { 250 auto type = llvm::dyn_cast_if_present<Type>(entry.getKey()); 251 if (!type) 252 continue; 253 // Data layout for the index type is irrelevant at this point. 254 if (isa<IndexType>(type)) 255 continue; 256 layoutStream << "-"; 257 LogicalResult result = 258 llvm::TypeSwitch<Type, LogicalResult>(type) 259 .Case<IntegerType, Float16Type, Float32Type, Float64Type, 260 Float80Type, Float128Type>([&](Type type) -> LogicalResult { 261 if (auto intType = dyn_cast<IntegerType>(type)) { 262 if (intType.getSignedness() != IntegerType::Signless) 263 return emitError(*loc) 264 << "unsupported data layout for non-signless integer " 265 << intType; 266 layoutStream << "i"; 267 } else { 268 layoutStream << "f"; 269 } 270 uint64_t size = dataLayout.getTypeSizeInBits(type); 271 uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u; 272 uint64_t preferred = 273 dataLayout.getTypePreferredAlignment(type) * 8u; 274 layoutStream << size << ":" << abi; 275 if (abi != preferred) 276 layoutStream << ":" << preferred; 277 return success(); 278 }) 279 .Case([&](LLVMPointerType type) { 280 layoutStream << "p" << type.getAddressSpace() << ":"; 281 uint64_t size = dataLayout.getTypeSizeInBits(type); 282 uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u; 283 uint64_t preferred = 284 dataLayout.getTypePreferredAlignment(type) * 8u; 285 uint64_t index = *dataLayout.getTypeIndexBitwidth(type); 286 layoutStream << size << ":" << abi << ":" << preferred << ":" 287 << index; 288 return success(); 289 }) 290 .Default([loc](Type type) { 291 return emitError(*loc) 292 << "unsupported type in data layout: " << type; 293 }); 294 if (failed(result)) 295 return failure(); 296 } 297 layoutStream.flush(); 298 StringRef layoutSpec(llvmDataLayout); 299 if (layoutSpec.starts_with("-")) 300 layoutSpec = layoutSpec.drop_front(); 301 302 return llvm::DataLayout(layoutSpec); 303 } 304 305 /// Builds a constant of a sequential LLVM type `type`, potentially containing 306 /// other sequential types recursively, from the individual constant values 307 /// provided in `constants`. `shape` contains the number of elements in nested 308 /// sequential types. Reports errors at `loc` and returns nullptr on error. 309 static llvm::Constant * 310 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 311 ArrayRef<int64_t> shape, llvm::Type *type, 312 Location loc) { 313 if (shape.empty()) { 314 llvm::Constant *result = constants.front(); 315 constants = constants.drop_front(); 316 return result; 317 } 318 319 llvm::Type *elementType; 320 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 321 elementType = arrayTy->getElementType(); 322 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 323 elementType = vectorTy->getElementType(); 324 } else { 325 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 326 return nullptr; 327 } 328 329 SmallVector<llvm::Constant *, 8> nested; 330 nested.reserve(shape.front()); 331 for (int64_t i = 0; i < shape.front(); ++i) { 332 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 333 elementType, loc)); 334 if (!nested.back()) 335 return nullptr; 336 } 337 338 if (shape.size() == 1 && type->isVectorTy()) 339 return llvm::ConstantVector::get(nested); 340 return llvm::ConstantArray::get( 341 llvm::ArrayType::get(elementType, shape.front()), nested); 342 } 343 344 /// Returns the first non-sequential type nested in sequential types. 345 static llvm::Type *getInnermostElementType(llvm::Type *type) { 346 do { 347 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 348 type = arrayTy->getElementType(); 349 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 350 type = vectorTy->getElementType(); 351 } else { 352 return type; 353 } 354 } while (true); 355 } 356 357 /// Convert a dense elements attribute to an LLVM IR constant using its raw data 358 /// storage if possible. This supports elements attributes of tensor or vector 359 /// type and avoids constructing separate objects for individual values of the 360 /// innermost dimension. Constants for other dimensions are still constructed 361 /// recursively. Returns null if constructing from raw data is not supported for 362 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports 363 /// other errors at `loc`. 364 static llvm::Constant * 365 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr, 366 llvm::Type *llvmType, 367 const ModuleTranslation &moduleTranslation) { 368 if (!denseElementsAttr) 369 return nullptr; 370 371 llvm::Type *innermostLLVMType = getInnermostElementType(llvmType); 372 if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType)) 373 return nullptr; 374 375 ShapedType type = denseElementsAttr.getType(); 376 if (type.getNumElements() == 0) 377 return nullptr; 378 379 // Check that the raw data size matches what is expected for the scalar size. 380 // TODO: in theory, we could repack the data here to keep constructing from 381 // raw data. 382 // TODO: we may also need to consider endianness when cross-compiling to an 383 // architecture where it is different. 384 int64_t elementByteSize = denseElementsAttr.getRawData().size() / 385 denseElementsAttr.getNumElements(); 386 if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits()) 387 return nullptr; 388 389 // Compute the shape of all dimensions but the innermost. Note that the 390 // innermost dimension may be that of the vector element type. 391 bool hasVectorElementType = isa<VectorType>(type.getElementType()); 392 int64_t numAggregates = 393 denseElementsAttr.getNumElements() / 394 (hasVectorElementType ? 1 395 : denseElementsAttr.getType().getShape().back()); 396 ArrayRef<int64_t> outerShape = type.getShape(); 397 if (!hasVectorElementType) 398 outerShape = outerShape.drop_back(); 399 400 // Handle the case of vector splat, LLVM has special support for it. 401 if (denseElementsAttr.isSplat() && 402 (isa<VectorType>(type) || hasVectorElementType)) { 403 llvm::Constant *splatValue = LLVM::detail::getLLVMConstant( 404 innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc, 405 moduleTranslation); 406 llvm::Constant *splatVector = 407 llvm::ConstantDataVector::getSplat(0, splatValue); 408 SmallVector<llvm::Constant *> constants(numAggregates, splatVector); 409 ArrayRef<llvm::Constant *> constantsRef = constants; 410 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 411 } 412 if (denseElementsAttr.isSplat()) 413 return nullptr; 414 415 // In case of non-splat, create a constructor for the innermost constant from 416 // a piece of raw data. 417 std::function<llvm::Constant *(StringRef)> buildCstData; 418 if (isa<TensorType>(type)) { 419 auto vectorElementType = dyn_cast<VectorType>(type.getElementType()); 420 if (vectorElementType && vectorElementType.getRank() == 1) { 421 buildCstData = [&](StringRef data) { 422 return llvm::ConstantDataVector::getRaw( 423 data, vectorElementType.getShape().back(), innermostLLVMType); 424 }; 425 } else if (!vectorElementType) { 426 buildCstData = [&](StringRef data) { 427 return llvm::ConstantDataArray::getRaw(data, type.getShape().back(), 428 innermostLLVMType); 429 }; 430 } 431 } else if (isa<VectorType>(type)) { 432 buildCstData = [&](StringRef data) { 433 return llvm::ConstantDataVector::getRaw(data, type.getShape().back(), 434 innermostLLVMType); 435 }; 436 } 437 if (!buildCstData) 438 return nullptr; 439 440 // Create innermost constants and defer to the default constant creation 441 // mechanism for other dimensions. 442 SmallVector<llvm::Constant *> constants; 443 int64_t aggregateSize = denseElementsAttr.getType().getShape().back() * 444 (innermostLLVMType->getScalarSizeInBits() / 8); 445 constants.reserve(numAggregates); 446 for (unsigned i = 0; i < numAggregates; ++i) { 447 StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize, 448 aggregateSize); 449 constants.push_back(buildCstData(data)); 450 } 451 452 ArrayRef<llvm::Constant *> constantsRef = constants; 453 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 454 } 455 456 /// Convert a dense resource elements attribute to an LLVM IR constant using its 457 /// raw data storage if possible. This supports elements attributes of tensor or 458 /// vector type and avoids constructing separate objects for individual values 459 /// of the innermost dimension. Constants for other dimensions are still 460 /// constructed recursively. Returns nullptr on failure and emits errors at 461 /// `loc`. 