xref: /llvm-project/mlir/lib/Target/LLVMIR/ModuleTranslation.cpp (revision 9261ab708e37c2d6499ac063045f816d25a5919c)
1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the translation between an MLIR LLVM dialect module and
10 // the corresponding LLVMIR module. It only handles core LLVM IR operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Target/LLVMIR/ModuleTranslation.h"
15 
16 #include "AttrKindDetail.h"
17 #include "DebugTranslation.h"
18 #include "LoopAnnotationTranslation.h"
19 #include "mlir/Dialect/DLTI/DLTI.h"
20 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
21 #include "mlir/Dialect/LLVMIR/LLVMInterfaces.h"
22 #include "mlir/Dialect/LLVMIR/Transforms/DIExpressionLegalization.h"
23 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
24 #include "mlir/Dialect/OpenMP/OpenMPDialect.h"
25 #include "mlir/Dialect/OpenMP/OpenMPInterfaces.h"
26 #include "mlir/IR/AttrTypeSubElements.h"
27 #include "mlir/IR/Attributes.h"
28 #include "mlir/IR/BuiltinOps.h"
29 #include "mlir/IR/BuiltinTypes.h"
30 #include "mlir/IR/DialectResourceBlobManager.h"
31 #include "mlir/IR/RegionGraphTraits.h"
32 #include "mlir/Support/LLVM.h"
33 #include "mlir/Support/LogicalResult.h"
34 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
35 #include "mlir/Target/LLVMIR/TypeToLLVM.h"
36 #include "mlir/Transforms/RegionUtils.h"
37 
38 #include "llvm/ADT/PostOrderIterator.h"
39 #include "llvm/ADT/SetVector.h"
40 #include "llvm/ADT/TypeSwitch.h"
41 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/IRBuilder.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/IntrinsicsNVPTX.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Verifier.h"
53 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
54 #include "llvm/Transforms/Utils/Cloning.h"
55 #include "llvm/Transforms/Utils/ModuleUtils.h"
56 #include <optional>
57 
58 using namespace mlir;
59 using namespace mlir::LLVM;
60 using namespace mlir::LLVM::detail;
61 
62 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
63 
64 namespace {
65 /// A customized inserter for LLVM's IRBuilder that captures all LLVM IR
66 /// instructions that are created for future reference.
67 ///
68 /// This is intended to be used with the `CollectionScope` RAII object:
69 ///
70 ///     llvm::IRBuilder<..., InstructionCapturingInserter> builder;
71 ///     {
72 ///       InstructionCapturingInserter::CollectionScope scope(builder);
73 ///       // Call IRBuilder methods as usual.
74 ///
75 ///       // This will return a list of all instructions created by the builder,
76 ///       // in order of creation.
77 ///       builder.getInserter().getCapturedInstructions();
78 ///     }
79 ///     // This will return an empty list.
80 ///     builder.getInserter().getCapturedInstructions();
81 ///
82 /// The capturing functionality is _disabled_ by default for performance
83 /// consideration. It needs to be explicitly enabled, which is achieved by
84 /// creating a `CollectionScope`.
85 class InstructionCapturingInserter : public llvm::IRBuilderCallbackInserter {
86 public:
87   /// Constructs the inserter.
88   InstructionCapturingInserter()
89       : llvm::IRBuilderCallbackInserter([this](llvm::Instruction *instruction) {
90           if (LLVM_LIKELY(enabled))
91             capturedInstructions.push_back(instruction);
92         }) {}
93 
94   /// Returns the list of LLVM IR instructions captured since the last cleanup.
95   ArrayRef<llvm::Instruction *> getCapturedInstructions() const {
96     return capturedInstructions;
97   }
98 
99   /// Clears the list of captured LLVM IR instructions.
100   void clearCapturedInstructions() { capturedInstructions.clear(); }
101 
102   /// RAII object enabling the capture of created LLVM IR instructions.
103   class CollectionScope {
104   public:
105     /// Creates the scope for the given inserter.
106     CollectionScope(llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing);
107 
108     /// Ends the scope.
109     ~CollectionScope();
110 
111     ArrayRef<llvm::Instruction *> getCapturedInstructions() {
112       if (!inserter)
113         return {};
114       return inserter->getCapturedInstructions();
115     }
116 
117   private:
118     /// Back reference to the inserter.
119     InstructionCapturingInserter *inserter = nullptr;
120 
121     /// List of instructions in the inserter prior to this scope.
122     SmallVector<llvm::Instruction *> previouslyCollectedInstructions;
123 
124     /// Whether the inserter was enabled prior to this scope.
125     bool wasEnabled;
126   };
127 
128   /// Enable or disable the capturing mechanism.
129   void setEnabled(bool enabled = true) { this->enabled = enabled; }
130 
131 private:
132   /// List of captured instructions.
133   SmallVector<llvm::Instruction *> capturedInstructions;
134 
135   /// Whether the collection is enabled.
136   bool enabled = false;
137 };
138 
139 using CapturingIRBuilder =
140     llvm::IRBuilder<llvm::ConstantFolder, InstructionCapturingInserter>;
141 } // namespace
142 
143 InstructionCapturingInserter::CollectionScope::CollectionScope(
144     llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing) {
145 
146   if (!isBuilderCapturing)
147     return;
148 
149   auto &capturingIRBuilder = static_cast<CapturingIRBuilder &>(irBuilder);
150   inserter = &capturingIRBuilder.getInserter();
151   wasEnabled = inserter->enabled;
152   if (wasEnabled)
153     previouslyCollectedInstructions.swap(inserter->capturedInstructions);
154   inserter->setEnabled(true);
155 }
156 
157 InstructionCapturingInserter::CollectionScope::~CollectionScope() {
158   if (!inserter)
159     return;
160 
161   previouslyCollectedInstructions.swap(inserter->capturedInstructions);
162   // If collection was enabled (likely in another, surrounding scope), keep
163   // the instructions collected in this scope.
164   if (wasEnabled) {
165     llvm::append_range(inserter->capturedInstructions,
166                        previouslyCollectedInstructions);
167   }
168   inserter->setEnabled(wasEnabled);
169 }
170 
171 /// Translates the given data layout spec attribute to the LLVM IR data layout.
172 /// Only integer, float, pointer and endianness entries are currently supported.
173 static FailureOr<llvm::DataLayout>
174 translateDataLayout(DataLayoutSpecInterface attribute,
175                     const DataLayout &dataLayout,
176                     std::optional<Location> loc = std::nullopt) {
177   if (!loc)
178     loc = UnknownLoc::get(attribute.getContext());
179 
180   // Translate the endianness attribute.
181   std::string llvmDataLayout;
182   llvm::raw_string_ostream layoutStream(llvmDataLayout);
183   for (DataLayoutEntryInterface entry : attribute.getEntries()) {
184     auto key = llvm::dyn_cast_if_present<StringAttr>(entry.getKey());
185     if (!key)
186       continue;
187     if (key.getValue() == DLTIDialect::kDataLayoutEndiannessKey) {
188       auto value = cast<StringAttr>(entry.getValue());
189       bool isLittleEndian =
190           value.getValue() == DLTIDialect::kDataLayoutEndiannessLittle;
191       layoutStream << "-" << (isLittleEndian ? "e" : "E");
192       layoutStream.flush();
193       continue;
194     }
195     if (key.getValue() == DLTIDialect::kDataLayoutProgramMemorySpaceKey) {
196       auto value = cast<IntegerAttr>(entry.getValue());
197       uint64_t space = value.getValue().getZExtValue();
198       // Skip the default address space.
199       if (space == 0)
200         continue;
201       layoutStream << "-P" << space;
202       layoutStream.flush();
203       continue;
204     }
205     if (key.getValue() == DLTIDialect::kDataLayoutGlobalMemorySpaceKey) {
206       auto value = cast<IntegerAttr>(entry.getValue());
207       uint64_t space = value.getValue().getZExtValue();
208       // Skip the default address space.
209       if (space == 0)
210         continue;
211       layoutStream << "-G" << space;
212       layoutStream.flush();
213       continue;
214     }
215     if (key.getValue() == DLTIDialect::kDataLayoutAllocaMemorySpaceKey) {
216       auto value = cast<IntegerAttr>(entry.getValue());
217       uint64_t space = value.getValue().getZExtValue();
218       // Skip the default address space.
219       if (space == 0)
220         continue;
221       layoutStream << "-A" << space;
222       layoutStream.flush();
223       continue;
224     }
225     if (key.getValue() == DLTIDialect::kDataLayoutStackAlignmentKey) {
226       auto value = cast<IntegerAttr>(entry.getValue());
227       uint64_t alignment = value.getValue().getZExtValue();
228       // Skip the default stack alignment.
229       if (alignment == 0)
230         continue;
231       layoutStream << "-S" << alignment;
232       layoutStream.flush();
233       continue;
234     }
235     emitError(*loc) << "unsupported data layout key " << key;
236     return failure();
237   }
238 
239   // Go through the list of entries to check which types are explicitly
240   // specified in entries. Where possible, data layout queries are used instead
241   // of directly inspecting the entries.
