1 //===- ModuleImport.cpp - LLVM to MLIR conversion ---------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the import of an LLVM IR module into an LLVM dialect 10 // module. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleImport.h" 15 #include "mlir/IR/BuiltinAttributes.h" 16 #include "mlir/Target/LLVMIR/Import.h" 17 18 #include "AttrKindDetail.h" 19 #include "DataLayoutImporter.h" 20 #include "DebugImporter.h" 21 #include "LoopAnnotationImporter.h" 22 23 #include "mlir/Dialect/DLTI/DLTI.h" 24 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/Matchers.h" 27 #include "mlir/Interfaces/DataLayoutInterfaces.h" 28 #include "mlir/Tools/mlir-translate/Translation.h" 29 30 #include "llvm/ADT/DepthFirstIterator.h" 31 #include "llvm/ADT/PostOrderIterator.h" 32 #include "llvm/ADT/ScopeExit.h" 33 #include "llvm/ADT/StringSet.h" 34 #include "llvm/ADT/TypeSwitch.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/InstIterator.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/Support/ModRef.h" 44 45 using namespace mlir; 46 using namespace mlir::LLVM; 47 using namespace mlir::LLVM::detail; 48 49 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsFromLLVM.inc" 50 51 // Utility to print an LLVM value as a string for passing to emitError(). 52 // FIXME: Diagnostic should be able to natively handle types that have 53 // operator << (raw_ostream&) defined. 54 static std::string diag(const llvm::Value &value) { 55 std::string str; 56 llvm::raw_string_ostream os(str); 57 os << value; 58 return str; 59 } 60 61 // Utility to print an LLVM metadata node as a string for passing 62 // to emitError(). The module argument is needed to print the nodes 63 // canonically numbered. 64 static std::string diagMD(const llvm::Metadata *node, 65 const llvm::Module *module) { 66 std::string str; 67 llvm::raw_string_ostream os(str); 68 node->print(os, module, /*IsForDebug=*/true); 69 return str; 70 } 71 72 /// Returns the name of the global_ctors global variables. 73 static constexpr StringRef getGlobalCtorsVarName() { 74 return "llvm.global_ctors"; 75 } 76 77 /// Prefix used for symbols of nameless llvm globals. 78 static constexpr StringRef getNamelessGlobalPrefix() { 79 return "mlir.llvm.nameless_global"; 80 } 81 82 /// Returns the name of the global_dtors global variables. 83 static constexpr StringRef getGlobalDtorsVarName() { 84 return "llvm.global_dtors"; 85 } 86 87 /// Returns the symbol name for the module-level comdat operation. It must not 88 /// conflict with the user namespace. 89 static constexpr StringRef getGlobalComdatOpName() { 90 return "__llvm_global_comdat"; 91 } 92 93 /// Converts the sync scope identifier of `inst` to the string representation 94 /// necessary to build an atomic LLVM dialect operation. Returns the empty 95 /// string if the operation has either no sync scope or the default system-level 96 /// sync scope attached. The atomic operations only set their sync scope 97 /// attribute if they have a non-default sync scope attached. 98 static StringRef getLLVMSyncScope(llvm::Instruction *inst) { 99 std::optional<llvm::SyncScope::ID> syncScopeID = 100 llvm::getAtomicSyncScopeID(inst); 101 if (!syncScopeID) 102 return ""; 103 104 // Search the sync scope name for the given identifier. The default 105 // system-level sync scope thereby maps to the empty string. 106 SmallVector<StringRef> syncScopeName; 107 llvm::LLVMContext &llvmContext = inst->getContext(); 108 llvmContext.getSyncScopeNames(syncScopeName); 109 auto *it = llvm::find_if(syncScopeName, [&](StringRef name) { 110 return *syncScopeID == llvmContext.getOrInsertSyncScopeID(name); 111 }); 112 if (it != syncScopeName.end()) 113 return *it; 114 llvm_unreachable("incorrect sync scope identifier"); 115 } 116 117 /// Converts an array of unsigned indices to a signed integer position array. 118 static SmallVector<int64_t> getPositionFromIndices(ArrayRef<unsigned> indices) { 119 SmallVector<int64_t> position; 120 llvm::append_range(position, indices); 121 return position; 122 } 123 124 /// Converts the LLVM instructions that have a generated MLIR builder. Using a 125 /// static implementation method called from the module import ensures the 126 /// builders have to use the `moduleImport` argument and cannot directly call 127 /// import methods. As a result, both the intrinsic and the instruction MLIR 128 /// builders have to use the `moduleImport` argument and none of them has direct 129 /// access to the private module import methods. 130 static LogicalResult convertInstructionImpl(OpBuilder &odsBuilder, 131 llvm::Instruction *inst, 132 ModuleImport &moduleImport, 133 LLVMImportInterface &iface) { 134 // Copy the operands to an LLVM operands array reference for conversion. 135 SmallVector<llvm::Value *> operands(inst->operands()); 136 ArrayRef<llvm::Value *> llvmOperands(operands); 137 138 // Convert all instructions that provide an MLIR builder. 139 if (iface.isConvertibleInstruction(inst->getOpcode())) 140 return iface.convertInstruction(odsBuilder, inst, llvmOperands, 141 moduleImport); 142 // TODO: Implement the `convertInstruction` hooks in the 143 // `LLVMDialectLLVMIRImportInterface` and move the following include there. 144 #include "mlir/Dialect/LLVMIR/LLVMOpFromLLVMIRConversions.inc" 145 return failure(); 146 } 147 148 /// Get a topologically sorted list of blocks for the given basic blocks. 149 static SetVector<llvm::BasicBlock *> 150 getTopologicallySortedBlocks(ArrayRef<llvm::BasicBlock *> basicBlocks) { 151 SetVector<llvm::BasicBlock *> blocks; 152 for (llvm::BasicBlock *basicBlock : basicBlocks) { 153 if (!blocks.contains(basicBlock)) { 154 llvm::ReversePostOrderTraversal<llvm::BasicBlock *> traversal(basicBlock); 155 blocks.insert(traversal.begin(), traversal.end()); 156 } 157 } 158 assert(blocks.size() == basicBlocks.size() && "some blocks are not sorted"); 159 return blocks; 160 } 161 162 ModuleImport::ModuleImport(ModuleOp mlirModule, 163 std::unique_ptr<llvm::Module> llvmModule, 164 bool emitExpensiveWarnings, 165 bool importEmptyDICompositeTypes) 166 : builder(mlirModule->getContext()), context(mlirModule->getContext()), 167 mlirModule(mlirModule), llvmModule(std::move(llvmModule)), 168 iface(mlirModule->getContext()), 169 typeTranslator(*mlirModule->getContext()), 170 debugImporter(std::make_unique<DebugImporter>( 171 mlirModule, importEmptyDICompositeTypes)), 172 loopAnnotationImporter( 173 std::make_unique<LoopAnnotationImporter>(*this, builder)), 174 emitExpensiveWarnings(emitExpensiveWarnings) { 175 builder.setInsertionPointToStart(mlirModule.getBody()); 176 } 177 178 ComdatOp ModuleImport::getGlobalComdatOp() { 179 if (globalComdatOp) 180 return globalComdatOp; 181 182 OpBuilder::InsertionGuard guard(builder); 183 builder.setInsertionPointToEnd(mlirModule.getBody()); 184 globalComdatOp = 185 builder.create<ComdatOp>(mlirModule.getLoc(), getGlobalComdatOpName()); 186 globalInsertionOp = globalComdatOp; 187 return globalComdatOp; 188 } 189 190 LogicalResult ModuleImport::processTBAAMetadata(const llvm::MDNode *node) { 191 Location loc = mlirModule.getLoc(); 192 193 // If `node` is a valid TBAA root node, then return its optional identity 194 // string, otherwise return failure. 195 auto getIdentityIfRootNode = 196 [&](const llvm::MDNode *node) -> FailureOr<std::optional<StringRef>> { 197 // Root node, e.g.: 198 // !0 = !{!"Simple C/C++ TBAA"} 199 // !1 = !{} 200 if (node->getNumOperands() > 1) 201 return failure(); 202 // If the operand is MDString, then assume that this is a root node. 203 if (node->getNumOperands() == 1) 204 if (const auto *op0 = dyn_cast<const llvm::MDString>(node->getOperand(0))) 205 return std::optional<StringRef>{op0->getString()}; 206 return std::optional<StringRef>{}; 207 }; 208 209 // If `node` looks like a TBAA type descriptor metadata, 210 // then return true, if it is a valid node, and false otherwise. 211 // If it does not look like a TBAA type descriptor metadata, then 212 // return std::nullopt. 213 // If `identity` and `memberTypes/Offsets` are non-null, then they will 214 // contain the converted metadata operands for a valid TBAA node (i.e. when 215 // true is returned). 216 auto isTypeDescriptorNode = [&](const llvm::MDNode *node, 217 StringRef *identity = nullptr, 218 SmallVectorImpl<TBAAMemberAttr> *members = 219 nullptr) -> std::optional<bool> { 220 unsigned numOperands = node->getNumOperands(); 221 // Type descriptor, e.g.: 222 // !1 = !{!"int", !0, /*optional*/i64 0} /* scalar int type */ 223 // !2 = !{!"agg_t", !1, i64 0} /* struct agg_t { int x; } */ 224 if (numOperands < 2) 225 return std::nullopt; 226 227 // TODO: support "new" format (D41501) for type descriptors, 228 // where the first operand is an MDNode. 229 const auto *identityNode = 230 dyn_cast<const llvm::MDString>(node->getOperand(0)); 231 if (!identityNode) 232 return std::nullopt; 233 234 // This should be a type descriptor node. 235 if (identity) 236 *identity = identityNode->getString(); 237 238 for (unsigned pairNum = 0, e = numOperands / 2; pairNum < e; ++pairNum) { 239 const auto *memberNode = 240 dyn_cast<const llvm::MDNode>(node->getOperand(2 * pairNum + 1)); 241 if (!memberNode) { 242 emitError(loc) << "operand '" << 2 * pairNum + 1 << "' must be MDNode: " 243 << diagMD(node, llvmModule.get()); 244 return false; 245 } 246 int64_t offset = 0; 247 if (2 * pairNum + 2 >= numOperands) { 248 // Allow for optional 0 offset in 2-operand nodes. 249 if (numOperands != 2) { 250 emitError(loc) << "missing member offset: " 251 << diagMD(node, llvmModule.get()); 252 return false; 253 } 254 } else { 255 auto *offsetCI = llvm::mdconst::dyn_extract<llvm::ConstantInt>( 256 node->getOperand(2 * pairNum + 2)); 257 if (!offsetCI) { 258 emitError(loc) << "operand '" << 2 * pairNum + 2 259 << "' must be ConstantInt: " 260 << diagMD(node, llvmModule.get()); 261 return false; 262 } 263 offset = offsetCI->getZExtValue(); 264 } 265 266 if (members) 267 members->push_back(TBAAMemberAttr::get( 268 cast<TBAANodeAttr>(tbaaMapping.lookup(memberNode)), offset)); 269 } 270 271 return true; 272 }; 273 274 // If `node` looks like a TBAA access tag metadata, 275 // then return true, if it is a valid node, and false otherwise. 276 // If it does not look like a TBAA access tag metadata, then 277 // return std::nullopt. 278 // If the other arguments are non-null, then they will contain 279 // the converted metadata operands for a valid TBAA node (i.e. when true is 280 // returned). 281 auto isTagNode = [&](const llvm::MDNode *node, 282 TBAATypeDescriptorAttr *baseAttr = nullptr, 283 TBAATypeDescriptorAttr *accessAttr = nullptr, 284 int64_t *offset = nullptr, 285 bool *isConstant = nullptr) -> std::optional<bool> { 286 // Access tag, e.g.: 287 // !3 = !{!1, !1, i64 0} /* scalar int access */ 288 // !4 = !{!2, !1, i64 0} /* agg_t::x access */ 289 // 290 // Optional 4th argument is ConstantInt 0/1 identifying whether 291 // the location being accessed is "constant" (see for details: 292 // https://llvm.org/docs/LangRef.html#representation). 293 unsigned numOperands = node->getNumOperands(); 294 if (numOperands != 3 && numOperands != 4) 295 return std::nullopt; 296 const auto *baseMD = dyn_cast<const llvm::MDNode>(node->getOperand(0)); 297 const auto *accessMD = dyn_cast<const llvm::MDNode>(node->getOperand(1)); 298 auto *offsetCI = 299 llvm::mdconst::dyn_extract<llvm::ConstantInt>(node->getOperand(2)); 300 if (!baseMD || !accessMD || !offsetCI) 301 return std::nullopt; 302 // TODO: support "new" TBAA format, if needed (see D41501). 