462 static llvm::Constant *convertDenseResourceElementsAttr( 463 Location loc, DenseResourceElementsAttr denseResourceAttr, 464 llvm::Type *llvmType, const ModuleTranslation &moduleTranslation) { 465 assert(denseResourceAttr && "expected non-null attribute"); 466 467 llvm::Type *innermostLLVMType = getInnermostElementType(llvmType); 468 if (!llvm::ConstantDataSequential::isElementTypeCompatible( 469 innermostLLVMType)) { 470 emitError(loc, "no known conversion for innermost element type"); 471 return nullptr; 472 } 473 474 ShapedType type = denseResourceAttr.getType(); 475 assert(type.getNumElements() > 0 && "Expected non-empty elements attribute"); 476 477 AsmResourceBlob *blob = denseResourceAttr.getRawHandle().getBlob(); 478 if (!blob) { 479 emitError(loc, "resource does not exist"); 480 return nullptr; 481 } 482 483 ArrayRef<char> rawData = blob->getData(); 484 485 // Check that the raw data size matches what is expected for the scalar size. 486 // TODO: in theory, we could repack the data here to keep constructing from 487 // raw data. 488 // TODO: we may also need to consider endianness when cross-compiling to an 489 // architecture where it is different. 490 int64_t numElements = denseResourceAttr.getType().getNumElements(); 491 int64_t elementByteSize = rawData.size() / numElements; 492 if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits()) { 493 emitError(loc, "raw data size does not match element type size"); 494 return nullptr; 495 } 496 497 // Compute the shape of all dimensions but the innermost. Note that the 498 // innermost dimension may be that of the vector element type. 499 bool hasVectorElementType = isa<VectorType>(type.getElementType()); 500 int64_t numAggregates = 501 numElements / (hasVectorElementType 502 ? 1 503 : denseResourceAttr.getType().getShape().back()); 504 ArrayRef<int64_t> outerShape = type.getShape(); 505 if (!hasVectorElementType) 506 outerShape = outerShape.drop_back(); 507 508 // Create a constructor for the innermost constant from a piece of raw data. 509 std::function<llvm::Constant *(StringRef)> buildCstData; 510 if (isa<TensorType>(type)) { 511 auto vectorElementType = dyn_cast<VectorType>(type.getElementType()); 512 if (vectorElementType && vectorElementType.getRank() == 1) { 513 buildCstData = [&](StringRef data) { 514 return llvm::ConstantDataVector::getRaw( 515 data, vectorElementType.getShape().back(), innermostLLVMType); 516 }; 517 } else if (!vectorElementType) { 518 buildCstData = [&](StringRef data) { 519 return llvm::ConstantDataArray::getRaw(data, type.getShape().back(), 520 innermostLLVMType); 521 }; 522 } 523 } else if (isa<VectorType>(type)) { 524 buildCstData = [&](StringRef data) { 525 return llvm::ConstantDataVector::getRaw(data, type.getShape().back(), 526 innermostLLVMType); 527 }; 528 } 529 if (!buildCstData) { 530 emitError(loc, "unsupported dense_resource type"); 531 return nullptr; 532 } 533 534 // Create innermost constants and defer to the default constant creation 535 // mechanism for other dimensions. 536 SmallVector<llvm::Constant *> constants; 537 int64_t aggregateSize = denseResourceAttr.getType().getShape().back() * 538 (innermostLLVMType->getScalarSizeInBits() / 8); 539 constants.reserve(numAggregates); 540 for (unsigned i = 0; i < numAggregates; ++i) { 541 StringRef data(rawData.data() + i * aggregateSize, aggregateSize); 542 constants.push_back(buildCstData(data)); 543 } 544 545 ArrayRef<llvm::Constant *> constantsRef = constants; 546 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 547 } 548 549 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 550 /// This currently supports integer, floating point, splat and dense element 551 /// attributes and combinations thereof. Also, an array attribute with two 552 /// elements is supported to represent a complex constant. In case of error, 553 /// report it to `loc` and return nullptr. 554 llvm::Constant *mlir::LLVM::detail::getLLVMConstant( 555 llvm::Type *llvmType, Attribute attr, Location loc, 556 const ModuleTranslation &moduleTranslation) { 557 if (!attr) 558 return llvm::UndefValue::get(llvmType); 559 if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) { 560 auto arrayAttr = dyn_cast<ArrayAttr>(attr); 561 if (!arrayAttr || arrayAttr.size() != 2) { 562 emitError(loc, "expected struct type to be a complex number"); 563 return nullptr; 564 } 565 llvm::Type *elementType = structType->getElementType(0); 566 llvm::Constant *real = 567 getLLVMConstant(elementType, arrayAttr[0], loc, moduleTranslation); 568 if (!real) 569 return nullptr; 570 llvm::Constant *imag = 571 getLLVMConstant(elementType, arrayAttr[1], loc, moduleTranslation); 572 if (!imag) 573 return nullptr; 574 return llvm::ConstantStruct::get(structType, {real, imag}); 575 } 576 // For integer types, we allow a mismatch in sizes as the index type in 577 // MLIR might have a different size than the index type in the LLVM module. 578 if (auto intAttr = dyn_cast<IntegerAttr>(attr)) 579 return llvm::ConstantInt::get( 580 llvmType, 581 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); 582 if (auto floatAttr = dyn_cast<FloatAttr>(attr)) { 583 const llvm::fltSemantics &sem = floatAttr.getValue().getSemantics(); 584 // Special case for 8-bit floats, which are represented by integers due to 585 // the lack of native fp8 types in LLVM at the moment. Additionally, handle 586 // targets (like AMDGPU) that don't implement bfloat and convert all bfloats 587 // to i16. 588 unsigned floatWidth = APFloat::getSizeInBits(sem); 589 if (llvmType->isIntegerTy(floatWidth)) 590 return llvm::ConstantInt::get(llvmType, 591 floatAttr.getValue().bitcastToAPInt()); 592 if (llvmType != 593 llvm::Type::getFloatingPointTy(llvmType->getContext(), 594 floatAttr.getValue().getSemantics())) { 595 emitError(loc, "FloatAttr does not match expected type of the constant"); 596 return nullptr; 597 } 598 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 599 } 600 if (auto funcAttr = dyn_cast<FlatSymbolRefAttr>(attr)) 601 return llvm::ConstantExpr::getBitCast( 602 moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType); 603 if (auto splatAttr = dyn_cast<SplatElementsAttr>(attr)) { 604 llvm::Type *elementType; 605 uint64_t numElements; 606 bool isScalable = false; 607 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) { 608 elementType = arrayTy->getElementType(); 609 numElements = arrayTy->getNumElements(); 610 } else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) { 611 elementType = fVectorTy->getElementType(); 612 numElements = fVectorTy->getNumElements(); 613 } else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) { 614 elementType = sVectorTy->getElementType(); 615 numElements = sVectorTy->getMinNumElements(); 616 isScalable = true; 617 } else { 618 llvm_unreachable("unrecognized constant vector type"); 619 } 620 // Splat value is a scalar. Extract it only if the element type is not 621 // another sequence type. The recursion terminates because each step removes 622 // one outer sequential type. 623 bool elementTypeSequential = 624 isa<llvm::ArrayType, llvm::VectorType>(elementType); 625 llvm::Constant *child = getLLVMConstant( 626 elementType, 627 elementTypeSequential ? splatAttr 628 : splatAttr.getSplatValue<Attribute>(), 629 loc, moduleTranslation); 630 if (!child) 631 return nullptr; 632 if (llvmType->isVectorTy()) 633 return llvm::ConstantVector::getSplat( 634 llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child); 635 if (llvmType->isArrayTy()) { 636 auto *arrayType = llvm::ArrayType::get(elementType, numElements); 637 if (child->isZeroValue()) { 638 return llvm::ConstantAggregateZero::get(arrayType); 639 } else { 640 if (llvm::ConstantDataSequential::isElementTypeCompatible( 641 elementType)) { 642 // TODO: Handle all compatible types. This code only handles integer. 