xref: /llvm-project/mlir/lib/Target/LLVMIR/ModuleTranslation.cpp (revision 6da578cec1395ee54f82b51f912fb85fdb6cdce3)
1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the translation between an MLIR LLVM dialect module and
10 // the corresponding LLVMIR module. It only handles core LLVM IR operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Target/LLVMIR/ModuleTranslation.h"
15 
16 #include "AttrKindDetail.h"
17 #include "DebugTranslation.h"
18 #include "LoopAnnotationTranslation.h"
19 #include "mlir/Dialect/DLTI/DLTI.h"
20 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
21 #include "mlir/Dialect/LLVMIR/LLVMInterfaces.h"
22 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
23 #include "mlir/Dialect/OpenMP/OpenMPDialect.h"
24 #include "mlir/Dialect/OpenMP/OpenMPInterfaces.h"
25 #include "mlir/IR/AttrTypeSubElements.h"
26 #include "mlir/IR/Attributes.h"
27 #include "mlir/IR/BuiltinOps.h"
28 #include "mlir/IR/BuiltinTypes.h"
29 #include "mlir/IR/RegionGraphTraits.h"
30 #include "mlir/Support/LLVM.h"
31 #include "mlir/Support/LogicalResult.h"
32 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
33 #include "mlir/Target/LLVMIR/TypeToLLVM.h"
34 #include "mlir/Transforms/RegionUtils.h"
35 
36 #include "llvm/ADT/PostOrderIterator.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/ADT/TypeSwitch.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/CFG.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/IntrinsicsNVPTX.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/MDBuilder.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/Verifier.h"
51 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
52 #include "llvm/Transforms/Utils/Cloning.h"
53 #include "llvm/Transforms/Utils/ModuleUtils.h"
54 #include <optional>
55 
56 using namespace mlir;
57 using namespace mlir::LLVM;
58 using namespace mlir::LLVM::detail;
59 
60 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
61 
62 /// Translates the given data layout spec attribute to the LLVM IR data layout.
63 /// Only integer, float, pointer and endianness entries are currently supported.
64 static FailureOr<llvm::DataLayout>
65 translateDataLayout(DataLayoutSpecInterface attribute,
66                     const DataLayout &dataLayout,
67                     std::optional<Location> loc = std::nullopt) {
68   if (!loc)
69     loc = UnknownLoc::get(attribute.getContext());
70 
71   // Translate the endianness attribute.
72   std::string llvmDataLayout;
73   llvm::raw_string_ostream layoutStream(llvmDataLayout);
74   for (DataLayoutEntryInterface entry : attribute.getEntries()) {
75     auto key = llvm::dyn_cast_if_present<StringAttr>(entry.getKey());
76     if (!key)
77       continue;
78     if (key.getValue() == DLTIDialect::kDataLayoutEndiannessKey) {
79       auto value = cast<StringAttr>(entry.getValue());
80       bool isLittleEndian =
81           value.getValue() == DLTIDialect::kDataLayoutEndiannessLittle;
82       layoutStream << "-" << (isLittleEndian ? "e" : "E");
83       layoutStream.flush();
84       continue;
85     }
86     if (key.getValue() == DLTIDialect::kDataLayoutAllocaMemorySpaceKey) {
87       auto value = cast<IntegerAttr>(entry.getValue());
88       uint64_t space = value.getValue().getZExtValue();
89       // Skip the default address space.
90       if (space == 0)
91         continue;
92       layoutStream << "-A" << space;
93       layoutStream.flush();
94       continue;
95     }
96     if (key.getValue() == DLTIDialect::kDataLayoutStackAlignmentKey) {
97       auto value = cast<IntegerAttr>(entry.getValue());
98       uint64_t alignment = value.getValue().getZExtValue();
99       // Skip the default stack alignment.
100       if (alignment == 0)
101         continue;
102       layoutStream << "-S" << alignment;
103       layoutStream.flush();
104       continue;
105     }
106     emitError(*loc) << "unsupported data layout key " << key;
107     return failure();
108   }
109 
110   // Go through the list of entries to check which types are explicitly
111   // specified in entries. Where possible, data layout queries are used instead
112   // of directly inspecting the entries.
113   for (DataLayoutEntryInterface entry : attribute.getEntries()) {
114     auto type = llvm::dyn_cast_if_present<Type>(entry.getKey());
115     if (!type)
116       continue;
117     // Data layout for the index type is irrelevant at this point.
118     if (isa<IndexType>(type))
119       continue;
120     layoutStream << "-";
121     LogicalResult result =
122         llvm::TypeSwitch<Type, LogicalResult>(type)
123             .Case<IntegerType, Float16Type, Float32Type, Float64Type,
124                   Float80Type, Float128Type>([&](Type type) -> LogicalResult {
125               if (auto intType = dyn_cast<IntegerType>(type)) {
126                 if (intType.getSignedness() != IntegerType::Signless)
127                   return emitError(*loc)
128                          << "unsupported data layout for non-signless integer "
129                          << intType;
130                 layoutStream << "i";
131               } else {
132                 layoutStream << "f";
133               }
134               uint64_t size = dataLayout.getTypeSizeInBits(type);
135               uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u;
136               uint64_t preferred =
137                   dataLayout.getTypePreferredAlignment(type) * 8u;
138               layoutStream << size << ":" << abi;
139               if (abi != preferred)
140                 layoutStream << ":" << preferred;
141               return success();
142             })
143             .Case([&](LLVMPointerType ptrType) {
144               layoutStream << "p" << ptrType.getAddressSpace() << ":";
145               uint64_t size = dataLayout.getTypeSizeInBits(type);
146               uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u;
147               uint64_t preferred =
148                   dataLayout.getTypePreferredAlignment(type) * 8u;
149               layoutStream << size << ":" << abi << ":" << preferred;
150               if (std::optional<uint64_t> index = extractPointerSpecValue(
151                       entry.getValue(), PtrDLEntryPos::Index))
152                 layoutStream << ":" << *index;
153               return success();
154             })
155             .Default([loc](Type type) {
156               return emitError(*loc)
157                      << "unsupported type in data layout: " << type;
158             });
159     if (failed(result))
160       return failure();
161   }
162   layoutStream.flush();
163   StringRef layoutSpec(llvmDataLayout);
164   if (layoutSpec.startswith("-"))
165     layoutSpec = layoutSpec.drop_front();
166 
167   return llvm::DataLayout(layoutSpec);
168 }
169 
170 /// Builds a constant of a sequential LLVM type `type`, potentially containing
171 /// other sequential types recursively, from the individual constant values
172 /// provided in `constants`. `shape` contains the number of elements in nested
173 /// sequential types. Reports errors at `loc` and returns nullptr on error.
174 static llvm::Constant *
175 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
176                         ArrayRef<int64_t> shape, llvm::Type *type,
177                         Location loc) {
178   if (shape.empty()) {
179     llvm::Constant *result = constants.front();
180     constants = constants.drop_front();
181     return result;
182   }
183 
184   llvm::Type *elementType;
185   if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
186     elementType = arrayTy->getElementType();
187   } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
188     elementType = vectorTy->getElementType();
189   } else {
190     emitError(loc) << "expected sequential LLVM types wrapping a scalar";
191     return nullptr;
192   }
193 
194   SmallVector<llvm::Constant *, 8> nested;
195   nested.reserve(shape.front());
196   for (int64_t i = 0; i < shape.front(); ++i) {
197     nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
198                                              elementType, loc));
199     if (!nested.back())
200       return nullptr;
201   }
202 
203   if (shape.size() == 1 && type->isVectorTy())
204     return llvm::ConstantVector::get(nested);
205   return llvm::ConstantArray::get(
206       llvm::ArrayType::get(elementType, shape.front()), nested);
207 }
208 
209 /// Returns the first non-sequential type nested in sequential types.