303 // In the "old" format the first operand of the access type 304 // metadata is MDString. We have to distinguish the formats, 305 // because access tags have the same structure, but different 306 // meaning for the operands. 307 if (accessMD->getNumOperands() < 1 || 308 !isa<llvm::MDString>(accessMD->getOperand(0))) 309 return std::nullopt; 310 bool isConst = false; 311 if (numOperands == 4) { 312 auto *isConstantCI = 313 llvm::mdconst::dyn_extract<llvm::ConstantInt>(node->getOperand(3)); 314 if (!isConstantCI) { 315 emitError(loc) << "operand '3' must be ConstantInt: " 316 << diagMD(node, llvmModule.get()); 317 return false; 318 } 319 isConst = isConstantCI->getValue()[0]; 320 } 321 if (baseAttr) 322 *baseAttr = cast<TBAATypeDescriptorAttr>(tbaaMapping.lookup(baseMD)); 323 if (accessAttr) 324 *accessAttr = cast<TBAATypeDescriptorAttr>(tbaaMapping.lookup(accessMD)); 325 if (offset) 326 *offset = offsetCI->getZExtValue(); 327 if (isConstant) 328 *isConstant = isConst; 329 return true; 330 }; 331 332 // Do a post-order walk over the TBAA Graph. Since a correct TBAA Graph is a 333 // DAG, a post-order walk guarantees that we convert any metadata node we 334 // depend on, prior to converting the current node. 335 DenseSet<const llvm::MDNode *> seen; 336 SmallVector<const llvm::MDNode *> workList; 337 workList.push_back(node); 338 while (!workList.empty()) { 339 const llvm::MDNode *current = workList.back(); 340 if (tbaaMapping.contains(current)) { 341 // Already converted. Just pop from the worklist. 342 workList.pop_back(); 343 continue; 344 } 345 346 // If any child of this node is not yet converted, don't pop the current 347 // node from the worklist but push the not-yet-converted children in the 348 // front of the worklist. 349 bool anyChildNotConverted = false; 350 for (const llvm::MDOperand &operand : current->operands()) 351 if (auto *childNode = dyn_cast_or_null<const llvm::MDNode>(operand.get())) 352 if (!tbaaMapping.contains(childNode)) { 353 workList.push_back(childNode); 354 anyChildNotConverted = true; 355 } 356 357 if (anyChildNotConverted) { 358 // If this is the second time we failed to convert an element in the 359 // worklist it must be because a child is dependent on it being converted 360 // and we have a cycle in the graph. Cycles are not allowed in TBAA 361 // graphs. 362 if (!seen.insert(current).second) 363 return emitError(loc) << "has cycle in TBAA graph: " 364 << diagMD(current, llvmModule.get()); 365 366 continue; 367 } 368 369 // Otherwise simply import the current node. 370 workList.pop_back(); 371 372 FailureOr<std::optional<StringRef>> rootNodeIdentity = 373 getIdentityIfRootNode(current); 374 if (succeeded(rootNodeIdentity)) { 375 StringAttr stringAttr = *rootNodeIdentity 376 ? builder.getStringAttr(**rootNodeIdentity) 377 : nullptr; 378 // The root nodes do not have operands, so we can create 379 // the TBAARootAttr on the first walk. 380 tbaaMapping.insert({current, builder.getAttr<TBAARootAttr>(stringAttr)}); 381 continue; 382 } 383 384 StringRef identity; 385 SmallVector<TBAAMemberAttr> members; 386 if (std::optional<bool> isValid = 387 isTypeDescriptorNode(current, &identity, &members)) { 388 assert(isValid.value() && "type descriptor node must be valid"); 389 390 tbaaMapping.insert({current, builder.getAttr<TBAATypeDescriptorAttr>( 391 identity, members)}); 392 continue; 393 } 394 395 TBAATypeDescriptorAttr baseAttr, accessAttr; 396 int64_t offset; 397 bool isConstant; 398 if (std::optional<bool> isValid = 399 isTagNode(current, &baseAttr, &accessAttr, &offset, &isConstant)) { 400 assert(isValid.value() && "access tag node must be valid"); 401 tbaaMapping.insert( 402 {current, builder.getAttr<TBAATagAttr>(baseAttr, accessAttr, offset, 403 isConstant)}); 404 continue; 405 } 406 407 return emitError(loc) << "unsupported TBAA node format: " 408 << diagMD(current, llvmModule.get()); 409 } 410 return success(); 411 } 412 413 LogicalResult 414 ModuleImport::processAccessGroupMetadata(const llvm::MDNode *node) { 415 Location loc = mlirModule.getLoc(); 416 if (failed(loopAnnotationImporter->translateAccessGroup(node, loc))) 417 return emitError(loc) << "unsupported access group node: " 418 << diagMD(node, llvmModule.get()); 419 return success(); 420 } 421 422 LogicalResult 423 ModuleImport::processAliasScopeMetadata(const llvm::MDNode *node) { 424 Location loc = mlirModule.getLoc(); 425 // Helper that verifies the node has a self reference operand. 426 auto verifySelfRef = [](const llvm::MDNode *node) { 427 return node->getNumOperands() != 0 && 428 node == dyn_cast<llvm::MDNode>(node->getOperand(0)); 429 }; 430 // Helper that verifies the given operand is a string or does not exist. 431 auto verifyDescription = [](const llvm::MDNode *node, unsigned idx) { 432 return idx >= node->getNumOperands() || 433 isa<llvm::MDString>(node->getOperand(idx)); 434 }; 435 // Helper that creates an alias scope domain attribute. 436 auto createAliasScopeDomainOp = [&](const llvm::MDNode *aliasDomain) { 437 StringAttr description = nullptr; 438 if (aliasDomain->getNumOperands() >= 2) 439 if (auto *operand = dyn_cast<llvm::MDString>(aliasDomain->getOperand(1))) 440 description = builder.getStringAttr(operand->getString()); 441 return builder.getAttr<AliasScopeDomainAttr>( 442 DistinctAttr::create(builder.getUnitAttr()), description); 443 }; 444 445 // Collect the alias scopes and domains to translate them. 446 for (const llvm::MDOperand &operand : node->operands()) { 447 if (const auto *scope = dyn_cast<llvm::MDNode>(operand)) { 448 llvm::AliasScopeNode aliasScope(scope); 449 const llvm::MDNode *domain = aliasScope.getDomain(); 450 451 // Verify the scope node points to valid scope metadata which includes 452 // verifying its domain. Perform the verification before looking it up in 453 // the alias scope mapping since it could have been inserted as a domain 454 // node before. 455 if (!verifySelfRef(scope) || !domain || !verifyDescription(scope, 2)) 456 return emitError(loc) << "unsupported alias scope node: " 457 << diagMD(scope, llvmModule.get()); 458 if (!verifySelfRef(domain) || !verifyDescription(domain, 1)) 459 return emitError(loc) << "unsupported alias domain node: " 460 << diagMD(domain, llvmModule.get()); 461 462 if (aliasScopeMapping.contains(scope)) 463 continue; 464 465 // Convert the domain metadata node if it has not been translated before. 466 auto it = aliasScopeMapping.find(aliasScope.getDomain()); 467 if (it == aliasScopeMapping.end()) { 468 auto aliasScopeDomainOp = createAliasScopeDomainOp(domain); 469 it = aliasScopeMapping.try_emplace(domain, aliasScopeDomainOp).first; 470 } 471 472 // Convert the scope metadata node if it has not been converted before. 473 StringAttr description = nullptr; 474 if (!aliasScope.getName().empty()) 475 description = builder.getStringAttr(aliasScope.getName()); 476 auto aliasScopeOp = builder.getAttr<AliasScopeAttr>( 477 DistinctAttr::create(builder.getUnitAttr()), 478 cast<AliasScopeDomainAttr>(it->second), description); 479 aliasScopeMapping.try_emplace(aliasScope.getNode(), aliasScopeOp); 480 } 481 } 482 return success(); 483 } 484 485 FailureOr<SmallVector<AliasScopeAttr>> 486 ModuleImport::lookupAliasScopeAttrs(const llvm::MDNode *node) const { 487 SmallVector<AliasScopeAttr> aliasScopes; 488 aliasScopes.reserve(node->getNumOperands()); 489 for (const llvm::MDOperand &operand : node->operands()) { 490 auto *node = cast<llvm::MDNode>(operand.get()); 491 aliasScopes.push_back( 492 dyn_cast_or_null<AliasScopeAttr>(aliasScopeMapping.lookup(node))); 493 } 494 // Return failure if one of the alias scope lookups failed. 495 if (llvm::is_contained(aliasScopes, nullptr)) 496 return failure(); 497 return aliasScopes; 498 } 499 500 void ModuleImport::addDebugIntrinsic(llvm::CallInst *intrinsic) { 501 debugIntrinsics.insert(intrinsic); 502 } 503 504 LogicalResult ModuleImport::convertLinkerOptionsMetadata() { 505 for (const llvm::NamedMDNode &named : llvmModule->named_metadata()) { 506 if (named.getName() != "llvm.linker.options") 507 continue; 508 // llvm.linker.options operands are lists of strings. 509 for (const llvm::MDNode *node : named.operands()) { 510 SmallVector<StringRef> options; 511 options.reserve(node->getNumOperands()); 512 for (const llvm::MDOperand &option : node->operands()) 513 options.push_back(cast<llvm::MDString>(option)->getString()); 514 builder.create<LLVM::LinkerOptionsOp>(mlirModule.getLoc(), 515 builder.getStrArrayAttr(options)); 516 } 517 } 518 return success(); 519 } 520 521 LogicalResult ModuleImport::convertIdentMetadata() { 522 for (const llvm::NamedMDNode &named : llvmModule->named_metadata()) { 523 // llvm.ident should have a single operand. That operand is itself an 524 // MDNode with a single string operand. 525 if (named.getName() != LLVMDialect::getIdentAttrName()) 526 continue; 527 528 if (named.getNumOperands() == 1) 529 if (auto *md = dyn_cast<llvm::MDNode>(named.getOperand(0))) 530 if (md->getNumOperands() == 1) 531 if (auto *mdStr = dyn_cast<llvm::MDString>(md->getOperand(0))) 532 mlirModule->setAttr(LLVMDialect::getIdentAttrName(), 533 builder.getStringAttr(mdStr->getString())); 534 } 535 return success(); 536 } 537 538 LogicalResult ModuleImport::convertCommandlineMetadata() { 539 for (const llvm::NamedMDNode &nmd : llvmModule->named_metadata()) { 540 // llvm.commandline should have a single operand. That operand is itself an 541 // MDNode with a single string operand. 542 if (nmd.getName() != LLVMDialect::getCommandlineAttrName()) 543 continue; 544 545 if (nmd.getNumOperands() == 1) 546 if (auto *md = dyn_cast<llvm::MDNode>(nmd.getOperand(0))) 547 if (md->getNumOperands() == 1) 548 if (auto *mdStr = dyn_cast<llvm::MDString>(md->getOperand(0))) 549 mlirModule->setAttr(LLVMDialect::getCommandlineAttrName(), 550 builder.getStringAttr(mdStr->getString())); 551 } 552 return success(); 553 } 554 555 LogicalResult ModuleImport::convertMetadata() { 556 OpBuilder::InsertionGuard guard(builder); 557 builder.setInsertionPointToEnd(mlirModule.getBody()); 558 for (const llvm::Function &func : llvmModule->functions()) { 559 for (const llvm::Instruction &inst : llvm::instructions(func)) { 560 // Convert access group metadata nodes. 561 if (llvm::MDNode *node = 562 inst.getMetadata(llvm::LLVMContext::MD_access_group)) 563 if (failed(processAccessGroupMetadata(node))) 564 return failure(); 565 566 // Convert alias analysis metadata nodes. 