643 if (llvm::IntegerType *iTy = 644 dyn_cast<llvm::IntegerType>(elementType)) { 645 if (llvm::ConstantInt *ci = dyn_cast<llvm::ConstantInt>(child)) { 646 if (ci->getBitWidth() == 8) { 647 SmallVector<int8_t> constants(numElements, ci->getZExtValue()); 648 return llvm::ConstantDataArray::get(elementType->getContext(), 649 constants); 650 } 651 if (ci->getBitWidth() == 16) { 652 SmallVector<int16_t> constants(numElements, ci->getZExtValue()); 653 return llvm::ConstantDataArray::get(elementType->getContext(), 654 constants); 655 } 656 if (ci->getBitWidth() == 32) { 657 SmallVector<int32_t> constants(numElements, ci->getZExtValue()); 658 return llvm::ConstantDataArray::get(elementType->getContext(), 659 constants); 660 } 661 if (ci->getBitWidth() == 64) { 662 SmallVector<int64_t> constants(numElements, ci->getZExtValue()); 663 return llvm::ConstantDataArray::get(elementType->getContext(), 664 constants); 665 } 666 } 667 } 668 } 669 // std::vector is used here to accomodate large number of elements that 670 // exceed SmallVector capacity. 671 std::vector<llvm::Constant *> constants(numElements, child); 672 return llvm::ConstantArray::get(arrayType, constants); 673 } 674 } 675 } 676 677 // Try using raw elements data if possible. 678 if (llvm::Constant *result = 679 convertDenseElementsAttr(loc, dyn_cast<DenseElementsAttr>(attr), 680 llvmType, moduleTranslation)) { 681 return result; 682 } 683 684 if (auto denseResourceAttr = dyn_cast<DenseResourceElementsAttr>(attr)) { 685 return convertDenseResourceElementsAttr(loc, denseResourceAttr, llvmType, 686 moduleTranslation); 687 } 688 689 // Fall back to element-by-element construction otherwise. 690 if (auto elementsAttr = dyn_cast<ElementsAttr>(attr)) { 691 assert(elementsAttr.getShapedType().hasStaticShape()); 692 assert(!elementsAttr.getShapedType().getShape().empty() && 693 "unexpected empty elements attribute shape"); 694 695 SmallVector<llvm::Constant *, 8> constants; 696 constants.reserve(elementsAttr.getNumElements()); 697 llvm::Type *innermostType = getInnermostElementType(llvmType); 698 for (auto n : elementsAttr.getValues<Attribute>()) { 699 constants.push_back( 700 getLLVMConstant(innermostType, n, loc, moduleTranslation)); 701 if (!constants.back()) 702 return nullptr; 703 } 704 ArrayRef<llvm::Constant *> constantsRef = constants; 705 llvm::Constant *result = buildSequentialConstant( 706 constantsRef, elementsAttr.getShapedType().getShape(), llvmType, loc); 707 assert(constantsRef.empty() && "did not consume all elemental constants"); 708 return result; 709 } 710 711 if (auto stringAttr = dyn_cast<StringAttr>(attr)) { 712 return llvm::ConstantDataArray::get( 713 moduleTranslation.getLLVMContext(), 714 ArrayRef<char>{stringAttr.getValue().data(), 715 stringAttr.getValue().size()}); 716 } 717 emitError(loc, "unsupported constant value"); 718 return nullptr; 719 } 720 721 ModuleTranslation::ModuleTranslation(Operation *module, 722 std::unique_ptr<llvm::Module> llvmModule) 723 : mlirModule(module), llvmModule(std::move(llvmModule)), 724 debugTranslation( 725 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 726 loopAnnotationTranslation(std::make_unique<LoopAnnotationTranslation>( 727 *this, *this->llvmModule)), 728 typeTranslator(this->llvmModule->getContext()), 729 iface(module->getContext()) { 730 assert(satisfiesLLVMModule(mlirModule) && 731 "mlirModule should honor LLVM's module semantics."); 732 } 733 734 ModuleTranslation::~ModuleTranslation() { 735 if (ompBuilder) 736 ompBuilder->finalize(); 737 } 738 739 void ModuleTranslation::forgetMapping(Region ®ion) { 740 SmallVector<Region *> toProcess; 741 toProcess.push_back(®ion); 742 while (!toProcess.empty()) { 743 Region *current = toProcess.pop_back_val(); 744 for (Block &block : *current) { 745 blockMapping.erase(&block); 746 for (Value arg : block.getArguments()) 747 valueMapping.erase(arg); 748 for (Operation &op : block) { 749 for (Value value : op.getResults()) 750 valueMapping.erase(value); 751 if (op.hasSuccessors()) 752 branchMapping.erase(&op); 753 if (isa<LLVM::GlobalOp>(op)) 754 globalsMapping.erase(&op); 755 if (isa<LLVM::CallOp>(op)) 756 callMapping.erase(&op); 757 llvm::append_range( 758 toProcess, 759 llvm::map_range(op.getRegions(), [](Region &r) { return &r; })); 760 } 761 } 762 } 763 } 764 765 /// Get the SSA value passed to the current block from the terminator operation 766 /// of its predecessor. 767 static Value getPHISourceValue(Block *current, Block *pred, 768 unsigned numArguments, unsigned index) { 769 Operation &terminator = *pred->getTerminator(); 770 if (isa<LLVM::BrOp>(terminator)) 771 return terminator.getOperand(index); 772 773 #ifndef NDEBUG 774 llvm::SmallPtrSet<Block *, 4> seenSuccessors; 775 for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) { 776 Block *successor = terminator.getSuccessor(i); 777 auto branch = cast<BranchOpInterface>(terminator); 778 SuccessorOperands successorOperands = branch.getSuccessorOperands(i); 779 assert( 780 (!seenSuccessors.contains(successor) || successorOperands.empty()) && 781 "successors with arguments in LLVM branches must be different blocks"); 782 seenSuccessors.insert(successor); 783 } 784 #endif 785 786 // For instructions that branch based on a condition value, we need to take 787 // the operands for the branch that was taken. 788 if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) { 789 // For conditional branches, we take the operands from either the "true" or 790 // the "false" branch. 791 return condBranchOp.getSuccessor(0) == current 792 ? condBranchOp.getTrueDestOperands()[index] 793 : condBranchOp.getFalseDestOperands()[index]; 794 } 795 796 if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) { 797 // For switches, we take the operands from either the default case, or from 798 // the case branch that was taken. 799 if (switchOp.getDefaultDestination() == current) 800 return switchOp.getDefaultOperands()[index]; 801 for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations())) 802 if (i.value() == current) 803 return switchOp.getCaseOperands(i.index())[index]; 804 } 805 806 if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) { 807 return invokeOp.getNormalDest() == current 808 ? invokeOp.getNormalDestOperands()[index] 809 : invokeOp.getUnwindDestOperands()[index]; 810 } 811 812 llvm_unreachable( 813 "only branch, switch or invoke operations can be terminators " 814 "of a block that has successors"); 815 } 816 817 /// Connect the PHI nodes to the results of preceding blocks. 818 void mlir::LLVM::detail::connectPHINodes(Region ®ion, 819 const ModuleTranslation &state) { 820 // Skip the first block, it cannot be branched to and its arguments correspond 821 // to the arguments of the LLVM function. 822 for (Block &bb : llvm::drop_begin(region)) { 823 llvm::BasicBlock *llvmBB = state.lookupBlock(&bb); 824 auto phis = llvmBB->phis(); 825 auto numArguments = bb.getNumArguments(); 826 assert(numArguments == std::distance(phis.begin(), phis.end())); 827 for (auto [index, phiNode] : llvm::enumerate(phis)) { 828 for (auto *pred : bb.getPredecessors()) { 829 // Find the LLVM IR block that contains the converted terminator 830 // instruction and use it in the PHI node. Note that this block is not 831 // necessarily the same as state.lookupBlock(pred), some operations 832 // (in particular, OpenMP operations using OpenMPIRBuilder) may have 833 // split the blocks. 834 llvm::Instruction *terminator = 835 state.lookupBranch(pred->getTerminator()); 836 assert(terminator && "missing the mapping for a terminator"); 837 phiNode.addIncoming(state.lookupValue(getPHISourceValue( 838 &bb, pred, numArguments, index)), 839 terminator->getParent()); 840 } 841 } 842 } 843 } 844 845 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall( 846 llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic, 847 ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) { 848 llvm::Module *module = builder.GetInsertBlock()->getModule(); 849 llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys); 850 return builder.CreateCall(fn, args); 851 } 852 853 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall( 854 llvm::IRBuilderBase &builder, ModuleTranslation &moduleTranslation, 855 Operation *intrOp, llvm::Intrinsic::ID intrinsic, unsigned numResults, 856 ArrayRef<unsigned> overloadedResults, ArrayRef<unsigned> overloadedOperands, 857 ArrayRef<unsigned> immArgPositions, 858 ArrayRef<StringLiteral> immArgAttrNames) { 859 assert(immArgPositions.size() == immArgAttrNames.size() && 860 "LLVM `immArgPositions` and MLIR `immArgAttrNames` should have equal " 861 "length"); 862 863 // Map operands and attributes to LLVM values. 