210 static llvm::Type *getInnermostElementType(llvm::Type *type) {
211   do {
212     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
213       type = arrayTy->getElementType();
214     } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
215       type = vectorTy->getElementType();
216     } else {
217       return type;
218     }
219   } while (true);
220 }
221 
222 /// Convert a dense elements attribute to an LLVM IR constant using its raw data
223 /// storage if possible. This supports elements attributes of tensor or vector
224 /// type and avoids constructing separate objects for individual values of the
225 /// innermost dimension. Constants for other dimensions are still constructed
226 /// recursively. Returns null if constructing from raw data is not supported for
227 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports
228 /// other errors at `loc`.
229 static llvm::Constant *
230 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr,
231                          llvm::Type *llvmType,
232                          const ModuleTranslation &moduleTranslation) {
233   if (!denseElementsAttr)
234     return nullptr;
235 
236   llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
237   if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType))
238     return nullptr;
239 
240   ShapedType type = denseElementsAttr.getType();
241   if (type.getNumElements() == 0)
242     return nullptr;
243 
244   // Check that the raw data size matches what is expected for the scalar size.
245   // TODO: in theory, we could repack the data here to keep constructing from
246   // raw data.
247   // TODO: we may also need to consider endianness when cross-compiling to an
248   // architecture where it is different.
249   int64_t elementByteSize = denseElementsAttr.getRawData().size() /
250                             denseElementsAttr.getNumElements();
251   if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits())
252     return nullptr;
253 
254   // Compute the shape of all dimensions but the innermost. Note that the
255   // innermost dimension may be that of the vector element type.
256   bool hasVectorElementType = isa<VectorType>(type.getElementType());
257   int64_t numAggregates =
258       denseElementsAttr.getNumElements() /
259       (hasVectorElementType ? 1
260                             : denseElementsAttr.getType().getShape().back());
261   ArrayRef<int64_t> outerShape = type.getShape();
262   if (!hasVectorElementType)
263     outerShape = outerShape.drop_back();
264 
265   // Handle the case of vector splat, LLVM has special support for it.
266   if (denseElementsAttr.isSplat() &&
267       (isa<VectorType>(type) || hasVectorElementType)) {
268     llvm::Constant *splatValue = LLVM::detail::getLLVMConstant(
269         innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc,
270         moduleTranslation);
271     llvm::Constant *splatVector =
272         llvm::ConstantDataVector::getSplat(0, splatValue);
273     SmallVector<llvm::Constant *> constants(numAggregates, splatVector);
274     ArrayRef<llvm::Constant *> constantsRef = constants;
275     return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
276   }
277   if (denseElementsAttr.isSplat())
278     return nullptr;
279 
280   // In case of non-splat, create a constructor for the innermost constant from
281   // a piece of raw data.
282   std::function<llvm::Constant *(StringRef)> buildCstData;
283   if (isa<TensorType>(type)) {
284     auto vectorElementType = dyn_cast<VectorType>(type.getElementType());
285     if (vectorElementType && vectorElementType.getRank() == 1) {
286       buildCstData = [&](StringRef data) {
287         return llvm::ConstantDataVector::getRaw(
288             data, vectorElementType.getShape().back(), innermostLLVMType);
289       };
290     } else if (!vectorElementType) {
291       buildCstData = [&](StringRef data) {
292         return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
293                                                innermostLLVMType);
294       };
295     }
296   } else if (isa<VectorType>(type)) {
297     buildCstData = [&](StringRef data) {
298       return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
299                                               innermostLLVMType);
300     };
301   }
302   if (!buildCstData)
303     return nullptr;
304 
305   // Create innermost constants and defer to the default constant creation
306   // mechanism for other dimensions.
307   SmallVector<llvm::Constant *> constants;
308   int64_t aggregateSize = denseElementsAttr.getType().getShape().back() *
309                           (innermostLLVMType->getScalarSizeInBits() / 8);
310   constants.reserve(numAggregates);
311   for (unsigned i = 0; i < numAggregates; ++i) {
312     StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize,
313                    aggregateSize);
314     constants.push_back(buildCstData(data));
315   }
316 
317   ArrayRef<llvm::Constant *> constantsRef = constants;
318   return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
319 }
320 
321 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
322 /// This currently supports integer, floating point, splat and dense element
323 /// attributes and combinations thereof. Also, an array attribute with two
324 /// elements is supported to represent a complex constant.  In case of error,
325 /// report it to `loc` and return nullptr.
326 llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
327     llvm::Type *llvmType, Attribute attr, Location loc,
328     const ModuleTranslation &moduleTranslation) {
329   if (!attr)
330     return llvm::UndefValue::get(llvmType);
331   if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) {
332     auto arrayAttr = dyn_cast<ArrayAttr>(attr);
333     if (!arrayAttr || arrayAttr.size() != 2) {
334       emitError(loc, "expected struct type to be a complex number");
335       return nullptr;
336     }
337     llvm::Type *elementType = structType->getElementType(0);
338     llvm::Constant *real =
339         getLLVMConstant(elementType, arrayAttr[0], loc, moduleTranslation);
340     if (!real)
341       return nullptr;
342     llvm::Constant *imag =
343         getLLVMConstant(elementType, arrayAttr[1], loc, moduleTranslation);
344     if (!imag)
345       return nullptr;
346     return llvm::ConstantStruct::get(structType, {real, imag});
347   }
348   // For integer types, we allow a mismatch in sizes as the index type in
349   // MLIR might have a different size than the index type in the LLVM module.
350   if (auto intAttr = dyn_cast<IntegerAttr>(attr))
351     return llvm::ConstantInt::get(
352         llvmType,
353         intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
354   if (auto floatAttr = dyn_cast<FloatAttr>(attr)) {
355     const llvm::fltSemantics &sem = floatAttr.getValue().getSemantics();
356     // Special case for 8-bit floats, which are represented by integers due to
357     // the lack of native fp8 types in LLVM at the moment. Additionally, handle
358     // targets (like AMDGPU) that don't implement bfloat and convert all bfloats
359     // to i16.
360     unsigned floatWidth = APFloat::getSizeInBits(sem);
361     if (llvmType->isIntegerTy(floatWidth))
362       return llvm::ConstantInt::get(llvmType,
363                                     floatAttr.getValue().bitcastToAPInt());
364     if (llvmType !=
365         llvm::Type::getFloatingPointTy(llvmType->getContext(),
366                                        floatAttr.getValue().getSemantics())) {
367       emitError(loc, "FloatAttr does not match expected type of the constant");
368       return nullptr;
369     }
370     return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
371   }
372   if (auto funcAttr = dyn_cast<FlatSymbolRefAttr>(attr))
373     return llvm::ConstantExpr::getBitCast(
374         moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
375   if (auto splatAttr = dyn_cast<SplatElementsAttr>(attr)) {
376     llvm::Type *elementType;
377     uint64_t numElements;
378     bool isScalable = false;
379     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
380       elementType = arrayTy->getElementType();
381       numElements = arrayTy->getNumElements();
382     } else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) {
383       elementType = fVectorTy->getElementType();
384       numElements = fVectorTy->getNumElements();
385     } else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) {
386       elementType = sVectorTy->getElementType();
387       numElements = sVectorTy->getMinNumElements();
388       isScalable = true;
389     } else {
390       llvm_unreachable("unrecognized constant vector type");
391     }
392     // Splat value is a scalar. Extract it only if the element type is not
393     // another sequence type. The recursion terminates because each step removes
394     // one outer sequential type.