567 llvm::AAMDNodes aliasAnalysisNodes = inst.getAAMetadata(); 568 if (!aliasAnalysisNodes) 569 continue; 570 if (aliasAnalysisNodes.TBAA) 571 if (failed(processTBAAMetadata(aliasAnalysisNodes.TBAA))) 572 return failure(); 573 if (aliasAnalysisNodes.Scope) 574 if (failed(processAliasScopeMetadata(aliasAnalysisNodes.Scope))) 575 return failure(); 576 if (aliasAnalysisNodes.NoAlias) 577 if (failed(processAliasScopeMetadata(aliasAnalysisNodes.NoAlias))) 578 return failure(); 579 } 580 } 581 if (failed(convertLinkerOptionsMetadata())) 582 return failure(); 583 if (failed(convertIdentMetadata())) 584 return failure(); 585 if (failed(convertCommandlineMetadata())) 586 return failure(); 587 return success(); 588 } 589 590 void ModuleImport::processComdat(const llvm::Comdat *comdat) { 591 if (comdatMapping.contains(comdat)) 592 return; 593 594 ComdatOp comdatOp = getGlobalComdatOp(); 595 OpBuilder::InsertionGuard guard(builder); 596 builder.setInsertionPointToEnd(&comdatOp.getBody().back()); 597 auto selectorOp = builder.create<ComdatSelectorOp>( 598 mlirModule.getLoc(), comdat->getName(), 599 convertComdatFromLLVM(comdat->getSelectionKind())); 600 auto symbolRef = 601 SymbolRefAttr::get(builder.getContext(), getGlobalComdatOpName(), 602 FlatSymbolRefAttr::get(selectorOp.getSymNameAttr())); 603 comdatMapping.try_emplace(comdat, symbolRef); 604 } 605 606 LogicalResult ModuleImport::convertComdats() { 607 for (llvm::GlobalVariable &globalVar : llvmModule->globals()) 608 if (globalVar.hasComdat()) 609 processComdat(globalVar.getComdat()); 610 for (llvm::Function &func : llvmModule->functions()) 611 if (func.hasComdat()) 612 processComdat(func.getComdat()); 613 return success(); 614 } 615 616 LogicalResult ModuleImport::convertGlobals() { 617 for (llvm::GlobalVariable &globalVar : llvmModule->globals()) { 618 if (globalVar.getName() == getGlobalCtorsVarName() || 619 globalVar.getName() == getGlobalDtorsVarName()) { 620 if (failed(convertGlobalCtorsAndDtors(&globalVar))) { 621 return emitError(UnknownLoc::get(context)) 622 << "unhandled global variable: " << diag(globalVar); 623 } 624 continue; 625 } 626 if (failed(convertGlobal(&globalVar))) { 627 return emitError(UnknownLoc::get(context)) 628 << "unhandled global variable: " << diag(globalVar); 629 } 630 } 631 return success(); 632 } 633 634 LogicalResult ModuleImport::convertDataLayout() { 635 Location loc = mlirModule.getLoc(); 636 DataLayoutImporter dataLayoutImporter(context, llvmModule->getDataLayout()); 637 if (!dataLayoutImporter.getDataLayout()) 638 return emitError(loc, "cannot translate data layout: ") 639 << dataLayoutImporter.getLastToken(); 640 641 for (StringRef token : dataLayoutImporter.getUnhandledTokens()) 642 emitWarning(loc, "unhandled data layout token: ") << token; 643 644 mlirModule->setAttr(DLTIDialect::kDataLayoutAttrName, 645 dataLayoutImporter.getDataLayout()); 646 return success(); 647 } 648 649 LogicalResult ModuleImport::convertFunctions() { 650 for (llvm::Function &func : llvmModule->functions()) 651 if (failed(processFunction(&func))) 652 return failure(); 653 return success(); 654 } 655 656 void ModuleImport::setNonDebugMetadataAttrs(llvm::Instruction *inst, 657 Operation *op) { 658 SmallVector<std::pair<unsigned, llvm::MDNode *>> allMetadata; 659 inst->getAllMetadataOtherThanDebugLoc(allMetadata); 660 for (auto &[kind, node] : allMetadata) { 661 if (!iface.isConvertibleMetadata(kind)) 662 continue; 663 if (failed(iface.setMetadataAttrs(builder, kind, node, op, *this))) { 664 if (emitExpensiveWarnings) { 665 Location loc = debugImporter->translateLoc(inst->getDebugLoc()); 666 emitWarning(loc) << "unhandled metadata: " 667 << diagMD(node, llvmModule.get()) << " on " 668 << diag(*inst); 669 } 670 } 671 } 672 } 673 674 void ModuleImport::setIntegerOverflowFlags(llvm::Instruction *inst, 675 Operation *op) const { 676 auto iface = cast<IntegerOverflowFlagsInterface>(op); 677 678 IntegerOverflowFlags value = {}; 679 value = bitEnumSet(value, IntegerOverflowFlags::nsw, inst->hasNoSignedWrap()); 680 value = 681 bitEnumSet(value, IntegerOverflowFlags::nuw, inst->hasNoUnsignedWrap()); 682 683 iface.setOverflowFlags(value); 684 } 685 686 void ModuleImport::setFastmathFlagsAttr(llvm::Instruction *inst, 687 Operation *op) const { 688 auto iface = cast<FastmathFlagsInterface>(op); 689 690 // Even if the imported operation implements the fastmath interface, the 691 // original instruction may not have fastmath flags set. Exit if an 692 // instruction, such as a non floating-point function call, does not have 693 // fastmath flags. 694 if (!isa<llvm::FPMathOperator>(inst)) 695 return; 696 llvm::FastMathFlags flags = inst->getFastMathFlags(); 697 698 // Set the fastmath bits flag-by-flag. 699 FastmathFlags value = {}; 700 value = bitEnumSet(value, FastmathFlags::nnan, flags.noNaNs()); 701 value = bitEnumSet(value, FastmathFlags::ninf, flags.noInfs()); 702 value = bitEnumSet(value, FastmathFlags::nsz, flags.noSignedZeros()); 703 value = bitEnumSet(value, FastmathFlags::arcp, flags.allowReciprocal()); 704 value = bitEnumSet(value, FastmathFlags::contract, flags.allowContract()); 705 value = bitEnumSet(value, FastmathFlags::afn, flags.approxFunc()); 706 value = bitEnumSet(value, FastmathFlags::reassoc, flags.allowReassoc()); 707 FastmathFlagsAttr attr = FastmathFlagsAttr::get(builder.getContext(), value); 708 iface->setAttr(iface.getFastmathAttrName(), attr); 709 } 710 711 /// Returns if `type` is a scalar integer or floating-point type. 712 static bool isScalarType(Type type) { 713 return isa<IntegerType, FloatType>(type); 714 } 715 716 /// Returns `type` if it is a builtin integer or floating-point vector type that 717 /// can be used to create an attribute or nullptr otherwise. If provided, 718 /// `arrayShape` is added to the shape of the vector to create an attribute that 719 /// matches an array of vectors. 720 static Type getVectorTypeForAttr(Type type, ArrayRef<int64_t> arrayShape = {}) { 721 if (!LLVM::isCompatibleVectorType(type)) 722 return {}; 723 724 llvm::ElementCount numElements = LLVM::getVectorNumElements(type); 725 if (numElements.isScalable()) { 726 emitError(UnknownLoc::get(type.getContext())) 727 << "scalable vectors not supported"; 728 return {}; 729 } 730 731 // An LLVM dialect vector can only contain scalars. 732 Type elementType = LLVM::getVectorElementType(type); 733 if (!isScalarType(elementType)) 734 return {}; 735 736 SmallVector<int64_t> shape(arrayShape); 737 shape.push_back(numElements.getKnownMinValue()); 738 return VectorType::get(shape, elementType); 739 } 740 741 Type ModuleImport::getBuiltinTypeForAttr(Type type) { 742 if (!type) 743 return {}; 744 745 // Return builtin integer and floating-point types as is. 746 if (isScalarType(type)) 747 return type; 748 749 // Return builtin vectors of integer and floating-point types as is. 750 if (Type vectorType = getVectorTypeForAttr(type)) 751 return vectorType; 752 753 // Multi-dimensional array types are converted to tensors or vectors, 754 // depending on the innermost type being a scalar or a vector. 755 SmallVector<int64_t> arrayShape; 756 while (auto arrayType = dyn_cast<LLVMArrayType>(type)) { 757 arrayShape.push_back(arrayType.getNumElements()); 758 type = arrayType.getElementType(); 759 } 760 if (isScalarType(type)) 761 return RankedTensorType::get(arrayShape, type); 762 return getVectorTypeForAttr(type, arrayShape); 763 } 764 765 /// Returns an integer or float attribute for the provided scalar constant 766 /// `constScalar` or nullptr if the conversion fails. 767 static TypedAttr getScalarConstantAsAttr(OpBuilder &builder, 768 llvm::Constant *constScalar) { 769 MLIRContext *context = builder.getContext(); 770 771 // Convert scalar intergers. 772 if (auto *constInt = dyn_cast<llvm::ConstantInt>(constScalar)) { 773 return builder.getIntegerAttr( 774 IntegerType::get(context, constInt->getBitWidth()), 775 constInt->getValue()); 776 } 777 778 // Convert scalar floats. 779 if (auto *constFloat = dyn_cast<llvm::ConstantFP>(constScalar)) { 780 llvm::Type *type = constFloat->getType(); 781 FloatType floatType = 782 type->isBFloatTy() 783 ? FloatType::getBF16(context) 784 : LLVM::detail::getFloatType(context, type->getScalarSizeInBits()); 785 if (!floatType) { 786 emitError(UnknownLoc::get(builder.getContext())) 787 << "unexpected floating-point type"; 788 return {}; 789 } 790 return builder.getFloatAttr(floatType, constFloat->getValueAPF()); 791 } 792 return {}; 793 } 794 795 /// Returns an integer or float attribute array for the provided constant 796 /// sequence `constSequence` or nullptr if the conversion fails. 797 static SmallVector<Attribute> 798 getSequenceConstantAsAttrs(OpBuilder &builder, 799 llvm::ConstantDataSequential *constSequence) { 800 SmallVector<Attribute> elementAttrs; 801 elementAttrs.reserve(constSequence->getNumElements()); 802 for (auto idx : llvm::seq<int64_t>(0, constSequence->getNumElements())) { 803 llvm::Constant *constElement = constSequence->getElementAsConstant(idx); 804 elementAttrs.push_back(getScalarConstantAsAttr(builder, constElement)); 805 } 806 return elementAttrs; 807 } 808 809 Attribute ModuleImport::getConstantAsAttr(llvm::Constant *constant) { 810 // Convert scalar constants. 811 if (Attribute scalarAttr = getScalarConstantAsAttr(builder, constant)) 812 return scalarAttr; 813 814 // Returns the static shape of the provided type if possible. 815 auto getConstantShape = [&](llvm::Type *type) { 816 return llvm::dyn_cast_if_present<ShapedType>( 817 getBuiltinTypeForAttr(convertType(type))); 818 }; 819 820 // Convert one-dimensional constant arrays or vectors that store 1/2/4/8-byte 821 // integer or half/bfloat/float/double values. 822 if (auto *constArray = dyn_cast<llvm::ConstantDataSequential>(constant)) { 823 if (constArray->isString()) 824 return builder.getStringAttr(constArray->getAsString()); 825 auto shape = getConstantShape(constArray->getType()); 826 if (!shape) 827 return {}; 828 // Convert splat constants to splat elements attributes. 829 auto *constVector = dyn_cast<llvm::ConstantDataVector>(constant); 830 if (constVector && constVector->isSplat()) { 831 // A vector is guaranteed to have at least size one. 832 Attribute splatAttr = getScalarConstantAsAttr( 833 builder, constVector->getElementAsConstant(0)); 834 return SplatElementsAttr::get(shape, splatAttr); 835 } 836 // Convert non-splat constants to dense elements attributes. 837 SmallVector<Attribute> elementAttrs = 838 getSequenceConstantAsAttrs(builder, constArray); 839 return DenseElementsAttr::get(shape, elementAttrs); 840 } 841 842 // Convert multi-dimensional constant aggregates that store all kinds of 843 // integer and floating-point types. 844 if (auto *constAggregate = dyn_cast<llvm::ConstantAggregate>(constant)) { 845 auto shape = getConstantShape(constAggregate->getType()); 846 if (!shape) 847 return {}; 848 // Collect the aggregate elements in depths first order. 849 SmallVector<Attribute> elementAttrs; 850 SmallVector<llvm::Constant *> workList = {constAggregate}; 851 while (!workList.empty()) { 852 llvm::Constant *current = workList.pop_back_val(); 853 // Append any nested aggregates in reverse order to ensure the head 854 // element of the nested aggregates is at the back of the work list. 855 if (auto *constAggregate = dyn_cast<llvm::ConstantAggregate>(current)) { 856 for (auto idx : 857 reverse(llvm::seq<int64_t>(0, constAggregate->getNumOperands()))) 858 workList.push_back(constAggregate->getAggregateElement(idx)); 859 continue; 860 } 861 // Append the elements of nested constant arrays or vectors that store 862 // 1/2/4/8-byte integer or half/bfloat/float/double values. 863 if (auto *constArray = dyn_cast<llvm::ConstantDataSequential>(current)) { 864 SmallVector<Attribute> attrs = 865 getSequenceConstantAsAttrs(builder, constArray); 866 elementAttrs.append(attrs.begin(), attrs.end()); 867 continue; 868 } 869 // Append nested scalar constants that store all kinds of integer and 870 // floating-point types. 871 if (Attribute scalarAttr = getScalarConstantAsAttr(builder, current)) { 872 elementAttrs.push_back(scalarAttr); 873 continue; 874 } 875 // Bail if the aggregate contains a unsupported constant type such as a 876 // constant expression. 877 return {}; 878 } 879 return DenseElementsAttr::get(shape, elementAttrs); 880 } 881 882 // Convert zero aggregates. 883 if (auto *constZero = dyn_cast<llvm::ConstantAggregateZero>(constant)) { 884 auto shape = llvm::dyn_cast_if_present<ShapedType>( 885 getBuiltinTypeForAttr(convertType(constZero->getType()))); 886 if (!shape) 887 return {}; 888 // Convert zero aggregates with a static shape to splat elements attributes. 