242   for (DataLayoutEntryInterface entry : attribute.getEntries()) {
243     auto type = llvm::dyn_cast_if_present<Type>(entry.getKey());
244     if (!type)
245       continue;
246     // Data layout for the index type is irrelevant at this point.
247     if (isa<IndexType>(type))
248       continue;
249     layoutStream << "-";
250     LogicalResult result =
251         llvm::TypeSwitch<Type, LogicalResult>(type)
252             .Case<IntegerType, Float16Type, Float32Type, Float64Type,
253                   Float80Type, Float128Type>([&](Type type) -> LogicalResult {
254               if (auto intType = dyn_cast<IntegerType>(type)) {
255                 if (intType.getSignedness() != IntegerType::Signless)
256                   return emitError(*loc)
257                          << "unsupported data layout for non-signless integer "
258                          << intType;
259                 layoutStream << "i";
260               } else {
261                 layoutStream << "f";
262               }
263               uint64_t size = dataLayout.getTypeSizeInBits(type);
264               uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u;
265               uint64_t preferred =
266                   dataLayout.getTypePreferredAlignment(type) * 8u;
267               layoutStream << size << ":" << abi;
268               if (abi != preferred)
269                 layoutStream << ":" << preferred;
270               return success();
271             })
272             .Case([&](LLVMPointerType ptrType) {
273               layoutStream << "p" << ptrType.getAddressSpace() << ":";
274               uint64_t size = dataLayout.getTypeSizeInBits(type);
275               uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u;
276               uint64_t preferred =
277                   dataLayout.getTypePreferredAlignment(type) * 8u;
278               layoutStream << size << ":" << abi << ":" << preferred;
279               if (std::optional<uint64_t> index = extractPointerSpecValue(
280                       entry.getValue(), PtrDLEntryPos::Index))
281                 layoutStream << ":" << *index;
282               return success();
283             })
284             .Default([loc](Type type) {
285               return emitError(*loc)
286                      << "unsupported type in data layout: " << type;
287             });
288     if (failed(result))
289       return failure();
290   }
291   layoutStream.flush();
292   StringRef layoutSpec(llvmDataLayout);
293   if (layoutSpec.starts_with("-"))
294     layoutSpec = layoutSpec.drop_front();
295 
296   return llvm::DataLayout(layoutSpec);
297 }
298 
299 /// Builds a constant of a sequential LLVM type `type`, potentially containing
300 /// other sequential types recursively, from the individual constant values
301 /// provided in `constants`. `shape` contains the number of elements in nested
302 /// sequential types. Reports errors at `loc` and returns nullptr on error.
303 static llvm::Constant *
304 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
305                         ArrayRef<int64_t> shape, llvm::Type *type,
306                         Location loc) {
307   if (shape.empty()) {
308     llvm::Constant *result = constants.front();
309     constants = constants.drop_front();
310     return result;
311   }
312 
313   llvm::Type *elementType;
314   if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
315     elementType = arrayTy->getElementType();
316   } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
317     elementType = vectorTy->getElementType();
318   } else {
319     emitError(loc) << "expected sequential LLVM types wrapping a scalar";
320     return nullptr;
321   }
322 
323   SmallVector<llvm::Constant *, 8> nested;
324   nested.reserve(shape.front());
325   for (int64_t i = 0; i < shape.front(); ++i) {
326     nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
327                                              elementType, loc));
328     if (!nested.back())
329       return nullptr;
330   }
331 
332   if (shape.size() == 1 && type->isVectorTy())
333     return llvm::ConstantVector::get(nested);
334   return llvm::ConstantArray::get(
335       llvm::ArrayType::get(elementType, shape.front()), nested);
336 }
337 
338 /// Returns the first non-sequential type nested in sequential types.
339 static llvm::Type *getInnermostElementType(llvm::Type *type) {
340   do {
341     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
342       type = arrayTy->getElementType();
343     } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
344       type = vectorTy->getElementType();
345     } else {
346       return type;
347     }
348   } while (true);
349 }
350 
351 /// Convert a dense elements attribute to an LLVM IR constant using its raw data
352 /// storage if possible. This supports elements attributes of tensor or vector
353 /// type and avoids constructing separate objects for individual values of the
354 /// innermost dimension. Constants for other dimensions are still constructed
355 /// recursively. Returns null if constructing from raw data is not supported for
356 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports
357 /// other errors at `loc`.
358 static llvm::Constant *
359 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr,
360                          llvm::Type *llvmType,
361                          const ModuleTranslation &moduleTranslation) {
362   if (!denseElementsAttr)
363     return nullptr;
364 
365   llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
366   if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType))
367     return nullptr;
368 
369   ShapedType type = denseElementsAttr.getType();
370   if (type.getNumElements() == 0)
371     return nullptr;
372 
373   // Check that the raw data size matches what is expected for the scalar size.
374   // TODO: in theory, we could repack the data here to keep constructing from
375   // raw data.
376   // TODO: we may also need to consider endianness when cross-compiling to an
377   // architecture where it is different.
378   int64_t elementByteSize = denseElementsAttr.getRawData().size() /
379                             denseElementsAttr.getNumElements();
380   if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits())
381     return nullptr;
382 
383   // Compute the shape of all dimensions but the innermost. Note that the
384   // innermost dimension may be that of the vector element type.
385   bool hasVectorElementType = isa<VectorType>(type.getElementType());
386   int64_t numAggregates =
387       denseElementsAttr.getNumElements() /
388       (hasVectorElementType ? 1
389                             : denseElementsAttr.getType().getShape().back());
390   ArrayRef<int64_t> outerShape = type.getShape();
391   if (!hasVectorElementType)
392     outerShape = outerShape.drop_back();
393 
394   // Handle the case of vector splat, LLVM has special support for it.
395   if (denseElementsAttr.isSplat() &&
396       (isa<VectorType>(type) || hasVectorElementType)) {
397     llvm::Constant *splatValue = LLVM::detail::getLLVMConstant(
398         innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc,
399         moduleTranslation);
400     llvm::Constant *splatVector =
401         llvm::ConstantDataVector::getSplat(0, splatValue);
402     SmallVector<llvm::Constant *> constants(numAggregates, splatVector);
403     ArrayRef<llvm::Constant *> constantsRef = constants;
404     return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
405   }
406   if (denseElementsAttr.isSplat())
407     return nullptr;
408 
409   // In case of non-splat, create a constructor for the innermost constant from
410   // a piece of raw data.
411   std::function<llvm::Constant *(StringRef)> buildCstData;
412   if (isa<TensorType>(type)) {
413     auto vectorElementType = dyn_cast<VectorType>(type.getElementType());
414     if (vectorElementType && vectorElementType.getRank() == 1) {
415       buildCstData = [&](StringRef data) {
416         return llvm::ConstantDataVector::getRaw(
417             data, vectorElementType.getShape().back(), innermostLLVMType);
418       };
419     } else if (!vectorElementType) {
420       buildCstData = [&](StringRef data) {
421         return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
422                                                innermostLLVMType);
423       };
424     }
425   } else if (isa<VectorType>(type)) {
426     buildCstData = [&](StringRef data) {
427       return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
428                                               innermostLLVMType);
429     };
430   }
431   if (!buildCstData)
432     return nullptr;
433 
434   // Create innermost constants and defer to the default constant creation
435   // mechanism for other dimensions.
436   SmallVector<llvm::Constant *> constants;
437   int64_t aggregateSize = denseElementsAttr.getType().getShape().back() *
438                           (innermostLLVMType->getScalarSizeInBits() / 8);
439   constants.reserve(numAggregates);
440   for (unsigned i = 0; i < numAggregates; ++i) {
441     StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize,
442                    aggregateSize);
443     constants.push_back(buildCstData(data));
444   }
445 
446   ArrayRef<llvm::Constant *> constantsRef = constants;
447   return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
448 }
449 
450 /// Convert a dense resource elements attribute to an LLVM IR constant using its
451 /// raw data storage if possible. This supports elements attributes of tensor or
452 /// vector type and avoids constructing separate objects for individual values
453 /// of the innermost dimension. Constants for other dimensions are still
454 /// constructed recursively. Returns nullptr on failure and emits errors at
455 /// `loc`.
456 static llvm::Constant *convertDenseResourceElementsAttr(
457     Location loc, DenseResourceElementsAttr denseResourceAttr,
458     llvm::Type *llvmType, const ModuleTranslation &moduleTranslation) {
459   assert(denseResourceAttr && "expected non-null attribute");
460 
461   llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
462   if (!llvm::ConstantDataSequential::isElementTypeCompatible(
463           innermostLLVMType)) {
464     emitError(loc, "no known conversion for innermost element type");
465     return nullptr;
466   }
467 
468   ShapedType type = denseResourceAttr.getType();
469   assert(type.getNumElements() > 0 && "Expected non-empty elements attribute");
470 
471   AsmResourceBlob *blob = denseResourceAttr.getRawHandle().getBlob();
472   if (!blob) {
473     emitError(loc, "resource does not exist");
474     return nullptr;
475   }
476 
477   ArrayRef<char> rawData = blob->getData();
478 
479   // Check that the raw data size matches what is expected for the scalar size.
