1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "AttrKindDetail.h" 17 #include "DebugTranslation.h" 18 #include "LoopAnnotationTranslation.h" 19 #include "mlir/Dialect/DLTI/DLTI.h" 20 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 21 #include "mlir/Dialect/LLVMIR/LLVMInterfaces.h" 22 #include "mlir/Dialect/LLVMIR/Transforms/DIExpressionLegalization.h" 23 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h" 24 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 25 #include "mlir/Dialect/OpenMP/OpenMPInterfaces.h" 26 #include "mlir/IR/AttrTypeSubElements.h" 27 #include "mlir/IR/Attributes.h" 28 #include "mlir/IR/BuiltinOps.h" 29 #include "mlir/IR/BuiltinTypes.h" 30 #include "mlir/IR/DialectResourceBlobManager.h" 31 #include "mlir/IR/RegionGraphTraits.h" 32 #include "mlir/Support/LLVM.h" 33 #include "mlir/Support/LogicalResult.h" 34 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h" 35 #include "mlir/Target/LLVMIR/TypeToLLVM.h" 36 #include "mlir/Transforms/RegionUtils.h" 37 38 #include "llvm/ADT/PostOrderIterator.h" 39 #include "llvm/ADT/SetVector.h" 40 #include "llvm/ADT/StringExtras.h" 41 #include "llvm/ADT/TypeSwitch.h" 42 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/CFG.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DerivedTypes.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/IntrinsicsNVPTX.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/Verifier.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 57 #include "llvm/Transforms/Utils/Cloning.h" 58 #include "llvm/Transforms/Utils/ModuleUtils.h" 59 #include <optional> 60 61 #define DEBUG_TYPE "llvm-dialect-to-llvm-ir" 62 63 using namespace mlir; 64 using namespace mlir::LLVM; 65 using namespace mlir::LLVM::detail; 66 67 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 68 69 namespace { 70 /// A customized inserter for LLVM's IRBuilder that captures all LLVM IR 71 /// instructions that are created for future reference. 72 /// 73 /// This is intended to be used with the `CollectionScope` RAII object: 74 /// 75 /// llvm::IRBuilder<..., InstructionCapturingInserter> builder; 76 /// { 77 /// InstructionCapturingInserter::CollectionScope scope(builder); 78 /// // Call IRBuilder methods as usual. 79 /// 80 /// // This will return a list of all instructions created by the builder, 81 /// // in order of creation. 82 /// builder.getInserter().getCapturedInstructions(); 83 /// } 84 /// // This will return an empty list. 85 /// builder.getInserter().getCapturedInstructions(); 86 /// 87 /// The capturing functionality is _disabled_ by default for performance 88 /// consideration. It needs to be explicitly enabled, which is achieved by 89 /// creating a `CollectionScope`. 90 class InstructionCapturingInserter : public llvm::IRBuilderCallbackInserter { 91 public: 92 /// Constructs the inserter. 93 InstructionCapturingInserter() 94 : llvm::IRBuilderCallbackInserter([this](llvm::Instruction *instruction) { 95 if (LLVM_LIKELY(enabled)) 96 capturedInstructions.push_back(instruction); 97 }) {} 98 99 /// Returns the list of LLVM IR instructions captured since the last cleanup. 100 ArrayRef<llvm::Instruction *> getCapturedInstructions() const { 101 return capturedInstructions; 102 } 103 104 /// Clears the list of captured LLVM IR instructions. 105 void clearCapturedInstructions() { capturedInstructions.clear(); } 106 107 /// RAII object enabling the capture of created LLVM IR instructions. 108 class CollectionScope { 109 public: 110 /// Creates the scope for the given inserter. 111 CollectionScope(llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing); 112 113 /// Ends the scope. 114 ~CollectionScope(); 115 116 ArrayRef<llvm::Instruction *> getCapturedInstructions() { 117 if (!inserter) 118 return {}; 119 return inserter->getCapturedInstructions(); 120 } 121 122 private: 123 /// Back reference to the inserter. 124 InstructionCapturingInserter *inserter = nullptr; 125 126 /// List of instructions in the inserter prior to this scope. 127 SmallVector<llvm::Instruction *> previouslyCollectedInstructions; 128 129 /// Whether the inserter was enabled prior to this scope. 130 bool wasEnabled; 131 }; 132 133 /// Enable or disable the capturing mechanism. 134 void setEnabled(bool enabled = true) { this->enabled = enabled; } 135 136 private: 137 /// List of captured instructions. 138 SmallVector<llvm::Instruction *> capturedInstructions; 139 140 /// Whether the collection is enabled. 141 bool enabled = false; 142 }; 143 144 using CapturingIRBuilder = 145 llvm::IRBuilder<llvm::ConstantFolder, InstructionCapturingInserter>; 146 } // namespace 147 148 InstructionCapturingInserter::CollectionScope::CollectionScope( 149 llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing) { 150 151 if (!isBuilderCapturing) 152 return; 153 154 auto &capturingIRBuilder = static_cast<CapturingIRBuilder &>(irBuilder); 155 inserter = &capturingIRBuilder.getInserter(); 156 wasEnabled = inserter->enabled; 157 if (wasEnabled) 158 previouslyCollectedInstructions.swap(inserter->capturedInstructions); 159 inserter->setEnabled(true); 160 } 161 162 InstructionCapturingInserter::CollectionScope::~CollectionScope() { 163 if (!inserter) 164 return; 165 166 previouslyCollectedInstructions.swap(inserter->capturedInstructions); 167 // If collection was enabled (likely in another, surrounding scope), keep 168 // the instructions collected in this scope. 169 if (wasEnabled) { 170 llvm::append_range(inserter->capturedInstructions, 171 previouslyCollectedInstructions); 172 } 173 inserter->setEnabled(wasEnabled); 174 } 175 176 /// Translates the given data layout spec attribute to the LLVM IR data layout. 177 /// Only integer, float, pointer and endianness entries are currently supported. 178 static FailureOr<llvm::DataLayout> 179 translateDataLayout(DataLayoutSpecInterface attribute, 180 const DataLayout &dataLayout, 181 std::optional<Location> loc = std::nullopt) { 182 if (!loc) 183 loc = UnknownLoc::get(attribute.getContext()); 184 185 // Translate the endianness attribute. 186 std::string llvmDataLayout; 187 llvm::raw_string_ostream layoutStream(llvmDataLayout); 188 for (DataLayoutEntryInterface entry : attribute.getEntries()) { 189 auto key = llvm::dyn_cast_if_present<StringAttr>(entry.getKey()); 190 if (!key) 191 continue; 192 if (key.getValue() == DLTIDialect::kDataLayoutEndiannessKey) { 193 auto value = cast<StringAttr>(entry.getValue()); 194 bool isLittleEndian = 195 value.getValue() == DLTIDialect::kDataLayoutEndiannessLittle; 196 layoutStream << "-" << (isLittleEndian ? "e" : "E"); 197 layoutStream.flush(); 198 continue; 199 } 200 if (key.getValue() == DLTIDialect::kDataLayoutProgramMemorySpaceKey) { 201 auto value = cast<IntegerAttr>(entry.getValue()); 202 uint64_t space = value.getValue().getZExtValue(); 203 // Skip the default address space. 204 if (space == 0) 205 continue; 206 layoutStream << "-P" << space; 207 layoutStream.flush(); 208 continue; 209 } 210 if (key.getValue() == DLTIDialect::kDataLayoutGlobalMemorySpaceKey) { 211 auto value = cast<IntegerAttr>(entry.getValue()); 212 uint64_t space = value.getValue().getZExtValue(); 213 // Skip the default address space. 214 if (space == 0) 215 continue; 216 layoutStream << "-G" << space; 217 layoutStream.flush(); 218 continue; 219 } 220 if (key.getValue() == DLTIDialect::kDataLayoutAllocaMemorySpaceKey) { 221 auto value = cast<IntegerAttr>(entry.getValue()); 222 uint64_t space = value.getValue().getZExtValue(); 223 // Skip the default address space. 224 if (space == 0) 225 continue; 226 layoutStream << "-A" << space; 227 layoutStream.flush(); 228 continue; 229 } 230 if (key.getValue() == DLTIDialect::kDataLayoutStackAlignmentKey) { 231 auto value = cast<IntegerAttr>(entry.getValue()); 232 uint64_t alignment = value.getValue().getZExtValue(); 233 // Skip the default stack alignment. 234 if (alignment == 0) 235 continue; 236 layoutStream << "-S" << alignment; 237 layoutStream.flush(); 238 continue; 239 } 240 emitError(*loc) << "unsupported data layout key " << key; 241 return failure(); 242 } 243 244 // Go through the list of entries to check which types are explicitly 245 // specified in entries. Where possible, data layout queries are used instead 246 // of directly inspecting the entries. 247 for (DataLayoutEntryInterface entry : attribute.getEntries()) { 248 auto type = llvm::dyn_cast_if_present<Type>(entry.getKey()); 249 if (!type) 250 continue; 251 // Data layout for the index type is irrelevant at this point. 