395     bool elementTypeSequential =
396         isa<llvm::ArrayType, llvm::VectorType>(elementType);
397     llvm::Constant *child = getLLVMConstant(
398         elementType,
399         elementTypeSequential ? splatAttr
400                               : splatAttr.getSplatValue<Attribute>(),
401         loc, moduleTranslation);
402     if (!child)
403       return nullptr;
404     if (llvmType->isVectorTy())
405       return llvm::ConstantVector::getSplat(
406           llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child);
407     if (llvmType->isArrayTy()) {
408       auto *arrayType = llvm::ArrayType::get(elementType, numElements);
409       SmallVector<llvm::Constant *, 8> constants(numElements, child);
410       return llvm::ConstantArray::get(arrayType, constants);
411     }
412   }
413 
414   // Try using raw elements data if possible.
415   if (llvm::Constant *result =
416           convertDenseElementsAttr(loc, dyn_cast<DenseElementsAttr>(attr),
417                                    llvmType, moduleTranslation)) {
418     return result;
419   }
420 
421   // Fall back to element-by-element construction otherwise.
422   if (auto elementsAttr = dyn_cast<ElementsAttr>(attr)) {
423     assert(elementsAttr.getShapedType().hasStaticShape());
424     assert(!elementsAttr.getShapedType().getShape().empty() &&
425            "unexpected empty elements attribute shape");
426 
427     SmallVector<llvm::Constant *, 8> constants;
428     constants.reserve(elementsAttr.getNumElements());
429     llvm::Type *innermostType = getInnermostElementType(llvmType);
430     for (auto n : elementsAttr.getValues<Attribute>()) {
431       constants.push_back(
432           getLLVMConstant(innermostType, n, loc, moduleTranslation));
433       if (!constants.back())
434         return nullptr;
435     }
436     ArrayRef<llvm::Constant *> constantsRef = constants;
437     llvm::Constant *result = buildSequentialConstant(
438         constantsRef, elementsAttr.getShapedType().getShape(), llvmType, loc);
439     assert(constantsRef.empty() && "did not consume all elemental constants");
440     return result;
441   }
442 
443   if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
444     return llvm::ConstantDataArray::get(
445         moduleTranslation.getLLVMContext(),
446         ArrayRef<char>{stringAttr.getValue().data(),
447                        stringAttr.getValue().size()});
448   }
449   emitError(loc, "unsupported constant value");
450   return nullptr;
451 }
452 
453 ModuleTranslation::ModuleTranslation(Operation *module,
454                                      std::unique_ptr<llvm::Module> llvmModule)
455     : mlirModule(module), llvmModule(std::move(llvmModule)),
456       debugTranslation(
457           std::make_unique<DebugTranslation>(module, *this->llvmModule)),
458       loopAnnotationTranslation(std::make_unique<LoopAnnotationTranslation>(
459           *this, *this->llvmModule)),
460       typeTranslator(this->llvmModule->getContext()),
461       iface(module->getContext()) {
462   assert(satisfiesLLVMModule(mlirModule) &&
463          "mlirModule should honor LLVM's module semantics.");
464 }
465 
466 ModuleTranslation::~ModuleTranslation() {
467   if (ompBuilder)
468     ompBuilder->finalize();
469 }
470 
471 void ModuleTranslation::forgetMapping(Region &region) {
472   SmallVector<Region *> toProcess;
473   toProcess.push_back(&region);
474   while (!toProcess.empty()) {
475     Region *current = toProcess.pop_back_val();
476     for (Block &block : *current) {
477       blockMapping.erase(&block);
478       for (Value arg : block.getArguments())
479         valueMapping.erase(arg);
480       for (Operation &op : block) {
481         for (Value value : op.getResults())
482           valueMapping.erase(value);
483         if (op.hasSuccessors())
484           branchMapping.erase(&op);
485         if (isa<LLVM::GlobalOp>(op))
486           globalsMapping.erase(&op);
487         llvm::append_range(
488             toProcess,
489             llvm::map_range(op.getRegions(), [](Region &r) { return &r; }));
490       }
491     }
492   }
493 }
494 
495 /// Get the SSA value passed to the current block from the terminator operation
496 /// of its predecessor.
497 static Value getPHISourceValue(Block *current, Block *pred,
498                                unsigned numArguments, unsigned index) {
499   Operation &terminator = *pred->getTerminator();
500   if (isa<LLVM::BrOp>(terminator))
501     return terminator.getOperand(index);
502 
503 #ifndef NDEBUG
504   llvm::SmallPtrSet<Block *, 4> seenSuccessors;
505   for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) {
506     Block *successor = terminator.getSuccessor(i);
507     auto branch = cast<BranchOpInterface>(terminator);
508     SuccessorOperands successorOperands = branch.getSuccessorOperands(i);
509     assert(
510         (!seenSuccessors.contains(successor) || successorOperands.empty()) &&
511         "successors with arguments in LLVM branches must be different blocks");
512     seenSuccessors.insert(successor);
513   }
514 #endif
515 
516   // For instructions that branch based on a condition value, we need to take
517   // the operands for the branch that was taken.
518   if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
519     // For conditional branches, we take the operands from either the "true" or
520     // the "false" branch.
521     return condBranchOp.getSuccessor(0) == current
522                ? condBranchOp.getTrueDestOperands()[index]
523                : condBranchOp.getFalseDestOperands()[index];
524   }
525 
526   if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
527     // For switches, we take the operands from either the default case, or from
528     // the case branch that was taken.
529     if (switchOp.getDefaultDestination() == current)
530       return switchOp.getDefaultOperands()[index];
531     for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations()))
532       if (i.value() == current)
533         return switchOp.getCaseOperands(i.index())[index];
534   }
535 
536   if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) {
537     return invokeOp.getNormalDest() == current
538                ? invokeOp.getNormalDestOperands()[index]
539                : invokeOp.getUnwindDestOperands()[index];
540   }
541 
542   llvm_unreachable(
543       "only branch, switch or invoke operations can be terminators "
544       "of a block that has successors");
545 }
546 
547 /// Connect the PHI nodes to the results of preceding blocks.
548 void mlir::LLVM::detail::connectPHINodes(Region &region,
549                                          const ModuleTranslation &state) {
550   // Skip the first block, it cannot be branched to and its arguments correspond
551   // to the arguments of the LLVM function.
552   for (Block &bb : llvm::drop_begin(region)) {
553     llvm::BasicBlock *llvmBB = state.lookupBlock(&bb);
554     auto phis = llvmBB->phis();
555     auto numArguments = bb.getNumArguments();
556     assert(numArguments == std::distance(phis.begin(), phis.end()));
557     for (auto [index, phiNode] : llvm::enumerate(phis)) {
558       for (auto *pred : bb.getPredecessors()) {
559         // Find the LLVM IR block that contains the converted terminator
560         // instruction and use it in the PHI node. Note that this block is not
561         // necessarily the same as state.lookupBlock(pred), some operations
562         // (in particular, OpenMP operations using OpenMPIRBuilder) may have
563         // split the blocks.
564         llvm::Instruction *terminator =
565             state.lookupBranch(pred->getTerminator());
566         assert(terminator && "missing the mapping for a terminator");
567         phiNode.addIncoming(state.lookupValue(getPHISourceValue(
568                                 &bb, pred, numArguments, index)),
569                             terminator->getParent());
570       }
571     }
572   }
573 }
574 
575 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall(
576     llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
577     ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
578   llvm::Module *module = builder.GetInsertBlock()->getModule();
579   llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys);
580   return builder.CreateCall(fn, args);
581 }
582 
583 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall(
584     llvm::IRBuilderBase &builder, ModuleTranslation &moduleTranslation,
585     Operation *intrOp, llvm::Intrinsic::ID intrinsic, unsigned numResults,
586     ArrayRef<unsigned> overloadedResults, ArrayRef<unsigned> overloadedOperands,
587     ArrayRef<unsigned> immArgPositions,
588     ArrayRef<StringLiteral> immArgAttrNames) {
589   assert(immArgPositions.size() == immArgAttrNames.size() &&
590          "LLVM `immArgPositions` and MLIR `immArgAttrNames` should have equal "
591          "length");
592 
593   // Map operands and attributes to LLVM values.