480   // TODO: in theory, we could repack the data here to keep constructing from
481   // raw data.
482   // TODO: we may also need to consider endianness when cross-compiling to an
483   // architecture where it is different.
484   int64_t numElements = denseResourceAttr.getType().getNumElements();
485   int64_t elementByteSize = rawData.size() / numElements;
486   if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits()) {
487     emitError(loc, "raw data size does not match element type size");
488     return nullptr;
489   }
490 
491   // Compute the shape of all dimensions but the innermost. Note that the
492   // innermost dimension may be that of the vector element type.
493   bool hasVectorElementType = isa<VectorType>(type.getElementType());
494   int64_t numAggregates =
495       numElements / (hasVectorElementType
496                          ? 1
497                          : denseResourceAttr.getType().getShape().back());
498   ArrayRef<int64_t> outerShape = type.getShape();
499   if (!hasVectorElementType)
500     outerShape = outerShape.drop_back();
501 
502   // Create a constructor for the innermost constant from a piece of raw data.
503   std::function<llvm::Constant *(StringRef)> buildCstData;
504   if (isa<TensorType>(type)) {
505     auto vectorElementType = dyn_cast<VectorType>(type.getElementType());
506     if (vectorElementType && vectorElementType.getRank() == 1) {
507       buildCstData = [&](StringRef data) {
508         return llvm::ConstantDataVector::getRaw(
509             data, vectorElementType.getShape().back(), innermostLLVMType);
510       };
511     } else if (!vectorElementType) {
512       buildCstData = [&](StringRef data) {
513         return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
514                                                innermostLLVMType);
515       };
516     }
517   } else if (isa<VectorType>(type)) {
518     buildCstData = [&](StringRef data) {
519       return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
520                                               innermostLLVMType);
521     };
522   }
523   if (!buildCstData) {
524     emitError(loc, "unsupported dense_resource type");
525     return nullptr;
526   }
527 
528   // Create innermost constants and defer to the default constant creation
529   // mechanism for other dimensions.
530   SmallVector<llvm::Constant *> constants;
531   int64_t aggregateSize = denseResourceAttr.getType().getShape().back() *
532                           (innermostLLVMType->getScalarSizeInBits() / 8);
533   constants.reserve(numAggregates);
534   for (unsigned i = 0; i < numAggregates; ++i) {
535     StringRef data(rawData.data() + i * aggregateSize, aggregateSize);
536     constants.push_back(buildCstData(data));
537   }
538 
539   ArrayRef<llvm::Constant *> constantsRef = constants;
540   return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
541 }
542 
543 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
544 /// This currently supports integer, floating point, splat and dense element
545 /// attributes and combinations thereof. Also, an array attribute with two
546 /// elements is supported to represent a complex constant.  In case of error,
547 /// report it to `loc` and return nullptr.
548 llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
549     llvm::Type *llvmType, Attribute attr, Location loc,
550     const ModuleTranslation &moduleTranslation) {
551   if (!attr)
552     return llvm::UndefValue::get(llvmType);
553   if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) {
554     auto arrayAttr = dyn_cast<ArrayAttr>(attr);
555     if (!arrayAttr || arrayAttr.size() != 2) {
556       emitError(loc, "expected struct type to be a complex number");
557       return nullptr;
558     }
559     llvm::Type *elementType = structType->getElementType(0);
560     llvm::Constant *real =
561         getLLVMConstant(elementType, arrayAttr[0], loc, moduleTranslation);
562     if (!real)
563       return nullptr;
564     llvm::Constant *imag =
565         getLLVMConstant(elementType, arrayAttr[1], loc, moduleTranslation);
566     if (!imag)
567       return nullptr;
568     return llvm::ConstantStruct::get(structType, {real, imag});
569   }
570   // For integer types, we allow a mismatch in sizes as the index type in
571   // MLIR might have a different size than the index type in the LLVM module.
572   if (auto intAttr = dyn_cast<IntegerAttr>(attr))
573     return llvm::ConstantInt::get(
574         llvmType,
575         intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
576   if (auto floatAttr = dyn_cast<FloatAttr>(attr)) {
577     const llvm::fltSemantics &sem = floatAttr.getValue().getSemantics();
578     // Special case for 8-bit floats, which are represented by integers due to
579     // the lack of native fp8 types in LLVM at the moment. Additionally, handle
580     // targets (like AMDGPU) that don't implement bfloat and convert all bfloats
581     // to i16.
582     unsigned floatWidth = APFloat::getSizeInBits(sem);
583     if (llvmType->isIntegerTy(floatWidth))
584       return llvm::ConstantInt::get(llvmType,
585                                     floatAttr.getValue().bitcastToAPInt());
586     if (llvmType !=
587         llvm::Type::getFloatingPointTy(llvmType->getContext(),
588                                        floatAttr.getValue().getSemantics())) {
589       emitError(loc, "FloatAttr does not match expected type of the constant");
590       return nullptr;
591     }
592     return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
593   }
594   if (auto funcAttr = dyn_cast<FlatSymbolRefAttr>(attr))
595     return llvm::ConstantExpr::getBitCast(
596         moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
597   if (auto splatAttr = dyn_cast<SplatElementsAttr>(attr)) {
598     llvm::Type *elementType;
599     uint64_t numElements;
600     bool isScalable = false;
601     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
602       elementType = arrayTy->getElementType();
603       numElements = arrayTy->getNumElements();
604     } else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) {
605       elementType = fVectorTy->getElementType();
606       numElements = fVectorTy->getNumElements();
607     } else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) {
608       elementType = sVectorTy->getElementType();
609       numElements = sVectorTy->getMinNumElements();
610       isScalable = true;
611     } else {
612       llvm_unreachable("unrecognized constant vector type");
613     }
614     // Splat value is a scalar. Extract it only if the element type is not
615     // another sequence type. The recursion terminates because each step removes
616     // one outer sequential type.
617     bool elementTypeSequential =
618         isa<llvm::ArrayType, llvm::VectorType>(elementType);
619     llvm::Constant *child = getLLVMConstant(
620         elementType,
621         elementTypeSequential ? splatAttr
622                               : splatAttr.getSplatValue<Attribute>(),
623         loc, moduleTranslation);
624     if (!child)
625       return nullptr;
626     if (llvmType->isVectorTy())
627       return llvm::ConstantVector::getSplat(
628           llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child);
629     if (llvmType->isArrayTy()) {
630       auto *arrayType = llvm::ArrayType::get(elementType, numElements);
631       SmallVector<llvm::Constant *, 8> constants(numElements, child);
632       return llvm::ConstantArray::get(arrayType, constants);
633     }
634   }
635 
636   // Try using raw elements data if possible.
637   if (llvm::Constant *result =
638           convertDenseElementsAttr(loc, dyn_cast<DenseElementsAttr>(attr),
639                                    llvmType, moduleTranslation)) {
640     return result;
641   }
642 
643   if (auto denseResourceAttr = dyn_cast<DenseResourceElementsAttr>(attr)) {
644     return convertDenseResourceElementsAttr(loc, denseResourceAttr, llvmType,
645                                             moduleTranslation);
646   }
647 
648   // Fall back to element-by-element construction otherwise.
649   if (auto elementsAttr = dyn_cast<ElementsAttr>(attr)) {
650     assert(elementsAttr.getShapedType().hasStaticShape());
651     assert(!elementsAttr.getShapedType().getShape().empty() &&
652            "unexpected empty elements attribute shape");
653 
654     SmallVector<llvm::Constant *, 8> constants;
655     constants.reserve(elementsAttr.getNumElements());
656     llvm::Type *innermostType = getInnermostElementType(llvmType);
657     for (auto n : elementsAttr.getValues<Attribute>()) {
658       constants.push_back(
659           getLLVMConstant(innermostType, n, loc, moduleTranslation));
660       if (!constants.back())
661         return nullptr;
662     }
663     ArrayRef<llvm::Constant *> constantsRef = constants;
664     llvm::Constant *result = buildSequentialConstant(
665         constantsRef, elementsAttr.getShapedType().getShape(), llvmType, loc);
666     assert(constantsRef.empty() && "did not consume all elemental constants");
667     return result;
668   }
669 
670   if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
671     return llvm::ConstantDataArray::get(
672         moduleTranslation.getLLVMContext(),
673         ArrayRef<char>{stringAttr.getValue().data(),
674                        stringAttr.getValue().size()});
675   }
676   emitError(loc, "unsupported constant value");
677   return nullptr;
678 }
679 
680 ModuleTranslation::ModuleTranslation(Operation *module,
681                                      std::unique_ptr<llvm::Module> llvmModule)
682     : mlirModule(module), llvmModule(std::move(llvmModule)),
683       debugTranslation(
684           std::make_unique<DebugTranslation>(module, *this->llvmModule)),
685       loopAnnotationTranslation(std::make_unique<LoopAnnotationTranslation>(
686           *this, *this->llvmModule)),
687       typeTranslator(this->llvmModule->getContext()),
688       iface(module->getContext()) {
689   assert(satisfiesLLVMModule(mlirModule) &&
690          "mlirModule should honor LLVM's module semantics.");
691 }
692 
693 ModuleTranslation::~ModuleTranslation() {
694   if (ompBuilder)
695     ompBuilder->finalize();
696 }
697 
698 void ModuleTranslation::forgetMapping(Region &region) {
699   SmallVector<Region *> toProcess;
700   toProcess.push_back(&region);
701   while (!toProcess.empty()) {
702     Region *current = toProcess.pop_back_val();
703     for (Block &block : *current) {
704       blockMapping.erase(&block);
705       for (Value arg : block.getArguments())
706         valueMapping.erase(arg);
707       for (Operation &op : block) {
708         for (Value value : op.getResults())
709           valueMapping.erase(value);
710         if (op.hasSuccessors())
711           branchMapping.erase(&op);
712         if (isa<LLVM::GlobalOp>(op))
713           globalsMapping.erase(&op);
714         llvm::append_range(
715             toProcess,
716             llvm::map_range(op.getRegions(), [](Region &r) { return &r; }));
717       }
718     }
719   }
720 }
721 
722 /// Get the SSA value passed to the current block from the terminator operation
723 /// of its predecessor.