864 auto operands = moduleTranslation.lookupValues(intrOp->getOperands()); 865 SmallVector<llvm::Value *> args(immArgPositions.size() + operands.size()); 866 for (auto [immArgPos, immArgName] : 867 llvm::zip(immArgPositions, immArgAttrNames)) { 868 auto attr = llvm::cast<TypedAttr>(intrOp->getAttr(immArgName)); 869 assert(attr.getType().isIntOrFloat() && "expected int or float immarg"); 870 auto *type = moduleTranslation.convertType(attr.getType()); 871 args[immArgPos] = LLVM::detail::getLLVMConstant( 872 type, attr, intrOp->getLoc(), moduleTranslation); 873 } 874 unsigned opArg = 0; 875 for (auto &arg : args) { 876 if (!arg) 877 arg = operands[opArg++]; 878 } 879 880 // Resolve overloaded intrinsic declaration. 881 SmallVector<llvm::Type *> overloadedTypes; 882 for (unsigned overloadedResultIdx : overloadedResults) { 883 if (numResults > 1) { 884 // More than one result is mapped to an LLVM struct. 885 overloadedTypes.push_back(moduleTranslation.convertType( 886 llvm::cast<LLVM::LLVMStructType>(intrOp->getResult(0).getType()) 887 .getBody()[overloadedResultIdx])); 888 } else { 889 overloadedTypes.push_back( 890 moduleTranslation.convertType(intrOp->getResult(0).getType())); 891 } 892 } 893 for (unsigned overloadedOperandIdx : overloadedOperands) 894 overloadedTypes.push_back(args[overloadedOperandIdx]->getType()); 895 llvm::Module *module = builder.GetInsertBlock()->getModule(); 896 llvm::Function *llvmIntr = 897 llvm::Intrinsic::getDeclaration(module, intrinsic, overloadedTypes); 898 899 return builder.CreateCall(llvmIntr, args); 900 } 901 902 /// Given a single MLIR operation, create the corresponding LLVM IR operation 903 /// using the `builder`. 904 LogicalResult ModuleTranslation::convertOperation(Operation &op, 905 llvm::IRBuilderBase &builder, 906 bool recordInsertions) { 907 const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op); 908 if (!opIface) 909 return op.emitError("cannot be converted to LLVM IR: missing " 910 "`LLVMTranslationDialectInterface` registration for " 911 "dialect for op: ") 912 << op.getName(); 913 914 InstructionCapturingInserter::CollectionScope scope(builder, 915 recordInsertions); 916 if (failed(opIface->convertOperation(&op, builder, *this))) 917 return op.emitError("LLVM Translation failed for operation: ") 918 << op.getName(); 919 920 return convertDialectAttributes(&op, scope.getCapturedInstructions()); 921 } 922 923 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 924 /// to define values corresponding to the MLIR block arguments. These nodes 925 /// are not connected to the source basic blocks, which may not exist yet. Uses 926 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have 927 /// been created for `bb` and included in the block mapping. Inserts new 928 /// instructions at the end of the block and leaves `builder` in a state 929 /// suitable for further insertion into the end of the block. 930 LogicalResult ModuleTranslation::convertBlockImpl(Block &bb, 931 bool ignoreArguments, 932 llvm::IRBuilderBase &builder, 933 bool recordInsertions) { 934 builder.SetInsertPoint(lookupBlock(&bb)); 935 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 936 937 // Before traversing operations, make block arguments available through 938 // value remapping and PHI nodes, but do not add incoming edges for the PHI 939 // nodes just yet: those values may be defined by this or following blocks. 940 // This step is omitted if "ignoreArguments" is set. The arguments of the 941 // first block have been already made available through the remapping of 942 // LLVM function arguments. 943 if (!ignoreArguments) { 944 auto predecessors = bb.getPredecessors(); 945 unsigned numPredecessors = 946 std::distance(predecessors.begin(), predecessors.end()); 947 for (auto arg : bb.getArguments()) { 948 auto wrappedType = arg.getType(); 949 if (!isCompatibleType(wrappedType)) 950 return emitError(bb.front().getLoc(), 951 "block argument does not have an LLVM type"); 952 llvm::Type *type = convertType(wrappedType); 953 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 954 mapValue(arg, phi); 955 } 956 } 957 958 // Traverse operations. 959 for (auto &op : bb) { 960 // Set the current debug location within the builder. 961 builder.SetCurrentDebugLocation( 962 debugTranslation->translateLoc(op.getLoc(), subprogram)); 963 964 if (failed(convertOperation(op, builder, recordInsertions))) 965 return failure(); 966 967 // Set the branch weight metadata on the translated instruction. 968 if (auto iface = dyn_cast<BranchWeightOpInterface>(op)) 969 setBranchWeightsMetadata(iface); 970 } 971 972 return success(); 973 } 974 975 /// A helper method to get the single Block in an operation honoring LLVM's 976 /// module requirements. 977 static Block &getModuleBody(Operation *module) { 978 return module->getRegion(0).front(); 979 } 980 981 /// A helper method to decide if a constant must not be set as a global variable 982 /// initializer. For an external linkage variable, the variable with an 983 /// initializer is considered externally visible and defined in this module, the 984 /// variable without an initializer is externally available and is defined 985 /// elsewhere. 986 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage, 987 llvm::Constant *cst) { 988 return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) || 989 linkage == llvm::GlobalVariable::ExternalWeakLinkage; 990 } 991 992 /// Sets the runtime preemption specifier of `gv` to dso_local if 993 /// `dsoLocalRequested` is true, otherwise it is left unchanged. 994 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested, 995 llvm::GlobalValue *gv) { 996 if (dsoLocalRequested) 997 gv->setDSOLocal(true); 998 } 999 1000 /// Create named global variables that correspond to llvm.mlir.global 1001 /// definitions. Convert llvm.global_ctors and global_dtors ops. 1002 LogicalResult ModuleTranslation::convertGlobals() { 1003 // Mapping from compile unit to its respective set of global variables. 1004 DenseMap<llvm::DICompileUnit *, SmallVector<llvm::Metadata *>> allGVars; 1005 1006 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 1007 llvm::Type *type = convertType(op.getType()); 1008 llvm::Constant *cst = nullptr; 1009 if (op.getValueOrNull()) { 1010 // String attributes are treated separately because they cannot appear as 1011 // in-function constants and are thus not supported by getLLVMConstant. 1012 if (auto strAttr = dyn_cast_or_null<StringAttr>(op.getValueOrNull())) { 1013 cst = llvm::ConstantDataArray::getString( 1014 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 1015 type = cst->getType(); 1016 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(), 1017 *this))) { 1018 return failure(); 1019 } 1020 } 1021 1022 auto linkage = convertLinkageToLLVM(op.getLinkage()); 1023 auto addrSpace = op.getAddrSpace(); 1024 1025 // LLVM IR requires constant with linkage other than external or weak 1026 // external to have initializers. If MLIR does not provide an initializer, 1027 // default to undef. 1028 bool dropInitializer = shouldDropGlobalInitializer(linkage, cst); 1029 if (!dropInitializer && !cst) 1030 cst = llvm::UndefValue::get(type); 1031 else if (dropInitializer && cst) 1032 cst = nullptr; 1033 1034 auto *var = new llvm::GlobalVariable( 1035 *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(), 1036 /*InsertBefore=*/nullptr, 1037 op.getThreadLocal_() ? llvm::GlobalValue::GeneralDynamicTLSModel 1038 : llvm::GlobalValue::NotThreadLocal, 1039 addrSpace); 1040 1041 if (std::optional<mlir::SymbolRefAttr> comdat = op.getComdat()) { 1042 auto selectorOp = cast<ComdatSelectorOp>( 1043 SymbolTable::lookupNearestSymbolFrom(op, *comdat)); 1044 var->setComdat(comdatMapping.lookup(selectorOp)); 1045 } 1046 1047 if (op.getUnnamedAddr().has_value()) 1048 var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr())); 1049 1050 if (op.getSection().has_value()) 1051 var->setSection(*op.getSection()); 1052 1053 addRuntimePreemptionSpecifier(op.getDsoLocal(), var); 1054 1055 std::optional<uint64_t> alignment = op.getAlignment(); 1056 if (alignment.has_value()) 1057 var->setAlignment(llvm::MaybeAlign(alignment.value())); 1058 1059 var->setVisibility(convertVisibilityToLLVM(op.getVisibility_())); 1060 1061 globalsMapping.try_emplace(op, var); 1062 1063 // Add debug information if present. 