594   auto operands = moduleTranslation.lookupValues(intrOp->getOperands());
595   SmallVector<llvm::Value *> args(immArgPositions.size() + operands.size());
596   for (auto [immArgPos, immArgName] :
597        llvm::zip(immArgPositions, immArgAttrNames)) {
598     auto attr = llvm::cast<TypedAttr>(intrOp->getAttr(immArgName));
599     assert(attr.getType().isIntOrFloat() && "expected int or float immarg");
600     auto *type = moduleTranslation.convertType(attr.getType());
601     args[immArgPos] = LLVM::detail::getLLVMConstant(
602         type, attr, intrOp->getLoc(), moduleTranslation);
603   }
604   unsigned opArg = 0;
605   for (auto &arg : args) {
606     if (!arg)
607       arg = operands[opArg++];
608   }
609 
610   // Resolve overloaded intrinsic declaration.
611   SmallVector<llvm::Type *> overloadedTypes;
612   for (unsigned overloadedResultIdx : overloadedResults) {
613     if (numResults > 1) {
614       // More than one result is mapped to an LLVM struct.
615       overloadedTypes.push_back(moduleTranslation.convertType(
616           llvm::cast<LLVM::LLVMStructType>(intrOp->getResult(0).getType())
617               .getBody()[overloadedResultIdx]));
618     } else {
619       overloadedTypes.push_back(
620           moduleTranslation.convertType(intrOp->getResult(0).getType()));
621     }
622   }
623   for (unsigned overloadedOperandIdx : overloadedOperands)
624     overloadedTypes.push_back(args[overloadedOperandIdx]->getType());
625   llvm::Module *module = builder.GetInsertBlock()->getModule();
626   llvm::Function *llvmIntr =
627       llvm::Intrinsic::getDeclaration(module, intrinsic, overloadedTypes);
628 
629   return builder.CreateCall(llvmIntr, args);
630 }
631 
632 /// Given a single MLIR operation, create the corresponding LLVM IR operation
633 /// using the `builder`.
634 LogicalResult
635 ModuleTranslation::convertOperation(Operation &op,
636                                     llvm::IRBuilderBase &builder) {
637   const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
638   if (!opIface)
639     return op.emitError("cannot be converted to LLVM IR: missing "
640                         "`LLVMTranslationDialectInterface` registration for "
641                         "dialect for op: ")
642            << op.getName();
643 
644   if (failed(opIface->convertOperation(&op, builder, *this)))
645     return op.emitError("LLVM Translation failed for operation: ")
646            << op.getName();
647 
648   return convertDialectAttributes(&op);
649 }
650 
651 /// Convert block to LLVM IR.  Unless `ignoreArguments` is set, emit PHI nodes
652 /// to define values corresponding to the MLIR block arguments.  These nodes
653 /// are not connected to the source basic blocks, which may not exist yet.  Uses
654 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
655 /// been created for `bb` and included in the block mapping.  Inserts new
656 /// instructions at the end of the block and leaves `builder` in a state
657 /// suitable for further insertion into the end of the block.
658 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments,
659                                               llvm::IRBuilderBase &builder) {
660   builder.SetInsertPoint(lookupBlock(&bb));
661   auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
662 
663   // Before traversing operations, make block arguments available through
664   // value remapping and PHI nodes, but do not add incoming edges for the PHI
665   // nodes just yet: those values may be defined by this or following blocks.
666   // This step is omitted if "ignoreArguments" is set.  The arguments of the
667   // first block have been already made available through the remapping of
668   // LLVM function arguments.
669   if (!ignoreArguments) {
670     auto predecessors = bb.getPredecessors();
671     unsigned numPredecessors =
672         std::distance(predecessors.begin(), predecessors.end());
673     for (auto arg : bb.getArguments()) {
674       auto wrappedType = arg.getType();
675       if (!isCompatibleType(wrappedType))
676         return emitError(bb.front().getLoc(),
677                          "block argument does not have an LLVM type");
678       llvm::Type *type = convertType(wrappedType);
679       llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
680       mapValue(arg, phi);
681     }
682   }
683 
684   // Traverse operations.
685   for (auto &op : bb) {
686     // Set the current debug location within the builder.
687     builder.SetCurrentDebugLocation(
688         debugTranslation->translateLoc(op.getLoc(), subprogram));
689 
690     if (failed(convertOperation(op, builder)))
691       return failure();
692 
693     // Set the branch weight metadata on the translated instruction.
694     if (auto iface = dyn_cast<BranchWeightOpInterface>(op))
695       setBranchWeightsMetadata(iface);
696   }
697 
698   return success();
699 }
700 
701 /// A helper method to get the single Block in an operation honoring LLVM's
702 /// module requirements.
703 static Block &getModuleBody(Operation *module) {
704   return module->getRegion(0).front();
705 }
706 
707 /// A helper method to decide if a constant must not be set as a global variable
708 /// initializer. For an external linkage variable, the variable with an
709 /// initializer is considered externally visible and defined in this module, the
710 /// variable without an initializer is externally available and is defined
711 /// elsewhere.
712 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
713                                         llvm::Constant *cst) {
714   return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) ||
715          linkage == llvm::GlobalVariable::ExternalWeakLinkage;
716 }
717 
718 /// Sets the runtime preemption specifier of `gv` to dso_local if
719 /// `dsoLocalRequested` is true, otherwise it is left unchanged.
720 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested,
721                                           llvm::GlobalValue *gv) {
722   if (dsoLocalRequested)
723     gv->setDSOLocal(true);
724 }
725 
726 /// Create named global variables that correspond to llvm.mlir.global
727 /// definitions. Convert llvm.global_ctors and global_dtors ops.
728 LogicalResult ModuleTranslation::convertGlobals() {
729   // Mapping from compile unit to its respective set of global variables.
730   DenseMap<llvm::DICompileUnit *, SmallVector<llvm::Metadata *>> allGVars;
731 
732   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
733     llvm::Type *type = convertType(op.getType());
734     llvm::Constant *cst = nullptr;
735     if (op.getValueOrNull()) {
736       // String attributes are treated separately because they cannot appear as
737       // in-function constants and are thus not supported by getLLVMConstant.
738       if (auto strAttr = dyn_cast_or_null<StringAttr>(op.getValueOrNull())) {
739         cst = llvm::ConstantDataArray::getString(
740             llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
741         type = cst->getType();
742       } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
743                                          *this))) {
744         return failure();
745       }
746     }
747 
748     auto linkage = convertLinkageToLLVM(op.getLinkage());
749     auto addrSpace = op.getAddrSpace();
750 
751     // LLVM IR requires constant with linkage other than external or weak
752     // external to have initializers. If MLIR does not provide an initializer,
753     // default to undef.