252 if (isa<IndexType>(type)) 253 continue; 254 layoutStream << "-"; 255 LogicalResult result = 256 llvm::TypeSwitch<Type, LogicalResult>(type) 257 .Case<IntegerType, Float16Type, Float32Type, Float64Type, 258 Float80Type, Float128Type>([&](Type type) -> LogicalResult { 259 if (auto intType = dyn_cast<IntegerType>(type)) { 260 if (intType.getSignedness() != IntegerType::Signless) 261 return emitError(*loc) 262 << "unsupported data layout for non-signless integer " 263 << intType; 264 layoutStream << "i"; 265 } else { 266 layoutStream << "f"; 267 } 268 uint64_t size = dataLayout.getTypeSizeInBits(type); 269 uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u; 270 uint64_t preferred = 271 dataLayout.getTypePreferredAlignment(type) * 8u; 272 layoutStream << size << ":" << abi; 273 if (abi != preferred) 274 layoutStream << ":" << preferred; 275 return success(); 276 }) 277 .Case([&](LLVMPointerType type) { 278 layoutStream << "p" << type.getAddressSpace() << ":"; 279 uint64_t size = dataLayout.getTypeSizeInBits(type); 280 uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u; 281 uint64_t preferred = 282 dataLayout.getTypePreferredAlignment(type) * 8u; 283 uint64_t index = *dataLayout.getTypeIndexBitwidth(type); 284 layoutStream << size << ":" << abi << ":" << preferred << ":" 285 << index; 286 return success(); 287 }) 288 .Default([loc](Type type) { 289 return emitError(*loc) 290 << "unsupported type in data layout: " << type; 291 }); 292 if (failed(result)) 293 return failure(); 294 } 295 layoutStream.flush(); 296 StringRef layoutSpec(llvmDataLayout); 297 if (layoutSpec.starts_with("-")) 298 layoutSpec = layoutSpec.drop_front(); 299 300 return llvm::DataLayout(layoutSpec); 301 } 302 303 /// Builds a constant of a sequential LLVM type `type`, potentially containing 304 /// other sequential types recursively, from the individual constant values 305 /// provided in `constants`. `shape` contains the number of elements in nested 306 /// sequential types. Reports errors at `loc` and returns nullptr on error. 307 static llvm::Constant * 308 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 309 ArrayRef<int64_t> shape, llvm::Type *type, 310 Location loc) { 311 if (shape.empty()) { 312 llvm::Constant *result = constants.front(); 313 constants = constants.drop_front(); 314 return result; 315 } 316 317 llvm::Type *elementType; 318 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 319 elementType = arrayTy->getElementType(); 320 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 321 elementType = vectorTy->getElementType(); 322 } else { 323 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 324 return nullptr; 325 } 326 327 SmallVector<llvm::Constant *, 8> nested; 328 nested.reserve(shape.front()); 329 for (int64_t i = 0; i < shape.front(); ++i) { 330 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 331 elementType, loc)); 332 if (!nested.back()) 333 return nullptr; 334 } 335 336 if (shape.size() == 1 && type->isVectorTy()) 337 return llvm::ConstantVector::get(nested); 338 return llvm::ConstantArray::get( 339 llvm::ArrayType::get(elementType, shape.front()), nested); 340 } 341 342 /// Returns the first non-sequential type nested in sequential types. 343 static llvm::Type *getInnermostElementType(llvm::Type *type) { 344 do { 345 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 346 type = arrayTy->getElementType(); 347 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 348 type = vectorTy->getElementType(); 349 } else { 350 return type; 351 } 352 } while (true); 353 } 354 355 /// Convert a dense elements attribute to an LLVM IR constant using its raw data 356 /// storage if possible. This supports elements attributes of tensor or vector 357 /// type and avoids constructing separate objects for individual values of the 358 /// innermost dimension. Constants for other dimensions are still constructed 359 /// recursively. Returns null if constructing from raw data is not supported for 360 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports 361 /// other errors at `loc`. 362 static llvm::Constant * 363 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr, 364 llvm::Type *llvmType, 365 const ModuleTranslation &moduleTranslation) { 366 if (!denseElementsAttr) 367 return nullptr; 368 369 llvm::Type *innermostLLVMType = getInnermostElementType(llvmType); 370 if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType)) 371 return nullptr; 372 373 ShapedType type = denseElementsAttr.getType(); 374 if (type.getNumElements() == 0) 375 return nullptr; 376 377 // Check that the raw data size matches what is expected for the scalar size. 378 // TODO: in theory, we could repack the data here to keep constructing from 379 // raw data. 380 // TODO: we may also need to consider endianness when cross-compiling to an 381 // architecture where it is different. 382 int64_t elementByteSize = denseElementsAttr.getRawData().size() / 383 denseElementsAttr.getNumElements(); 384 if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits()) 385 return nullptr; 386 387 // Compute the shape of all dimensions but the innermost. Note that the 388 // innermost dimension may be that of the vector element type. 389 bool hasVectorElementType = isa<VectorType>(type.getElementType()); 390 int64_t numAggregates = 391 denseElementsAttr.getNumElements() / 392 (hasVectorElementType ? 1 393 : denseElementsAttr.getType().getShape().back()); 394 ArrayRef<int64_t> outerShape = type.getShape(); 395 if (!hasVectorElementType) 396 outerShape = outerShape.drop_back(); 397 398 // Handle the case of vector splat, LLVM has special support for it. 399 if (denseElementsAttr.isSplat() && 400 (isa<VectorType>(type) || hasVectorElementType)) { 401 llvm::Constant *splatValue = LLVM::detail::getLLVMConstant( 402 innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc, 403 moduleTranslation); 404 llvm::Constant *splatVector = 405 llvm::ConstantDataVector::getSplat(0, splatValue); 406 SmallVector<llvm::Constant *> constants(numAggregates, splatVector); 407 ArrayRef<llvm::Constant *> constantsRef = constants; 408 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 409 } 410 if (denseElementsAttr.isSplat()) 411 return nullptr; 412 413 // In case of non-splat, create a constructor for the innermost constant from 414 // a piece of raw data. 415 std::function<llvm::Constant *(StringRef)> buildCstData; 416 if (isa<TensorType>(type)) { 417 auto vectorElementType = dyn_cast<VectorType>(type.getElementType()); 418 if (vectorElementType && vectorElementType.getRank() == 1) { 419 buildCstData = [&](StringRef data) { 420 return llvm::ConstantDataVector::getRaw( 421 data, vectorElementType.getShape().back(), innermostLLVMType); 422 }; 423 } else if (!vectorElementType) { 424 buildCstData = [&](StringRef data) { 425 return llvm::ConstantDataArray::getRaw(data, type.getShape().back(), 426 innermostLLVMType); 427 }; 428 } 429 } else if (isa<VectorType>(type)) { 430 buildCstData = [&](StringRef data) { 431 return llvm::ConstantDataVector::getRaw(data, type.getShape().back(), 432 innermostLLVMType); 433 }; 434 } 435 if (!buildCstData) 436 return nullptr; 437 438 // Create innermost constants and defer to the default constant creation 439 // mechanism for other dimensions. 440 SmallVector<llvm::Constant *> constants; 441 int64_t aggregateSize = denseElementsAttr.getType().getShape().back() * 442 (innermostLLVMType->getScalarSizeInBits() / 8); 443 constants.reserve(numAggregates); 444 for (unsigned i = 0; i < numAggregates; ++i) { 445 StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize, 446 aggregateSize); 447 constants.push_back(buildCstData(data)); 448 } 449 450 ArrayRef<llvm::Constant *> constantsRef = constants; 451 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 452 } 453 454 /// Convert a dense resource elements attribute to an LLVM IR constant using its 455 /// raw data storage if possible. This supports elements attributes of tensor or 456 /// vector type and avoids constructing separate objects for individual values 457 /// of the innermost dimension. Constants for other dimensions are still 458 /// constructed recursively. Returns nullptr on failure and emits errors at 459 /// `loc`. 460 static llvm::Constant *convertDenseResourceElementsAttr( 461 Location loc, DenseResourceElementsAttr denseResourceAttr, 462 llvm::Type *llvmType, const ModuleTranslation &moduleTranslation) { 463 assert(denseResourceAttr && "expected non-null attribute"); 464 465 llvm::Type *innermostLLVMType = getInnermostElementType(llvmType); 466 if (!llvm::ConstantDataSequential::isElementTypeCompatible( 467 innermostLLVMType)) { 468 emitError(loc, "no known conversion for innermost element type"); 469 return nullptr; 470 } 471 472 ShapedType type = denseResourceAttr.getType(); 473 assert(type.getNumElements() > 0 && "Expected non-empty elements attribute"); 474 475 AsmResourceBlob *blob = denseResourceAttr.getRawHandle().getBlob(); 476 if (!blob) { 477 emitError(loc, "resource does not exist"); 478 return nullptr; 479 } 480 481 ArrayRef<char> rawData = blob->getData(); 482 483 // Check that the raw data size matches what is expected for the scalar size. 484 // TODO: in theory, we could repack the data here to keep constructing from 485 // raw data. 486 // TODO: we may also need to consider endianness when cross-compiling to an 487 // architecture where it is different. 