889 Attribute splatAttr = builder.getZeroAttr(shape.getElementType()); 890 assert(splatAttr && "expected non-null zero attribute for scalar types"); 891 return SplatElementsAttr::get(shape, splatAttr); 892 } 893 return {}; 894 } 895 896 FlatSymbolRefAttr 897 ModuleImport::getOrCreateNamelessSymbolName(llvm::GlobalVariable *globalVar) { 898 assert(globalVar->getName().empty() && 899 "expected to work with a nameless global"); 900 auto [it, success] = namelessGlobals.try_emplace(globalVar); 901 if (!success) 902 return it->second; 903 904 // Make sure the symbol name does not clash with an existing symbol. 905 SmallString<128> globalName = SymbolTable::generateSymbolName<128>( 906 getNamelessGlobalPrefix(), 907 [this](StringRef newName) { return llvmModule->getNamedValue(newName); }, 908 namelessGlobalId); 909 auto symbolRef = FlatSymbolRefAttr::get(context, globalName); 910 it->getSecond() = symbolRef; 911 return symbolRef; 912 } 913 914 LogicalResult ModuleImport::convertGlobal(llvm::GlobalVariable *globalVar) { 915 // Insert the global after the last one or at the start of the module. 916 OpBuilder::InsertionGuard guard(builder); 917 if (!globalInsertionOp) 918 builder.setInsertionPointToStart(mlirModule.getBody()); 919 else 920 builder.setInsertionPointAfter(globalInsertionOp); 921 922 Attribute valueAttr; 923 if (globalVar->hasInitializer()) 924 valueAttr = getConstantAsAttr(globalVar->getInitializer()); 925 Type type = convertType(globalVar->getValueType()); 926 927 uint64_t alignment = 0; 928 llvm::MaybeAlign maybeAlign = globalVar->getAlign(); 929 if (maybeAlign.has_value()) { 930 llvm::Align align = *maybeAlign; 931 alignment = align.value(); 932 } 933 934 // Get the global expression associated with this global variable and convert 935 // it. 936 SmallVector<Attribute> globalExpressionAttrs; 937 SmallVector<llvm::DIGlobalVariableExpression *> globalExpressions; 938 globalVar->getDebugInfo(globalExpressions); 939 940 for (llvm::DIGlobalVariableExpression *expr : globalExpressions) { 941 DIGlobalVariableExpressionAttr globalExpressionAttr = 942 debugImporter->translateGlobalVariableExpression(expr); 943 globalExpressionAttrs.push_back(globalExpressionAttr); 944 } 945 946 // Workaround to support LLVM's nameless globals. MLIR, in contrast to LLVM, 947 // always requires a symbol name. 948 StringRef globalName = globalVar->getName(); 949 if (globalName.empty()) 950 globalName = getOrCreateNamelessSymbolName(globalVar).getValue(); 951 952 GlobalOp globalOp = builder.create<GlobalOp>( 953 mlirModule.getLoc(), type, globalVar->isConstant(), 954 convertLinkageFromLLVM(globalVar->getLinkage()), StringRef(globalName), 955 valueAttr, alignment, /*addr_space=*/globalVar->getAddressSpace(), 956 /*dso_local=*/globalVar->isDSOLocal(), 957 /*thread_local=*/globalVar->isThreadLocal(), /*comdat=*/SymbolRefAttr(), 958 /*attrs=*/ArrayRef<NamedAttribute>(), /*dbgExprs=*/globalExpressionAttrs); 959 globalInsertionOp = globalOp; 960 961 if (globalVar->hasInitializer() && !valueAttr) { 962 clearRegionState(); 963 Block *block = builder.createBlock(&globalOp.getInitializerRegion()); 964 setConstantInsertionPointToStart(block); 965 FailureOr<Value> initializer = 966 convertConstantExpr(globalVar->getInitializer()); 967 if (failed(initializer)) 968 return failure(); 969 builder.create<ReturnOp>(globalOp.getLoc(), *initializer); 970 } 971 if (globalVar->hasAtLeastLocalUnnamedAddr()) { 972 globalOp.setUnnamedAddr( 973 convertUnnamedAddrFromLLVM(globalVar->getUnnamedAddr())); 974 } 975 if (globalVar->hasSection()) 976 globalOp.setSection(globalVar->getSection()); 977 globalOp.setVisibility_( 978 convertVisibilityFromLLVM(globalVar->getVisibility())); 979 980 if (globalVar->hasComdat()) 981 globalOp.setComdatAttr(comdatMapping.lookup(globalVar->getComdat())); 982 983 return success(); 984 } 985 986 LogicalResult 987 ModuleImport::convertGlobalCtorsAndDtors(llvm::GlobalVariable *globalVar) { 988 if (!globalVar->hasInitializer() || !globalVar->hasAppendingLinkage()) 989 return failure(); 990 auto *initializer = 991 dyn_cast<llvm::ConstantArray>(globalVar->getInitializer()); 992 if (!initializer) 993 return failure(); 994 995 SmallVector<Attribute> funcs; 996 SmallVector<int32_t> priorities; 997 for (llvm::Value *operand : initializer->operands()) { 998 auto *aggregate = dyn_cast<llvm::ConstantAggregate>(operand); 999 if (!aggregate || aggregate->getNumOperands() != 3) 1000 return failure(); 1001 1002 auto *priority = dyn_cast<llvm::ConstantInt>(aggregate->getOperand(0)); 1003 auto *func = dyn_cast<llvm::Function>(aggregate->getOperand(1)); 1004 auto *data = dyn_cast<llvm::Constant>(aggregate->getOperand(2)); 1005 if (!priority || !func || !data) 1006 return failure(); 1007 1008 // GlobalCtorsOps and GlobalDtorsOps do not support non-null data fields. 1009 if (!data->isNullValue()) 1010 return failure(); 1011 1012 funcs.push_back(FlatSymbolRefAttr::get(context, func->getName())); 1013 priorities.push_back(priority->getValue().getZExtValue()); 1014 } 1015 1016 OpBuilder::InsertionGuard guard(builder); 1017 if (!globalInsertionOp) 1018 builder.setInsertionPointToStart(mlirModule.getBody()); 1019 else 1020 builder.setInsertionPointAfter(globalInsertionOp); 1021 1022 if (globalVar->getName() == getGlobalCtorsVarName()) { 1023 globalInsertionOp = builder.create<LLVM::GlobalCtorsOp>( 1024 mlirModule.getLoc(), builder.getArrayAttr(funcs), 1025 builder.getI32ArrayAttr(priorities)); 1026 return success(); 1027 } 1028 globalInsertionOp = builder.create<LLVM::GlobalDtorsOp>( 1029 mlirModule.getLoc(), builder.getArrayAttr(funcs), 1030 builder.getI32ArrayAttr(priorities)); 1031 return success(); 1032 } 1033 1034 SetVector<llvm::Constant *> 1035 ModuleImport::getConstantsToConvert(llvm::Constant *constant) { 1036 // Return the empty set if the constant has been translated before. 1037 if (valueMapping.contains(constant)) 1038 return {}; 1039 1040 // Traverse the constants in post-order and stop the traversal if a constant 1041 // already has a `valueMapping` from an earlier constant translation or if the 1042 // constant is traversed a second time. 1043 SetVector<llvm::Constant *> orderedSet; 1044 SetVector<llvm::Constant *> workList; 1045 DenseMap<llvm::Constant *, SmallVector<llvm::Constant *>> adjacencyLists; 1046 workList.insert(constant); 1047 while (!workList.empty()) { 1048 llvm::Constant *current = workList.back(); 1049 // References of global objects are just pointers to the object. Avoid 1050 // walking the elements of these here. 1051 if (isa<llvm::GlobalObject>(current)) { 1052 orderedSet.insert(current); 1053 workList.pop_back(); 1054 continue; 1055 } 1056 1057 // Collect all dependencies of the current constant and add them to the 1058 // adjacency list if none has been computed before. 1059 auto [adjacencyIt, inserted] = adjacencyLists.try_emplace(current); 1060 if (inserted) { 1061 // Add all constant operands to the adjacency list and skip any other 1062 // values such as basic block addresses. 1063 for (llvm::Value *operand : current->operands()) 1064 if (auto *constDependency = dyn_cast<llvm::Constant>(operand)) 1065 adjacencyIt->getSecond().push_back(constDependency); 1066 // Use the getElementValue method to add the dependencies of zero 1067 // initialized aggregate constants since they do not take any operands. 1068 if (auto *constAgg = dyn_cast<llvm::ConstantAggregateZero>(current)) { 1069 unsigned numElements = constAgg->getElementCount().getFixedValue(); 1070 for (unsigned i = 0, e = numElements; i != e; ++i) 1071 adjacencyIt->getSecond().push_back(constAgg->getElementValue(i)); 1072 } 1073 } 1074 // Add the current constant to the `orderedSet` of the traversed nodes if 1075 // all its dependencies have been traversed before. Additionally, remove the 1076 // constant from the `workList` and continue the traversal. 1077 if (adjacencyIt->getSecond().empty()) { 1078 orderedSet.insert(current); 1079 workList.pop_back(); 1080 continue; 1081 } 1082 // Add the next dependency from the adjacency list to the `workList` and 1083 // continue the traversal. Remove the dependency from the adjacency list to 1084 // mark that it has been processed. Only enqueue the dependency if it has no 1085 // `valueMapping` from an earlier translation and if it has not been 1086 // enqueued before. 1087 llvm::Constant *dependency = adjacencyIt->getSecond().pop_back_val(); 1088 if (valueMapping.contains(dependency) || workList.contains(dependency) || 1089 orderedSet.contains(dependency)) 1090 continue; 1091 workList.insert(dependency); 1092 } 1093 1094 return orderedSet; 1095 } 1096 1097 FailureOr<Value> ModuleImport::convertConstant(llvm::Constant *constant) { 1098 Location loc = UnknownLoc::get(context); 1099 1100 // Convert constants that can be represented as attributes. 1101 if (Attribute attr = getConstantAsAttr(constant)) { 1102 Type type = convertType(constant->getType()); 1103 if (auto symbolRef = dyn_cast<FlatSymbolRefAttr>(attr)) { 1104 return builder.create<AddressOfOp>(loc, type, symbolRef.getValue()) 1105 .getResult(); 1106 } 1107 return builder.create<ConstantOp>(loc, type, attr).getResult(); 1108 } 1109 1110 // Convert null pointer constants. 1111 if (auto *nullPtr = dyn_cast<llvm::ConstantPointerNull>(constant)) { 1112 Type type = convertType(nullPtr->getType()); 1113 return builder.create<ZeroOp>(loc, type).getResult(); 1114 } 1115 1116 // Convert none token constants. 1117 if (isa<llvm::ConstantTokenNone>(constant)) { 1118 return builder.create<NoneTokenOp>(loc).getResult(); 1119 } 1120 1121 // Convert poison. 1122 if (auto *poisonVal = dyn_cast<llvm::PoisonValue>(constant)) { 1123 Type type = convertType(poisonVal->getType()); 1124 return builder.create<PoisonOp>(loc, type).getResult(); 1125 } 1126 1127 // Convert undef. 1128 if (auto *undefVal = dyn_cast<llvm::UndefValue>(constant)) { 1129 Type type = convertType(undefVal->getType()); 1130 return builder.create<UndefOp>(loc, type).getResult(); 1131 } 1132 1133 // Convert global variable accesses. 1134 if (auto *globalObj = dyn_cast<llvm::GlobalObject>(constant)) { 1135 Type type = convertType(globalObj->getType()); 1136 StringRef globalName = globalObj->getName(); 1137 FlatSymbolRefAttr symbolRef; 1138 // Empty names are only allowed for global variables. 1139 if (globalName.empty()) 1140 symbolRef = 1141 getOrCreateNamelessSymbolName(cast<llvm::GlobalVariable>(globalObj)); 1142 else 1143 symbolRef = FlatSymbolRefAttr::get(context, globalName); 1144 return builder.create<AddressOfOp>(loc, type, symbolRef).getResult(); 1145 } 1146 1147 // Convert constant expressions. 1148 if (auto *constExpr = dyn_cast<llvm::ConstantExpr>(constant)) { 1149 // Convert the constant expression to a temporary LLVM instruction and 1150 // translate it using the `processInstruction` method. Delete the 1151 // instruction after the translation and remove it from `valueMapping`, 1152 // since later calls to `getAsInstruction` may return the same address 1153 // resulting in a conflicting `valueMapping` entry. 1154 llvm::Instruction *inst = constExpr->getAsInstruction(); 1155 auto guard = llvm::make_scope_exit([&]() { 1156 assert(!noResultOpMapping.contains(inst) && 1157 "expected constant expression to return a result"); 1158 valueMapping.erase(inst); 1159 inst->deleteValue(); 1160 }); 1161 // Note: `processInstruction` does not call `convertConstant` recursively 1162 // since all constant dependencies have been converted before. 