1064 if (op.getDbgExpr()) { 1065 llvm::DIGlobalVariableExpression *diGlobalExpr = 1066 debugTranslation->translateGlobalVariableExpression(op.getDbgExpr()); 1067 llvm::DIGlobalVariable *diGlobalVar = diGlobalExpr->getVariable(); 1068 var->addDebugInfo(diGlobalExpr); 1069 1070 // There is no `globals` field in DICompileUnitAttr which can be directly 1071 // assigned to DICompileUnit. We have to build the list by looking at the 1072 // dbgExpr of all the GlobalOps. The scope of the variable is used to get 1073 // the DICompileUnit in which to add it. But for the languages that 1074 // support modules, the scope hierarchy can be 1075 // variable -> module -> compile unit 1076 // If a variable scope points to the module then we use the scope of the 1077 // module to get the compile unit. 1078 llvm::DIScope *scope = diGlobalVar->getScope(); 1079 if (llvm::DIModule *mod = dyn_cast_if_present<llvm::DIModule>(scope)) 1080 scope = mod->getScope(); 1081 1082 // Get the compile unit (scope) of the the global variable. 1083 if (llvm::DICompileUnit *compileUnit = 1084 dyn_cast_if_present<llvm::DICompileUnit>(scope)) { 1085 // Update the compile unit with this incoming global variable expression 1086 // during the finalizing step later. 1087 allGVars[compileUnit].push_back(diGlobalExpr); 1088 } 1089 } 1090 } 1091 1092 // Convert global variable bodies. This is done after all global variables 1093 // have been created in LLVM IR because a global body may refer to another 1094 // global or itself. So all global variables need to be mapped first. 1095 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 1096 if (Block *initializer = op.getInitializerBlock()) { 1097 llvm::IRBuilder<> builder(llvmModule->getContext()); 1098 1099 [[maybe_unused]] int numConstantsHit = 0; 1100 [[maybe_unused]] int numConstantsErased = 0; 1101 DenseMap<llvm::ConstantAggregate *, int> constantAggregateUseMap; 1102 1103 for (auto &op : initializer->without_terminator()) { 1104 if (failed(convertOperation(op, builder))) 1105 return emitError(op.getLoc(), "fail to convert global initializer"); 1106 auto *cst = dyn_cast<llvm::Constant>(lookupValue(op.getResult(0))); 1107 if (!cst) 1108 return emitError(op.getLoc(), "unemittable constant value"); 1109 1110 // When emitting an LLVM constant, a new constant is created and the old 1111 // constant may become dangling and take space. We should remove the 1112 // dangling constants to avoid memory explosion especially for constant 1113 // arrays whose number of elements is large. 1114 // Because multiple operations may refer to the same constant, we need 1115 // to count the number of uses of each constant array and remove it only 1116 // when the count becomes zero. 1117 if (auto *agg = dyn_cast<llvm::ConstantAggregate>(cst)) { 1118 numConstantsHit++; 1119 Value result = op.getResult(0); 1120 int numUsers = std::distance(result.use_begin(), result.use_end()); 1121 auto [iterator, inserted] = 1122 constantAggregateUseMap.try_emplace(agg, numUsers); 1123 if (!inserted) { 1124 // Key already exists, update the value 1125 iterator->second += numUsers; 1126 } 1127 } 1128 // Scan the operands of the operation to decrement the use count of 1129 // constants. Erase the constant if the use count becomes zero. 1130 for (Value v : op.getOperands()) { 1131 auto cst = dyn_cast<llvm::ConstantAggregate>(lookupValue(v)); 1132 if (!cst) 1133 continue; 1134 auto iter = constantAggregateUseMap.find(cst); 1135 assert(iter != constantAggregateUseMap.end() && "constant not found"); 1136 iter->second--; 1137 if (iter->second == 0) { 1138 // NOTE: cannot call removeDeadConstantUsers() here because it 1139 // may remove the constant which has uses not be converted yet. 1140 if (cst->user_empty()) { 1141 cst->destroyConstant(); 1142 numConstantsErased++; 1143 } 1144 constantAggregateUseMap.erase(iter); 1145 } 1146 } 1147 } 1148 1149 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 1150 llvm::Constant *cst = 1151 cast<llvm::Constant>(lookupValue(ret.getOperand(0))); 1152 auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op)); 1153 if (!shouldDropGlobalInitializer(global->getLinkage(), cst)) 1154 global->setInitializer(cst); 1155 1156 // Try to remove the dangling constants again after all operations are 1157 // converted. 1158 for (auto it : constantAggregateUseMap) { 1159 auto cst = it.first; 1160 cst->removeDeadConstantUsers(); 1161 if (cst->user_empty()) { 1162 cst->destroyConstant(); 1163 numConstantsErased++; 1164 } 1165 } 1166 1167 LLVM_DEBUG(llvm::dbgs() 1168 << "Convert initializer for " << op.getName() << "\n"; 1169 llvm::dbgs() << numConstantsHit << " new constants hit\n"; 1170 llvm::dbgs() 1171 << numConstantsErased << " dangling constants erased\n";); 1172 } 1173 } 1174 1175 // Convert llvm.mlir.global_ctors and dtors. 1176 for (Operation &op : getModuleBody(mlirModule)) { 1177 auto ctorOp = dyn_cast<GlobalCtorsOp>(op); 1178 auto dtorOp = dyn_cast<GlobalDtorsOp>(op); 1179 if (!ctorOp && !dtorOp) 1180 continue; 1181 auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities()) 1182 : llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities()); 1183 auto appendGlobalFn = 1184 ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors; 1185 for (auto symbolAndPriority : range) { 1186 llvm::Function *f = lookupFunction( 1187 cast<FlatSymbolRefAttr>(std::get<0>(symbolAndPriority)).getValue()); 1188 appendGlobalFn(*llvmModule, f, 1189 cast<IntegerAttr>(std::get<1>(symbolAndPriority)).getInt(), 1190 /*Data=*/nullptr); 1191 } 1192 } 1193 1194 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) 1195 if (failed(convertDialectAttributes(op, {}))) 1196 return failure(); 1197 1198 // Finally, update the compile units their respective sets of global variables 1199 // created earlier. 1200 for (const auto &[compileUnit, globals] : allGVars) { 1201 compileUnit->replaceGlobalVariables( 1202 llvm::MDTuple::get(getLLVMContext(), globals)); 1203 } 1204 1205 return success(); 1206 } 1207 1208 /// Attempts to add an attribute identified by `key`, optionally with the given 1209 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the 1210 /// attribute has a kind known to LLVM IR, create the attribute of this kind, 1211 /// otherwise keep it as a string attribute. Performs additional checks for 1212 /// attributes known to have or not have a value in order to avoid assertions 1213 /// inside LLVM upon construction. 1214 static LogicalResult checkedAddLLVMFnAttribute(Location loc, 1215 llvm::Function *llvmFunc, 1216 StringRef key, 1217 StringRef value = StringRef()) { 1218 auto kind = llvm::Attribute::getAttrKindFromName(key); 1219 if (kind == llvm::Attribute::None) { 1220 llvmFunc->addFnAttr(key, value); 1221 return success(); 1222 } 1223 1224 if (llvm::Attribute::isIntAttrKind(kind)) { 1225 if (value.empty()) 1226 return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; 1227 1228 int64_t result; 1229 if (!value.getAsInteger(/*Radix=*/0, result)) 1230 llvmFunc->addFnAttr( 1231 llvm::Attribute::get(llvmFunc->getContext(), kind, result)); 1232 else 1233 llvmFunc->addFnAttr(key, value); 1234 return success(); 1235 } 1236 1237 if (!value.empty()) 1238 return emitError(loc) << "LLVM attribute '" << key 1239 << "' does not expect a value, found '" << value 1240 << "'"; 1241 1242 llvmFunc->addFnAttr(kind); 1243 return success(); 1244 } 1245 1246 /// Attaches the attributes listed in the given array attribute to `llvmFunc`. 1247 /// Reports error to `loc` if any and returns immediately. Expects `attributes` 1248 /// to be an array attribute containing either string attributes, treated as 1249 /// value-less LLVM attributes, or array attributes containing two string 1250 /// attributes, with the first string being the name of the corresponding LLVM 1251 /// attribute and the second string beings its value. Note that even integer 1252 /// attributes are expected to have their values expressed as strings. 