488 int64_t numElements = denseResourceAttr.getType().getNumElements(); 489 int64_t elementByteSize = rawData.size() / numElements; 490 if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits()) { 491 emitError(loc, "raw data size does not match element type size"); 492 return nullptr; 493 } 494 495 // Compute the shape of all dimensions but the innermost. Note that the 496 // innermost dimension may be that of the vector element type. 497 bool hasVectorElementType = isa<VectorType>(type.getElementType()); 498 int64_t numAggregates = 499 numElements / (hasVectorElementType 500 ? 1 501 : denseResourceAttr.getType().getShape().back()); 502 ArrayRef<int64_t> outerShape = type.getShape(); 503 if (!hasVectorElementType) 504 outerShape = outerShape.drop_back(); 505 506 // Create a constructor for the innermost constant from a piece of raw data. 507 std::function<llvm::Constant *(StringRef)> buildCstData; 508 if (isa<TensorType>(type)) { 509 auto vectorElementType = dyn_cast<VectorType>(type.getElementType()); 510 if (vectorElementType && vectorElementType.getRank() == 1) { 511 buildCstData = [&](StringRef data) { 512 return llvm::ConstantDataVector::getRaw( 513 data, vectorElementType.getShape().back(), innermostLLVMType); 514 }; 515 } else if (!vectorElementType) { 516 buildCstData = [&](StringRef data) { 517 return llvm::ConstantDataArray::getRaw(data, type.getShape().back(), 518 innermostLLVMType); 519 }; 520 } 521 } else if (isa<VectorType>(type)) { 522 buildCstData = [&](StringRef data) { 523 return llvm::ConstantDataVector::getRaw(data, type.getShape().back(), 524 innermostLLVMType); 525 }; 526 } 527 if (!buildCstData) { 528 emitError(loc, "unsupported dense_resource type"); 529 return nullptr; 530 } 531 532 // Create innermost constants and defer to the default constant creation 533 // mechanism for other dimensions. 534 SmallVector<llvm::Constant *> constants; 535 int64_t aggregateSize = denseResourceAttr.getType().getShape().back() * 536 (innermostLLVMType->getScalarSizeInBits() / 8); 537 constants.reserve(numAggregates); 538 for (unsigned i = 0; i < numAggregates; ++i) { 539 StringRef data(rawData.data() + i * aggregateSize, aggregateSize); 540 constants.push_back(buildCstData(data)); 541 } 542 543 ArrayRef<llvm::Constant *> constantsRef = constants; 544 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 545 } 546 547 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 548 /// This currently supports integer, floating point, splat and dense element 549 /// attributes and combinations thereof. Also, an array attribute with two 550 /// elements is supported to represent a complex constant. In case of error, 551 /// report it to `loc` and return nullptr. 552 llvm::Constant *mlir::LLVM::detail::getLLVMConstant( 553 llvm::Type *llvmType, Attribute attr, Location loc, 554 const ModuleTranslation &moduleTranslation) { 555 if (!attr) 556 return llvm::UndefValue::get(llvmType); 557 if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) { 558 auto arrayAttr = dyn_cast<ArrayAttr>(attr); 559 if (!arrayAttr || arrayAttr.size() != 2) { 560 emitError(loc, "expected struct type to be a complex number"); 561 return nullptr; 562 } 563 llvm::Type *elementType = structType->getElementType(0); 564 llvm::Constant *real = 565 getLLVMConstant(elementType, arrayAttr[0], loc, moduleTranslation); 566 if (!real) 567 return nullptr; 568 llvm::Constant *imag = 569 getLLVMConstant(elementType, arrayAttr[1], loc, moduleTranslation); 570 if (!imag) 571 return nullptr; 572 return llvm::ConstantStruct::get(structType, {real, imag}); 573 } 574 // For integer types, we allow a mismatch in sizes as the index type in 575 // MLIR might have a different size than the index type in the LLVM module. 576 if (auto intAttr = dyn_cast<IntegerAttr>(attr)) 577 return llvm::ConstantInt::get( 578 llvmType, 579 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); 580 if (auto floatAttr = dyn_cast<FloatAttr>(attr)) { 581 const llvm::fltSemantics &sem = floatAttr.getValue().getSemantics(); 582 // Special case for 8-bit floats, which are represented by integers due to 583 // the lack of native fp8 types in LLVM at the moment. Additionally, handle 584 // targets (like AMDGPU) that don't implement bfloat and convert all bfloats 585 // to i16. 586 unsigned floatWidth = APFloat::getSizeInBits(sem); 587 if (llvmType->isIntegerTy(floatWidth)) 588 return llvm::ConstantInt::get(llvmType, 589 floatAttr.getValue().bitcastToAPInt()); 590 if (llvmType != 591 llvm::Type::getFloatingPointTy(llvmType->getContext(), 592 floatAttr.getValue().getSemantics())) { 593 emitError(loc, "FloatAttr does not match expected type of the constant"); 594 return nullptr; 595 } 596 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 597 } 598 if (auto funcAttr = dyn_cast<FlatSymbolRefAttr>(attr)) 599 return llvm::ConstantExpr::getBitCast( 600 moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType); 601 if (auto splatAttr = dyn_cast<SplatElementsAttr>(attr)) { 602 llvm::Type *elementType; 603 uint64_t numElements; 604 bool isScalable = false; 605 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) { 606 elementType = arrayTy->getElementType(); 607 numElements = arrayTy->getNumElements(); 608 } else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) { 609 elementType = fVectorTy->getElementType(); 610 numElements = fVectorTy->getNumElements(); 611 } else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) { 612 elementType = sVectorTy->getElementType(); 613 numElements = sVectorTy->getMinNumElements(); 614 isScalable = true; 615 } else { 616 llvm_unreachable("unrecognized constant vector type"); 617 } 618 // Splat value is a scalar. Extract it only if the element type is not 619 // another sequence type. The recursion terminates because each step removes 620 // one outer sequential type. 621 bool elementTypeSequential = 622 isa<llvm::ArrayType, llvm::VectorType>(elementType); 623 llvm::Constant *child = getLLVMConstant( 624 elementType, 625 elementTypeSequential ? splatAttr 626 : splatAttr.getSplatValue<Attribute>(), 627 loc, moduleTranslation); 628 if (!child) 629 return nullptr; 630 if (llvmType->isVectorTy()) 631 return llvm::ConstantVector::getSplat( 632 llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child); 633 if (llvmType->isArrayTy()) { 634 auto *arrayType = llvm::ArrayType::get(elementType, numElements); 635 SmallVector<llvm::Constant *, 8> constants(numElements, child); 636 return llvm::ConstantArray::get(arrayType, constants); 637 } 638 } 639 640 // Try using raw elements data if possible. 641 if (llvm::Constant *result = 642 convertDenseElementsAttr(loc, dyn_cast<DenseElementsAttr>(attr), 643 llvmType, moduleTranslation)) { 644 return result; 645 } 646 647 if (auto denseResourceAttr = dyn_cast<DenseResourceElementsAttr>(attr)) { 648 return convertDenseResourceElementsAttr(loc, denseResourceAttr, llvmType, 649 moduleTranslation); 650 } 651 652 // Fall back to element-by-element construction otherwise. 653 if (auto elementsAttr = dyn_cast<ElementsAttr>(attr)) { 654 assert(elementsAttr.getShapedType().hasStaticShape()); 655 assert(!elementsAttr.getShapedType().getShape().empty() && 656 "unexpected empty elements attribute shape"); 657 658 SmallVector<llvm::Constant *, 8> constants; 659 constants.reserve(elementsAttr.getNumElements()); 660 llvm::Type *innermostType = getInnermostElementType(llvmType); 661 for (auto n : elementsAttr.getValues<Attribute>()) { 662 constants.push_back( 663 getLLVMConstant(innermostType, n, loc, moduleTranslation)); 664 if (!constants.back()) 665 return nullptr; 666 } 667 ArrayRef<llvm::Constant *> constantsRef = constants; 668 llvm::Constant *result = buildSequentialConstant( 669 constantsRef, elementsAttr.getShapedType().getShape(), llvmType, loc); 670 assert(constantsRef.empty() && "did not consume all elemental constants"); 671 return result; 672 } 673 674 if (auto stringAttr = dyn_cast<StringAttr>(attr)) { 675 return llvm::ConstantDataArray::get( 676 moduleTranslation.getLLVMContext(), 677 ArrayRef<char>{stringAttr.getValue().data(), 678 stringAttr.getValue().size()}); 679 } 680 emitError(loc, "unsupported constant value"); 681 return nullptr; 682 } 683 684 ModuleTranslation::ModuleTranslation(Operation *module, 685 std::unique_ptr<llvm::Module> llvmModule) 686 : mlirModule(module), llvmModule(std::move(llvmModule)), 687 debugTranslation( 688 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 689 loopAnnotationTranslation(std::make_unique<LoopAnnotationTranslation>( 690 *this, *this->llvmModule)), 691 typeTranslator(this->llvmModule->getContext()), 692 iface(module->getContext()) { 693 assert(satisfiesLLVMModule(mlirModule) && 694 "mlirModule should honor LLVM's module semantics."); 695 } 696 697 ModuleTranslation::~ModuleTranslation() { 698 if (ompBuilder) 699 ompBuilder->finalize(); 700 } 701 702 void ModuleTranslation::forgetMapping(Region ®ion) { 703 SmallVector<Region *> toProcess; 704 toProcess.push_back(®ion); 705 while (!toProcess.empty()) { 706 Region *current = toProcess.pop_back_val(); 707 for (Block &block : *current) { 708 blockMapping.erase(&block); 709 for (Value arg : block.getArguments()) 710 valueMapping.erase(arg); 711 for (Operation &op : block) { 712 for (Value value : op.getResults()) 713 valueMapping.erase(value); 714 if (op.hasSuccessors()) 715 branchMapping.erase(&op); 716 if (isa<LLVM::GlobalOp>(op)) 717 globalsMapping.erase(&op); 718 if (isa<LLVM::CallOp>(op)) 719 callMapping.erase(&op); 720 llvm::append_range( 721 toProcess, 722 llvm::map_range(op.getRegions(), [](Region &r) { return &r; })); 723 } 724 } 725 } 726 } 727 728 /// Get the SSA value passed to the current block from the terminator operation 729 /// of its predecessor. 