724 static Value getPHISourceValue(Block *current, Block *pred,
725                                unsigned numArguments, unsigned index) {
726   Operation &terminator = *pred->getTerminator();
727   if (isa<LLVM::BrOp>(terminator))
728     return terminator.getOperand(index);
729 
730 #ifndef NDEBUG
731   llvm::SmallPtrSet<Block *, 4> seenSuccessors;
732   for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) {
733     Block *successor = terminator.getSuccessor(i);
734     auto branch = cast<BranchOpInterface>(terminator);
735     SuccessorOperands successorOperands = branch.getSuccessorOperands(i);
736     assert(
737         (!seenSuccessors.contains(successor) || successorOperands.empty()) &&
738         "successors with arguments in LLVM branches must be different blocks");
739     seenSuccessors.insert(successor);
740   }
741 #endif
742 
743   // For instructions that branch based on a condition value, we need to take
744   // the operands for the branch that was taken.
745   if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
746     // For conditional branches, we take the operands from either the "true" or
747     // the "false" branch.
748     return condBranchOp.getSuccessor(0) == current
749                ? condBranchOp.getTrueDestOperands()[index]
750                : condBranchOp.getFalseDestOperands()[index];
751   }
752 
753   if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
754     // For switches, we take the operands from either the default case, or from
755     // the case branch that was taken.
756     if (switchOp.getDefaultDestination() == current)
757       return switchOp.getDefaultOperands()[index];
758     for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations()))
759       if (i.value() == current)
760         return switchOp.getCaseOperands(i.index())[index];
761   }
762 
763   if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) {
764     return invokeOp.getNormalDest() == current
765                ? invokeOp.getNormalDestOperands()[index]
766                : invokeOp.getUnwindDestOperands()[index];
767   }
768 
769   llvm_unreachable(
770       "only branch, switch or invoke operations can be terminators "
771       "of a block that has successors");
772 }
773 
774 /// Connect the PHI nodes to the results of preceding blocks.
775 void mlir::LLVM::detail::connectPHINodes(Region &region,
776                                          const ModuleTranslation &state) {
777   // Skip the first block, it cannot be branched to and its arguments correspond
778   // to the arguments of the LLVM function.
779   for (Block &bb : llvm::drop_begin(region)) {
780     llvm::BasicBlock *llvmBB = state.lookupBlock(&bb);
781     auto phis = llvmBB->phis();
782     auto numArguments = bb.getNumArguments();
783     assert(numArguments == std::distance(phis.begin(), phis.end()));
784     for (auto [index, phiNode] : llvm::enumerate(phis)) {
785       for (auto *pred : bb.getPredecessors()) {
786         // Find the LLVM IR block that contains the converted terminator
787         // instruction and use it in the PHI node. Note that this block is not
788         // necessarily the same as state.lookupBlock(pred), some operations
789         // (in particular, OpenMP operations using OpenMPIRBuilder) may have
790         // split the blocks.
791         llvm::Instruction *terminator =
792             state.lookupBranch(pred->getTerminator());
793         assert(terminator && "missing the mapping for a terminator");
794         phiNode.addIncoming(state.lookupValue(getPHISourceValue(
795                                 &bb, pred, numArguments, index)),
796                             terminator->getParent());
797       }
798     }
799   }
800 }
801 
802 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall(
803     llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
804     ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
805   llvm::Module *module = builder.GetInsertBlock()->getModule();
806   llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys);
807   return builder.CreateCall(fn, args);
808 }
809 
810 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall(
811     llvm::IRBuilderBase &builder, ModuleTranslation &moduleTranslation,
812     Operation *intrOp, llvm::Intrinsic::ID intrinsic, unsigned numResults,
813     ArrayRef<unsigned> overloadedResults, ArrayRef<unsigned> overloadedOperands,
814     ArrayRef<unsigned> immArgPositions,
815     ArrayRef<StringLiteral> immArgAttrNames) {
816   assert(immArgPositions.size() == immArgAttrNames.size() &&
817          "LLVM `immArgPositions` and MLIR `immArgAttrNames` should have equal "
818          "length");
819 
820   // Map operands and attributes to LLVM values.
821   auto operands = moduleTranslation.lookupValues(intrOp->getOperands());
822   SmallVector<llvm::Value *> args(immArgPositions.size() + operands.size());
823   for (auto [immArgPos, immArgName] :
824        llvm::zip(immArgPositions, immArgAttrNames)) {
825     auto attr = llvm::cast<TypedAttr>(intrOp->getAttr(immArgName));
826     assert(attr.getType().isIntOrFloat() && "expected int or float immarg");
827     auto *type = moduleTranslation.convertType(attr.getType());
828     args[immArgPos] = LLVM::detail::getLLVMConstant(
829         type, attr, intrOp->getLoc(), moduleTranslation);
830   }
831   unsigned opArg = 0;
832   for (auto &arg : args) {
833     if (!arg)
834       arg = operands[opArg++];
835   }
836 
837   // Resolve overloaded intrinsic declaration.
838   SmallVector<llvm::Type *> overloadedTypes;
839   for (unsigned overloadedResultIdx : overloadedResults) {
840     if (numResults > 1) {
841       // More than one result is mapped to an LLVM struct.
842       overloadedTypes.push_back(moduleTranslation.convertType(
843           llvm::cast<LLVM::LLVMStructType>(intrOp->getResult(0).getType())
844               .getBody()[overloadedResultIdx]));
845     } else {
846       overloadedTypes.push_back(
847           moduleTranslation.convertType(intrOp->getResult(0).getType()));
848     }
849   }
850   for (unsigned overloadedOperandIdx : overloadedOperands)
851     overloadedTypes.push_back(args[overloadedOperandIdx]->getType());
852   llvm::Module *module = builder.GetInsertBlock()->getModule();
853   llvm::Function *llvmIntr =
854       llvm::Intrinsic::getDeclaration(module, intrinsic, overloadedTypes);
855 
856   return builder.CreateCall(llvmIntr, args);
857 }
858 
859 /// Given a single MLIR operation, create the corresponding LLVM IR operation
860 /// using the `builder`.
861 LogicalResult ModuleTranslation::convertOperation(Operation &op,
862                                                   llvm::IRBuilderBase &builder,
863                                                   bool recordInsertions) {
864   const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
865   if (!opIface)
866     return op.emitError("cannot be converted to LLVM IR: missing "
867                         "`LLVMTranslationDialectInterface` registration for "
868                         "dialect for op: ")
869            << op.getName();
870 
871   InstructionCapturingInserter::CollectionScope scope(builder,
872                                                       recordInsertions);
873   if (failed(opIface->convertOperation(&op, builder, *this)))
874     return op.emitError("LLVM Translation failed for operation: ")
875            << op.getName();
876 
877   return convertDialectAttributes(&op, scope.getCapturedInstructions());
878 }
879 
880 /// Convert block to LLVM IR.  Unless `ignoreArguments` is set, emit PHI nodes
881 /// to define values corresponding to the MLIR block arguments.  These nodes
882 /// are not connected to the source basic blocks, which may not exist yet.  Uses
883 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
884 /// been created for `bb` and included in the block mapping.  Inserts new
885 /// instructions at the end of the block and leaves `builder` in a state
886 /// suitable for further insertion into the end of the block.
887 LogicalResult ModuleTranslation::convertBlockImpl(Block &bb,
888                                                   bool ignoreArguments,
889                                                   llvm::IRBuilderBase &builder,
890                                                   bool recordInsertions) {
891   builder.SetInsertPoint(lookupBlock(&bb));
892   auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
893 
894   // Before traversing operations, make block arguments available through
895   // value remapping and PHI nodes, but do not add incoming edges for the PHI
896   // nodes just yet: those values may be defined by this or following blocks.
897   // This step is omitted if "ignoreArguments" is set.  The arguments of the
898   // first block have been already made available through the remapping of
899   // LLVM function arguments.