1253 static LogicalResult 1254 forwardPassthroughAttributes(Location loc, std::optional<ArrayAttr> attributes, 1255 llvm::Function *llvmFunc) { 1256 if (!attributes) 1257 return success(); 1258 1259 for (Attribute attr : *attributes) { 1260 if (auto stringAttr = dyn_cast<StringAttr>(attr)) { 1261 if (failed( 1262 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) 1263 return failure(); 1264 continue; 1265 } 1266 1267 auto arrayAttr = dyn_cast<ArrayAttr>(attr); 1268 if (!arrayAttr || arrayAttr.size() != 2) 1269 return emitError(loc) 1270 << "expected 'passthrough' to contain string or array attributes"; 1271 1272 auto keyAttr = dyn_cast<StringAttr>(arrayAttr[0]); 1273 auto valueAttr = dyn_cast<StringAttr>(arrayAttr[1]); 1274 if (!keyAttr || !valueAttr) 1275 return emitError(loc) 1276 << "expected arrays within 'passthrough' to contain two strings"; 1277 1278 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), 1279 valueAttr.getValue()))) 1280 return failure(); 1281 } 1282 return success(); 1283 } 1284 1285 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 1286 // Clear the block, branch value mappings, they are only relevant within one 1287 // function. 1288 blockMapping.clear(); 1289 valueMapping.clear(); 1290 branchMapping.clear(); 1291 llvm::Function *llvmFunc = lookupFunction(func.getName()); 1292 1293 // Add function arguments to the value remapping table. 1294 for (auto [mlirArg, llvmArg] : 1295 llvm::zip(func.getArguments(), llvmFunc->args())) 1296 mapValue(mlirArg, &llvmArg); 1297 1298 // Check the personality and set it. 1299 if (func.getPersonality()) { 1300 llvm::Type *ty = llvm::PointerType::getUnqual(llvmFunc->getContext()); 1301 if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(), 1302 func.getLoc(), *this)) 1303 llvmFunc->setPersonalityFn(pfunc); 1304 } 1305 1306 if (std::optional<StringRef> section = func.getSection()) 1307 llvmFunc->setSection(*section); 1308 1309 if (func.getArmStreaming()) 1310 llvmFunc->addFnAttr("aarch64_pstate_sm_enabled"); 1311 else if (func.getArmLocallyStreaming()) 1312 llvmFunc->addFnAttr("aarch64_pstate_sm_body"); 1313 else if (func.getArmStreamingCompatible()) 1314 llvmFunc->addFnAttr("aarch64_pstate_sm_compatible"); 1315 1316 if (func.getArmNewZa()) 1317 llvmFunc->addFnAttr("aarch64_new_za"); 1318 else if (func.getArmInZa()) 1319 llvmFunc->addFnAttr("aarch64_in_za"); 1320 else if (func.getArmOutZa()) 1321 llvmFunc->addFnAttr("aarch64_out_za"); 1322 else if (func.getArmInoutZa()) 1323 llvmFunc->addFnAttr("aarch64_inout_za"); 1324 else if (func.getArmPreservesZa()) 1325 llvmFunc->addFnAttr("aarch64_preserves_za"); 1326 1327 if (auto targetCpu = func.getTargetCpu()) 1328 llvmFunc->addFnAttr("target-cpu", *targetCpu); 1329 1330 if (auto tuneCpu = func.getTuneCpu()) 1331 llvmFunc->addFnAttr("tune-cpu", *tuneCpu); 1332 1333 if (auto targetFeatures = func.getTargetFeatures()) 1334 llvmFunc->addFnAttr("target-features", targetFeatures->getFeaturesString()); 1335 1336 if (auto attr = func.getVscaleRange()) 1337 llvmFunc->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 1338 getLLVMContext(), attr->getMinRange().getInt(), 1339 attr->getMaxRange().getInt())); 1340 1341 if (auto unsafeFpMath = func.getUnsafeFpMath()) 1342 llvmFunc->addFnAttr("unsafe-fp-math", llvm::toStringRef(*unsafeFpMath)); 1343 1344 if (auto noInfsFpMath = func.getNoInfsFpMath()) 1345 llvmFunc->addFnAttr("no-infs-fp-math", llvm::toStringRef(*noInfsFpMath)); 1346 1347 if (auto noNansFpMath = func.getNoNansFpMath()) 1348 llvmFunc->addFnAttr("no-nans-fp-math", llvm::toStringRef(*noNansFpMath)); 1349 1350 if (auto approxFuncFpMath = func.getApproxFuncFpMath()) 1351 llvmFunc->addFnAttr("approx-func-fp-math", 1352 llvm::toStringRef(*approxFuncFpMath)); 1353 1354 if (auto noSignedZerosFpMath = func.getNoSignedZerosFpMath()) 1355 llvmFunc->addFnAttr("no-signed-zeros-fp-math", 1356 llvm::toStringRef(*noSignedZerosFpMath)); 1357 1358 // Add function attribute frame-pointer, if found. 1359 if (FramePointerKindAttr attr = func.getFramePointerAttr()) 1360 llvmFunc->addFnAttr("frame-pointer", 1361 LLVM::framePointerKind::stringifyFramePointerKind( 1362 (attr.getFramePointerKind()))); 1363 1364 // First, create all blocks so we can jump to them. 1365 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 1366 for (auto &bb : func) { 1367 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 1368 llvmBB->insertInto(llvmFunc); 1369 mapBlock(&bb, llvmBB); 1370 } 1371 1372 // Then, convert blocks one by one in topological order to ensure defs are 1373 // converted before uses. 1374 auto blocks = getBlocksSortedByDominance(func.getBody()); 1375 for (Block *bb : blocks) { 1376 CapturingIRBuilder builder(llvmContext); 1377 if (failed(convertBlockImpl(*bb, bb->isEntryBlock(), builder, 1378 /*recordInsertions=*/true))) 1379 return failure(); 1380 } 1381 1382 // After all blocks have been traversed and values mapped, connect the PHI 1383 // nodes to the results of preceding blocks. 1384 detail::connectPHINodes(func.getBody(), *this); 1385 1386 // Finally, convert dialect attributes attached to the function. 1387 return convertDialectAttributes(func, {}); 1388 } 1389 1390 LogicalResult ModuleTranslation::convertDialectAttributes( 1391 Operation *op, ArrayRef<llvm::Instruction *> instructions) { 1392 for (NamedAttribute attribute : op->getDialectAttrs()) 1393 if (failed(iface.amendOperation(op, instructions, attribute, *this))) 1394 return failure(); 1395 return success(); 1396 } 1397 1398 /// Converts memory effect attributes from `func` and attaches them to 1399 /// `llvmFunc`. 1400 static void convertFunctionMemoryAttributes(LLVMFuncOp func, 1401 llvm::Function *llvmFunc) { 1402 if (!func.getMemory()) 1403 return; 1404 1405 MemoryEffectsAttr memEffects = func.getMemoryAttr(); 1406 1407 // Add memory effects incrementally. 1408 llvm::MemoryEffects newMemEffects = 1409 llvm::MemoryEffects(llvm::MemoryEffects::Location::ArgMem, 1410 convertModRefInfoToLLVM(memEffects.getArgMem())); 1411 newMemEffects |= llvm::MemoryEffects( 1412 llvm::MemoryEffects::Location::InaccessibleMem, 1413 convertModRefInfoToLLVM(memEffects.getInaccessibleMem())); 1414 newMemEffects |= 1415 llvm::MemoryEffects(llvm::MemoryEffects::Location::Other, 1416 convertModRefInfoToLLVM(memEffects.getOther())); 1417 llvmFunc->setMemoryEffects(newMemEffects); 1418 } 1419 1420 /// Converts function attributes from `func` and attaches them to `llvmFunc`. 1421 static void convertFunctionAttributes(LLVMFuncOp func, 1422 llvm::Function *llvmFunc) { 1423 if (func.getNoInlineAttr()) 1424 llvmFunc->addFnAttr(llvm::Attribute::NoInline); 1425 if (func.getAlwaysInlineAttr()) 1426 llvmFunc->addFnAttr(llvm::Attribute::AlwaysInline); 1427 if (func.getOptimizeNoneAttr()) 1428 llvmFunc->addFnAttr(llvm::Attribute::OptimizeNone); 1429 convertFunctionMemoryAttributes(func, llvmFunc); 1430 } 1431 1432 FailureOr<llvm::AttrBuilder> 1433 ModuleTranslation::convertParameterAttrs(LLVMFuncOp func, int argIdx, 1434 DictionaryAttr paramAttrs) { 1435 llvm::AttrBuilder attrBuilder(llvmModule->getContext()); 1436 auto attrNameToKindMapping = getAttrNameToKindMapping(); 1437 1438 for (auto namedAttr : paramAttrs) { 1439 auto it = attrNameToKindMapping.find(namedAttr.getName()); 1440 if (it != attrNameToKindMapping.end()) { 1441 llvm::Attribute::AttrKind llvmKind = it->second; 1442 1443 llvm::TypeSwitch<Attribute>(namedAttr.getValue()) 1444 .Case<TypeAttr>([&](auto typeAttr) { 1445 attrBuilder.addTypeAttr(llvmKind, convertType(typeAttr.getValue())); 1446 }) 1447 .Case<IntegerAttr>([&](auto intAttr) { 1448 attrBuilder.addRawIntAttr(llvmKind, intAttr.getInt()); 1449 }) 1450 .Case<UnitAttr>([&](auto) { attrBuilder.addAttribute(llvmKind); }); 1451 } else if (namedAttr.getNameDialect()) { 1452 if (failed(iface.convertParameterAttr(func, argIdx, namedAttr, *this))) 1453 return failure(); 1454 } 1455 } 1456 1457 return attrBuilder; 1458 } 1459 1460 LogicalResult ModuleTranslation::convertFunctionSignatures() { 1461 // Declare all functions first because there may be function calls that form a 1462 // call graph with cycles, or global initializers that reference functions. 1463 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 1464 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 1465 function.getName(), 1466 cast<llvm::FunctionType>(convertType(function.getFunctionType()))); 1467 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); 1468 llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage())); 1469 llvmFunc->setCallingConv(convertCConvToLLVM(function.getCConv())); 1470 mapFunction(function.getName(), llvmFunc); 1471 addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc); 1472 1473 // Convert function attributes. 1474 convertFunctionAttributes(function, llvmFunc); 1475 1476 // Convert function_entry_count attribute to metadata. 