730 static Value getPHISourceValue(Block *current, Block *pred, 731 unsigned numArguments, unsigned index) { 732 Operation &terminator = *pred->getTerminator(); 733 if (isa<LLVM::BrOp>(terminator)) 734 return terminator.getOperand(index); 735 736 #ifndef NDEBUG 737 llvm::SmallPtrSet<Block *, 4> seenSuccessors; 738 for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) { 739 Block *successor = terminator.getSuccessor(i); 740 auto branch = cast<BranchOpInterface>(terminator); 741 SuccessorOperands successorOperands = branch.getSuccessorOperands(i); 742 assert( 743 (!seenSuccessors.contains(successor) || successorOperands.empty()) && 744 "successors with arguments in LLVM branches must be different blocks"); 745 seenSuccessors.insert(successor); 746 } 747 #endif 748 749 // For instructions that branch based on a condition value, we need to take 750 // the operands for the branch that was taken. 751 if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) { 752 // For conditional branches, we take the operands from either the "true" or 753 // the "false" branch. 754 return condBranchOp.getSuccessor(0) == current 755 ? condBranchOp.getTrueDestOperands()[index] 756 : condBranchOp.getFalseDestOperands()[index]; 757 } 758 759 if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) { 760 // For switches, we take the operands from either the default case, or from 761 // the case branch that was taken. 762 if (switchOp.getDefaultDestination() == current) 763 return switchOp.getDefaultOperands()[index]; 764 for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations())) 765 if (i.value() == current) 766 return switchOp.getCaseOperands(i.index())[index]; 767 } 768 769 if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) { 770 return invokeOp.getNormalDest() == current 771 ? invokeOp.getNormalDestOperands()[index] 772 : invokeOp.getUnwindDestOperands()[index]; 773 } 774 775 llvm_unreachable( 776 "only branch, switch or invoke operations can be terminators " 777 "of a block that has successors"); 778 } 779 780 /// Connect the PHI nodes to the results of preceding blocks. 781 void mlir::LLVM::detail::connectPHINodes(Region ®ion, 782 const ModuleTranslation &state) { 783 // Skip the first block, it cannot be branched to and its arguments correspond 784 // to the arguments of the LLVM function. 785 for (Block &bb : llvm::drop_begin(region)) { 786 llvm::BasicBlock *llvmBB = state.lookupBlock(&bb); 787 auto phis = llvmBB->phis(); 788 auto numArguments = bb.getNumArguments(); 789 assert(numArguments == std::distance(phis.begin(), phis.end())); 790 for (auto [index, phiNode] : llvm::enumerate(phis)) { 791 for (auto *pred : bb.getPredecessors()) { 792 // Find the LLVM IR block that contains the converted terminator 793 // instruction and use it in the PHI node. Note that this block is not 794 // necessarily the same as state.lookupBlock(pred), some operations 795 // (in particular, OpenMP operations using OpenMPIRBuilder) may have 796 // split the blocks. 797 llvm::Instruction *terminator = 798 state.lookupBranch(pred->getTerminator()); 799 assert(terminator && "missing the mapping for a terminator"); 800 phiNode.addIncoming(state.lookupValue(getPHISourceValue( 801 &bb, pred, numArguments, index)), 802 terminator->getParent()); 803 } 804 } 805 } 806 } 807 808 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall( 809 llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic, 810 ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) { 811 llvm::Module *module = builder.GetInsertBlock()->getModule(); 812 llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys); 813 return builder.CreateCall(fn, args); 814 } 815 816 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall( 817 llvm::IRBuilderBase &builder, ModuleTranslation &moduleTranslation, 818 Operation *intrOp, llvm::Intrinsic::ID intrinsic, unsigned numResults, 819 ArrayRef<unsigned> overloadedResults, ArrayRef<unsigned> overloadedOperands, 820 ArrayRef<unsigned> immArgPositions, 821 ArrayRef<StringLiteral> immArgAttrNames) { 822 assert(immArgPositions.size() == immArgAttrNames.size() && 823 "LLVM `immArgPositions` and MLIR `immArgAttrNames` should have equal " 824 "length"); 825 826 // Map operands and attributes to LLVM values. 827 auto operands = moduleTranslation.lookupValues(intrOp->getOperands()); 828 SmallVector<llvm::Value *> args(immArgPositions.size() + operands.size()); 829 for (auto [immArgPos, immArgName] : 830 llvm::zip(immArgPositions, immArgAttrNames)) { 831 auto attr = llvm::cast<TypedAttr>(intrOp->getAttr(immArgName)); 832 assert(attr.getType().isIntOrFloat() && "expected int or float immarg"); 833 auto *type = moduleTranslation.convertType(attr.getType()); 834 args[immArgPos] = LLVM::detail::getLLVMConstant( 835 type, attr, intrOp->getLoc(), moduleTranslation); 836 } 837 unsigned opArg = 0; 838 for (auto &arg : args) { 839 if (!arg) 840 arg = operands[opArg++]; 841 } 842 843 // Resolve overloaded intrinsic declaration. 844 SmallVector<llvm::Type *> overloadedTypes; 845 for (unsigned overloadedResultIdx : overloadedResults) { 846 if (numResults > 1) { 847 // More than one result is mapped to an LLVM struct. 848 overloadedTypes.push_back(moduleTranslation.convertType( 849 llvm::cast<LLVM::LLVMStructType>(intrOp->getResult(0).getType()) 850 .getBody()[overloadedResultIdx])); 851 } else { 852 overloadedTypes.push_back( 853 moduleTranslation.convertType(intrOp->getResult(0).getType())); 854 } 855 } 856 for (unsigned overloadedOperandIdx : overloadedOperands) 857 overloadedTypes.push_back(args[overloadedOperandIdx]->getType()); 858 llvm::Module *module = builder.GetInsertBlock()->getModule(); 859 llvm::Function *llvmIntr = 860 llvm::Intrinsic::getDeclaration(module, intrinsic, overloadedTypes); 861 862 return builder.CreateCall(llvmIntr, args); 863 } 864 865 /// Given a single MLIR operation, create the corresponding LLVM IR operation 866 /// using the `builder`. 867 LogicalResult ModuleTranslation::convertOperation(Operation &op, 868 llvm::IRBuilderBase &builder, 869 bool recordInsertions) { 870 const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op); 871 if (!opIface) 872 return op.emitError("cannot be converted to LLVM IR: missing " 873 "`LLVMTranslationDialectInterface` registration for " 874 "dialect for op: ") 875 << op.getName(); 876 877 InstructionCapturingInserter::CollectionScope scope(builder, 878 recordInsertions); 879 if (failed(opIface->convertOperation(&op, builder, *this))) 880 return op.emitError("LLVM Translation failed for operation: ") 881 << op.getName(); 882 883 return convertDialectAttributes(&op, scope.getCapturedInstructions()); 884 } 885 886 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 887 /// to define values corresponding to the MLIR block arguments. These nodes 888 /// are not connected to the source basic blocks, which may not exist yet. Uses 889 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have 890 /// been created for `bb` and included in the block mapping. Inserts new 891 /// instructions at the end of the block and leaves `builder` in a state 892 /// suitable for further insertion into the end of the block. 893 LogicalResult ModuleTranslation::convertBlockImpl(Block &bb, 894 bool ignoreArguments, 895 llvm::IRBuilderBase &builder, 896 bool recordInsertions) { 897 builder.SetInsertPoint(lookupBlock(&bb)); 898 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 899 900 // Before traversing operations, make block arguments available through 901 // value remapping and PHI nodes, but do not add incoming edges for the PHI 902 // nodes just yet: those values may be defined by this or following blocks. 903 // This step is omitted if "ignoreArguments" is set. The arguments of the 904 // first block have been already made available through the remapping of 905 // LLVM function arguments. 906 if (!ignoreArguments) { 907 auto predecessors = bb.getPredecessors(); 908 unsigned numPredecessors = 909 std::distance(predecessors.begin(), predecessors.end()); 910 for (auto arg : bb.getArguments()) { 911 auto wrappedType = arg.getType(); 912 if (!isCompatibleType(wrappedType)) 913 return emitError(bb.front().getLoc(), 914 "block argument does not have an LLVM type"); 915 llvm::Type *type = convertType(wrappedType); 916 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 917 mapValue(arg, phi); 918 } 919 } 920 921 // Traverse operations. 922 for (auto &op : bb) { 923 // Set the current debug location within the builder. 924 builder.SetCurrentDebugLocation( 925 debugTranslation->translateLoc(op.getLoc(), subprogram)); 926 927 if (failed(convertOperation(op, builder, recordInsertions))) 928 return failure(); 929 930 // Set the branch weight metadata on the translated instruction. 