900   if (!ignoreArguments) {
901     auto predecessors = bb.getPredecessors();
902     unsigned numPredecessors =
903         std::distance(predecessors.begin(), predecessors.end());
904     for (auto arg : bb.getArguments()) {
905       auto wrappedType = arg.getType();
906       if (!isCompatibleType(wrappedType))
907         return emitError(bb.front().getLoc(),
908                          "block argument does not have an LLVM type");
909       llvm::Type *type = convertType(wrappedType);
910       llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
911       mapValue(arg, phi);
912     }
913   }
914 
915   // Traverse operations.
916   for (auto &op : bb) {
917     // Set the current debug location within the builder.
918     builder.SetCurrentDebugLocation(
919         debugTranslation->translateLoc(op.getLoc(), subprogram));
920 
921     if (failed(convertOperation(op, builder, recordInsertions)))
922       return failure();
923 
924     // Set the branch weight metadata on the translated instruction.
925     if (auto iface = dyn_cast<BranchWeightOpInterface>(op))
926       setBranchWeightsMetadata(iface);
927   }
928 
929   return success();
930 }
931 
932 /// A helper method to get the single Block in an operation honoring LLVM's
933 /// module requirements.
934 static Block &getModuleBody(Operation *module) {
935   return module->getRegion(0).front();
936 }
937 
938 /// A helper method to decide if a constant must not be set as a global variable
939 /// initializer. For an external linkage variable, the variable with an
940 /// initializer is considered externally visible and defined in this module, the
941 /// variable without an initializer is externally available and is defined
942 /// elsewhere.
943 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
944                                         llvm::Constant *cst) {
945   return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) ||
946          linkage == llvm::GlobalVariable::ExternalWeakLinkage;
947 }
948 
949 /// Sets the runtime preemption specifier of `gv` to dso_local if
950 /// `dsoLocalRequested` is true, otherwise it is left unchanged.
951 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested,
952                                           llvm::GlobalValue *gv) {
953   if (dsoLocalRequested)
954     gv->setDSOLocal(true);
955 }
956 
957 /// Create named global variables that correspond to llvm.mlir.global
958 /// definitions. Convert llvm.global_ctors and global_dtors ops.
959 LogicalResult ModuleTranslation::convertGlobals() {
960   // Mapping from compile unit to its respective set of global variables.
961   DenseMap<llvm::DICompileUnit *, SmallVector<llvm::Metadata *>> allGVars;
962 
963   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
964     llvm::Type *type = convertType(op.getType());
965     llvm::Constant *cst = nullptr;
966     if (op.getValueOrNull()) {
967       // String attributes are treated separately because they cannot appear as
968       // in-function constants and are thus not supported by getLLVMConstant.
969       if (auto strAttr = dyn_cast_or_null<StringAttr>(op.getValueOrNull())) {
970         cst = llvm::ConstantDataArray::getString(
971             llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
972         type = cst->getType();
973       } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
974                                          *this))) {
975         return failure();
976       }
977     }
978 
979     auto linkage = convertLinkageToLLVM(op.getLinkage());
980     auto addrSpace = op.getAddrSpace();
981 
982     // LLVM IR requires constant with linkage other than external or weak
983     // external to have initializers. If MLIR does not provide an initializer,
984     // default to undef.
985     bool dropInitializer = shouldDropGlobalInitializer(linkage, cst);
986     if (!dropInitializer && !cst)
987       cst = llvm::UndefValue::get(type);
988     else if (dropInitializer && cst)
989       cst = nullptr;
990 
991     auto *var = new llvm::GlobalVariable(
992         *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(),
993         /*InsertBefore=*/nullptr,
994         op.getThreadLocal_() ? llvm::GlobalValue::GeneralDynamicTLSModel
995                              : llvm::GlobalValue::NotThreadLocal,
996         addrSpace);
997 
998     if (std::optional<mlir::SymbolRefAttr> comdat = op.getComdat()) {
999       auto selectorOp = cast<ComdatSelectorOp>(
1000           SymbolTable::lookupNearestSymbolFrom(op, *comdat));
1001       var->setComdat(comdatMapping.lookup(selectorOp));
1002     }
1003 
1004     if (op.getUnnamedAddr().has_value())
1005       var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr()));
1006 
1007     if (op.getSection().has_value())
1008       var->setSection(*op.getSection());
1009 
1010     addRuntimePreemptionSpecifier(op.getDsoLocal(), var);
1011 
1012     std::optional<uint64_t> alignment = op.getAlignment();
1013     if (alignment.has_value())
1014       var->setAlignment(llvm::MaybeAlign(alignment.value()));
1015 
1016     var->setVisibility(convertVisibilityToLLVM(op.getVisibility_()));
1017 
1018     globalsMapping.try_emplace(op, var);
1019 
1020     // Add debug information if present.
1021     if (op.getDbgExpr()) {
1022       llvm::DIGlobalVariableExpression *diGlobalExpr =
1023           debugTranslation->translateGlobalVariableExpression(op.getDbgExpr());
1024       llvm::DIGlobalVariable *diGlobalVar = diGlobalExpr->getVariable();
1025       var->addDebugInfo(diGlobalExpr);
1026 
1027       // Get the compile unit (scope) of the the global variable.
1028       if (llvm::DICompileUnit *compileUnit =
1029               dyn_cast_if_present<llvm::DICompileUnit>(
1030                   diGlobalVar->getScope())) {
1031         // Update the compile unit with this incoming global variable expression
1032         // during the finalizing step later.
1033         allGVars[compileUnit].push_back(diGlobalExpr);
1034       }
1035     }
1036   }
1037 
1038   // Convert global variable bodies. This is done after all global variables
1039   // have been created in LLVM IR because a global body may refer to another
1040   // global or itself. So all global variables need to be mapped first.
1041   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
1042     if (Block *initializer = op.getInitializerBlock()) {
1043       llvm::IRBuilder<> builder(llvmModule->getContext());
1044       for (auto &op : initializer->without_terminator()) {
1045         if (failed(convertOperation(op, builder)) ||
1046             !isa<llvm::Constant>(lookupValue(op.getResult(0))))
1047           return emitError(op.getLoc(), "unemittable constant value");
1048       }
1049       ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
1050       llvm::Constant *cst =
1051           cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
1052       auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
1053       if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
1054         global->setInitializer(cst);
1055     }
1056   }
1057 
1058   // Convert llvm.mlir.global_ctors and dtors.
1059   for (Operation &op : getModuleBody(mlirModule)) {
1060     auto ctorOp = dyn_cast<GlobalCtorsOp>(op);
1061     auto dtorOp = dyn_cast<GlobalDtorsOp>(op);
1062     if (!ctorOp && !dtorOp)
1063       continue;
1064     auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities())
1065                         : llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities());
1066     auto appendGlobalFn =
1067         ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors;
1068     for (auto symbolAndPriority : range) {
1069       llvm::Function *f = lookupFunction(
1070           cast<FlatSymbolRefAttr>(std::get<0>(symbolAndPriority)).getValue());
1071       appendGlobalFn(*llvmModule, f,
1072                      cast<IntegerAttr>(std::get<1>(symbolAndPriority)).getInt(),
1073                      /*Data=*/nullptr);
1074     }
1075   }
1076 
1077   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>())
1078     if (failed(convertDialectAttributes(op, {})))
1079       return failure();
1080 
1081   // Finally, update the compile units their respective sets of global variables
1082   // created earlier.
1083   for (const auto &[compileUnit, globals] : allGVars) {
1084     compileUnit->replaceGlobalVariables(
1085         llvm::MDTuple::get(getLLVMContext(), globals));
1086   }
1087 
1088   return success();
1089 }
1090 
1091 /// Attempts to add an attribute identified by `key`, optionally with the given
1092 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
1093 /// attribute has a kind known to LLVM IR, create the attribute of this kind,
1094 /// otherwise keep it as a string attribute. Performs additional checks for
1095 /// attributes known to have or not have a value in order to avoid assertions
1096 /// inside LLVM upon construction.
1097 static LogicalResult checkedAddLLVMFnAttribute(Location loc,
1098                                                llvm::Function *llvmFunc,
1099                                                StringRef key,
1100                                                StringRef value = StringRef()) {
1101   auto kind = llvm::Attribute::getAttrKindFromName(key);
1102   if (kind == llvm::Attribute::None) {
1103     llvmFunc->addFnAttr(key, value);
1104     return success();
1105   }
1106 
1107   if (llvm::Attribute::isIntAttrKind(kind)) {
1108     if (value.empty())
1109       return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
1110 
1111     int64_t result;
1112     if (!value.getAsInteger(/*Radix=*/0, result))
1113       llvmFunc->addFnAttr(
1114           llvm::Attribute::get(llvmFunc->getContext(), kind, result));
1115     else
1116       llvmFunc->addFnAttr(key, value);
1117     return success();
1118   }
1119 
1120   if (!value.empty())
1121     return emitError(loc) << "LLVM attribute '" << key
1122                           << "' does not expect a value, found '" << value
1123                           << "'";
1124 
1125   llvmFunc->addFnAttr(kind);
1126   return success();
1127 }
1128 
1129 /// Attaches the attributes listed in the given array attribute to `llvmFunc`.