1477 if (std::optional<uint64_t> entryCount = function.getFunctionEntryCount()) 1478 llvmFunc->setEntryCount(entryCount.value()); 1479 1480 // Convert result attributes. 1481 if (ArrayAttr allResultAttrs = function.getAllResultAttrs()) { 1482 DictionaryAttr resultAttrs = cast<DictionaryAttr>(allResultAttrs[0]); 1483 FailureOr<llvm::AttrBuilder> attrBuilder = 1484 convertParameterAttrs(function, -1, resultAttrs); 1485 if (failed(attrBuilder)) 1486 return failure(); 1487 llvmFunc->addRetAttrs(*attrBuilder); 1488 } 1489 1490 // Convert argument attributes. 1491 for (auto [argIdx, llvmArg] : llvm::enumerate(llvmFunc->args())) { 1492 if (DictionaryAttr argAttrs = function.getArgAttrDict(argIdx)) { 1493 FailureOr<llvm::AttrBuilder> attrBuilder = 1494 convertParameterAttrs(function, argIdx, argAttrs); 1495 if (failed(attrBuilder)) 1496 return failure(); 1497 llvmArg.addAttrs(*attrBuilder); 1498 } 1499 } 1500 1501 // Forward the pass-through attributes to LLVM. 1502 if (failed(forwardPassthroughAttributes( 1503 function.getLoc(), function.getPassthrough(), llvmFunc))) 1504 return failure(); 1505 1506 // Convert visibility attribute. 1507 llvmFunc->setVisibility(convertVisibilityToLLVM(function.getVisibility_())); 1508 1509 // Convert the comdat attribute. 1510 if (std::optional<mlir::SymbolRefAttr> comdat = function.getComdat()) { 1511 auto selectorOp = cast<ComdatSelectorOp>( 1512 SymbolTable::lookupNearestSymbolFrom(function, *comdat)); 1513 llvmFunc->setComdat(comdatMapping.lookup(selectorOp)); 1514 } 1515 1516 if (auto gc = function.getGarbageCollector()) 1517 llvmFunc->setGC(gc->str()); 1518 1519 if (auto unnamedAddr = function.getUnnamedAddr()) 1520 llvmFunc->setUnnamedAddr(convertUnnamedAddrToLLVM(*unnamedAddr)); 1521 1522 if (auto alignment = function.getAlignment()) 1523 llvmFunc->setAlignment(llvm::MaybeAlign(*alignment)); 1524 1525 // Translate the debug information for this function. 1526 debugTranslation->translate(function, *llvmFunc); 1527 } 1528 1529 return success(); 1530 } 1531 1532 LogicalResult ModuleTranslation::convertFunctions() { 1533 // Convert functions. 1534 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 1535 // Do not convert external functions, but do process dialect attributes 1536 // attached to them. 1537 if (function.isExternal()) { 1538 if (failed(convertDialectAttributes(function, {}))) 1539 return failure(); 1540 continue; 1541 } 1542 1543 if (failed(convertOneFunction(function))) 1544 return failure(); 1545 } 1546 1547 return success(); 1548 } 1549 1550 LogicalResult ModuleTranslation::convertComdats() { 1551 for (auto comdatOp : getModuleBody(mlirModule).getOps<ComdatOp>()) { 1552 for (auto selectorOp : comdatOp.getOps<ComdatSelectorOp>()) { 1553 llvm::Module *module = getLLVMModule(); 1554 if (module->getComdatSymbolTable().contains(selectorOp.getSymName())) 1555 return emitError(selectorOp.getLoc()) 1556 << "comdat selection symbols must be unique even in different " 1557 "comdat regions"; 1558 llvm::Comdat *comdat = module->getOrInsertComdat(selectorOp.getSymName()); 1559 comdat->setSelectionKind(convertComdatToLLVM(selectorOp.getComdat())); 1560 comdatMapping.try_emplace(selectorOp, comdat); 1561 } 1562 } 1563 return success(); 1564 } 1565 1566 void ModuleTranslation::setAccessGroupsMetadata(AccessGroupOpInterface op, 1567 llvm::Instruction *inst) { 1568 if (llvm::MDNode *node = loopAnnotationTranslation->getAccessGroups(op)) 1569 inst->setMetadata(llvm::LLVMContext::MD_access_group, node); 1570 } 1571 1572 llvm::MDNode * 1573 ModuleTranslation::getOrCreateAliasScope(AliasScopeAttr aliasScopeAttr) { 1574 auto [scopeIt, scopeInserted] = 1575 aliasScopeMetadataMapping.try_emplace(aliasScopeAttr, nullptr); 1576 if (!scopeInserted) 1577 return scopeIt->second; 1578 llvm::LLVMContext &ctx = llvmModule->getContext(); 1579 auto dummy = llvm::MDNode::getTemporary(ctx, std::nullopt); 1580 // Convert the domain metadata node if necessary. 1581 auto [domainIt, insertedDomain] = aliasDomainMetadataMapping.try_emplace( 1582 aliasScopeAttr.getDomain(), nullptr); 1583 if (insertedDomain) { 1584 llvm::SmallVector<llvm::Metadata *, 2> operands; 1585 // Placeholder for self-reference. 1586 operands.push_back(dummy.get()); 1587 if (StringAttr description = aliasScopeAttr.getDomain().getDescription()) 1588 operands.push_back(llvm::MDString::get(ctx, description)); 1589 domainIt->second = llvm::MDNode::get(ctx, operands); 1590 // Self-reference for uniqueness. 1591 domainIt->second->replaceOperandWith(0, domainIt->second); 1592 } 1593 // Convert the scope metadata node. 1594 assert(domainIt->second && "Scope's domain should already be valid"); 1595 llvm::SmallVector<llvm::Metadata *, 3> operands; 1596 // Placeholder for self-reference. 1597 operands.push_back(dummy.get()); 1598 operands.push_back(domainIt->second); 1599 if (StringAttr description = aliasScopeAttr.getDescription()) 1600 operands.push_back(llvm::MDString::get(ctx, description)); 1601 scopeIt->second = llvm::MDNode::get(ctx, operands); 1602 // Self-reference for uniqueness. 1603 scopeIt->second->replaceOperandWith(0, scopeIt->second); 1604 return scopeIt->second; 1605 } 1606 1607 llvm::MDNode *ModuleTranslation::getOrCreateAliasScopes( 1608 ArrayRef<AliasScopeAttr> aliasScopeAttrs) { 1609 SmallVector<llvm::Metadata *> nodes; 1610 nodes.reserve(aliasScopeAttrs.size()); 1611 for (AliasScopeAttr aliasScopeAttr : aliasScopeAttrs) 1612 nodes.push_back(getOrCreateAliasScope(aliasScopeAttr)); 1613 return llvm::MDNode::get(getLLVMContext(), nodes); 1614 } 1615 1616 void ModuleTranslation::setAliasScopeMetadata(AliasAnalysisOpInterface op, 1617 llvm::Instruction *inst) { 1618 auto populateScopeMetadata = [&](ArrayAttr aliasScopeAttrs, unsigned kind) { 1619 if (!aliasScopeAttrs || aliasScopeAttrs.empty()) 1620 return; 1621 llvm::MDNode *node = getOrCreateAliasScopes( 1622 llvm::to_vector(aliasScopeAttrs.getAsRange<AliasScopeAttr>())); 1623 inst->setMetadata(kind, node); 1624 }; 1625 1626 populateScopeMetadata(op.getAliasScopesOrNull(), 1627 llvm::LLVMContext::MD_alias_scope); 1628 populateScopeMetadata(op.getNoAliasScopesOrNull(), 1629 llvm::LLVMContext::MD_noalias); 1630 } 1631 1632 llvm::MDNode *ModuleTranslation::getTBAANode(TBAATagAttr tbaaAttr) const { 1633 return tbaaMetadataMapping.lookup(tbaaAttr); 1634 } 1635 1636 void ModuleTranslation::setTBAAMetadata(AliasAnalysisOpInterface op, 1637 llvm::Instruction *inst) { 1638 ArrayAttr tagRefs = op.getTBAATagsOrNull(); 1639 if (!tagRefs || tagRefs.empty()) 1640 return; 1641 1642 // LLVM IR currently does not support attaching more than one TBAA access tag 1643 // to a memory accessing instruction. It may be useful to support this in 1644 // future, but for the time being just ignore the metadata if MLIR operation 1645 // has multiple access tags. 1646 if (tagRefs.size() > 1) { 1647 op.emitWarning() << "TBAA access tags were not translated, because LLVM " 1648 "IR only supports a single tag per instruction"; 1649 return; 1650 } 1651 1652 llvm::MDNode *node = getTBAANode(cast<TBAATagAttr>(tagRefs[0])); 1653 inst->setMetadata(llvm::LLVMContext::MD_tbaa, node); 1654 } 1655 1656 void ModuleTranslation::setBranchWeightsMetadata(BranchWeightOpInterface op) { 1657 DenseI32ArrayAttr weightsAttr = op.getBranchWeightsOrNull(); 1658 if (!weightsAttr) 1659 return; 1660 1661 llvm::Instruction *inst = isa<CallOp>(op) ? lookupCall(op) : lookupBranch(op); 1662 assert(inst && "expected the operation to have a mapping to an instruction"); 1663 SmallVector<uint32_t> weights(weightsAttr.asArrayRef()); 1664 inst->setMetadata( 1665 llvm::LLVMContext::MD_prof, 1666 llvm::MDBuilder(getLLVMContext()).createBranchWeights(weights)); 1667 } 1668 1669 LogicalResult ModuleTranslation::createTBAAMetadata() { 1670 llvm::LLVMContext &ctx = llvmModule->getContext(); 1671 llvm::IntegerType *offsetTy = llvm::IntegerType::get(ctx, 64); 1672 1673 // Walk the entire module and create all metadata nodes for the TBAA 1674 // attributes. The code below relies on two invariants of the 1675 // `AttrTypeWalker`: 1676 // 1. Attributes are visited in post-order: Since the attributes create a DAG, 1677 // this ensures that any lookups into `tbaaMetadataMapping` for child 1678 // attributes succeed. 1679 // 2. Attributes are only ever visited once: This way we don't leak any 1680 // LLVM metadata instances. 