931 if (auto iface = dyn_cast<BranchWeightOpInterface>(op)) 932 setBranchWeightsMetadata(iface); 933 } 934 935 return success(); 936 } 937 938 /// A helper method to get the single Block in an operation honoring LLVM's 939 /// module requirements. 940 static Block &getModuleBody(Operation *module) { 941 return module->getRegion(0).front(); 942 } 943 944 /// A helper method to decide if a constant must not be set as a global variable 945 /// initializer. For an external linkage variable, the variable with an 946 /// initializer is considered externally visible and defined in this module, the 947 /// variable without an initializer is externally available and is defined 948 /// elsewhere. 949 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage, 950 llvm::Constant *cst) { 951 return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) || 952 linkage == llvm::GlobalVariable::ExternalWeakLinkage; 953 } 954 955 /// Sets the runtime preemption specifier of `gv` to dso_local if 956 /// `dsoLocalRequested` is true, otherwise it is left unchanged. 957 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested, 958 llvm::GlobalValue *gv) { 959 if (dsoLocalRequested) 960 gv->setDSOLocal(true); 961 } 962 963 /// Create named global variables that correspond to llvm.mlir.global 964 /// definitions. Convert llvm.global_ctors and global_dtors ops. 965 LogicalResult ModuleTranslation::convertGlobals() { 966 // Mapping from compile unit to its respective set of global variables. 967 DenseMap<llvm::DICompileUnit *, SmallVector<llvm::Metadata *>> allGVars; 968 969 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 970 llvm::Type *type = convertType(op.getType()); 971 llvm::Constant *cst = nullptr; 972 if (op.getValueOrNull()) { 973 // String attributes are treated separately because they cannot appear as 974 // in-function constants and are thus not supported by getLLVMConstant. 975 if (auto strAttr = dyn_cast_or_null<StringAttr>(op.getValueOrNull())) { 976 cst = llvm::ConstantDataArray::getString( 977 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 978 type = cst->getType(); 979 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(), 980 *this))) { 981 return failure(); 982 } 983 } 984 985 auto linkage = convertLinkageToLLVM(op.getLinkage()); 986 auto addrSpace = op.getAddrSpace(); 987 988 // LLVM IR requires constant with linkage other than external or weak 989 // external to have initializers. If MLIR does not provide an initializer, 990 // default to undef. 991 bool dropInitializer = shouldDropGlobalInitializer(linkage, cst); 992 if (!dropInitializer && !cst) 993 cst = llvm::UndefValue::get(type); 994 else if (dropInitializer && cst) 995 cst = nullptr; 996 997 auto *var = new llvm::GlobalVariable( 998 *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(), 999 /*InsertBefore=*/nullptr, 1000 op.getThreadLocal_() ? llvm::GlobalValue::GeneralDynamicTLSModel 1001 : llvm::GlobalValue::NotThreadLocal, 1002 addrSpace); 1003 1004 if (std::optional<mlir::SymbolRefAttr> comdat = op.getComdat()) { 1005 auto selectorOp = cast<ComdatSelectorOp>( 1006 SymbolTable::lookupNearestSymbolFrom(op, *comdat)); 1007 var->setComdat(comdatMapping.lookup(selectorOp)); 1008 } 1009 1010 if (op.getUnnamedAddr().has_value()) 1011 var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr())); 1012 1013 if (op.getSection().has_value()) 1014 var->setSection(*op.getSection()); 1015 1016 addRuntimePreemptionSpecifier(op.getDsoLocal(), var); 1017 1018 std::optional<uint64_t> alignment = op.getAlignment(); 1019 if (alignment.has_value()) 1020 var->setAlignment(llvm::MaybeAlign(alignment.value())); 1021 1022 var->setVisibility(convertVisibilityToLLVM(op.getVisibility_())); 1023 1024 globalsMapping.try_emplace(op, var); 1025 1026 // Add debug information if present. 1027 if (op.getDbgExpr()) { 1028 llvm::DIGlobalVariableExpression *diGlobalExpr = 1029 debugTranslation->translateGlobalVariableExpression(op.getDbgExpr()); 1030 llvm::DIGlobalVariable *diGlobalVar = diGlobalExpr->getVariable(); 1031 var->addDebugInfo(diGlobalExpr); 1032 1033 // There is no `globals` field in DICompileUnitAttr which can be directly 1034 // assigned to DICompileUnit. We have to build the list by looking at the 1035 // dbgExpr of all the GlobalOps. The scope of the variable is used to get 1036 // the DICompileUnit in which to add it. But for the languages that 1037 // support modules, the scope hierarchy can be 1038 // variable -> module -> compile unit 1039 // If a variable scope points to the module then we use the scope of the 1040 // module to get the compile unit. 1041 llvm::DIScope *scope = diGlobalVar->getScope(); 1042 if (llvm::DIModule *mod = dyn_cast_if_present<llvm::DIModule>(scope)) 1043 scope = mod->getScope(); 1044 1045 // Get the compile unit (scope) of the the global variable. 1046 if (llvm::DICompileUnit *compileUnit = 1047 dyn_cast_if_present<llvm::DICompileUnit>(scope)) { 1048 // Update the compile unit with this incoming global variable expression 1049 // during the finalizing step later. 1050 allGVars[compileUnit].push_back(diGlobalExpr); 1051 } 1052 } 1053 } 1054 1055 // Convert global variable bodies. This is done after all global variables 1056 // have been created in LLVM IR because a global body may refer to another 1057 // global or itself. So all global variables need to be mapped first. 1058 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 1059 if (Block *initializer = op.getInitializerBlock()) { 1060 llvm::IRBuilder<> builder(llvmModule->getContext()); 1061 1062 [[maybe_unused]] int numConstantsHit = 0; 1063 [[maybe_unused]] int numConstantsErased = 0; 1064 DenseMap<llvm::ConstantAggregate *, int> constantAggregateUseMap; 1065 1066 for (auto &op : initializer->without_terminator()) { 1067 if (failed(convertOperation(op, builder))) 1068 return emitError(op.getLoc(), "fail to convert global initializer"); 1069 auto *cst = dyn_cast<llvm::Constant>(lookupValue(op.getResult(0))); 1070 if (!cst) 1071 return emitError(op.getLoc(), "unemittable constant value"); 1072 1073 // When emitting an LLVM constant, a new constant is created and the old 1074 // constant may become dangling and take space. We should remove the 1075 // dangling constants to avoid memory explosion especially for constant 1076 // arrays whose number of elements is large. 1077 // Because multiple operations may refer to the same constant, we need 1078 // to count the number of uses of each constant array and remove it only 1079 // when the count becomes zero. 1080 if (auto *agg = dyn_cast<llvm::ConstantAggregate>(cst)) { 1081 numConstantsHit++; 1082 Value result = op.getResult(0); 1083 int numUsers = std::distance(result.use_begin(), result.use_end()); 1084 auto [iterator, inserted] = 1085 constantAggregateUseMap.try_emplace(agg, numUsers); 1086 if (!inserted) { 1087 // Key already exists, update the value 1088 iterator->second += numUsers; 1089 } 1090 } 1091 // Scan the operands of the operation to decrement the use count of 1092 // constants. Erase the constant if the use count becomes zero. 1093 for (Value v : op.getOperands()) { 1094 auto cst = dyn_cast<llvm::ConstantAggregate>(lookupValue(v)); 1095 if (!cst) 1096 continue; 1097 auto iter = constantAggregateUseMap.find(cst); 1098 assert(iter != constantAggregateUseMap.end() && "constant not found"); 1099 iter->second--; 1100 if (iter->second == 0) { 1101 // NOTE: cannot call removeDeadConstantUsers() here because it 1102 // may remove the constant which has uses not be converted yet. 1103 if (cst->user_empty()) { 1104 cst->destroyConstant(); 1105 numConstantsErased++; 1106 } 1107 constantAggregateUseMap.erase(iter); 1108 } 1109 } 1110 } 1111 1112 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 1113 llvm::Constant *cst = 1114 cast<llvm::Constant>(lookupValue(ret.getOperand(0))); 1115 auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op)); 1116 if (!shouldDropGlobalInitializer(global->getLinkage(), cst)) 1117 global->setInitializer(cst); 1118 1119 // Try to remove the dangling constants again after all operations are 1120 // converted. 1121 for (auto it : constantAggregateUseMap) { 1122 auto cst = it.first; 1123 cst->removeDeadConstantUsers(); 1124 if (cst->user_empty()) { 1125 cst->destroyConstant(); 1126 numConstantsErased++; 1127 } 1128 } 1129 1130 LLVM_DEBUG(llvm::dbgs() 1131 << "Convert initializer for " << op.getName() << "\n"; 1132 llvm::dbgs() << numConstantsHit << " new constants hit\n"; 1133 llvm::dbgs() 1134 << numConstantsErased << " dangling constants erased\n";); 1135 } 1136 } 1137 1138 // Convert llvm.mlir.global_ctors and dtors. 