1130 /// Reports error to `loc` if any and returns immediately. Expects `attributes`
1131 /// to be an array attribute containing either string attributes, treated as
1132 /// value-less LLVM attributes, or array attributes containing two string
1133 /// attributes, with the first string being the name of the corresponding LLVM
1134 /// attribute and the second string beings its value. Note that even integer
1135 /// attributes are expected to have their values expressed as strings.
1136 static LogicalResult
1137 forwardPassthroughAttributes(Location loc, std::optional<ArrayAttr> attributes,
1138                              llvm::Function *llvmFunc) {
1139   if (!attributes)
1140     return success();
1141 
1142   for (Attribute attr : *attributes) {
1143     if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
1144       if (failed(
1145               checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
1146         return failure();
1147       continue;
1148     }
1149 
1150     auto arrayAttr = dyn_cast<ArrayAttr>(attr);
1151     if (!arrayAttr || arrayAttr.size() != 2)
1152       return emitError(loc)
1153              << "expected 'passthrough' to contain string or array attributes";
1154 
1155     auto keyAttr = dyn_cast<StringAttr>(arrayAttr[0]);
1156     auto valueAttr = dyn_cast<StringAttr>(arrayAttr[1]);
1157     if (!keyAttr || !valueAttr)
1158       return emitError(loc)
1159              << "expected arrays within 'passthrough' to contain two strings";
1160 
1161     if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
1162                                          valueAttr.getValue())))
1163       return failure();
1164   }
1165   return success();
1166 }
1167 
1168 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
1169   // Clear the block, branch value mappings, they are only relevant within one
1170   // function.
1171   blockMapping.clear();
1172   valueMapping.clear();
1173   branchMapping.clear();
1174   llvm::Function *llvmFunc = lookupFunction(func.getName());
1175 
1176   // Add function arguments to the value remapping table.
1177   for (auto [mlirArg, llvmArg] :
1178        llvm::zip(func.getArguments(), llvmFunc->args()))
1179     mapValue(mlirArg, &llvmArg);
1180 
1181   // Check the personality and set it.
1182   if (func.getPersonality()) {
1183     llvm::Type *ty = llvm::PointerType::getUnqual(llvmFunc->getContext());
1184     if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(),
1185                                                 func.getLoc(), *this))
1186       llvmFunc->setPersonalityFn(pfunc);
1187   }
1188 
1189   if (std::optional<StringRef> section = func.getSection())
1190     llvmFunc->setSection(*section);
1191 
1192   if (func.getArmStreaming())
1193     llvmFunc->addFnAttr("aarch64_pstate_sm_enabled");
1194   else if (func.getArmLocallyStreaming())
1195     llvmFunc->addFnAttr("aarch64_pstate_sm_body");
1196   else if (func.getArmStreamingCompatible())
1197     llvmFunc->addFnAttr("aarch64_pstate_sm_compatible");
1198 
1199   if (func.getArmNewZa())
1200     llvmFunc->addFnAttr("aarch64_pstate_za_new");
1201   else if (func.getArmSharedZa())
1202     llvmFunc->addFnAttr("aarch64_pstate_za_shared");
1203   if (func.getArmPreservesZa())
1204     llvmFunc->addFnAttr("aarch64_pstate_za_preserved");
1205 
1206   if (auto targetCpu = func.getTargetCpu())
1207     llvmFunc->addFnAttr("target-cpu", *targetCpu);
1208 
1209   if (auto targetFeatures = func.getTargetFeatures())
1210     llvmFunc->addFnAttr("target-features", targetFeatures->getFeaturesString());
1211 
1212   if (auto attr = func.getVscaleRange())
1213     llvmFunc->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
1214         getLLVMContext(), attr->getMinRange().getInt(),
1215         attr->getMaxRange().getInt()));
1216 
1217   // Add function attribute frame-pointer, if found.
1218   if (FramePointerKindAttr attr = func.getFramePointerAttr())
1219     llvmFunc->addFnAttr("frame-pointer",
1220                         LLVM::framePointerKind::stringifyFramePointerKind(
1221                             (attr.getFramePointerKind())));
1222 
1223   // First, create all blocks so we can jump to them.
1224   llvm::LLVMContext &llvmContext = llvmFunc->getContext();
1225   for (auto &bb : func) {
1226     auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
1227     llvmBB->insertInto(llvmFunc);
1228     mapBlock(&bb, llvmBB);
1229   }
1230 
1231   // Then, convert blocks one by one in topological order to ensure defs are
1232   // converted before uses.
1233   auto blocks = getTopologicallySortedBlocks(func.getBody());
1234   for (Block *bb : blocks) {
1235     CapturingIRBuilder builder(llvmContext);
1236     if (failed(convertBlockImpl(*bb, bb->isEntryBlock(), builder,
1237                                 /*recordInsertions=*/true)))
1238       return failure();
1239   }
1240 
1241   // After all blocks have been traversed and values mapped, connect the PHI
1242   // nodes to the results of preceding blocks.
1243   detail::connectPHINodes(func.getBody(), *this);
1244 
1245   // Finally, convert dialect attributes attached to the function.
1246   return convertDialectAttributes(func, {});
1247 }
1248 
1249 LogicalResult ModuleTranslation::convertDialectAttributes(
1250     Operation *op, ArrayRef<llvm::Instruction *> instructions) {
1251   for (NamedAttribute attribute : op->getDialectAttrs())
1252     if (failed(iface.amendOperation(op, instructions, attribute, *this)))
1253       return failure();
1254   return success();
1255 }
1256 
1257 /// Converts the function attributes from LLVMFuncOp and attaches them to the
1258 /// llvm::Function.
1259 static void convertFunctionAttributes(LLVMFuncOp func,
1260                                       llvm::Function *llvmFunc) {
1261   if (!func.getMemory())
1262     return;
1263 
1264   MemoryEffectsAttr memEffects = func.getMemoryAttr();
1265 
1266   // Add memory effects incrementally.
1267   llvm::MemoryEffects newMemEffects =
1268       llvm::MemoryEffects(llvm::MemoryEffects::Location::ArgMem,
1269                           convertModRefInfoToLLVM(memEffects.getArgMem()));
1270   newMemEffects |= llvm::MemoryEffects(
1271       llvm::MemoryEffects::Location::InaccessibleMem,
1272       convertModRefInfoToLLVM(memEffects.getInaccessibleMem()));
1273   newMemEffects |=
1274       llvm::MemoryEffects(llvm::MemoryEffects::Location::Other,
1275                           convertModRefInfoToLLVM(memEffects.getOther()));
1276   llvmFunc->setMemoryEffects(newMemEffects);
1277 }
1278 
1279 llvm::AttrBuilder
1280 ModuleTranslation::convertParameterAttrs(DictionaryAttr paramAttrs) {
1281   llvm::AttrBuilder attrBuilder(llvmModule->getContext());
1282 
1283   for (auto [llvmKind, mlirName] : getAttrKindToNameMapping()) {
1284     Attribute attr = paramAttrs.get(mlirName);
1285     // Skip attributes that are not present.
1286     if (!attr)
1287       continue;
1288 
1289     // NOTE: C++17 does not support capturing structured bindings.
1290     llvm::Attribute::AttrKind llvmKindCap = llvmKind;
1291 
1292     llvm::TypeSwitch<Attribute>(attr)
1293         .Case<TypeAttr>([&](auto typeAttr) {
1294           attrBuilder.addTypeAttr(llvmKindCap,
1295                                   convertType(typeAttr.getValue()));
1296         })
1297         .Case<IntegerAttr>([&](auto intAttr) {
1298           attrBuilder.addRawIntAttr(llvmKindCap, intAttr.getInt());
1299         })
1300         .Case<UnitAttr>([&](auto) { attrBuilder.addAttribute(llvmKindCap); });
1301   }
1302 
1303   return attrBuilder;
1304 }
1305 
1306 LogicalResult ModuleTranslation::convertFunctionSignatures() {
1307   // Declare all functions first because there may be function calls that form a
1308   // call graph with cycles, or global initializers that reference functions.
1309   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
1310     llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
1311         function.getName(),
1312         cast<llvm::FunctionType>(convertType(function.getFunctionType())));
1313     llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
1314     llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage()));
1315     llvmFunc->setCallingConv(convertCConvToLLVM(function.getCConv()));
1316     mapFunction(function.getName(), llvmFunc);
1317     addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc);
1318 
1319     // Convert function attributes.
1320     convertFunctionAttributes(function, llvmFunc);
1321 
1322     // Convert function_entry_count attribute to metadata.
1323     if (std::optional<uint64_t> entryCount = function.getFunctionEntryCount())
1324       llvmFunc->setEntryCount(entryCount.value());
1325 
1326     // Convert result attributes.