754     bool dropInitializer = shouldDropGlobalInitializer(linkage, cst);
755     if (!dropInitializer && !cst)
756       cst = llvm::UndefValue::get(type);
757     else if (dropInitializer && cst)
758       cst = nullptr;
759 
760     auto *var = new llvm::GlobalVariable(
761         *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(),
762         /*InsertBefore=*/nullptr,
763         op.getThreadLocal_() ? llvm::GlobalValue::GeneralDynamicTLSModel
764                              : llvm::GlobalValue::NotThreadLocal,
765         addrSpace);
766 
767     if (std::optional<mlir::SymbolRefAttr> comdat = op.getComdat()) {
768       auto selectorOp = cast<ComdatSelectorOp>(
769           SymbolTable::lookupNearestSymbolFrom(op, *comdat));
770       var->setComdat(comdatMapping.lookup(selectorOp));
771     }
772 
773     if (op.getUnnamedAddr().has_value())
774       var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr()));
775 
776     if (op.getSection().has_value())
777       var->setSection(*op.getSection());
778 
779     addRuntimePreemptionSpecifier(op.getDsoLocal(), var);
780 
781     std::optional<uint64_t> alignment = op.getAlignment();
782     if (alignment.has_value())
783       var->setAlignment(llvm::MaybeAlign(alignment.value()));
784 
785     var->setVisibility(convertVisibilityToLLVM(op.getVisibility_()));
786 
787     globalsMapping.try_emplace(op, var);
788 
789     // Add debug information if present.
790     if (op.getDbgExpr()) {
791       llvm::DIGlobalVariableExpression *diGlobalExpr =
792           debugTranslation->translateGlobalVariableExpression(op.getDbgExpr());
793       llvm::DIGlobalVariable *diGlobalVar = diGlobalExpr->getVariable();
794       var->addDebugInfo(diGlobalExpr);
795 
796       // Get the compile unit (scope) of the the global variable.
797       if (llvm::DICompileUnit *compileUnit =
798               dyn_cast<llvm::DICompileUnit>(diGlobalVar->getScope())) {
799         // Update the compile unit with this incoming global variable expression
800         // during the finalizing step later.
801         allGVars[compileUnit].push_back(diGlobalExpr);
802       }
803     }
804   }
805 
806   // Convert global variable bodies. This is done after all global variables
807   // have been created in LLVM IR because a global body may refer to another
808   // global or itself. So all global variables need to be mapped first.
809   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
810     if (Block *initializer = op.getInitializerBlock()) {
811       llvm::IRBuilder<> builder(llvmModule->getContext());
812       for (auto &op : initializer->without_terminator()) {
813         if (failed(convertOperation(op, builder)) ||
814             !isa<llvm::Constant>(lookupValue(op.getResult(0))))
815           return emitError(op.getLoc(), "unemittable constant value");
816       }
817       ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
818       llvm::Constant *cst =
819           cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
820       auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
821       if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
822         global->setInitializer(cst);
823     }
824   }
825 
826   // Convert llvm.mlir.global_ctors and dtors.
827   for (Operation &op : getModuleBody(mlirModule)) {
828     auto ctorOp = dyn_cast<GlobalCtorsOp>(op);
829     auto dtorOp = dyn_cast<GlobalDtorsOp>(op);
830     if (!ctorOp && !dtorOp)
831       continue;
832     auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities())
833                         : llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities());
834     auto appendGlobalFn =
835         ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors;
836     for (auto symbolAndPriority : range) {
837       llvm::Function *f = lookupFunction(
838           cast<FlatSymbolRefAttr>(std::get<0>(symbolAndPriority)).getValue());
839       appendGlobalFn(*llvmModule, f,
840                      cast<IntegerAttr>(std::get<1>(symbolAndPriority)).getInt(),
841                      /*Data=*/nullptr);
842     }
843   }
844 
845   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>())
846     if (failed(convertDialectAttributes(op)))
847       return failure();
848 
849   // Finally, update the compile units their respective sets of global variables
850   // created earlier.
851   for (const auto &[compileUnit, globals] : allGVars) {
852     compileUnit->replaceGlobalVariables(
853         llvm::MDTuple::get(getLLVMContext(), globals));
854   }
855 
856   return success();
857 }
858 
859 /// Attempts to add an attribute identified by `key`, optionally with the given
860 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
861 /// attribute has a kind known to LLVM IR, create the attribute of this kind,
862 /// otherwise keep it as a string attribute. Performs additional checks for
863 /// attributes known to have or not have a value in order to avoid assertions
864 /// inside LLVM upon construction.
865 static LogicalResult checkedAddLLVMFnAttribute(Location loc,
866                                                llvm::Function *llvmFunc,
867                                                StringRef key,
868                                                StringRef value = StringRef()) {
869   auto kind = llvm::Attribute::getAttrKindFromName(key);
870   if (kind == llvm::Attribute::None) {
871     llvmFunc->addFnAttr(key, value);
872     return success();
873   }
874 
875   if (llvm::Attribute::isIntAttrKind(kind)) {
876     if (value.empty())
877       return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
878 
879     int64_t result;
880     if (!value.getAsInteger(/*Radix=*/0, result))
881       llvmFunc->addFnAttr(
882           llvm::Attribute::get(llvmFunc->getContext(), kind, result));
883     else
884       llvmFunc->addFnAttr(key, value);
885     return success();
886   }
887 
888   if (!value.empty())
889     return emitError(loc) << "LLVM attribute '" << key
890                           << "' does not expect a value, found '" << value
891                           << "'";
892 
893   llvmFunc->addFnAttr(kind);
894   return success();
895 }
896 
897 /// Attaches the attributes listed in the given array attribute to `llvmFunc`.
898 /// Reports error to `loc` if any and returns immediately. Expects `attributes`
899 /// to be an array attribute containing either string attributes, treated as
900 /// value-less LLVM attributes, or array attributes containing two string
901 /// attributes, with the first string being the name of the corresponding LLVM
902 /// attribute and the second string beings its value. Note that even integer
903 /// attributes are expected to have their values expressed as strings.
904 static LogicalResult
905 forwardPassthroughAttributes(Location loc, std::optional<ArrayAttr> attributes,
906                              llvm::Function *llvmFunc) {
907   if (!attributes)
908     return success();
909 
910   for (Attribute attr : *attributes) {
911     if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
912       if (failed(
913               checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
914         return failure();
915       continue;
916     }
917 
918     auto arrayAttr = dyn_cast<ArrayAttr>(attr);
919     if (!arrayAttr || arrayAttr.size() != 2)
920       return emitError(loc)
921              << "expected 'passthrough' to contain string or array attributes";
922 
923     auto keyAttr = dyn_cast<StringAttr>(arrayAttr[0]);
924     auto valueAttr = dyn_cast<StringAttr>(arrayAttr[1]);
925     if (!keyAttr || !valueAttr)
926       return emitError(loc)
927              << "expected arrays within 'passthrough' to contain two strings";
928 
929     if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
930                                          valueAttr.getValue())))
931       return failure();
932   }
933   return success();
934 }
935 
936 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
937   // Clear the block, branch value mappings, they are only relevant within one
938   // function.
939   blockMapping.clear();
940   valueMapping.clear();
941   branchMapping.clear();
942   llvm::Function *llvmFunc = lookupFunction(func.getName());
943 
944   // Translate the debug information for this function.
945   debugTranslation->translate(func, *llvmFunc);
946 
947   // Add function arguments to the value remapping table.
948   for (auto [mlirArg, llvmArg] :
949        llvm::zip(func.getArguments(), llvmFunc->args()))
950     mapValue(mlirArg, &llvmArg);
951 
952   // Check the personality and set it.
953   if (func.getPersonality()) {
954     llvm::Type *ty = llvm::PointerType::getUnqual(llvmFunc->getContext());
955     if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(),
956                                                 func.getLoc(), *this))
957       llvmFunc->setPersonalityFn(pfunc);
958   }
959 
960   if (std::optional<StringRef> section = func.getSection())
961     llvmFunc->setSection(*section);
962 
963   if (func.getArmStreaming())
964     llvmFunc->addFnAttr("aarch64_pstate_sm_enabled");
965   else if (func.getArmLocallyStreaming())
966     llvmFunc->addFnAttr("aarch64_pstate_sm_body");
967 
968   if (func.getArmNewZa())
969     llvmFunc->addFnAttr("aarch64_pstate_za_new");
970 
971   if (auto attr = func.getVscaleRange())
972     llvmFunc->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
973         getLLVMContext(), attr->getMinRange().getInt(),
974         attr->getMaxRange().getInt()));
975 
976   // First, create all blocks so we can jump to them.