1139 for (Operation &op : getModuleBody(mlirModule)) { 1140 auto ctorOp = dyn_cast<GlobalCtorsOp>(op); 1141 auto dtorOp = dyn_cast<GlobalDtorsOp>(op); 1142 if (!ctorOp && !dtorOp) 1143 continue; 1144 auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities()) 1145 : llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities()); 1146 auto appendGlobalFn = 1147 ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors; 1148 for (auto symbolAndPriority : range) { 1149 llvm::Function *f = lookupFunction( 1150 cast<FlatSymbolRefAttr>(std::get<0>(symbolAndPriority)).getValue()); 1151 appendGlobalFn(*llvmModule, f, 1152 cast<IntegerAttr>(std::get<1>(symbolAndPriority)).getInt(), 1153 /*Data=*/nullptr); 1154 } 1155 } 1156 1157 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) 1158 if (failed(convertDialectAttributes(op, {}))) 1159 return failure(); 1160 1161 // Finally, update the compile units their respective sets of global variables 1162 // created earlier. 1163 for (const auto &[compileUnit, globals] : allGVars) { 1164 compileUnit->replaceGlobalVariables( 1165 llvm::MDTuple::get(getLLVMContext(), globals)); 1166 } 1167 1168 return success(); 1169 } 1170 1171 /// Attempts to add an attribute identified by `key`, optionally with the given 1172 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the 1173 /// attribute has a kind known to LLVM IR, create the attribute of this kind, 1174 /// otherwise keep it as a string attribute. Performs additional checks for 1175 /// attributes known to have or not have a value in order to avoid assertions 1176 /// inside LLVM upon construction. 1177 static LogicalResult checkedAddLLVMFnAttribute(Location loc, 1178 llvm::Function *llvmFunc, 1179 StringRef key, 1180 StringRef value = StringRef()) { 1181 auto kind = llvm::Attribute::getAttrKindFromName(key); 1182 if (kind == llvm::Attribute::None) { 1183 llvmFunc->addFnAttr(key, value); 1184 return success(); 1185 } 1186 1187 if (llvm::Attribute::isIntAttrKind(kind)) { 1188 if (value.empty()) 1189 return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; 1190 1191 int64_t result; 1192 if (!value.getAsInteger(/*Radix=*/0, result)) 1193 llvmFunc->addFnAttr( 1194 llvm::Attribute::get(llvmFunc->getContext(), kind, result)); 1195 else 1196 llvmFunc->addFnAttr(key, value); 1197 return success(); 1198 } 1199 1200 if (!value.empty()) 1201 return emitError(loc) << "LLVM attribute '" << key 1202 << "' does not expect a value, found '" << value 1203 << "'"; 1204 1205 llvmFunc->addFnAttr(kind); 1206 return success(); 1207 } 1208 1209 /// Attaches the attributes listed in the given array attribute to `llvmFunc`. 1210 /// Reports error to `loc` if any and returns immediately. Expects `attributes` 1211 /// to be an array attribute containing either string attributes, treated as 1212 /// value-less LLVM attributes, or array attributes containing two string 1213 /// attributes, with the first string being the name of the corresponding LLVM 1214 /// attribute and the second string beings its value. Note that even integer 1215 /// attributes are expected to have their values expressed as strings. 1216 static LogicalResult 1217 forwardPassthroughAttributes(Location loc, std::optional<ArrayAttr> attributes, 1218 llvm::Function *llvmFunc) { 1219 if (!attributes) 1220 return success(); 1221 1222 for (Attribute attr : *attributes) { 1223 if (auto stringAttr = dyn_cast<StringAttr>(attr)) { 1224 if (failed( 1225 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) 1226 return failure(); 1227 continue; 1228 } 1229 1230 auto arrayAttr = dyn_cast<ArrayAttr>(attr); 1231 if (!arrayAttr || arrayAttr.size() != 2) 1232 return emitError(loc) 1233 << "expected 'passthrough' to contain string or array attributes"; 1234 1235 auto keyAttr = dyn_cast<StringAttr>(arrayAttr[0]); 1236 auto valueAttr = dyn_cast<StringAttr>(arrayAttr[1]); 1237 if (!keyAttr || !valueAttr) 1238 return emitError(loc) 1239 << "expected arrays within 'passthrough' to contain two strings"; 1240 1241 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), 1242 valueAttr.getValue()))) 1243 return failure(); 1244 } 1245 return success(); 1246 } 1247 1248 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 1249 // Clear the block, branch value mappings, they are only relevant within one 1250 // function. 1251 blockMapping.clear(); 1252 valueMapping.clear(); 1253 branchMapping.clear(); 1254 llvm::Function *llvmFunc = lookupFunction(func.getName()); 1255 1256 // Add function arguments to the value remapping table. 1257 for (auto [mlirArg, llvmArg] : 1258 llvm::zip(func.getArguments(), llvmFunc->args())) 1259 mapValue(mlirArg, &llvmArg); 1260 1261 // Check the personality and set it. 1262 if (func.getPersonality()) { 1263 llvm::Type *ty = llvm::PointerType::getUnqual(llvmFunc->getContext()); 1264 if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(), 1265 func.getLoc(), *this)) 1266 llvmFunc->setPersonalityFn(pfunc); 1267 } 1268 1269 if (std::optional<StringRef> section = func.getSection()) 1270 llvmFunc->setSection(*section); 1271 1272 if (func.getArmStreaming()) 1273 llvmFunc->addFnAttr("aarch64_pstate_sm_enabled"); 1274 else if (func.getArmLocallyStreaming()) 1275 llvmFunc->addFnAttr("aarch64_pstate_sm_body"); 1276 else if (func.getArmStreamingCompatible()) 1277 llvmFunc->addFnAttr("aarch64_pstate_sm_compatible"); 1278 1279 if (func.getArmNewZa()) 1280 llvmFunc->addFnAttr("aarch64_new_za"); 1281 else if (func.getArmInZa()) 1282 llvmFunc->addFnAttr("aarch64_in_za"); 1283 else if (func.getArmOutZa()) 1284 llvmFunc->addFnAttr("aarch64_out_za"); 1285 else if (func.getArmInoutZa()) 1286 llvmFunc->addFnAttr("aarch64_inout_za"); 1287 else if (func.getArmPreservesZa()) 1288 llvmFunc->addFnAttr("aarch64_preserves_za"); 1289 1290 if (auto targetCpu = func.getTargetCpu()) 1291 llvmFunc->addFnAttr("target-cpu", *targetCpu); 1292 1293 if (auto targetFeatures = func.getTargetFeatures()) 1294 llvmFunc->addFnAttr("target-features", targetFeatures->getFeaturesString()); 1295 1296 if (auto attr = func.getVscaleRange()) 1297 llvmFunc->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 1298 getLLVMContext(), attr->getMinRange().getInt(), 1299 attr->getMaxRange().getInt())); 1300 1301 if (auto unsafeFpMath = func.getUnsafeFpMath()) 1302 llvmFunc->addFnAttr("unsafe-fp-math", llvm::toStringRef(*unsafeFpMath)); 1303 1304 if (auto noInfsFpMath = func.getNoInfsFpMath()) 1305 llvmFunc->addFnAttr("no-infs-fp-math", llvm::toStringRef(*noInfsFpMath)); 1306 1307 if (auto noNansFpMath = func.getNoNansFpMath()) 1308 llvmFunc->addFnAttr("no-nans-fp-math", llvm::toStringRef(*noNansFpMath)); 1309 1310 if (auto approxFuncFpMath = func.getApproxFuncFpMath()) 1311 llvmFunc->addFnAttr("approx-func-fp-math", 1312 llvm::toStringRef(*approxFuncFpMath)); 1313 1314 if (auto noSignedZerosFpMath = func.getNoSignedZerosFpMath()) 1315 llvmFunc->addFnAttr("no-signed-zeros-fp-math", 1316 llvm::toStringRef(*noSignedZerosFpMath)); 1317 1318 // Add function attribute frame-pointer, if found. 1319 if (FramePointerKindAttr attr = func.getFramePointerAttr()) 1320 llvmFunc->addFnAttr("frame-pointer", 1321 LLVM::framePointerKind::stringifyFramePointerKind( 1322 (attr.getFramePointerKind()))); 1323 1324 // First, create all blocks so we can jump to them. 1325 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 1326 for (auto &bb : func) { 1327 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 1328 llvmBB->insertInto(llvmFunc); 1329 mapBlock(&bb, llvmBB); 1330 } 1331 1332 // Then, convert blocks one by one in topological order to ensure defs are 1333 // converted before uses. 1334 auto blocks = getTopologicallySortedBlocks(func.getBody()); 1335 for (Block *bb : blocks) { 1336 CapturingIRBuilder builder(llvmContext); 1337 if (failed(convertBlockImpl(*bb, bb->isEntryBlock(), builder, 1338 /*recordInsertions=*/true))) 1339 return failure(); 1340 } 1341 1342 // After all blocks have been traversed and values mapped, connect the PHI 1343 // nodes to the results of preceding blocks. 1344 detail::connectPHINodes(func.getBody(), *this); 1345 1346 // Finally, convert dialect attributes attached to the function. 1347 return convertDialectAttributes(func, {}); 1348 } 1349 1350 LogicalResult ModuleTranslation::convertDialectAttributes( 1351 Operation *op, ArrayRef<llvm::Instruction *> instructions) { 1352 for (NamedAttribute attribute : op->getDialectAttrs()) 1353 if (failed(iface.amendOperation(op, instructions, attribute, *this))) 1354 return failure(); 1355 return success(); 1356 } 1357 1358 /// Converts the function attributes from LLVMFuncOp and attaches them to the 1359 /// llvm::Function. 1360 static void convertFunctionAttributes(LLVMFuncOp func, 1361 llvm::Function *llvmFunc) { 1362 if (!func.getMemory()) 1363 return; 1364 1365 MemoryEffectsAttr memEffects = func.getMemoryAttr(); 1366 1367 // Add memory effects incrementally. 