1327     if (ArrayAttr allResultAttrs = function.getAllResultAttrs()) {
1328       DictionaryAttr resultAttrs = cast<DictionaryAttr>(allResultAttrs[0]);
1329       llvmFunc->addRetAttrs(convertParameterAttrs(resultAttrs));
1330     }
1331 
1332     // Convert argument attributes.
1333     for (auto [argIdx, llvmArg] : llvm::enumerate(llvmFunc->args())) {
1334       if (DictionaryAttr argAttrs = function.getArgAttrDict(argIdx)) {
1335         llvm::AttrBuilder attrBuilder = convertParameterAttrs(argAttrs);
1336         llvmArg.addAttrs(attrBuilder);
1337       }
1338     }
1339 
1340     // Forward the pass-through attributes to LLVM.
1341     if (failed(forwardPassthroughAttributes(
1342             function.getLoc(), function.getPassthrough(), llvmFunc)))
1343       return failure();
1344 
1345     // Convert visibility attribute.
1346     llvmFunc->setVisibility(convertVisibilityToLLVM(function.getVisibility_()));
1347 
1348     // Convert the comdat attribute.
1349     if (std::optional<mlir::SymbolRefAttr> comdat = function.getComdat()) {
1350       auto selectorOp = cast<ComdatSelectorOp>(
1351           SymbolTable::lookupNearestSymbolFrom(function, *comdat));
1352       llvmFunc->setComdat(comdatMapping.lookup(selectorOp));
1353     }
1354 
1355     if (auto gc = function.getGarbageCollector())
1356       llvmFunc->setGC(gc->str());
1357 
1358     if (auto unnamedAddr = function.getUnnamedAddr())
1359       llvmFunc->setUnnamedAddr(convertUnnamedAddrToLLVM(*unnamedAddr));
1360 
1361     if (auto alignment = function.getAlignment())
1362       llvmFunc->setAlignment(llvm::MaybeAlign(*alignment));
1363 
1364     // Translate the debug information for this function.
1365     debugTranslation->translate(function, *llvmFunc);
1366   }
1367 
1368   return success();
1369 }
1370 
1371 LogicalResult ModuleTranslation::convertFunctions() {
1372   // Convert functions.
1373   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
1374     // Do not convert external functions, but do process dialect attributes
1375     // attached to them.
1376     if (function.isExternal()) {
1377       if (failed(convertDialectAttributes(function, {})))
1378         return failure();
1379       continue;
1380     }
1381 
1382     if (failed(convertOneFunction(function)))
1383       return failure();
1384   }
1385 
1386   return success();
1387 }
1388 
1389 LogicalResult ModuleTranslation::convertComdats() {
1390   for (auto comdatOp : getModuleBody(mlirModule).getOps<ComdatOp>()) {
1391     for (auto selectorOp : comdatOp.getOps<ComdatSelectorOp>()) {
1392       llvm::Module *module = getLLVMModule();
1393       if (module->getComdatSymbolTable().contains(selectorOp.getSymName()))
1394         return emitError(selectorOp.getLoc())
1395                << "comdat selection symbols must be unique even in different "
1396                   "comdat regions";
1397       llvm::Comdat *comdat = module->getOrInsertComdat(selectorOp.getSymName());
1398       comdat->setSelectionKind(convertComdatToLLVM(selectorOp.getComdat()));
1399       comdatMapping.try_emplace(selectorOp, comdat);
1400     }
1401   }
1402   return success();
1403 }
1404 
1405 void ModuleTranslation::setAccessGroupsMetadata(AccessGroupOpInterface op,
1406                                                 llvm::Instruction *inst) {
1407   if (llvm::MDNode *node = loopAnnotationTranslation->getAccessGroups(op))
1408     inst->setMetadata(llvm::LLVMContext::MD_access_group, node);
1409 }
1410 
1411 llvm::MDNode *
1412 ModuleTranslation::getOrCreateAliasScope(AliasScopeAttr aliasScopeAttr) {
1413   auto [scopeIt, scopeInserted] =
1414       aliasScopeMetadataMapping.try_emplace(aliasScopeAttr, nullptr);
1415   if (!scopeInserted)
1416     return scopeIt->second;
1417   llvm::LLVMContext &ctx = llvmModule->getContext();
1418   // Convert the domain metadata node if necessary.
1419   auto [domainIt, insertedDomain] = aliasDomainMetadataMapping.try_emplace(
1420       aliasScopeAttr.getDomain(), nullptr);
1421   if (insertedDomain) {
1422     llvm::SmallVector<llvm::Metadata *, 2> operands;
1423     // Placeholder for self-reference.
1424     operands.push_back({});
1425     if (StringAttr description = aliasScopeAttr.getDomain().getDescription())
1426       operands.push_back(llvm::MDString::get(ctx, description));
1427     domainIt->second = llvm::MDNode::get(ctx, operands);
1428     // Self-reference for uniqueness.
1429     domainIt->second->replaceOperandWith(0, domainIt->second);
1430   }
1431   // Convert the scope metadata node.
1432   assert(domainIt->second && "Scope's domain should already be valid");
1433   llvm::SmallVector<llvm::Metadata *, 3> operands;
1434   // Placeholder for self-reference.
1435   operands.push_back({});
1436   operands.push_back(domainIt->second);
1437   if (StringAttr description = aliasScopeAttr.getDescription())
1438     operands.push_back(llvm::MDString::get(ctx, description));
1439   scopeIt->second = llvm::MDNode::get(ctx, operands);
1440   // Self-reference for uniqueness.
1441   scopeIt->second->replaceOperandWith(0, scopeIt->second);
1442   return scopeIt->second;
1443 }
1444 
1445 llvm::MDNode *ModuleTranslation::getOrCreateAliasScopes(
1446     ArrayRef<AliasScopeAttr> aliasScopeAttrs) {
1447   SmallVector<llvm::Metadata *> nodes;
1448   nodes.reserve(aliasScopeAttrs.size());
1449   for (AliasScopeAttr aliasScopeAttr : aliasScopeAttrs)
1450     nodes.push_back(getOrCreateAliasScope(aliasScopeAttr));
1451   return llvm::MDNode::get(getLLVMContext(), nodes);
1452 }
1453 
1454 void ModuleTranslation::setAliasScopeMetadata(AliasAnalysisOpInterface op,
1455                                               llvm::Instruction *inst) {
1456   auto populateScopeMetadata = [&](ArrayAttr aliasScopeAttrs, unsigned kind) {
1457     if (!aliasScopeAttrs || aliasScopeAttrs.empty())
1458       return;
1459     llvm::MDNode *node = getOrCreateAliasScopes(
1460         llvm::to_vector(aliasScopeAttrs.getAsRange<AliasScopeAttr>()));
1461     inst->setMetadata(kind, node);
1462   };
1463 
1464   populateScopeMetadata(op.getAliasScopesOrNull(),
1465                         llvm::LLVMContext::MD_alias_scope);
1466   populateScopeMetadata(op.getNoAliasScopesOrNull(),
1467                         llvm::LLVMContext::MD_noalias);
1468 }
1469 
1470 llvm::MDNode *ModuleTranslation::getTBAANode(TBAATagAttr tbaaAttr) const {
1471   return tbaaMetadataMapping.lookup(tbaaAttr);
1472 }
1473 
1474 void ModuleTranslation::setTBAAMetadata(AliasAnalysisOpInterface op,
1475                                         llvm::Instruction *inst) {
1476   ArrayAttr tagRefs = op.getTBAATagsOrNull();
1477   if (!tagRefs || tagRefs.empty())
1478     return;
1479 
1480   // LLVM IR currently does not support attaching more than one TBAA access tag
1481   // to a memory accessing instruction. It may be useful to support this in
1482   // future, but for the time being just ignore the metadata if MLIR operation
1483   // has multiple access tags.
1484   if (tagRefs.size() > 1) {
1485     op.emitWarning() << "TBAA access tags were not translated, because LLVM "
1486                         "IR only supports a single tag per instruction";
1487     return;
1488   }
1489 
1490   llvm::MDNode *node = getTBAANode(cast<TBAATagAttr>(tagRefs[0]));
1491   inst->setMetadata(llvm::LLVMContext::MD_tbaa, node);
1492 }
1493 
1494 void ModuleTranslation::setBranchWeightsMetadata(BranchWeightOpInterface op) {
1495   DenseI32ArrayAttr weightsAttr = op.getBranchWeightsOrNull();
1496   if (!weightsAttr)
1497     return;
1498 
1499   llvm::Instruction *inst = isa<CallOp>(op) ? lookupCall(op) : lookupBranch(op);
1500   assert(inst && "expected the operation to have a mapping to an instruction");
1501   SmallVector<uint32_t> weights(weightsAttr.asArrayRef());
1502   inst->setMetadata(
1503       llvm::LLVMContext::MD_prof,
1504       llvm::MDBuilder(getLLVMContext()).createBranchWeights(weights));
1505 }
1506 
1507 LogicalResult ModuleTranslation::createTBAAMetadata() {
1508   llvm::LLVMContext &ctx = llvmModule->getContext();
1509   llvm::IntegerType *offsetTy = llvm::IntegerType::get(ctx, 64);
1510 
1511   // Walk the entire module and create all metadata nodes for the TBAA
1512   // attributes. The code below relies on two invariants of the
1513   // `AttrTypeWalker`:
1514   // 1. Attributes are visited in post-order: Since the attributes create a DAG,
1515   //    this ensures that any lookups into `tbaaMetadataMapping` for child
1516   //    attributes succeed.