977   llvm::LLVMContext &llvmContext = llvmFunc->getContext();
978   for (auto &bb : func) {
979     auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
980     llvmBB->insertInto(llvmFunc);
981     mapBlock(&bb, llvmBB);
982   }
983 
984   // Then, convert blocks one by one in topological order to ensure defs are
985   // converted before uses.
986   auto blocks = getTopologicallySortedBlocks(func.getBody());
987   for (Block *bb : blocks) {
988     llvm::IRBuilder<> builder(llvmContext);
989     if (failed(convertBlock(*bb, bb->isEntryBlock(), builder)))
990       return failure();
991   }
992 
993   // After all blocks have been traversed and values mapped, connect the PHI
994   // nodes to the results of preceding blocks.
995   detail::connectPHINodes(func.getBody(), *this);
996 
997   // Finally, convert dialect attributes attached to the function.
998   return convertDialectAttributes(func);
999 }
1000 
1001 LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) {
1002   for (NamedAttribute attribute : op->getDialectAttrs())
1003     if (failed(iface.amendOperation(op, attribute, *this)))
1004       return failure();
1005   return success();
1006 }
1007 
1008 /// Converts the function attributes from LLVMFuncOp and attaches them to the
1009 /// llvm::Function.
1010 static void convertFunctionAttributes(LLVMFuncOp func,
1011                                       llvm::Function *llvmFunc) {
1012   if (!func.getMemory())
1013     return;
1014 
1015   MemoryEffectsAttr memEffects = func.getMemoryAttr();
1016 
1017   // Add memory effects incrementally.
1018   llvm::MemoryEffects newMemEffects =
1019       llvm::MemoryEffects(llvm::MemoryEffects::Location::ArgMem,
1020                           convertModRefInfoToLLVM(memEffects.getArgMem()));
1021   newMemEffects |= llvm::MemoryEffects(
1022       llvm::MemoryEffects::Location::InaccessibleMem,
1023       convertModRefInfoToLLVM(memEffects.getInaccessibleMem()));
1024   newMemEffects |=
1025       llvm::MemoryEffects(llvm::MemoryEffects::Location::Other,
1026                           convertModRefInfoToLLVM(memEffects.getOther()));
1027   llvmFunc->setMemoryEffects(newMemEffects);
1028 }
1029 
1030 llvm::AttrBuilder
1031 ModuleTranslation::convertParameterAttrs(DictionaryAttr paramAttrs) {
1032   llvm::AttrBuilder attrBuilder(llvmModule->getContext());
1033 
1034   for (auto [llvmKind, mlirName] : getAttrKindToNameMapping()) {
1035     Attribute attr = paramAttrs.get(mlirName);
1036     // Skip attributes that are not present.
1037     if (!attr)
1038       continue;
1039 
1040     // NOTE: C++17 does not support capturing structured bindings.
1041     llvm::Attribute::AttrKind llvmKindCap = llvmKind;
1042 
1043     llvm::TypeSwitch<Attribute>(attr)
1044         .Case<TypeAttr>([&](auto typeAttr) {
1045           attrBuilder.addTypeAttr(llvmKindCap,
1046                                   convertType(typeAttr.getValue()));
1047         })
1048         .Case<IntegerAttr>([&](auto intAttr) {
1049           attrBuilder.addRawIntAttr(llvmKindCap, intAttr.getInt());
1050         })
1051         .Case<UnitAttr>([&](auto) { attrBuilder.addAttribute(llvmKindCap); });
1052   }
1053 
1054   return attrBuilder;
1055 }
1056 
1057 LogicalResult ModuleTranslation::convertFunctionSignatures() {
1058   // Declare all functions first because there may be function calls that form a
1059   // call graph with cycles, or global initializers that reference functions.
1060   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
1061     llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
1062         function.getName(),
1063         cast<llvm::FunctionType>(convertType(function.getFunctionType())));
1064     llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
1065     llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage()));
1066     llvmFunc->setCallingConv(convertCConvToLLVM(function.getCConv()));
1067     mapFunction(function.getName(), llvmFunc);
1068     addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc);
1069 
1070     // Convert function attributes.
1071     convertFunctionAttributes(function, llvmFunc);
1072 
1073     // Convert function_entry_count attribute to metadata.
1074     if (std::optional<uint64_t> entryCount = function.getFunctionEntryCount())
1075       llvmFunc->setEntryCount(entryCount.value());
1076 
1077     // Convert result attributes.
1078     if (ArrayAttr allResultAttrs = function.getAllResultAttrs()) {
1079       DictionaryAttr resultAttrs = cast<DictionaryAttr>(allResultAttrs[0]);
1080       llvmFunc->addRetAttrs(convertParameterAttrs(resultAttrs));
1081     }
1082 
1083     // Convert argument attributes.
1084     for (auto [argIdx, llvmArg] : llvm::enumerate(llvmFunc->args())) {
1085       if (DictionaryAttr argAttrs = function.getArgAttrDict(argIdx)) {
1086         llvm::AttrBuilder attrBuilder = convertParameterAttrs(argAttrs);
1087         llvmArg.addAttrs(attrBuilder);
1088       }
1089     }
1090 
1091     // Forward the pass-through attributes to LLVM.
1092     if (failed(forwardPassthroughAttributes(
1093             function.getLoc(), function.getPassthrough(), llvmFunc)))
1094       return failure();
1095 
1096     // Convert visibility attribute.
1097     llvmFunc->setVisibility(convertVisibilityToLLVM(function.getVisibility_()));
1098 
1099     // Convert the comdat attribute.
1100     if (std::optional<mlir::SymbolRefAttr> comdat = function.getComdat()) {
1101       auto selectorOp = cast<ComdatSelectorOp>(
1102           SymbolTable::lookupNearestSymbolFrom(function, *comdat));
1103       llvmFunc->setComdat(comdatMapping.lookup(selectorOp));
1104     }
1105 
1106     if (auto gc = function.getGarbageCollector())
1107       llvmFunc->setGC(gc->str());
1108 
1109     if (auto unnamedAddr = function.getUnnamedAddr())
1110       llvmFunc->setUnnamedAddr(convertUnnamedAddrToLLVM(*unnamedAddr));
1111 
1112     if (auto alignment = function.getAlignment())
1113       llvmFunc->setAlignment(llvm::MaybeAlign(*alignment));
1114   }
1115 
1116   return success();
1117 }
1118 
1119 LogicalResult ModuleTranslation::convertFunctions() {
1120   // Convert functions.
1121   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
1122     // Do not convert external functions, but do process dialect attributes
1123     // attached to them.