1681 AttrTypeWalker walker; 1682 walker.addWalk([&](TBAARootAttr root) { 1683 tbaaMetadataMapping.insert( 1684 {root, llvm::MDNode::get(ctx, llvm::MDString::get(ctx, root.getId()))}); 1685 }); 1686 1687 walker.addWalk([&](TBAATypeDescriptorAttr descriptor) { 1688 SmallVector<llvm::Metadata *> operands; 1689 operands.push_back(llvm::MDString::get(ctx, descriptor.getId())); 1690 for (TBAAMemberAttr member : descriptor.getMembers()) { 1691 operands.push_back(tbaaMetadataMapping.lookup(member.getTypeDesc())); 1692 operands.push_back(llvm::ConstantAsMetadata::get( 1693 llvm::ConstantInt::get(offsetTy, member.getOffset()))); 1694 } 1695 1696 tbaaMetadataMapping.insert({descriptor, llvm::MDNode::get(ctx, operands)}); 1697 }); 1698 1699 walker.addWalk([&](TBAATagAttr tag) { 1700 SmallVector<llvm::Metadata *> operands; 1701 1702 operands.push_back(tbaaMetadataMapping.lookup(tag.getBaseType())); 1703 operands.push_back(tbaaMetadataMapping.lookup(tag.getAccessType())); 1704 1705 operands.push_back(llvm::ConstantAsMetadata::get( 1706 llvm::ConstantInt::get(offsetTy, tag.getOffset()))); 1707 if (tag.getConstant()) 1708 operands.push_back( 1709 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(offsetTy, 1))); 1710 1711 tbaaMetadataMapping.insert({tag, llvm::MDNode::get(ctx, operands)}); 1712 }); 1713 1714 mlirModule->walk([&](AliasAnalysisOpInterface analysisOpInterface) { 1715 if (auto attr = analysisOpInterface.getTBAATagsOrNull()) 1716 walker.walk(attr); 1717 }); 1718 1719 return success(); 1720 } 1721 1722 void ModuleTranslation::setLoopMetadata(Operation *op, 1723 llvm::Instruction *inst) { 1724 LoopAnnotationAttr attr = 1725 TypeSwitch<Operation *, LoopAnnotationAttr>(op) 1726 .Case<LLVM::BrOp, LLVM::CondBrOp>( 1727 [](auto branchOp) { return branchOp.getLoopAnnotationAttr(); }); 1728 if (!attr) 1729 return; 1730 llvm::MDNode *loopMD = 1731 loopAnnotationTranslation->translateLoopAnnotation(attr, op); 1732 inst->setMetadata(llvm::LLVMContext::MD_loop, loopMD); 1733 } 1734 1735 llvm::Type *ModuleTranslation::convertType(Type type) { 1736 return typeTranslator.translateType(type); 1737 } 1738 1739 /// A helper to look up remapped operands in the value remapping table. 1740 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) { 1741 SmallVector<llvm::Value *> remapped; 1742 remapped.reserve(values.size()); 1743 for (Value v : values) 1744 remapped.push_back(lookupValue(v)); 1745 return remapped; 1746 } 1747 1748 llvm::OpenMPIRBuilder *ModuleTranslation::getOpenMPBuilder() { 1749 if (!ompBuilder) { 1750 ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule); 1751 ompBuilder->initialize(); 1752 1753 // Flags represented as top-level OpenMP dialect attributes are set in 1754 // `OpenMPDialectLLVMIRTranslationInterface::amendOperation()`. Here we set 1755 // the default configuration. 1756 ompBuilder->setConfig(llvm::OpenMPIRBuilderConfig( 1757 /* IsTargetDevice = */ false, /* IsGPU = */ false, 1758 /* OpenMPOffloadMandatory = */ false, 1759 /* HasRequiresReverseOffload = */ false, 1760 /* HasRequiresUnifiedAddress = */ false, 1761 /* HasRequiresUnifiedSharedMemory = */ false, 1762 /* HasRequiresDynamicAllocators = */ false)); 1763 } 1764 return ompBuilder.get(); 1765 } 1766 1767 llvm::DILocation *ModuleTranslation::translateLoc(Location loc, 1768 llvm::DILocalScope *scope) { 1769 return debugTranslation->translateLoc(loc, scope); 1770 } 1771 1772 llvm::DIExpression * 1773 ModuleTranslation::translateExpression(LLVM::DIExpressionAttr attr) { 1774 return debugTranslation->translateExpression(attr); 1775 } 1776 1777 llvm::DIGlobalVariableExpression * 1778 ModuleTranslation::translateGlobalVariableExpression( 1779 LLVM::DIGlobalVariableExpressionAttr attr) { 1780 return debugTranslation->translateGlobalVariableExpression(attr); 1781 } 1782 1783 llvm::Metadata *ModuleTranslation::translateDebugInfo(LLVM::DINodeAttr attr) { 1784 return debugTranslation->translate(attr); 1785 } 1786 1787 llvm::RoundingMode 1788 ModuleTranslation::translateRoundingMode(LLVM::RoundingMode rounding) { 1789 return convertRoundingModeToLLVM(rounding); 1790 } 1791 1792 llvm::fp::ExceptionBehavior ModuleTranslation::translateFPExceptionBehavior( 1793 LLVM::FPExceptionBehavior exceptionBehavior) { 1794 return convertFPExceptionBehaviorToLLVM(exceptionBehavior); 1795 } 1796 1797 llvm::NamedMDNode * 1798 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) { 1799 return llvmModule->getOrInsertNamedMetadata(name); 1800 } 1801 1802 void ModuleTranslation::StackFrame::anchor() {} 1803 1804 static std::unique_ptr<llvm::Module> 1805 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext, 1806 StringRef name) { 1807 m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>(); 1808 auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext); 1809 // ModuleTranslation can currently only construct modules in the old debug 1810 // info format, so set the flag accordingly. 1811 llvmModule->setNewDbgInfoFormatFlag(false); 1812 if (auto dataLayoutAttr = 1813 m->getDiscardableAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) { 1814 llvmModule->setDataLayout(cast<StringAttr>(dataLayoutAttr).getValue()); 1815 } else { 1816 FailureOr<llvm::DataLayout> llvmDataLayout(llvm::DataLayout("")); 1817 if (auto iface = dyn_cast<DataLayoutOpInterface>(m)) { 1818 if (DataLayoutSpecInterface spec = iface.getDataLayoutSpec()) { 1819 llvmDataLayout = 1820 translateDataLayout(spec, DataLayout(iface), m->getLoc()); 1821 } 1822 } else if (auto mod = dyn_cast<ModuleOp>(m)) { 1823 if (DataLayoutSpecInterface spec = mod.getDataLayoutSpec()) { 1824 llvmDataLayout = 1825 translateDataLayout(spec, DataLayout(mod), m->getLoc()); 1826 } 1827 } 1828 if (failed(llvmDataLayout)) 1829 return nullptr; 1830 llvmModule->setDataLayout(*llvmDataLayout); 1831 } 1832 if (auto targetTripleAttr = 1833 m->getDiscardableAttr(LLVM::LLVMDialect::getTargetTripleAttrName())) 1834 llvmModule->setTargetTriple(cast<StringAttr>(targetTripleAttr).getValue()); 1835 1836 return llvmModule; 1837 } 1838 1839 std::unique_ptr<llvm::Module> 1840 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext, 1841 StringRef name, bool disableVerification) { 1842 if (!satisfiesLLVMModule(module)) { 1843 module->emitOpError("can not be translated to an LLVMIR module"); 1844 return nullptr; 1845 } 1846 1847 std::unique_ptr<llvm::Module> llvmModule = 1848 prepareLLVMModule(module, llvmContext, name); 1849 if (!llvmModule) 1850 return nullptr; 1851 1852 LLVM::ensureDistinctSuccessors(module); 1853 LLVM::legalizeDIExpressionsRecursively(module); 1854 1855 ModuleTranslation translator(module, std::move(llvmModule)); 1856 llvm::IRBuilder<> llvmBuilder(llvmContext); 1857 1858 // Convert module before functions and operations inside, so dialect 1859 // attributes can be used to change dialect-specific global configurations via 1860 // `amendOperation()`. These configurations can then influence the translation 1861 // of operations afterwards. 1862 if (failed(translator.convertOperation(*module, llvmBuilder))) 1863 return nullptr; 1864 1865 if (failed(translator.convertComdats())) 1866 return nullptr; 1867 if (failed(translator.convertFunctionSignatures())) 1868 return nullptr; 1869 if (failed(translator.convertGlobals())) 1870 return nullptr; 1871 if (failed(translator.createTBAAMetadata())) 1872 return nullptr; 1873 1874 // Convert other top-level operations if possible. 1875 for (Operation &o : getModuleBody(module).getOperations()) { 1876 if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp, 1877 LLVM::GlobalDtorsOp, LLVM::ComdatOp>(&o) && 1878 !o.hasTrait<OpTrait::IsTerminator>() && 1879 failed(translator.convertOperation(o, llvmBuilder))) { 1880 return nullptr; 1881 } 1882 } 1883 1884 // Operations in function bodies with symbolic references must be converted 1885 // after the top-level operations they refer to are declared, so we do it 1886 // last. 1887 if (failed(translator.convertFunctions())) 1888 return nullptr; 1889 1890 // Once we've finished constructing elements in the module, we should convert 1891 // it to use the debug info format desired by LLVM. 1892 // See https://llvm.org/docs/RemoveDIsDebugInfo.html 1893 translator.llvmModule->setIsNewDbgInfoFormat(UseNewDbgInfoFormat); 1894 1895 if (!disableVerification && 1896 llvm::verifyModule(*translator.llvmModule, &llvm::errs())) 1897 return nullptr; 1898 1899 return std::move(translator.llvmModule); 1900 } 1901