1368 llvm::MemoryEffects newMemEffects = 1369 llvm::MemoryEffects(llvm::MemoryEffects::Location::ArgMem, 1370 convertModRefInfoToLLVM(memEffects.getArgMem())); 1371 newMemEffects |= llvm::MemoryEffects( 1372 llvm::MemoryEffects::Location::InaccessibleMem, 1373 convertModRefInfoToLLVM(memEffects.getInaccessibleMem())); 1374 newMemEffects |= 1375 llvm::MemoryEffects(llvm::MemoryEffects::Location::Other, 1376 convertModRefInfoToLLVM(memEffects.getOther())); 1377 llvmFunc->setMemoryEffects(newMemEffects); 1378 } 1379 1380 FailureOr<llvm::AttrBuilder> 1381 ModuleTranslation::convertParameterAttrs(LLVMFuncOp func, int argIdx, 1382 DictionaryAttr paramAttrs) { 1383 llvm::AttrBuilder attrBuilder(llvmModule->getContext()); 1384 auto attrNameToKindMapping = getAttrNameToKindMapping(); 1385 1386 for (auto namedAttr : paramAttrs) { 1387 auto it = attrNameToKindMapping.find(namedAttr.getName()); 1388 if (it != attrNameToKindMapping.end()) { 1389 llvm::Attribute::AttrKind llvmKind = it->second; 1390 1391 llvm::TypeSwitch<Attribute>(namedAttr.getValue()) 1392 .Case<TypeAttr>([&](auto typeAttr) { 1393 attrBuilder.addTypeAttr(llvmKind, convertType(typeAttr.getValue())); 1394 }) 1395 .Case<IntegerAttr>([&](auto intAttr) { 1396 attrBuilder.addRawIntAttr(llvmKind, intAttr.getInt()); 1397 }) 1398 .Case<UnitAttr>([&](auto) { attrBuilder.addAttribute(llvmKind); }); 1399 } else if (namedAttr.getNameDialect()) { 1400 if (failed(iface.convertParameterAttr(func, argIdx, namedAttr, *this))) 1401 return failure(); 1402 } 1403 } 1404 1405 return attrBuilder; 1406 } 1407 1408 LogicalResult ModuleTranslation::convertFunctionSignatures() { 1409 // Declare all functions first because there may be function calls that form a 1410 // call graph with cycles, or global initializers that reference functions. 1411 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 1412 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 1413 function.getName(), 1414 cast<llvm::FunctionType>(convertType(function.getFunctionType()))); 1415 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); 1416 llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage())); 1417 llvmFunc->setCallingConv(convertCConvToLLVM(function.getCConv())); 1418 mapFunction(function.getName(), llvmFunc); 1419 addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc); 1420 1421 // Convert function attributes. 1422 convertFunctionAttributes(function, llvmFunc); 1423 1424 // Convert function_entry_count attribute to metadata. 1425 if (std::optional<uint64_t> entryCount = function.getFunctionEntryCount()) 1426 llvmFunc->setEntryCount(entryCount.value()); 1427 1428 // Convert result attributes. 1429 if (ArrayAttr allResultAttrs = function.getAllResultAttrs()) { 1430 DictionaryAttr resultAttrs = cast<DictionaryAttr>(allResultAttrs[0]); 1431 FailureOr<llvm::AttrBuilder> attrBuilder = 1432 convertParameterAttrs(function, -1, resultAttrs); 1433 if (failed(attrBuilder)) 1434 return failure(); 1435 llvmFunc->addRetAttrs(*attrBuilder); 1436 } 1437 1438 // Convert argument attributes. 1439 for (auto [argIdx, llvmArg] : llvm::enumerate(llvmFunc->args())) { 1440 if (DictionaryAttr argAttrs = function.getArgAttrDict(argIdx)) { 1441 FailureOr<llvm::AttrBuilder> attrBuilder = 1442 convertParameterAttrs(function, argIdx, argAttrs); 1443 if (failed(attrBuilder)) 1444 return failure(); 1445 llvmArg.addAttrs(*attrBuilder); 1446 } 1447 } 1448 1449 // Forward the pass-through attributes to LLVM. 1450 if (failed(forwardPassthroughAttributes( 1451 function.getLoc(), function.getPassthrough(), llvmFunc))) 1452 return failure(); 1453 1454 // Convert visibility attribute. 1455 llvmFunc->setVisibility(convertVisibilityToLLVM(function.getVisibility_())); 1456 1457 // Convert the comdat attribute. 1458 if (std::optional<mlir::SymbolRefAttr> comdat = function.getComdat()) { 1459 auto selectorOp = cast<ComdatSelectorOp>( 1460 SymbolTable::lookupNearestSymbolFrom(function, *comdat)); 1461 llvmFunc->setComdat(comdatMapping.lookup(selectorOp)); 1462 } 1463 1464 if (auto gc = function.getGarbageCollector()) 1465 llvmFunc->setGC(gc->str()); 1466 1467 if (auto unnamedAddr = function.getUnnamedAddr()) 1468 llvmFunc->setUnnamedAddr(convertUnnamedAddrToLLVM(*unnamedAddr)); 1469 1470 if (auto alignment = function.getAlignment()) 1471 llvmFunc->setAlignment(llvm::MaybeAlign(*alignment)); 1472 1473 // Translate the debug information for this function. 1474 debugTranslation->translate(function, *llvmFunc); 1475 } 1476 1477 return success(); 1478 } 1479 1480 LogicalResult ModuleTranslation::convertFunctions() { 1481 // Convert functions. 1482 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 1483 // Do not convert external functions, but do process dialect attributes 1484 // attached to them. 1485 if (function.isExternal()) { 1486 if (failed(convertDialectAttributes(function, {}))) 1487 return failure(); 1488 continue; 1489 } 1490 1491 if (failed(convertOneFunction(function))) 1492 return failure(); 1493 } 1494 1495 return success(); 1496 } 1497 1498 LogicalResult ModuleTranslation::convertComdats() { 1499 for (auto comdatOp : getModuleBody(mlirModule).getOps<ComdatOp>()) { 1500 for (auto selectorOp : comdatOp.getOps<ComdatSelectorOp>()) { 1501 llvm::Module *module = getLLVMModule(); 1502 if (module->getComdatSymbolTable().contains(selectorOp.getSymName())) 1503 return emitError(selectorOp.getLoc()) 1504 << "comdat selection symbols must be unique even in different " 1505 "comdat regions"; 1506 llvm::Comdat *comdat = module->getOrInsertComdat(selectorOp.getSymName()); 1507 comdat->setSelectionKind(convertComdatToLLVM(selectorOp.getComdat())); 1508 comdatMapping.try_emplace(selectorOp, comdat); 1509 } 1510 } 1511 return success(); 1512 } 1513 1514 void ModuleTranslation::setAccessGroupsMetadata(AccessGroupOpInterface op, 1515 llvm::Instruction *inst) { 1516 if (llvm::MDNode *node = loopAnnotationTranslation->getAccessGroups(op)) 1517 inst->setMetadata(llvm::LLVMContext::MD_access_group, node); 1518 } 1519 1520 llvm::MDNode * 1521 ModuleTranslation::getOrCreateAliasScope(AliasScopeAttr aliasScopeAttr) { 1522 auto [scopeIt, scopeInserted] = 1523 aliasScopeMetadataMapping.try_emplace(aliasScopeAttr, nullptr); 1524 if (!scopeInserted) 1525 return scopeIt->second; 1526 llvm::LLVMContext &ctx = llvmModule->getContext(); 1527 auto dummy = llvm::MDNode::getTemporary(ctx, std::nullopt); 1528 // Convert the domain metadata node if necessary. 1529 auto [domainIt, insertedDomain] = aliasDomainMetadataMapping.try_emplace( 1530 aliasScopeAttr.getDomain(), nullptr); 1531 if (insertedDomain) { 1532 llvm::SmallVector<llvm::Metadata *, 2> operands; 1533 // Placeholder for self-reference. 1534 operands.push_back(dummy.get()); 1535 if (StringAttr description = aliasScopeAttr.getDomain().getDescription()) 1536 operands.push_back(llvm::MDString::get(ctx, description)); 1537 domainIt->second = llvm::MDNode::get(ctx, operands); 1538 // Self-reference for uniqueness. 1539 domainIt->second->replaceOperandWith(0, domainIt->second); 1540 } 1541 // Convert the scope metadata node. 1542 assert(domainIt->second && "Scope's domain should already be valid"); 1543 llvm::SmallVector<llvm::Metadata *, 3> operands; 1544 // Placeholder for self-reference. 1545 operands.push_back(dummy.get()); 1546 operands.push_back(domainIt->second); 1547 if (StringAttr description = aliasScopeAttr.getDescription()) 1548 operands.push_back(llvm::MDString::get(ctx, description)); 1549 scopeIt->second = llvm::MDNode::get(ctx, operands); 1550 // Self-reference for uniqueness. 1551 scopeIt->second->replaceOperandWith(0, scopeIt->second); 1552 return scopeIt->second; 1553 } 1554 1555 llvm::MDNode *ModuleTranslation::getOrCreateAliasScopes( 1556 ArrayRef<AliasScopeAttr> aliasScopeAttrs) { 1557 SmallVector<llvm::Metadata *> nodes; 1558 nodes.reserve(aliasScopeAttrs.size()); 1559 for (AliasScopeAttr aliasScopeAttr : aliasScopeAttrs) 1560 nodes.push_back(getOrCreateAliasScope(aliasScopeAttr)); 1561 return llvm::MDNode::get(getLLVMContext(), nodes); 1562 } 1563 1564 void ModuleTranslation::setAliasScopeMetadata(AliasAnalysisOpInterface op, 1565 llvm::Instruction *inst) { 1566 auto populateScopeMetadata = [&](ArrayAttr aliasScopeAttrs, unsigned kind) { 1567 if (!aliasScopeAttrs || aliasScopeAttrs.empty()) 1568 return; 1569 llvm::MDNode *node = getOrCreateAliasScopes( 1570 llvm::to_vector(aliasScopeAttrs.getAsRange<AliasScopeAttr>())); 1571 inst->setMetadata(kind, node); 1572 }; 1573 1574 populateScopeMetadata(op.getAliasScopesOrNull(), 1575 llvm::LLVMContext::MD_alias_scope); 1576 populateScopeMetadata(op.getNoAliasScopesOrNull(), 1577 llvm::LLVMContext::MD_noalias); 1578 } 1579 1580 llvm::MDNode *ModuleTranslation::getTBAANode(TBAATagAttr tbaaAttr) const { 1581 return tbaaMetadataMapping.lookup(tbaaAttr); 1582 } 1583 1584 void ModuleTranslation::setTBAAMetadata(AliasAnalysisOpInterface op, 1585 llvm::Instruction *inst) { 1586 ArrayAttr tagRefs = op.getTBAATagsOrNull(); 1587 if (!tagRefs || tagRefs.empty()) 1588 return; 1589 1590 // LLVM IR currently does not support attaching more than one TBAA access tag 1591 // to a memory accessing instruction. It may be useful to support this in 1592 // future, but for the time being just ignore the metadata if MLIR operation 1593 // has multiple access tags. 1594 if (tagRefs.size() > 1) { 1595 op.emitWarning() << "TBAA access tags were not translated, because LLVM " 1596 "IR only supports a single tag per instruction"; 1597 return; 1598 } 1599 1600 llvm::MDNode *node = getTBAANode(cast<TBAATagAttr>(tagRefs[0])); 1601 inst->setMetadata(llvm::LLVMContext::MD_tbaa, node); 1602 } 1603 1604 void ModuleTranslation::setBranchWeightsMetadata(BranchWeightOpInterface op) { 1605 DenseI32ArrayAttr weightsAttr = op.getBranchWeightsOrNull(); 1606 if (!weightsAttr) 1607 return; 1608 1609 llvm::Instruction *inst = isa<CallOp>(op) ? lookupCall(op) : lookupBranch(op); 1610 assert(inst && "expected the operation to have a mapping to an instruction"); 1611 SmallVector<uint32_t> weights(weightsAttr.asArrayRef()); 1612 inst->setMetadata( 1613 llvm::LLVMContext::MD_prof, 1614 llvm::MDBuilder(getLLVMContext()).createBranchWeights(weights)); 1615 } 1616 1617 LogicalResult ModuleTranslation::createTBAAMetadata() { 1618 llvm::LLVMContext &ctx = llvmModule->getContext(); 1619 llvm::IntegerType *offsetTy = llvm::IntegerType::get(ctx, 64); 1620 1621 // Walk the entire module and create all metadata nodes for the TBAA 1622 // attributes. The code below relies on two invariants of the 1623 // `AttrTypeWalker`: 1624 // 1. Attributes are visited in post-order: Since the attributes create a DAG, 1625 // this ensures that any lookups into `tbaaMetadataMapping` for child 1626 // attributes succeed. 