1163 assert(llvm::all_of(inst->operands(), [&](llvm::Value *value) { 1164 return valueMapping.contains(value); 1165 })); 1166 if (failed(processInstruction(inst))) 1167 return failure(); 1168 return lookupValue(inst); 1169 } 1170 1171 // Convert aggregate constants. 1172 if (isa<llvm::ConstantAggregate>(constant) || 1173 isa<llvm::ConstantAggregateZero>(constant)) { 1174 // Lookup the aggregate elements that have been converted before. 1175 SmallVector<Value> elementValues; 1176 if (auto *constAgg = dyn_cast<llvm::ConstantAggregate>(constant)) { 1177 elementValues.reserve(constAgg->getNumOperands()); 1178 for (llvm::Value *operand : constAgg->operands()) 1179 elementValues.push_back(lookupValue(operand)); 1180 } 1181 if (auto *constAgg = dyn_cast<llvm::ConstantAggregateZero>(constant)) { 1182 unsigned numElements = constAgg->getElementCount().getFixedValue(); 1183 elementValues.reserve(numElements); 1184 for (unsigned i = 0, e = numElements; i != e; ++i) 1185 elementValues.push_back(lookupValue(constAgg->getElementValue(i))); 1186 } 1187 assert(llvm::count(elementValues, nullptr) == 0 && 1188 "expected all elements have been converted before"); 1189 1190 // Generate an UndefOp as root value and insert the aggregate elements. 1191 Type rootType = convertType(constant->getType()); 1192 bool isArrayOrStruct = isa<LLVMArrayType, LLVMStructType>(rootType); 1193 assert((isArrayOrStruct || LLVM::isCompatibleVectorType(rootType)) && 1194 "unrecognized aggregate type"); 1195 Value root = builder.create<UndefOp>(loc, rootType); 1196 for (const auto &it : llvm::enumerate(elementValues)) { 1197 if (isArrayOrStruct) { 1198 root = builder.create<InsertValueOp>(loc, root, it.value(), it.index()); 1199 } else { 1200 Attribute indexAttr = builder.getI32IntegerAttr(it.index()); 1201 Value indexValue = 1202 builder.create<ConstantOp>(loc, builder.getI32Type(), indexAttr); 1203 root = builder.create<InsertElementOp>(loc, rootType, root, it.value(), 1204 indexValue); 1205 } 1206 } 1207 return root; 1208 } 1209 1210 if (auto *constTargetNone = dyn_cast<llvm::ConstantTargetNone>(constant)) { 1211 LLVMTargetExtType targetExtType = 1212 cast<LLVMTargetExtType>(convertType(constTargetNone->getType())); 1213 assert(targetExtType.hasProperty(LLVMTargetExtType::HasZeroInit) && 1214 "target extension type does not support zero-initialization"); 1215 // Create llvm.mlir.zero operation to represent zero-initialization of 1216 // target extension type. 1217 return builder.create<LLVM::ZeroOp>(loc, targetExtType).getRes(); 1218 } 1219 1220 StringRef error = ""; 1221 if (isa<llvm::BlockAddress>(constant)) 1222 error = " since blockaddress(...) is unsupported"; 1223 1224 return emitError(loc) << "unhandled constant: " << diag(*constant) << error; 1225 } 1226 1227 FailureOr<Value> ModuleImport::convertConstantExpr(llvm::Constant *constant) { 1228 // Only call the function for constants that have not been translated before 1229 // since it updates the constant insertion point assuming the converted 1230 // constant has been introduced at the end of the constant section. 1231 assert(!valueMapping.contains(constant) && 1232 "expected constant has not been converted before"); 1233 assert(constantInsertionBlock && 1234 "expected the constant insertion block to be non-null"); 1235 1236 // Insert the constant after the last one or at the start of the entry block. 1237 OpBuilder::InsertionGuard guard(builder); 1238 if (!constantInsertionOp) 1239 builder.setInsertionPointToStart(constantInsertionBlock); 1240 else 1241 builder.setInsertionPointAfter(constantInsertionOp); 1242 1243 // Convert all constants of the expression and add them to `valueMapping`. 1244 SetVector<llvm::Constant *> constantsToConvert = 1245 getConstantsToConvert(constant); 1246 for (llvm::Constant *constantToConvert : constantsToConvert) { 1247 FailureOr<Value> converted = convertConstant(constantToConvert); 1248 if (failed(converted)) 1249 return failure(); 1250 mapValue(constantToConvert, *converted); 1251 } 1252 1253 // Update the constant insertion point and return the converted constant. 1254 Value result = lookupValue(constant); 1255 constantInsertionOp = result.getDefiningOp(); 1256 return result; 1257 } 1258 1259 FailureOr<Value> ModuleImport::convertValue(llvm::Value *value) { 1260 assert(!isa<llvm::MetadataAsValue>(value) && 1261 "expected value to not be metadata"); 1262 1263 // Return the mapped value if it has been converted before. 1264 auto it = valueMapping.find(value); 1265 if (it != valueMapping.end()) 1266 return it->getSecond(); 1267 1268 // Convert constants such as immediate values that have no mapping yet. 1269 if (auto *constant = dyn_cast<llvm::Constant>(value)) 1270 return convertConstantExpr(constant); 1271 1272 Location loc = UnknownLoc::get(context); 1273 if (auto *inst = dyn_cast<llvm::Instruction>(value)) 1274 loc = translateLoc(inst->getDebugLoc()); 1275 return emitError(loc) << "unhandled value: " << diag(*value); 1276 } 1277 1278 FailureOr<Value> ModuleImport::convertMetadataValue(llvm::Value *value) { 1279 // A value may be wrapped as metadata, for example, when passed to a debug 1280 // intrinsic. Unwrap these values before the conversion. 1281 auto *nodeAsVal = dyn_cast<llvm::MetadataAsValue>(value); 1282 if (!nodeAsVal) 1283 return failure(); 1284 auto *node = dyn_cast<llvm::ValueAsMetadata>(nodeAsVal->getMetadata()); 1285 if (!node) 1286 return failure(); 1287 value = node->getValue(); 1288 1289 // Return the mapped value if it has been converted before. 1290 auto it = valueMapping.find(value); 1291 if (it != valueMapping.end()) 1292 return it->getSecond(); 1293 1294 // Convert constants such as immediate values that have no mapping yet. 1295 if (auto *constant = dyn_cast<llvm::Constant>(value)) 1296 return convertConstantExpr(constant); 1297 return failure(); 1298 } 1299 1300 FailureOr<SmallVector<Value>> 1301 ModuleImport::convertValues(ArrayRef<llvm::Value *> values) { 1302 SmallVector<Value> remapped; 1303 remapped.reserve(values.size()); 1304 for (llvm::Value *value : values) { 1305 FailureOr<Value> converted = convertValue(value); 1306 if (failed(converted)) 1307 return failure(); 1308 remapped.push_back(*converted); 1309 } 1310 return remapped; 1311 } 1312 1313 LogicalResult ModuleImport::convertIntrinsicArguments( 1314 ArrayRef<llvm::Value *> values, ArrayRef<llvm::OperandBundleUse> opBundles, 1315 bool requiresOpBundles, ArrayRef<unsigned> immArgPositions, 1316 ArrayRef<StringLiteral> immArgAttrNames, SmallVectorImpl<Value> &valuesOut, 1317 SmallVectorImpl<NamedAttribute> &attrsOut) { 1318 assert(immArgPositions.size() == immArgAttrNames.size() && 1319 "LLVM `immArgPositions` and MLIR `immArgAttrNames` should have equal " 1320 "length"); 1321 1322 SmallVector<llvm::Value *> operands(values); 1323 for (auto [immArgPos, immArgName] : 1324 llvm::zip(immArgPositions, immArgAttrNames)) { 1325 auto &value = operands[immArgPos]; 1326 auto *constant = llvm::cast<llvm::Constant>(value); 1327 auto attr = getScalarConstantAsAttr(builder, constant); 1328 assert(attr && attr.getType().isIntOrFloat() && 1329 "expected immarg to be float or integer constant"); 1330 auto nameAttr = StringAttr::get(attr.getContext(), immArgName); 1331 attrsOut.push_back({nameAttr, attr}); 1332 // Mark matched attribute values as null (so they can be removed below). 1333 value = nullptr; 1334 } 1335 1336 for (llvm::Value *value : operands) { 1337 if (!value) 1338 continue; 1339 auto mlirValue = convertValue(value); 1340 if (failed(mlirValue)) 1341 return failure(); 1342 valuesOut.push_back(*mlirValue); 1343 } 1344 1345 SmallVector<int> opBundleSizes; 1346 SmallVector<Attribute> opBundleTagAttrs; 1347 if (requiresOpBundles) { 1348 opBundleSizes.reserve(opBundles.size()); 1349 opBundleTagAttrs.reserve(opBundles.size()); 1350 1351 for (const llvm::OperandBundleUse &bundle : opBundles) { 1352 opBundleSizes.push_back(bundle.Inputs.size()); 1353 opBundleTagAttrs.push_back(StringAttr::get(context, bundle.getTagName())); 1354 1355 for (const llvm::Use &opBundleOperand : bundle.Inputs) { 1356 auto operandMlirValue = convertValue(opBundleOperand.get()); 1357 if (failed(operandMlirValue)) 1358 return failure(); 1359 valuesOut.push_back(*operandMlirValue); 1360 } 1361 } 1362 1363 auto opBundleSizesAttr = DenseI32ArrayAttr::get(context, opBundleSizes); 1364 auto opBundleSizesAttrNameAttr = 1365 StringAttr::get(context, LLVMDialect::getOpBundleSizesAttrName()); 1366 attrsOut.push_back({opBundleSizesAttrNameAttr, opBundleSizesAttr}); 1367 1368 auto opBundleTagsAttr = ArrayAttr::get(context, opBundleTagAttrs); 1369 auto opBundleTagsAttrNameAttr = 1370 StringAttr::get(context, LLVMDialect::getOpBundleTagsAttrName()); 1371 attrsOut.push_back({opBundleTagsAttrNameAttr, opBundleTagsAttr}); 1372 } 1373 1374 return success(); 1375 } 1376 1377 IntegerAttr ModuleImport::matchIntegerAttr(llvm::Value *value) { 1378 IntegerAttr integerAttr; 1379 FailureOr<Value> converted = convertValue(value); 1380 bool success = succeeded(converted) && 1381 matchPattern(*converted, m_Constant(&integerAttr)); 1382 assert(success && "expected a constant integer value"); 1383 (void)success; 1384 return integerAttr; 1385 } 1386 1387 FloatAttr ModuleImport::matchFloatAttr(llvm::Value *value) { 1388 FloatAttr floatAttr; 1389 FailureOr<Value> converted = convertValue(value); 1390 bool success = 1391 succeeded(converted) && matchPattern(*converted, m_Constant(&floatAttr)); 1392 assert(success && "expected a constant float value"); 1393 (void)success; 1394 return floatAttr; 1395 } 1396 1397 DILocalVariableAttr ModuleImport::matchLocalVariableAttr(llvm::Value *value) { 1398 auto *nodeAsVal = cast<llvm::MetadataAsValue>(value); 1399 auto *node = cast<llvm::DILocalVariable>(nodeAsVal->getMetadata()); 1400 return debugImporter->translate(node); 1401 } 1402 1403 DILabelAttr ModuleImport::matchLabelAttr(llvm::Value *value) { 1404 auto *nodeAsVal = cast<llvm::MetadataAsValue>(value); 1405 auto *node = cast<llvm::DILabel>(nodeAsVal->getMetadata()); 1406 return debugImporter->translate(node); 1407 } 1408 1409 FPExceptionBehaviorAttr 1410 ModuleImport::matchFPExceptionBehaviorAttr(llvm::Value *value) { 1411 auto *metadata = cast<llvm::MetadataAsValue>(value); 1412 auto *mdstr = cast<llvm::MDString>(metadata->getMetadata()); 1413 std::optional<llvm::fp::ExceptionBehavior> optLLVM = 1414 llvm::convertStrToExceptionBehavior(mdstr->getString()); 1415 assert(optLLVM && "Expecting FP exception behavior"); 1416 return builder.getAttr<FPExceptionBehaviorAttr>( 1417 convertFPExceptionBehaviorFromLLVM(*optLLVM)); 1418 } 1419 1420 RoundingModeAttr ModuleImport::matchRoundingModeAttr(llvm::Value *value) { 1421 auto *metadata = cast<llvm::MetadataAsValue>(value); 1422 auto *mdstr = cast<llvm::MDString>(metadata->getMetadata()); 1423 std::optional<llvm::RoundingMode> optLLVM = 1424 llvm::convertStrToRoundingMode(mdstr->getString()); 1425 assert(optLLVM && "Expecting rounding mode"); 1426 return builder.getAttr<RoundingModeAttr>( 1427 convertRoundingModeFromLLVM(*optLLVM)); 1428 } 1429 1430 FailureOr<SmallVector<AliasScopeAttr>> 1431 ModuleImport::matchAliasScopeAttrs(llvm::Value *value) { 1432 auto *nodeAsVal = cast<llvm::MetadataAsValue>(value); 1433 auto *node = cast<llvm::MDNode>(nodeAsVal->getMetadata()); 1434 return lookupAliasScopeAttrs(node); 1435 } 1436 1437 Location ModuleImport::translateLoc(llvm::DILocation *loc) { 1438 return debugImporter->translateLoc(loc); 1439 } 1440 1441 LogicalResult 1442 ModuleImport::convertBranchArgs(llvm::Instruction *branch, 1443 llvm::BasicBlock *target, 1444 SmallVectorImpl<Value> &blockArguments) { 1445 for (auto inst = target->begin(); isa<llvm::PHINode>(inst); ++inst) { 1446 auto *phiInst = cast<llvm::PHINode>(&*inst); 1447 llvm::Value *value = phiInst->getIncomingValueForBlock(branch->getParent()); 1448 FailureOr<Value> converted = convertValue(value); 1449 if (failed(converted)) 1450 return failure(); 1451 blockArguments.push_back(*converted); 1452 } 1453 return success(); 1454 } 1455 1456 LogicalResult 1457 ModuleImport::convertCallTypeAndOperands(llvm::CallBase *callInst, 1458 SmallVectorImpl<Type> &types, 1459 SmallVectorImpl<Value> &operands) { 1460 if (!callInst->getType()->isVoidTy()) 1461 types.push_back(convertType(callInst->getType())); 1462 1463 if (!callInst->getCalledFunction()) { 1464 FailureOr<Value> called = convertValue(callInst->getCalledOperand()); 1465 if (failed(called)) 1466 return failure(); 1467 operands.push_back(*called); 1468 } 1469 SmallVector<llvm::Value *> args(callInst->args()); 1470 FailureOr<SmallVector<Value>> arguments = convertValues(args); 1471 if (failed(arguments)) 1472 return failure(); 1473 llvm::append_range(operands, *arguments); 1474 return success(); 1475 } 1476 1477 LogicalResult ModuleImport::convertIntrinsic(llvm::CallInst *inst) { 1478 if (succeeded(iface.convertIntrinsic(builder, inst, *this))) 1479 return success(); 1480 1481 Location loc = translateLoc(inst->getDebugLoc()); 1482 return emitError(loc) << "unhandled intrinsic: " << diag(*inst); 1483 } 1484 1485 LogicalResult ModuleImport::convertInstruction(llvm::Instruction *inst) { 1486 // Convert all instructions that do not provide an MLIR builder. 