1517   // 2. Attributes are only ever visited once: This way we don't leak any
1518   //    LLVM metadata instances.
1519   AttrTypeWalker walker;
1520   walker.addWalk([&](TBAARootAttr root) {
1521     tbaaMetadataMapping.insert(
1522         {root, llvm::MDNode::get(ctx, llvm::MDString::get(ctx, root.getId()))});
1523   });
1524 
1525   walker.addWalk([&](TBAATypeDescriptorAttr descriptor) {
1526     SmallVector<llvm::Metadata *> operands;
1527     operands.push_back(llvm::MDString::get(ctx, descriptor.getId()));
1528     for (TBAAMemberAttr member : descriptor.getMembers()) {
1529       operands.push_back(tbaaMetadataMapping.lookup(member.getTypeDesc()));
1530       operands.push_back(llvm::ConstantAsMetadata::get(
1531           llvm::ConstantInt::get(offsetTy, member.getOffset())));
1532     }
1533 
1534     tbaaMetadataMapping.insert({descriptor, llvm::MDNode::get(ctx, operands)});
1535   });
1536 
1537   walker.addWalk([&](TBAATagAttr tag) {
1538     SmallVector<llvm::Metadata *> operands;
1539 
1540     operands.push_back(tbaaMetadataMapping.lookup(tag.getBaseType()));
1541     operands.push_back(tbaaMetadataMapping.lookup(tag.getAccessType()));
1542 
1543     operands.push_back(llvm::ConstantAsMetadata::get(
1544         llvm::ConstantInt::get(offsetTy, tag.getOffset())));
1545     if (tag.getConstant())
1546       operands.push_back(
1547           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(offsetTy, 1)));
1548 
1549     tbaaMetadataMapping.insert({tag, llvm::MDNode::get(ctx, operands)});
1550   });
1551 
1552   mlirModule->walk([&](AliasAnalysisOpInterface analysisOpInterface) {
1553     if (auto attr = analysisOpInterface.getTBAATagsOrNull())
1554       walker.walk(attr);
1555   });
1556 
1557   return success();
1558 }
1559 
1560 void ModuleTranslation::setLoopMetadata(Operation *op,
1561                                         llvm::Instruction *inst) {
1562   LoopAnnotationAttr attr =
1563       TypeSwitch<Operation *, LoopAnnotationAttr>(op)
1564           .Case<LLVM::BrOp, LLVM::CondBrOp>(
1565               [](auto branchOp) { return branchOp.getLoopAnnotationAttr(); });
1566   if (!attr)
1567     return;
1568   llvm::MDNode *loopMD =
1569       loopAnnotationTranslation->translateLoopAnnotation(attr, op);
1570   inst->setMetadata(llvm::LLVMContext::MD_loop, loopMD);
1571 }
1572 
1573 llvm::Type *ModuleTranslation::convertType(Type type) {
1574   return typeTranslator.translateType(type);
1575 }
1576 
1577 /// A helper to look up remapped operands in the value remapping table.
1578 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) {
1579   SmallVector<llvm::Value *> remapped;
1580   remapped.reserve(values.size());
1581   for (Value v : values)
1582     remapped.push_back(lookupValue(v));
1583   return remapped;
1584 }
1585 
1586 llvm::OpenMPIRBuilder *ModuleTranslation::getOpenMPBuilder() {
1587   if (!ompBuilder) {
1588     ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule);
1589     ompBuilder->initialize();
1590 
1591     // Flags represented as top-level OpenMP dialect attributes are set in
1592     // `OpenMPDialectLLVMIRTranslationInterface::amendOperation()`. Here we set
1593     // the default configuration.
1594     ompBuilder->setConfig(llvm::OpenMPIRBuilderConfig(
1595         /* IsTargetDevice = */ false, /* IsGPU = */ false,
1596         /* OpenMPOffloadMandatory = */ false,
1597         /* HasRequiresReverseOffload = */ false,
1598         /* HasRequiresUnifiedAddress = */ false,
1599         /* HasRequiresUnifiedSharedMemory = */ false,
1600         /* HasRequiresDynamicAllocators = */ false));
1601   }
1602   return ompBuilder.get();
1603 }
1604 
1605 llvm::DILocation *ModuleTranslation::translateLoc(Location loc,
1606                                                   llvm::DILocalScope *scope) {
1607   return debugTranslation->translateLoc(loc, scope);
1608 }
1609 
1610 llvm::DIExpression *
1611 ModuleTranslation::translateExpression(LLVM::DIExpressionAttr attr) {
1612   return debugTranslation->translateExpression(attr);
1613 }
1614 
1615 llvm::DIGlobalVariableExpression *
1616 ModuleTranslation::translateGlobalVariableExpression(
1617     LLVM::DIGlobalVariableExpressionAttr attr) {
1618   return debugTranslation->translateGlobalVariableExpression(attr);
1619 }
1620 
1621 llvm::Metadata *ModuleTranslation::translateDebugInfo(LLVM::DINodeAttr attr) {
1622   return debugTranslation->translate(attr);
1623 }
1624 
1625 llvm::NamedMDNode *
1626 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
1627   return llvmModule->getOrInsertNamedMetadata(name);
1628 }
1629 
1630 void ModuleTranslation::StackFrame::anchor() {}
1631 
1632 static std::unique_ptr<llvm::Module>
1633 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
1634                   StringRef name) {
1635   m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
1636   auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
1637   if (auto dataLayoutAttr =
1638           m->getDiscardableAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) {
1639     llvmModule->setDataLayout(cast<StringAttr>(dataLayoutAttr).getValue());
1640   } else {
1641     FailureOr<llvm::DataLayout> llvmDataLayout(llvm::DataLayout(""));
1642     if (auto iface = dyn_cast<DataLayoutOpInterface>(m)) {
1643       if (DataLayoutSpecInterface spec = iface.getDataLayoutSpec()) {
1644         llvmDataLayout =
1645             translateDataLayout(spec, DataLayout(iface), m->getLoc());
1646       }
1647     } else if (auto mod = dyn_cast<ModuleOp>(m)) {
1648       if (DataLayoutSpecInterface spec = mod.getDataLayoutSpec()) {
1649         llvmDataLayout =
1650             translateDataLayout(spec, DataLayout(mod), m->getLoc());
1651       }
1652     }
1653     if (failed(llvmDataLayout))
1654       return nullptr;
1655     llvmModule->setDataLayout(*llvmDataLayout);
1656   }
1657   if (auto targetTripleAttr =
1658           m->getDiscardableAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
1659     llvmModule->setTargetTriple(cast<StringAttr>(targetTripleAttr).getValue());
1660 
1661   return llvmModule;
1662 }
1663 
1664 std::unique_ptr<llvm::Module>
1665 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
1666                               StringRef name) {
1667   if (!satisfiesLLVMModule(module)) {
1668     module->emitOpError("can not be translated to an LLVMIR module");
1669     return nullptr;
1670   }
1671 
1672   std::unique_ptr<llvm::Module> llvmModule =
1673       prepareLLVMModule(module, llvmContext, name);
1674   if (!llvmModule)
1675     return nullptr;
1676 
1677   LLVM::ensureDistinctSuccessors(module);
1678   LLVM::legalizeDIExpressionsRecursively(module);
1679 
1680   ModuleTranslation translator(module, std::move(llvmModule));
1681   llvm::IRBuilder<> llvmBuilder(llvmContext);
1682 
1683   // Convert module before functions and operations inside, so dialect
1684   // attributes can be used to change dialect-specific global configurations via
1685   // `amendOperation()`. These configurations can then influence the translation
1686   // of operations afterwards.
1687   if (failed(translator.convertOperation(*module, llvmBuilder)))
1688     return nullptr;
1689 
1690   if (failed(translator.convertComdats()))
1691     return nullptr;
1692   if (failed(translator.convertFunctionSignatures()))
1693     return nullptr;
1694   if (failed(translator.convertGlobals()))
1695     return nullptr;
1696   if (failed(translator.createTBAAMetadata()))
1697     return nullptr;
1698 
1699   // Convert other top-level operations if possible.
1700   for (Operation &o : getModuleBody(module).getOperations()) {
1701     if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp,
1702              LLVM::GlobalDtorsOp, LLVM::ComdatOp>(&o) &&
1703         !o.hasTrait<OpTrait::IsTerminator>() &&
1704         failed(translator.convertOperation(o, llvmBuilder))) {
1705       return nullptr;
1706     }
1707   }
1708 
1709   // Operations in function bodies with symbolic references must be converted
1710   // after the top-level operations they refer to are declared, so we do it
1711   // last.
1712   if (failed(translator.convertFunctions()))
1713     return nullptr;
1714 
1715   if (llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
1716     return nullptr;
1717 
1718   return std::move(translator.llvmModule);
1719 }
1720