1627 // 2. Attributes are only ever visited once: This way we don't leak any 1628 // LLVM metadata instances. 1629 AttrTypeWalker walker; 1630 walker.addWalk([&](TBAARootAttr root) { 1631 tbaaMetadataMapping.insert( 1632 {root, llvm::MDNode::get(ctx, llvm::MDString::get(ctx, root.getId()))}); 1633 }); 1634 1635 walker.addWalk([&](TBAATypeDescriptorAttr descriptor) { 1636 SmallVector<llvm::Metadata *> operands; 1637 operands.push_back(llvm::MDString::get(ctx, descriptor.getId())); 1638 for (TBAAMemberAttr member : descriptor.getMembers()) { 1639 operands.push_back(tbaaMetadataMapping.lookup(member.getTypeDesc())); 1640 operands.push_back(llvm::ConstantAsMetadata::get( 1641 llvm::ConstantInt::get(offsetTy, member.getOffset()))); 1642 } 1643 1644 tbaaMetadataMapping.insert({descriptor, llvm::MDNode::get(ctx, operands)}); 1645 }); 1646 1647 walker.addWalk([&](TBAATagAttr tag) { 1648 SmallVector<llvm::Metadata *> operands; 1649 1650 operands.push_back(tbaaMetadataMapping.lookup(tag.getBaseType())); 1651 operands.push_back(tbaaMetadataMapping.lookup(tag.getAccessType())); 1652 1653 operands.push_back(llvm::ConstantAsMetadata::get( 1654 llvm::ConstantInt::get(offsetTy, tag.getOffset()))); 1655 if (tag.getConstant()) 1656 operands.push_back( 1657 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(offsetTy, 1))); 1658 1659 tbaaMetadataMapping.insert({tag, llvm::MDNode::get(ctx, operands)}); 1660 }); 1661 1662 mlirModule->walk([&](AliasAnalysisOpInterface analysisOpInterface) { 1663 if (auto attr = analysisOpInterface.getTBAATagsOrNull()) 1664 walker.walk(attr); 1665 }); 1666 1667 return success(); 1668 } 1669 1670 void ModuleTranslation::setLoopMetadata(Operation *op, 1671 llvm::Instruction *inst) { 1672 LoopAnnotationAttr attr = 1673 TypeSwitch<Operation *, LoopAnnotationAttr>(op) 1674 .Case<LLVM::BrOp, LLVM::CondBrOp>( 1675 [](auto branchOp) { return branchOp.getLoopAnnotationAttr(); }); 1676 if (!attr) 1677 return; 1678 llvm::MDNode *loopMD = 1679 loopAnnotationTranslation->translateLoopAnnotation(attr, op); 1680 inst->setMetadata(llvm::LLVMContext::MD_loop, loopMD); 1681 } 1682 1683 llvm::Type *ModuleTranslation::convertType(Type type) { 1684 return typeTranslator.translateType(type); 1685 } 1686 1687 /// A helper to look up remapped operands in the value remapping table. 1688 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) { 1689 SmallVector<llvm::Value *> remapped; 1690 remapped.reserve(values.size()); 1691 for (Value v : values) 1692 remapped.push_back(lookupValue(v)); 1693 return remapped; 1694 } 1695 1696 llvm::OpenMPIRBuilder *ModuleTranslation::getOpenMPBuilder() { 1697 if (!ompBuilder) { 1698 ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule); 1699 ompBuilder->initialize(); 1700 1701 // Flags represented as top-level OpenMP dialect attributes are set in 1702 // `OpenMPDialectLLVMIRTranslationInterface::amendOperation()`. Here we set 1703 // the default configuration. 1704 ompBuilder->setConfig(llvm::OpenMPIRBuilderConfig( 1705 /* IsTargetDevice = */ false, /* IsGPU = */ false, 1706 /* OpenMPOffloadMandatory = */ false, 1707 /* HasRequiresReverseOffload = */ false, 1708 /* HasRequiresUnifiedAddress = */ false, 1709 /* HasRequiresUnifiedSharedMemory = */ false, 1710 /* HasRequiresDynamicAllocators = */ false)); 1711 } 1712 return ompBuilder.get(); 1713 } 1714 1715 llvm::DILocation *ModuleTranslation::translateLoc(Location loc, 1716 llvm::DILocalScope *scope) { 1717 return debugTranslation->translateLoc(loc, scope); 1718 } 1719 1720 llvm::DIExpression * 1721 ModuleTranslation::translateExpression(LLVM::DIExpressionAttr attr) { 1722 return debugTranslation->translateExpression(attr); 1723 } 1724 1725 llvm::DIGlobalVariableExpression * 1726 ModuleTranslation::translateGlobalVariableExpression( 1727 LLVM::DIGlobalVariableExpressionAttr attr) { 1728 return debugTranslation->translateGlobalVariableExpression(attr); 1729 } 1730 1731 llvm::Metadata *ModuleTranslation::translateDebugInfo(LLVM::DINodeAttr attr) { 1732 return debugTranslation->translate(attr); 1733 } 1734 1735 llvm::RoundingMode 1736 ModuleTranslation::translateRoundingMode(LLVM::RoundingMode rounding) { 1737 return convertRoundingModeToLLVM(rounding); 1738 } 1739 1740 llvm::fp::ExceptionBehavior ModuleTranslation::translateFPExceptionBehavior( 1741 LLVM::FPExceptionBehavior exceptionBehavior) { 1742 return convertFPExceptionBehaviorToLLVM(exceptionBehavior); 1743 } 1744 1745 llvm::NamedMDNode * 1746 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) { 1747 return llvmModule->getOrInsertNamedMetadata(name); 1748 } 1749 1750 void ModuleTranslation::StackFrame::anchor() {} 1751 1752 static std::unique_ptr<llvm::Module> 1753 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext, 1754 StringRef name) { 1755 m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>(); 1756 auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext); 1757 if (auto dataLayoutAttr = 1758 m->getDiscardableAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) { 1759 llvmModule->setDataLayout(cast<StringAttr>(dataLayoutAttr).getValue()); 1760 } else { 1761 FailureOr<llvm::DataLayout> llvmDataLayout(llvm::DataLayout("")); 1762 if (auto iface = dyn_cast<DataLayoutOpInterface>(m)) { 1763 if (DataLayoutSpecInterface spec = iface.getDataLayoutSpec()) { 1764 llvmDataLayout = 1765 translateDataLayout(spec, DataLayout(iface), m->getLoc()); 1766 } 1767 } else if (auto mod = dyn_cast<ModuleOp>(m)) { 1768 if (DataLayoutSpecInterface spec = mod.getDataLayoutSpec()) { 1769 llvmDataLayout = 1770 translateDataLayout(spec, DataLayout(mod), m->getLoc()); 1771 } 1772 } 1773 if (failed(llvmDataLayout)) 1774 return nullptr; 1775 llvmModule->setDataLayout(*llvmDataLayout); 1776 } 1777 if (auto targetTripleAttr = 1778 m->getDiscardableAttr(LLVM::LLVMDialect::getTargetTripleAttrName())) 1779 llvmModule->setTargetTriple(cast<StringAttr>(targetTripleAttr).getValue()); 1780 1781 return llvmModule; 1782 } 1783 1784 std::unique_ptr<llvm::Module> 1785 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext, 1786 StringRef name) { 1787 if (!satisfiesLLVMModule(module)) { 1788 module->emitOpError("can not be translated to an LLVMIR module"); 1789 return nullptr; 1790 } 1791 1792 std::unique_ptr<llvm::Module> llvmModule = 1793 prepareLLVMModule(module, llvmContext, name); 1794 if (!llvmModule) 1795 return nullptr; 1796 1797 LLVM::ensureDistinctSuccessors(module); 1798 LLVM::legalizeDIExpressionsRecursively(module); 1799 1800 ModuleTranslation translator(module, std::move(llvmModule)); 1801 llvm::IRBuilder<> llvmBuilder(llvmContext); 1802 1803 // Convert module before functions and operations inside, so dialect 1804 // attributes can be used to change dialect-specific global configurations via 1805 // `amendOperation()`. These configurations can then influence the translation 1806 // of operations afterwards. 1807 if (failed(translator.convertOperation(*module, llvmBuilder))) 1808 return nullptr; 1809 1810 if (failed(translator.convertComdats())) 1811 return nullptr; 1812 if (failed(translator.convertFunctionSignatures())) 1813 return nullptr; 1814 if (failed(translator.convertGlobals())) 1815 return nullptr; 1816 if (failed(translator.createTBAAMetadata())) 1817 return nullptr; 1818 1819 // Convert other top-level operations if possible. 1820 for (Operation &o : getModuleBody(module).getOperations()) { 1821 if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp, 1822 LLVM::GlobalDtorsOp, LLVM::ComdatOp>(&o) && 1823 !o.hasTrait<OpTrait::IsTerminator>() && 1824 failed(translator.convertOperation(o, llvmBuilder))) { 1825 return nullptr; 1826 } 1827 } 1828 1829 // Operations in function bodies with symbolic references must be converted 1830 // after the top-level operations they refer to are declared, so we do it 1831 // last. 1832 if (failed(translator.convertFunctions())) 1833 return nullptr; 1834 1835 if (llvm::verifyModule(*translator.llvmModule, &llvm::errs())) 1836 return nullptr; 1837 1838 return std::move(translator.llvmModule); 1839 } 1840