1487 Location loc = translateLoc(inst->getDebugLoc()); 1488 if (inst->getOpcode() == llvm::Instruction::Br) { 1489 auto *brInst = cast<llvm::BranchInst>(inst); 1490 1491 SmallVector<Block *> succBlocks; 1492 SmallVector<SmallVector<Value>> succBlockArgs; 1493 for (auto i : llvm::seq<unsigned>(0, brInst->getNumSuccessors())) { 1494 llvm::BasicBlock *succ = brInst->getSuccessor(i); 1495 SmallVector<Value> blockArgs; 1496 if (failed(convertBranchArgs(brInst, succ, blockArgs))) 1497 return failure(); 1498 succBlocks.push_back(lookupBlock(succ)); 1499 succBlockArgs.push_back(blockArgs); 1500 } 1501 1502 if (!brInst->isConditional()) { 1503 auto brOp = builder.create<LLVM::BrOp>(loc, succBlockArgs.front(), 1504 succBlocks.front()); 1505 mapNoResultOp(inst, brOp); 1506 return success(); 1507 } 1508 FailureOr<Value> condition = convertValue(brInst->getCondition()); 1509 if (failed(condition)) 1510 return failure(); 1511 auto condBrOp = builder.create<LLVM::CondBrOp>( 1512 loc, *condition, succBlocks.front(), succBlockArgs.front(), 1513 succBlocks.back(), succBlockArgs.back()); 1514 mapNoResultOp(inst, condBrOp); 1515 return success(); 1516 } 1517 if (inst->getOpcode() == llvm::Instruction::Switch) { 1518 auto *swInst = cast<llvm::SwitchInst>(inst); 1519 // Process the condition value. 1520 FailureOr<Value> condition = convertValue(swInst->getCondition()); 1521 if (failed(condition)) 1522 return failure(); 1523 SmallVector<Value> defaultBlockArgs; 1524 // Process the default case. 1525 llvm::BasicBlock *defaultBB = swInst->getDefaultDest(); 1526 if (failed(convertBranchArgs(swInst, defaultBB, defaultBlockArgs))) 1527 return failure(); 1528 1529 // Process the cases. 1530 unsigned numCases = swInst->getNumCases(); 1531 SmallVector<SmallVector<Value>> caseOperands(numCases); 1532 SmallVector<ValueRange> caseOperandRefs(numCases); 1533 SmallVector<APInt> caseValues(numCases); 1534 SmallVector<Block *> caseBlocks(numCases); 1535 for (const auto &it : llvm::enumerate(swInst->cases())) { 1536 const llvm::SwitchInst::CaseHandle &caseHandle = it.value(); 1537 llvm::BasicBlock *succBB = caseHandle.getCaseSuccessor(); 1538 if (failed(convertBranchArgs(swInst, succBB, caseOperands[it.index()]))) 1539 return failure(); 1540 caseOperandRefs[it.index()] = caseOperands[it.index()]; 1541 caseValues[it.index()] = caseHandle.getCaseValue()->getValue(); 1542 caseBlocks[it.index()] = lookupBlock(succBB); 1543 } 1544 1545 auto switchOp = builder.create<SwitchOp>( 1546 loc, *condition, lookupBlock(defaultBB), defaultBlockArgs, caseValues, 1547 caseBlocks, caseOperandRefs); 1548 mapNoResultOp(inst, switchOp); 1549 return success(); 1550 } 1551 if (inst->getOpcode() == llvm::Instruction::PHI) { 1552 Type type = convertType(inst->getType()); 1553 mapValue(inst, builder.getInsertionBlock()->addArgument( 1554 type, translateLoc(inst->getDebugLoc()))); 1555 return success(); 1556 } 1557 if (inst->getOpcode() == llvm::Instruction::Call) { 1558 auto *callInst = cast<llvm::CallInst>(inst); 1559 1560 SmallVector<Type> types; 1561 SmallVector<Value> operands; 1562 if (failed(convertCallTypeAndOperands(callInst, types, operands))) 1563 return failure(); 1564 1565 auto funcTy = 1566 dyn_cast<LLVMFunctionType>(convertType(callInst->getFunctionType())); 1567 if (!funcTy) 1568 return failure(); 1569 1570 CallOp callOp; 1571 1572 if (llvm::Function *callee = callInst->getCalledFunction()) { 1573 callOp = builder.create<CallOp>( 1574 loc, funcTy, SymbolRefAttr::get(context, callee->getName()), 1575 operands); 1576 } else { 1577 callOp = builder.create<CallOp>(loc, funcTy, operands); 1578 } 1579 callOp.setCConv(convertCConvFromLLVM(callInst->getCallingConv())); 1580 callOp.setTailCallKind( 1581 convertTailCallKindFromLLVM(callInst->getTailCallKind())); 1582 setFastmathFlagsAttr(inst, callOp); 1583 1584 // Handle function attributes. 1585 if (callInst->hasFnAttr(llvm::Attribute::Convergent)) 1586 callOp.setConvergent(true); 1587 if (callInst->hasFnAttr(llvm::Attribute::NoUnwind)) 1588 callOp.setNoUnwind(true); 1589 if (callInst->hasFnAttr(llvm::Attribute::WillReturn)) 1590 callOp.setWillReturn(true); 1591 1592 llvm::MemoryEffects memEffects = callInst->getMemoryEffects(); 1593 ModRefInfo othermem = convertModRefInfoFromLLVM( 1594 memEffects.getModRef(llvm::MemoryEffects::Location::Other)); 1595 ModRefInfo argMem = convertModRefInfoFromLLVM( 1596 memEffects.getModRef(llvm::MemoryEffects::Location::ArgMem)); 1597 ModRefInfo inaccessibleMem = convertModRefInfoFromLLVM( 1598 memEffects.getModRef(llvm::MemoryEffects::Location::InaccessibleMem)); 1599 auto memAttr = MemoryEffectsAttr::get(callOp.getContext(), othermem, argMem, 1600 inaccessibleMem); 1601 // Only set the attribute when it does not match the default value. 1602 if (!memAttr.isReadWrite()) 1603 callOp.setMemoryEffectsAttr(memAttr); 1604 1605 if (!callInst->getType()->isVoidTy()) 1606 mapValue(inst, callOp.getResult()); 1607 else 1608 mapNoResultOp(inst, callOp); 1609 return success(); 1610 } 1611 if (inst->getOpcode() == llvm::Instruction::LandingPad) { 1612 auto *lpInst = cast<llvm::LandingPadInst>(inst); 1613 1614 SmallVector<Value> operands; 1615 operands.reserve(lpInst->getNumClauses()); 1616 for (auto i : llvm::seq<unsigned>(0, lpInst->getNumClauses())) { 1617 FailureOr<Value> operand = convertValue(lpInst->getClause(i)); 1618 if (failed(operand)) 1619 return failure(); 1620 operands.push_back(*operand); 1621 } 1622 1623 Type type = convertType(lpInst->getType()); 1624 auto lpOp = 1625 builder.create<LandingpadOp>(loc, type, lpInst->isCleanup(), operands); 1626 mapValue(inst, lpOp); 1627 return success(); 1628 } 1629 if (inst->getOpcode() == llvm::Instruction::Invoke) { 1630 auto *invokeInst = cast<llvm::InvokeInst>(inst); 1631 1632 SmallVector<Type> types; 1633 SmallVector<Value> operands; 1634 if (failed(convertCallTypeAndOperands(invokeInst, types, operands))) 1635 return failure(); 1636 1637 // Check whether the invoke result is an argument to the normal destination 1638 // block. 1639 bool invokeResultUsedInPhi = llvm::any_of( 1640 invokeInst->getNormalDest()->phis(), [&](const llvm::PHINode &phi) { 1641 return phi.getIncomingValueForBlock(invokeInst->getParent()) == 1642 invokeInst; 1643 }); 1644 1645 Block *normalDest = lookupBlock(invokeInst->getNormalDest()); 1646 Block *directNormalDest = normalDest; 1647 if (invokeResultUsedInPhi) { 1648 // The invoke result cannot be an argument to the normal destination 1649 // block, as that would imply using the invoke operation result in its 1650 // definition, so we need to create a dummy block to serve as an 1651 // intermediate destination. 1652 OpBuilder::InsertionGuard g(builder); 1653 directNormalDest = builder.createBlock(normalDest); 1654 } 1655 1656 SmallVector<Value> unwindArgs; 1657 if (failed(convertBranchArgs(invokeInst, invokeInst->getUnwindDest(), 1658 unwindArgs))) 1659 return failure(); 1660 1661 auto funcTy = 1662 dyn_cast<LLVMFunctionType>(convertType(invokeInst->getFunctionType())); 1663 if (!funcTy) 1664 return failure(); 1665 1666 // Create the invoke operation. Normal destination block arguments will be 1667 // added later on to handle the case in which the operation result is 1668 // included in this list. 1669 InvokeOp invokeOp; 1670 if (llvm::Function *callee = invokeInst->getCalledFunction()) { 1671 invokeOp = builder.create<InvokeOp>( 1672 loc, funcTy, 1673 SymbolRefAttr::get(builder.getContext(), callee->getName()), operands, 1674 directNormalDest, ValueRange(), 1675 lookupBlock(invokeInst->getUnwindDest()), unwindArgs); 1676 } else { 1677 invokeOp = builder.create<InvokeOp>( 1678 loc, funcTy, /*callee=*/nullptr, operands, directNormalDest, 1679 ValueRange(), lookupBlock(invokeInst->getUnwindDest()), unwindArgs); 1680 } 1681 invokeOp.setCConv(convertCConvFromLLVM(invokeInst->getCallingConv())); 1682 if (!invokeInst->getType()->isVoidTy()) 1683 mapValue(inst, invokeOp.getResults().front()); 1684 else 1685 mapNoResultOp(inst, invokeOp); 1686 1687 SmallVector<Value> normalArgs; 1688 if (failed(convertBranchArgs(invokeInst, invokeInst->getNormalDest(), 1689 normalArgs))) 1690 return failure(); 1691 1692 if (invokeResultUsedInPhi) { 1693 // The dummy normal dest block will just host an unconditional branch 1694 // instruction to the normal destination block passing the required block 1695 // arguments (including the invoke operation's result). 1696 OpBuilder::InsertionGuard g(builder); 1697 builder.setInsertionPointToStart(directNormalDest); 1698 builder.create<LLVM::BrOp>(loc, normalArgs, normalDest); 1699 } else { 1700 // If the invoke operation's result is not a block argument to the normal 1701 // destination block, just add the block arguments as usual. 1702 assert(llvm::none_of( 1703 normalArgs, 1704 [&](Value val) { return val.getDefiningOp() == invokeOp; }) && 1705 "An llvm.invoke operation cannot pass its result as a block " 1706 "argument."); 1707 invokeOp.getNormalDestOperandsMutable().append(normalArgs); 1708 } 1709 1710 return success(); 1711 } 1712 if (inst->getOpcode() == llvm::Instruction::GetElementPtr) { 1713 auto *gepInst = cast<llvm::GetElementPtrInst>(inst); 1714 Type sourceElementType = convertType(gepInst->getSourceElementType()); 1715 FailureOr<Value> basePtr = convertValue(gepInst->getOperand(0)); 1716 if (failed(basePtr)) 1717 return failure(); 1718 1719 // Treat every indices as dynamic since GEPOp::build will refine those 1720 // indices into static attributes later. One small downside of this 1721 // approach is that many unused `llvm.mlir.constant` would be emitted 1722 // at first place. 1723 SmallVector<GEPArg> indices; 1724 for (llvm::Value *operand : llvm::drop_begin(gepInst->operand_values())) { 1725 FailureOr<Value> index = convertValue(operand); 1726 if (failed(index)) 1727 return failure(); 1728 indices.push_back(*index); 1729 } 1730 1731 Type type = convertType(inst->getType()); 1732 auto gepOp = builder.create<GEPOp>(loc, type, sourceElementType, *basePtr, 1733 indices, gepInst->isInBounds()); 1734 mapValue(inst, gepOp); 1735 return success(); 1736 } 1737 1738 // Convert all instructions that have an mlirBuilder. 