1124     if (function.isExternal()) {
1125       if (failed(convertDialectAttributes(function)))
1126         return failure();
1127       continue;
1128     }
1129 
1130     if (failed(convertOneFunction(function)))
1131       return failure();
1132   }
1133 
1134   return success();
1135 }
1136 
1137 LogicalResult ModuleTranslation::convertComdats() {
1138   for (auto comdatOp : getModuleBody(mlirModule).getOps<ComdatOp>()) {
1139     for (auto selectorOp : comdatOp.getOps<ComdatSelectorOp>()) {
1140       llvm::Module *module = getLLVMModule();
1141       if (module->getComdatSymbolTable().contains(selectorOp.getSymName()))
1142         return emitError(selectorOp.getLoc())
1143                << "comdat selection symbols must be unique even in different "
1144                   "comdat regions";
1145       llvm::Comdat *comdat = module->getOrInsertComdat(selectorOp.getSymName());
1146       comdat->setSelectionKind(convertComdatToLLVM(selectorOp.getComdat()));
1147       comdatMapping.try_emplace(selectorOp, comdat);
1148     }
1149   }
1150   return success();
1151 }
1152 
1153 void ModuleTranslation::setAccessGroupsMetadata(AccessGroupOpInterface op,
1154                                                 llvm::Instruction *inst) {
1155   if (llvm::MDNode *node = loopAnnotationTranslation->getAccessGroups(op))
1156     inst->setMetadata(llvm::LLVMContext::MD_access_group, node);
1157 }
1158 
1159 llvm::MDNode *
1160 ModuleTranslation::getOrCreateAliasScope(AliasScopeAttr aliasScopeAttr) {
1161   auto [scopeIt, scopeInserted] =
1162       aliasScopeMetadataMapping.try_emplace(aliasScopeAttr, nullptr);
1163   if (!scopeInserted)
1164     return scopeIt->second;
1165   llvm::LLVMContext &ctx = llvmModule->getContext();
1166   // Convert the domain metadata node if necessary.
1167   auto [domainIt, insertedDomain] = aliasDomainMetadataMapping.try_emplace(
1168       aliasScopeAttr.getDomain(), nullptr);
1169   if (insertedDomain) {
1170     llvm::SmallVector<llvm::Metadata *, 2> operands;
1171     // Placeholder for self-reference.
1172     operands.push_back({});
1173     if (StringAttr description = aliasScopeAttr.getDomain().getDescription())
1174       operands.push_back(llvm::MDString::get(ctx, description));
1175     domainIt->second = llvm::MDNode::get(ctx, operands);
1176     // Self-reference for uniqueness.
1177     domainIt->second->replaceOperandWith(0, domainIt->second);
1178   }
1179   // Convert the scope metadata node.
1180   assert(domainIt->second && "Scope's domain should already be valid");
1181   llvm::SmallVector<llvm::Metadata *, 3> operands;
1182   // Placeholder for self-reference.
1183   operands.push_back({});
1184   operands.push_back(domainIt->second);
1185   if (StringAttr description = aliasScopeAttr.getDescription())
1186     operands.push_back(llvm::MDString::get(ctx, description));
1187   scopeIt->second = llvm::MDNode::get(ctx, operands);
1188   // Self-reference for uniqueness.
1189   scopeIt->second->replaceOperandWith(0, scopeIt->second);
1190   return scopeIt->second;
1191 }
1192 
1193 llvm::MDNode *ModuleTranslation::getOrCreateAliasScopes(
1194     ArrayRef<AliasScopeAttr> aliasScopeAttrs) {
1195   SmallVector<llvm::Metadata *> nodes;
1196   nodes.reserve(aliasScopeAttrs.size());
1197   for (AliasScopeAttr aliasScopeAttr : aliasScopeAttrs)
1198     nodes.push_back(getOrCreateAliasScope(aliasScopeAttr));
1199   return llvm::MDNode::get(getLLVMContext(), nodes);
1200 }
1201 
1202 void ModuleTranslation::setAliasScopeMetadata(AliasAnalysisOpInterface op,
1203                                               llvm::Instruction *inst) {
1204   auto populateScopeMetadata = [&](ArrayAttr aliasScopeAttrs, unsigned kind) {
1205     if (!aliasScopeAttrs || aliasScopeAttrs.empty())
1206       return;
1207     llvm::MDNode *node = getOrCreateAliasScopes(
1208         llvm::to_vector(aliasScopeAttrs.getAsRange<AliasScopeAttr>()));
1209     inst->setMetadata(kind, node);
1210   };
1211 
1212   populateScopeMetadata(op.getAliasScopesOrNull(),
1213                         llvm::LLVMContext::MD_alias_scope);
1214   populateScopeMetadata(op.getNoAliasScopesOrNull(),
1215                         llvm::LLVMContext::MD_noalias);
1216 }
1217 
1218 llvm::MDNode *ModuleTranslation::getTBAANode(TBAATagAttr tbaaAttr) const {
1219   return tbaaMetadataMapping.lookup(tbaaAttr);
1220 }
1221 
1222 void ModuleTranslation::setTBAAMetadata(AliasAnalysisOpInterface op,
1223                                         llvm::Instruction *inst) {
1224   ArrayAttr tagRefs = op.getTBAATagsOrNull();
1225   if (!tagRefs || tagRefs.empty())
1226     return;
1227 
1228   // LLVM IR currently does not support attaching more than one TBAA access tag
1229   // to a memory accessing instruction. It may be useful to support this in
1230   // future, but for the time being just ignore the metadata if MLIR operation
1231   // has multiple access tags.
1232   if (tagRefs.size() > 1) {
1233     op.emitWarning() << "TBAA access tags were not translated, because LLVM "
1234                         "IR only supports a single tag per instruction";
1235     return;
1236   }
1237 
1238   llvm::MDNode *node = getTBAANode(cast<TBAATagAttr>(tagRefs[0]));
1239   inst->setMetadata(llvm::LLVMContext::MD_tbaa, node);
1240 }
1241 
1242 void ModuleTranslation::setBranchWeightsMetadata(BranchWeightOpInterface op) {
1243   DenseI32ArrayAttr weightsAttr = op.getBranchWeightsOrNull();
1244   if (!weightsAttr)
1245     return;
1246 
1247   llvm::Instruction *inst = isa<CallOp>(op) ? lookupCall(op) : lookupBranch(op);
1248   assert(inst && "expected the operation to have a mapping to an instruction");
1249   SmallVector<uint32_t> weights(weightsAttr.asArrayRef());
1250   inst->setMetadata(
1251       llvm::LLVMContext::MD_prof,
1252       llvm::MDBuilder(getLLVMContext()).createBranchWeights(weights));
1253 }
1254 
1255 LogicalResult ModuleTranslation::createTBAAMetadata() {
1256   llvm::LLVMContext &ctx = llvmModule->getContext();
1257   llvm::IntegerType *offsetTy = llvm::IntegerType::get(ctx, 64);
1258 
1259   // Walk the entire module and create all metadata nodes for the TBAA
1260   // attributes. The code below relies on two invariants of the
1261   // `AttrTypeWalker`:
1262   // 1. Attributes are visited in post-order: Since the attributes create a DAG,
1263   //    this ensures that any lookups into `tbaaMetadataMapping` for child
1264   //    attributes succeed.
1265   // 2. Attributes are only ever visited once: This way we don't leak any
1266   //    LLVM metadata instances.