1739 if (succeeded(convertInstructionImpl(builder, inst, *this, iface))) 1740 return success(); 1741 1742 return emitError(loc) << "unhandled instruction: " << diag(*inst); 1743 } 1744 1745 LogicalResult ModuleImport::processInstruction(llvm::Instruction *inst) { 1746 // FIXME: Support uses of SubtargetData. 1747 // FIXME: Add support for call / operand attributes. 1748 // FIXME: Add support for the indirectbr, cleanupret, catchret, catchswitch, 1749 // callbr, vaarg, catchpad, cleanuppad instructions. 1750 1751 // Convert LLVM intrinsics calls to MLIR intrinsics. 1752 if (auto *intrinsic = dyn_cast<llvm::IntrinsicInst>(inst)) 1753 return convertIntrinsic(intrinsic); 1754 1755 // Convert all remaining LLVM instructions to MLIR operations. 1756 return convertInstruction(inst); 1757 } 1758 1759 FlatSymbolRefAttr ModuleImport::getPersonalityAsAttr(llvm::Function *f) { 1760 if (!f->hasPersonalityFn()) 1761 return nullptr; 1762 1763 llvm::Constant *pf = f->getPersonalityFn(); 1764 1765 // If it directly has a name, we can use it. 1766 if (pf->hasName()) 1767 return SymbolRefAttr::get(builder.getContext(), pf->getName()); 1768 1769 // If it doesn't have a name, currently, only function pointers that are 1770 // bitcast to i8* are parsed. 1771 if (auto *ce = dyn_cast<llvm::ConstantExpr>(pf)) { 1772 if (ce->getOpcode() == llvm::Instruction::BitCast && 1773 ce->getType() == llvm::PointerType::getUnqual(f->getContext())) { 1774 if (auto *func = dyn_cast<llvm::Function>(ce->getOperand(0))) 1775 return SymbolRefAttr::get(builder.getContext(), func->getName()); 1776 } 1777 } 1778 return FlatSymbolRefAttr(); 1779 } 1780 1781 static void processMemoryEffects(llvm::Function *func, LLVMFuncOp funcOp) { 1782 llvm::MemoryEffects memEffects = func->getMemoryEffects(); 1783 1784 auto othermem = convertModRefInfoFromLLVM( 1785 memEffects.getModRef(llvm::MemoryEffects::Location::Other)); 1786 auto argMem = convertModRefInfoFromLLVM( 1787 memEffects.getModRef(llvm::MemoryEffects::Location::ArgMem)); 1788 auto inaccessibleMem = convertModRefInfoFromLLVM( 1789 memEffects.getModRef(llvm::MemoryEffects::Location::InaccessibleMem)); 1790 auto memAttr = MemoryEffectsAttr::get(funcOp.getContext(), othermem, argMem, 1791 inaccessibleMem); 1792 // Only set the attr when it does not match the default value. 1793 if (memAttr.isReadWrite()) 1794 return; 1795 funcOp.setMemoryEffectsAttr(memAttr); 1796 } 1797 1798 // List of LLVM IR attributes that map to an explicit attribute on the MLIR 1799 // LLVMFuncOp. 1800 static constexpr std::array kExplicitAttributes{ 1801 StringLiteral("aarch64_in_za"), 1802 StringLiteral("aarch64_inout_za"), 1803 StringLiteral("aarch64_new_za"), 1804 StringLiteral("aarch64_out_za"), 1805 StringLiteral("aarch64_preserves_za"), 1806 StringLiteral("aarch64_pstate_sm_body"), 1807 StringLiteral("aarch64_pstate_sm_compatible"), 1808 StringLiteral("aarch64_pstate_sm_enabled"), 1809 StringLiteral("alwaysinline"), 1810 StringLiteral("approx-func-fp-math"), 1811 StringLiteral("convergent"), 1812 StringLiteral("denormal-fp-math"), 1813 StringLiteral("denormal-fp-math-f32"), 1814 StringLiteral("fp-contract"), 1815 StringLiteral("frame-pointer"), 1816 StringLiteral("no-infs-fp-math"), 1817 StringLiteral("no-nans-fp-math"), 1818 StringLiteral("no-signed-zeros-fp-math"), 1819 StringLiteral("noinline"), 1820 StringLiteral("nounwind"), 1821 StringLiteral("optnone"), 1822 StringLiteral("target-features"), 1823 StringLiteral("tune-cpu"), 1824 StringLiteral("unsafe-fp-math"), 1825 StringLiteral("vscale_range"), 1826 StringLiteral("willreturn"), 1827 }; 1828 1829 static void processPassthroughAttrs(llvm::Function *func, LLVMFuncOp funcOp) { 1830 MLIRContext *context = funcOp.getContext(); 1831 SmallVector<Attribute> passthroughs; 1832 llvm::AttributeSet funcAttrs = func->getAttributes().getAttributes( 1833 llvm::AttributeList::AttrIndex::FunctionIndex); 1834 for (llvm::Attribute attr : funcAttrs) { 1835 // Skip the memory attribute since the LLVMFuncOp has an explicit memory 1836 // attribute. 1837 if (attr.hasAttribute(llvm::Attribute::Memory)) 1838 continue; 1839 1840 // Skip invalid type attributes. 1841 if (attr.isTypeAttribute()) { 1842 emitWarning(funcOp.getLoc(), 1843 "type attributes on a function are invalid, skipping it"); 1844 continue; 1845 } 1846 1847 StringRef attrName; 1848 if (attr.isStringAttribute()) 1849 attrName = attr.getKindAsString(); 1850 else 1851 attrName = llvm::Attribute::getNameFromAttrKind(attr.getKindAsEnum()); 1852 auto keyAttr = StringAttr::get(context, attrName); 1853 1854 // Skip attributes that map to an explicit attribute on the LLVMFuncOp. 1855 if (llvm::is_contained(kExplicitAttributes, attrName)) 1856 continue; 1857 1858 if (attr.isStringAttribute()) { 1859 StringRef val = attr.getValueAsString(); 1860 if (val.empty()) { 1861 passthroughs.push_back(keyAttr); 1862 continue; 1863 } 1864 passthroughs.push_back( 1865 ArrayAttr::get(context, {keyAttr, StringAttr::get(context, val)})); 1866 continue; 1867 } 1868 if (attr.isIntAttribute()) { 1869 auto val = std::to_string(attr.getValueAsInt()); 1870 passthroughs.push_back( 1871 ArrayAttr::get(context, {keyAttr, StringAttr::get(context, val)})); 1872 continue; 1873 } 1874 if (attr.isEnumAttribute()) { 1875 passthroughs.push_back(keyAttr); 1876 continue; 1877 } 1878 1879 llvm_unreachable("unexpected attribute kind"); 1880 } 1881 1882 if (!passthroughs.empty()) 1883 funcOp.setPassthroughAttr(ArrayAttr::get(context, passthroughs)); 1884 } 1885 1886 void ModuleImport::processFunctionAttributes(llvm::Function *func, 1887 LLVMFuncOp funcOp) { 1888 processMemoryEffects(func, funcOp); 1889 processPassthroughAttrs(func, funcOp); 1890 1891 if (func->hasFnAttribute(llvm::Attribute::NoInline)) 1892 funcOp.setNoInline(true); 1893 if (func->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1894 funcOp.setAlwaysInline(true); 1895 if (func->hasFnAttribute(llvm::Attribute::OptimizeNone)) 1896 funcOp.setOptimizeNone(true); 1897 if (func->hasFnAttribute(llvm::Attribute::Convergent)) 1898 funcOp.setConvergent(true); 1899 if (func->hasFnAttribute(llvm::Attribute::NoUnwind)) 1900 funcOp.setNoUnwind(true); 1901 if (func->hasFnAttribute(llvm::Attribute::WillReturn)) 1902 funcOp.setWillReturn(true); 1903 1904 if (func->hasFnAttribute("aarch64_pstate_sm_enabled")) 1905 funcOp.setArmStreaming(true); 1906 else if (func->hasFnAttribute("aarch64_pstate_sm_body")) 1907 funcOp.setArmLocallyStreaming(true); 1908 else if (func->hasFnAttribute("aarch64_pstate_sm_compatible")) 1909 funcOp.setArmStreamingCompatible(true); 1910 1911 if (func->hasFnAttribute("aarch64_new_za")) 1912 funcOp.setArmNewZa(true); 1913 else if (func->hasFnAttribute("aarch64_in_za")) 1914 funcOp.setArmInZa(true); 1915 else if (func->hasFnAttribute("aarch64_out_za")) 1916 funcOp.setArmOutZa(true); 1917 else if (func->hasFnAttribute("aarch64_inout_za")) 1918 funcOp.setArmInoutZa(true); 1919 else if (func->hasFnAttribute("aarch64_preserves_za")) 1920 funcOp.setArmPreservesZa(true); 1921 1922 llvm::Attribute attr = func->getFnAttribute(llvm::Attribute::VScaleRange); 1923 if (attr.isValid()) { 1924 MLIRContext *context = funcOp.getContext(); 1925 auto intTy = IntegerType::get(context, 32); 1926 funcOp.setVscaleRangeAttr(LLVM::VScaleRangeAttr::get( 1927 context, IntegerAttr::get(intTy, attr.getVScaleRangeMin()), 1928 IntegerAttr::get(intTy, attr.getVScaleRangeMax().value_or(0)))); 1929 } 1930 1931 // Process frame-pointer attribute. 1932 if (func->hasFnAttribute("frame-pointer")) { 1933 StringRef stringRefFramePointerKind = 1934 func->getFnAttribute("frame-pointer").getValueAsString(); 1935 funcOp.setFramePointerAttr(LLVM::FramePointerKindAttr::get( 1936 funcOp.getContext(), LLVM::framePointerKind::symbolizeFramePointerKind( 1937 stringRefFramePointerKind) 1938 .value())); 1939 } 1940 1941 if (llvm::Attribute attr = func->getFnAttribute("target-cpu"); 1942 attr.isStringAttribute()) 1943 funcOp.setTargetCpuAttr(StringAttr::get(context, attr.getValueAsString())); 1944 1945 if (llvm::Attribute attr = func->getFnAttribute("tune-cpu"); 1946 attr.isStringAttribute()) 1947 funcOp.setTuneCpuAttr(StringAttr::get(context, attr.getValueAsString())); 1948 1949 if (llvm::Attribute attr = func->getFnAttribute("target-features"); 1950 attr.isStringAttribute()) 1951 funcOp.setTargetFeaturesAttr( 1952 LLVM::TargetFeaturesAttr::get(context, attr.getValueAsString())); 1953 1954 if (llvm::Attribute attr = func->getFnAttribute("unsafe-fp-math"); 1955 attr.isStringAttribute()) 1956 funcOp.setUnsafeFpMath(attr.getValueAsBool()); 1957 1958 if (llvm::Attribute attr = func->getFnAttribute("no-infs-fp-math"); 1959 attr.isStringAttribute()) 1960 funcOp.setNoInfsFpMath(attr.getValueAsBool()); 1961 1962 if (llvm::Attribute attr = func->getFnAttribute("no-nans-fp-math"); 1963 attr.isStringAttribute()) 1964 funcOp.setNoNansFpMath(attr.getValueAsBool()); 1965 1966 if (llvm::Attribute attr = func->getFnAttribute("approx-func-fp-math"); 1967 attr.isStringAttribute()) 1968 funcOp.setApproxFuncFpMath(attr.getValueAsBool()); 1969 1970 if (llvm::Attribute attr = func->getFnAttribute("no-signed-zeros-fp-math"); 1971 attr.isStringAttribute()) 1972 funcOp.setNoSignedZerosFpMath(attr.getValueAsBool()); 1973 1974 if (llvm::Attribute attr = func->getFnAttribute("denormal-fp-math"); 1975 attr.isStringAttribute()) 1976 funcOp.setDenormalFpMathAttr( 1977 StringAttr::get(context, attr.getValueAsString())); 1978 1979 if (llvm::Attribute attr = func->getFnAttribute("denormal-fp-math-f32"); 1980 attr.isStringAttribute()) 1981 funcOp.setDenormalFpMathF32Attr( 1982 StringAttr::get(context, attr.getValueAsString())); 1983 1984 if (llvm::Attribute attr = func->getFnAttribute("fp-contract"); 1985 attr.isStringAttribute()) 1986 funcOp.setFpContractAttr(StringAttr::get(context, attr.getValueAsString())); 1987 } 1988 1989 DictionaryAttr 1990 ModuleImport::convertParameterAttribute(llvm::AttributeSet llvmParamAttrs, 1991 OpBuilder &builder) { 1992 SmallVector<NamedAttribute> paramAttrs; 1993 for (auto [llvmKind, mlirName] : getAttrKindToNameMapping()) { 1994 auto llvmAttr = llvmParamAttrs.getAttribute(llvmKind); 1995 // Skip attributes that are not attached. 1996 if (!llvmAttr.isValid()) 1997 continue; 1998 Attribute mlirAttr; 1999 if (llvmAttr.isTypeAttribute()) 2000 mlirAttr = TypeAttr::get(convertType(llvmAttr.getValueAsType())); 2001 else if (llvmAttr.isIntAttribute()) 2002 mlirAttr = builder.getI64IntegerAttr(llvmAttr.getValueAsInt()); 2003 else if (llvmAttr.isEnumAttribute()) 2004 mlirAttr = builder.getUnitAttr(); 2005 else 2006 llvm_unreachable("unexpected parameter attribute kind"); 2007 paramAttrs.push_back(builder.getNamedAttr(mlirName, mlirAttr)); 2008 } 2009 2010 return builder.getDictionaryAttr(paramAttrs); 2011 } 2012 2013 void ModuleImport::convertParameterAttributes(llvm::Function *func, 2014 LLVMFuncOp funcOp, 2015 OpBuilder &builder) { 2016 auto llvmAttrs = func->getAttributes(); 2017 for (size_t i = 0, e = funcOp.getNumArguments(); i < e; ++i) { 2018 llvm::AttributeSet llvmArgAttrs = llvmAttrs.getParamAttrs(i); 2019 funcOp.setArgAttrs(i, convertParameterAttribute(llvmArgAttrs, builder)); 2020 } 2021 // Convert the result attributes and attach them wrapped in an ArrayAttribute 2022 // to the funcOp. 