1267   AttrTypeWalker walker;
1268   walker.addWalk([&](TBAARootAttr root) {
1269     tbaaMetadataMapping.insert(
1270         {root, llvm::MDNode::get(ctx, llvm::MDString::get(ctx, root.getId()))});
1271   });
1272 
1273   walker.addWalk([&](TBAATypeDescriptorAttr descriptor) {
1274     SmallVector<llvm::Metadata *> operands;
1275     operands.push_back(llvm::MDString::get(ctx, descriptor.getId()));
1276     for (TBAAMemberAttr member : descriptor.getMembers()) {
1277       operands.push_back(tbaaMetadataMapping.lookup(member.getTypeDesc()));
1278       operands.push_back(llvm::ConstantAsMetadata::get(
1279           llvm::ConstantInt::get(offsetTy, member.getOffset())));
1280     }
1281 
1282     tbaaMetadataMapping.insert({descriptor, llvm::MDNode::get(ctx, operands)});
1283   });
1284 
1285   walker.addWalk([&](TBAATagAttr tag) {
1286     SmallVector<llvm::Metadata *> operands;
1287 
1288     operands.push_back(tbaaMetadataMapping.lookup(tag.getBaseType()));
1289     operands.push_back(tbaaMetadataMapping.lookup(tag.getAccessType()));
1290 
1291     operands.push_back(llvm::ConstantAsMetadata::get(
1292         llvm::ConstantInt::get(offsetTy, tag.getOffset())));
1293     if (tag.getConstant())
1294       operands.push_back(
1295           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(offsetTy, 1)));
1296 
1297     tbaaMetadataMapping.insert({tag, llvm::MDNode::get(ctx, operands)});
1298   });
1299 
1300   mlirModule->walk([&](AliasAnalysisOpInterface analysisOpInterface) {
1301     if (auto attr = analysisOpInterface.getTBAATagsOrNull())
1302       walker.walk(attr);
1303   });
1304 
1305   return success();
1306 }
1307 
1308 void ModuleTranslation::setLoopMetadata(Operation *op,
1309                                         llvm::Instruction *inst) {
1310   LoopAnnotationAttr attr =
1311       TypeSwitch<Operation *, LoopAnnotationAttr>(op)
1312           .Case<LLVM::BrOp, LLVM::CondBrOp>(
1313               [](auto branchOp) { return branchOp.getLoopAnnotationAttr(); });
1314   if (!attr)
1315     return;
1316   llvm::MDNode *loopMD =
1317       loopAnnotationTranslation->translateLoopAnnotation(attr, op);
1318   inst->setMetadata(llvm::LLVMContext::MD_loop, loopMD);
1319 }
1320 
1321 llvm::Type *ModuleTranslation::convertType(Type type) {
1322   return typeTranslator.translateType(type);
1323 }
1324 
1325 /// A helper to look up remapped operands in the value remapping table.
1326 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) {
1327   SmallVector<llvm::Value *> remapped;
1328   remapped.reserve(values.size());
1329   for (Value v : values)
1330     remapped.push_back(lookupValue(v));
1331   return remapped;
1332 }
1333 
1334 llvm::OpenMPIRBuilder *ModuleTranslation::getOpenMPBuilder() {
1335   if (!ompBuilder) {
1336     ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule);
1337     ompBuilder->initialize();
1338 
1339     // Flags represented as top-level OpenMP dialect attributes are set in
1340     // `OpenMPDialectLLVMIRTranslationInterface::amendOperation()`. Here we set
1341     // the default configuration.
1342     ompBuilder->setConfig(llvm::OpenMPIRBuilderConfig(
1343         /* IsTargetDevice = */ false, /* IsGPU = */ false,
1344         /* OpenMPOffloadMandatory = */ false,
1345         /* HasRequiresReverseOffload = */ false,
1346         /* HasRequiresUnifiedAddress = */ false,
1347         /* HasRequiresUnifiedSharedMemory = */ false,
1348         /* HasRequiresDynamicAllocators = */ false));
1349   }
1350   return ompBuilder.get();
1351 }
1352 
1353 llvm::DILocation *ModuleTranslation::translateLoc(Location loc,
1354                                                   llvm::DILocalScope *scope) {
1355   return debugTranslation->translateLoc(loc, scope);
1356 }
1357 
1358 llvm::DIExpression *
1359 ModuleTranslation::translateExpression(LLVM::DIExpressionAttr attr) {
1360   return debugTranslation->translateExpression(attr);
1361 }
1362 
1363 llvm::DIGlobalVariableExpression *
1364 ModuleTranslation::translateGlobalVariableExpression(
1365     LLVM::DIGlobalVariableExpressionAttr attr) {
1366   return debugTranslation->translateGlobalVariableExpression(attr);
1367 }
1368 
1369 llvm::Metadata *ModuleTranslation::translateDebugInfo(LLVM::DINodeAttr attr) {
1370   return debugTranslation->translate(attr);
1371 }
1372 
1373 llvm::NamedMDNode *
1374 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
1375   return llvmModule->getOrInsertNamedMetadata(name);
1376 }
1377 
1378 void ModuleTranslation::StackFrame::anchor() {}
1379 
1380 static std::unique_ptr<llvm::Module>
1381 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
1382                   StringRef name) {
1383   m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
1384   auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
1385   if (auto dataLayoutAttr =
1386           m->getDiscardableAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) {
1387     llvmModule->setDataLayout(cast<StringAttr>(dataLayoutAttr).getValue());
1388   } else {
1389     FailureOr<llvm::DataLayout> llvmDataLayout(llvm::DataLayout(""));
1390     if (auto iface = dyn_cast<DataLayoutOpInterface>(m)) {
1391       if (DataLayoutSpecInterface spec = iface.getDataLayoutSpec()) {
1392         llvmDataLayout =
1393             translateDataLayout(spec, DataLayout(iface), m->getLoc());
1394       }
1395     } else if (auto mod = dyn_cast<ModuleOp>(m)) {
1396       if (DataLayoutSpecInterface spec = mod.getDataLayoutSpec()) {
1397         llvmDataLayout =
1398             translateDataLayout(spec, DataLayout(mod), m->getLoc());
1399       }
1400     }
1401     if (failed(llvmDataLayout))
1402       return nullptr;
1403     llvmModule->setDataLayout(*llvmDataLayout);
1404   }
1405   if (auto targetTripleAttr =
1406           m->getDiscardableAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
1407     llvmModule->setTargetTriple(cast<StringAttr>(targetTripleAttr).getValue());
1408 
1409   return llvmModule;
1410 }
1411 
1412 std::unique_ptr<llvm::Module>
1413 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
1414                               StringRef name) {
1415   if (!satisfiesLLVMModule(module)) {
1416     module->emitOpError("can not be translated to an LLVMIR module");
1417     return nullptr;
1418   }
1419 
1420   std::unique_ptr<llvm::Module> llvmModule =
1421       prepareLLVMModule(module, llvmContext, name);
1422   if (!llvmModule)
1423     return nullptr;
1424 
1425   LLVM::ensureDistinctSuccessors(module);
1426 
1427   ModuleTranslation translator(module, std::move(llvmModule));
1428   llvm::IRBuilder<> llvmBuilder(llvmContext);
1429 
1430   // Convert module before functions and operations inside, so dialect
1431   // attributes can be used to change dialect-specific global configurations via
1432   // `amendOperation()`. These configurations can then influence the translation
1433   // of operations afterwards.
1434   if (failed(translator.convertOperation(*module, llvmBuilder)))
1435     return nullptr;
1436 
1437   if (failed(translator.convertComdats()))
1438     return nullptr;
1439   if (failed(translator.convertFunctionSignatures()))
1440     return nullptr;
1441   if (failed(translator.convertGlobals()))
1442     return nullptr;
1443   if (failed(translator.createTBAAMetadata()))
1444     return nullptr;
1445 
1446   // Convert other top-level operations if possible.
1447   for (Operation &o : getModuleBody(module).getOperations()) {
1448     if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp,
1449              LLVM::GlobalDtorsOp, LLVM::ComdatOp>(&o) &&
1450         !o.hasTrait<OpTrait::IsTerminator>() &&
1451         failed(translator.convertOperation(o, llvmBuilder))) {
1452       return nullptr;
1453     }
1454   }
1455 
1456   // Operations in function bodies with symbolic references must be converted
1457   // after the top-level operations they refer to are declared, so we do it
1458   // last.
1459   if (failed(translator.convertFunctions()))
1460     return nullptr;
1461 
1462   if (llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
1463     return nullptr;
1464 
1465   return std::move(translator.llvmModule);
1466 }
1467