2023 llvm::AttributeSet llvmResAttr = llvmAttrs.getRetAttrs(); 2024 if (!llvmResAttr.hasAttributes()) 2025 return; 2026 funcOp.setResAttrsAttr( 2027 builder.getArrayAttr(convertParameterAttribute(llvmResAttr, builder))); 2028 } 2029 2030 LogicalResult ModuleImport::processFunction(llvm::Function *func) { 2031 clearRegionState(); 2032 2033 auto functionType = 2034 dyn_cast<LLVMFunctionType>(convertType(func->getFunctionType())); 2035 if (func->isIntrinsic() && 2036 iface.isConvertibleIntrinsic(func->getIntrinsicID())) 2037 return success(); 2038 2039 bool dsoLocal = func->hasLocalLinkage(); 2040 CConv cconv = convertCConvFromLLVM(func->getCallingConv()); 2041 2042 // Insert the function at the end of the module. 2043 OpBuilder::InsertionGuard guard(builder); 2044 builder.setInsertionPoint(mlirModule.getBody(), mlirModule.getBody()->end()); 2045 2046 Location loc = debugImporter->translateFuncLocation(func); 2047 LLVMFuncOp funcOp = builder.create<LLVMFuncOp>( 2048 loc, func->getName(), functionType, 2049 convertLinkageFromLLVM(func->getLinkage()), dsoLocal, cconv); 2050 2051 convertParameterAttributes(func, funcOp, builder); 2052 2053 if (FlatSymbolRefAttr personality = getPersonalityAsAttr(func)) 2054 funcOp.setPersonalityAttr(personality); 2055 else if (func->hasPersonalityFn()) 2056 emitWarning(funcOp.getLoc(), "could not deduce personality, skipping it"); 2057 2058 if (func->hasGC()) 2059 funcOp.setGarbageCollector(StringRef(func->getGC())); 2060 2061 if (func->hasAtLeastLocalUnnamedAddr()) 2062 funcOp.setUnnamedAddr(convertUnnamedAddrFromLLVM(func->getUnnamedAddr())); 2063 2064 if (func->hasSection()) 2065 funcOp.setSection(StringRef(func->getSection())); 2066 2067 funcOp.setVisibility_(convertVisibilityFromLLVM(func->getVisibility())); 2068 2069 if (func->hasComdat()) 2070 funcOp.setComdatAttr(comdatMapping.lookup(func->getComdat())); 2071 2072 if (llvm::MaybeAlign maybeAlign = func->getAlign()) 2073 funcOp.setAlignment(maybeAlign->value()); 2074 2075 // Handle Function attributes. 2076 processFunctionAttributes(func, funcOp); 2077 2078 // Convert non-debug metadata by using the dialect interface. 2079 SmallVector<std::pair<unsigned, llvm::MDNode *>> allMetadata; 2080 func->getAllMetadata(allMetadata); 2081 for (auto &[kind, node] : allMetadata) { 2082 if (!iface.isConvertibleMetadata(kind)) 2083 continue; 2084 if (failed(iface.setMetadataAttrs(builder, kind, node, funcOp, *this))) { 2085 emitWarning(funcOp.getLoc()) 2086 << "unhandled function metadata: " << diagMD(node, llvmModule.get()) 2087 << " on " << diag(*func); 2088 } 2089 } 2090 2091 if (func->isDeclaration()) 2092 return success(); 2093 2094 // Collect the set of basic blocks reachable from the function's entry block. 2095 // This step is crucial as LLVM IR can contain unreachable blocks that 2096 // self-dominate. As a result, an operation might utilize a variable it 2097 // defines, which the import does not support. Given that MLIR lacks block 2098 // label support, we can safely remove unreachable blocks, as there are no 2099 // indirect branch instructions that could potentially target these blocks. 2100 llvm::df_iterator_default_set<llvm::BasicBlock *> reachable; 2101 for (llvm::BasicBlock *basicBlock : llvm::depth_first_ext(func, reachable)) 2102 (void)basicBlock; 2103 2104 // Eagerly create all reachable blocks. 2105 SmallVector<llvm::BasicBlock *> reachableBasicBlocks; 2106 for (llvm::BasicBlock &basicBlock : *func) { 2107 // Skip unreachable blocks. 2108 if (!reachable.contains(&basicBlock)) 2109 continue; 2110 Region &body = funcOp.getBody(); 2111 Block *block = builder.createBlock(&body, body.end()); 2112 mapBlock(&basicBlock, block); 2113 reachableBasicBlocks.push_back(&basicBlock); 2114 } 2115 2116 // Add function arguments to the entry block. 2117 for (const auto &it : llvm::enumerate(func->args())) { 2118 BlockArgument blockArg = funcOp.getFunctionBody().addArgument( 2119 functionType.getParamType(it.index()), funcOp.getLoc()); 2120 mapValue(&it.value(), blockArg); 2121 } 2122 2123 // Process the blocks in topological order. The ordered traversal ensures 2124 // operands defined in a dominating block have a valid mapping to an MLIR 2125 // value once a block is translated. 2126 SetVector<llvm::BasicBlock *> blocks = 2127 getTopologicallySortedBlocks(reachableBasicBlocks); 2128 setConstantInsertionPointToStart(lookupBlock(blocks.front())); 2129 for (llvm::BasicBlock *basicBlock : blocks) 2130 if (failed(processBasicBlock(basicBlock, lookupBlock(basicBlock)))) 2131 return failure(); 2132 2133 // Process the debug intrinsics that require a delayed conversion after 2134 // everything else was converted. 2135 if (failed(processDebugIntrinsics())) 2136 return failure(); 2137 2138 return success(); 2139 } 2140 2141 /// Checks if `dbgIntr` is a kill location that holds metadata instead of an SSA 2142 /// value. 2143 static bool isMetadataKillLocation(llvm::DbgVariableIntrinsic *dbgIntr) { 2144 if (!dbgIntr->isKillLocation()) 2145 return false; 2146 llvm::Value *value = dbgIntr->getArgOperand(0); 2147 auto *nodeAsVal = dyn_cast<llvm::MetadataAsValue>(value); 2148 if (!nodeAsVal) 2149 return false; 2150 return !isa<llvm::ValueAsMetadata>(nodeAsVal->getMetadata()); 2151 } 2152 2153 LogicalResult 2154 ModuleImport::processDebugIntrinsic(llvm::DbgVariableIntrinsic *dbgIntr, 2155 DominanceInfo &domInfo) { 2156 Location loc = translateLoc(dbgIntr->getDebugLoc()); 2157 auto emitUnsupportedWarning = [&]() { 2158 if (emitExpensiveWarnings) 2159 emitWarning(loc) << "dropped intrinsic: " << diag(*dbgIntr); 2160 return success(); 2161 }; 2162 // Drop debug intrinsics with arg lists. 2163 // TODO: Support debug intrinsics that have arg lists. 2164 if (dbgIntr->hasArgList()) 2165 return emitUnsupportedWarning(); 2166 // Kill locations can have metadata nodes as location operand. This 2167 // cannot be converted to poison as the type cannot be reconstructed. 2168 // TODO: find a way to support this case. 2169 if (isMetadataKillLocation(dbgIntr)) 2170 return emitUnsupportedWarning(); 2171 // Drop debug intrinsics if the associated variable information cannot be 2172 // translated due to cyclic debug metadata. 2173 // TODO: Support cyclic debug metadata. 2174 DILocalVariableAttr localVariableAttr = 2175 matchLocalVariableAttr(dbgIntr->getArgOperand(1)); 2176 if (!localVariableAttr) 2177 return emitUnsupportedWarning(); 2178 FailureOr<Value> argOperand = convertMetadataValue(dbgIntr->getArgOperand(0)); 2179 if (failed(argOperand)) 2180 return emitError(loc) << "failed to convert a debug intrinsic operand: " 2181 << diag(*dbgIntr); 2182 2183 // Ensure that the debug instrinsic is inserted right after its operand is 2184 // defined. Otherwise, the operand might not necessarily dominate the 2185 // intrinsic. If the defining operation is a terminator, insert the intrinsic 2186 // into a dominated block. 2187 OpBuilder::InsertionGuard guard(builder); 2188 if (Operation *op = argOperand->getDefiningOp(); 2189 op && op->hasTrait<OpTrait::IsTerminator>()) { 2190 // Find a dominated block that can hold the debug intrinsic. 2191 auto dominatedBlocks = domInfo.getNode(op->getBlock())->children(); 2192 // If no block is dominated by the terminator, this intrinisc cannot be 2193 // converted. 2194 if (dominatedBlocks.empty()) 2195 return emitUnsupportedWarning(); 2196 // Set insertion point before the terminator, to avoid inserting something 2197 // before landingpads. 2198 Block *dominatedBlock = (*dominatedBlocks.begin())->getBlock(); 2199 builder.setInsertionPoint(dominatedBlock->getTerminator()); 2200 } else { 2201 builder.setInsertionPointAfterValue(*argOperand); 2202 } 2203 auto locationExprAttr = 2204 debugImporter->translateExpression(dbgIntr->getExpression()); 2205 Operation *op = 2206 llvm::TypeSwitch<llvm::DbgVariableIntrinsic *, Operation *>(dbgIntr) 2207 .Case([&](llvm::DbgDeclareInst *) { 2208 return builder.create<LLVM::DbgDeclareOp>( 2209 loc, *argOperand, localVariableAttr, locationExprAttr); 2210 }) 2211 .Case([&](llvm::DbgValueInst *) { 2212 return builder.create<LLVM::DbgValueOp>( 2213 loc, *argOperand, localVariableAttr, locationExprAttr); 2214 }); 2215 mapNoResultOp(dbgIntr, op); 2216 setNonDebugMetadataAttrs(dbgIntr, op); 2217 return success(); 2218 } 2219 2220 LogicalResult ModuleImport::processDebugIntrinsics() { 2221 DominanceInfo domInfo; 2222 for (llvm::Instruction *inst : debugIntrinsics) { 2223 auto *intrCall = cast<llvm::DbgVariableIntrinsic>(inst); 2224 if (failed(processDebugIntrinsic(intrCall, domInfo))) 2225 return failure(); 2226 } 2227 return success(); 2228 } 2229 2230 LogicalResult ModuleImport::processBasicBlock(llvm::BasicBlock *bb, 2231 Block *block) { 2232 builder.setInsertionPointToStart(block); 2233 for (llvm::Instruction &inst : *bb) { 2234 if (failed(processInstruction(&inst))) 2235 return failure(); 2236 2237 // Skip additional processing when the instructions is a debug intrinsics 2238 // that was not yet converted. 2239 if (debugIntrinsics.contains(&inst)) 2240 continue; 2241 2242 // Set the non-debug metadata attributes on the imported operation and emit 2243 // a warning if an instruction other than a phi instruction is dropped 2244 // during the import. 2245 if (Operation *op = lookupOperation(&inst)) { 2246 setNonDebugMetadataAttrs(&inst, op); 2247 } else if (inst.getOpcode() != llvm::Instruction::PHI) { 2248 if (emitExpensiveWarnings) { 2249 Location loc = debugImporter->translateLoc(inst.getDebugLoc()); 2250 emitWarning(loc) << "dropped instruction: " << diag(inst); 2251 } 2252 } 2253 } 2254 return success(); 2255 } 2256 2257 FailureOr<SmallVector<AccessGroupAttr>> 2258 ModuleImport::lookupAccessGroupAttrs(const llvm::MDNode *node) const { 2259 return loopAnnotationImporter->lookupAccessGroupAttrs(node); 2260 } 2261 2262 LoopAnnotationAttr 2263 ModuleImport::translateLoopAnnotationAttr(const llvm::MDNode *node, 2264 Location loc) const { 2265 return loopAnnotationImporter->translateLoopAnnotation(node, loc); 2266 } 2267 2268 OwningOpRef<ModuleOp> 2269 mlir::translateLLVMIRToModule(std::unique_ptr<llvm::Module> llvmModule, 2270 MLIRContext *context, bool emitExpensiveWarnings, 2271 bool dropDICompositeTypeElements) { 2272 // Preload all registered dialects to allow the import to iterate the 2273 // registered LLVMImportDialectInterface implementations and query the 2274 // supported LLVM IR constructs before starting the translation. Assumes the 2275 // LLVM and DLTI dialects that convert the core LLVM IR constructs have been 2276 // registered before. 2277 assert(llvm::is_contained(context->getAvailableDialects(), 2278 LLVMDialect::getDialectNamespace())); 2279 assert(llvm::is_contained(context->getAvailableDialects(), 2280 DLTIDialect::getDialectNamespace())); 2281 context->loadAllAvailableDialects(); 2282 OwningOpRef<ModuleOp> module(ModuleOp::create(FileLineColLoc::get( 2283 StringAttr::get(context, llvmModule->getSourceFileName()), /*line=*/0, 2284 /*column=*/0))); 2285 2286 ModuleImport moduleImport(module.get(), std::move(llvmModule), 2287 emitExpensiveWarnings, dropDICompositeTypeElements); 2288 if (failed(moduleImport.initializeImportInterface())) 2289 return {}; 2290 if (failed(moduleImport.convertDataLayout())) 2291 return {}; 2292 if (failed(moduleImport.convertComdats())) 2293 return {}; 2294 if (failed(moduleImport.convertMetadata())) 2295 return {}; 2296 if (failed(moduleImport.convertGlobals())) 2297 return {}; 2298 if (failed(moduleImport.convertFunctions())) 2299 return {}; 2300 2301 return module; 2302 } 2303