xref: /llvm-project/mlir/lib/Target/LLVMIR/ModuleImport.cpp (revision b3533a156da92262eb19429d8c12f53e87f5ccec)
1 //===- ModuleImport.cpp - LLVM to MLIR conversion ---------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the import of an LLVM IR module into an LLVM dialect
10 // module.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Target/LLVMIR/ModuleImport.h"
15 #include "mlir/IR/BuiltinAttributes.h"
16 #include "mlir/Target/LLVMIR/Import.h"
17 
18 #include "AttrKindDetail.h"
19 #include "DataLayoutImporter.h"
20 #include "DebugImporter.h"
21 #include "LoopAnnotationImporter.h"
22 
23 #include "mlir/Dialect/DLTI/DLTI.h"
24 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
25 #include "mlir/IR/Builders.h"
26 #include "mlir/IR/Matchers.h"
27 #include "mlir/Interfaces/DataLayoutInterfaces.h"
28 #include "mlir/Tools/mlir-translate/Translation.h"
29 
30 #include "llvm/ADT/DepthFirstIterator.h"
31 #include "llvm/ADT/PostOrderIterator.h"
32 #include "llvm/ADT/ScopeExit.h"
33 #include "llvm/ADT/StringSet.h"
34 #include "llvm/ADT/TypeSwitch.h"
35 #include "llvm/IR/Comdat.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/InstIterator.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/Support/ModRef.h"
44 
45 using namespace mlir;
46 using namespace mlir::LLVM;
47 using namespace mlir::LLVM::detail;
48 
49 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsFromLLVM.inc"
50 
51 // Utility to print an LLVM value as a string for passing to emitError().
52 // FIXME: Diagnostic should be able to natively handle types that have
53 // operator << (raw_ostream&) defined.
54 static std::string diag(const llvm::Value &value) {
55   std::string str;
56   llvm::raw_string_ostream os(str);
57   os << value;
58   return str;
59 }
60 
61 // Utility to print an LLVM metadata node as a string for passing
62 // to emitError(). The module argument is needed to print the nodes
63 // canonically numbered.
64 static std::string diagMD(const llvm::Metadata *node,
65                           const llvm::Module *module) {
66   std::string str;
67   llvm::raw_string_ostream os(str);
68   node->print(os, module, /*IsForDebug=*/true);
69   return str;
70 }
71 
72 /// Returns the name of the global_ctors global variables.
73 static constexpr StringRef getGlobalCtorsVarName() {
74   return "llvm.global_ctors";
75 }
76 
77 /// Prefix used for symbols of nameless llvm globals.
78 static constexpr StringRef getNamelessGlobalPrefix() {
79   return "mlir.llvm.nameless_global";
80 }
81 
82 /// Returns the name of the global_dtors global variables.
83 static constexpr StringRef getGlobalDtorsVarName() {
84   return "llvm.global_dtors";
85 }
86 
87 /// Returns the symbol name for the module-level comdat operation. It must not
88 /// conflict with the user namespace.
89 static constexpr StringRef getGlobalComdatOpName() {
90   return "__llvm_global_comdat";
91 }
92 
93 /// Converts the sync scope identifier of `inst` to the string representation
94 /// necessary to build an atomic LLVM dialect operation. Returns the empty
95 /// string if the operation has either no sync scope or the default system-level
96 /// sync scope attached. The atomic operations only set their sync scope
97 /// attribute if they have a non-default sync scope attached.
98 static StringRef getLLVMSyncScope(llvm::Instruction *inst) {
99   std::optional<llvm::SyncScope::ID> syncScopeID =
100       llvm::getAtomicSyncScopeID(inst);
101   if (!syncScopeID)
102     return "";
103 
104   // Search the sync scope name for the given identifier. The default
105   // system-level sync scope thereby maps to the empty string.
106   SmallVector<StringRef> syncScopeName;
107   llvm::LLVMContext &llvmContext = inst->getContext();
108   llvmContext.getSyncScopeNames(syncScopeName);
109   auto *it = llvm::find_if(syncScopeName, [&](StringRef name) {
110     return *syncScopeID == llvmContext.getOrInsertSyncScopeID(name);
111   });
112   if (it != syncScopeName.end())
113     return *it;
114   llvm_unreachable("incorrect sync scope identifier");
115 }
116 
117 /// Converts an array of unsigned indices to a signed integer position array.
118 static SmallVector<int64_t> getPositionFromIndices(ArrayRef<unsigned> indices) {
119   SmallVector<int64_t> position;
120   llvm::append_range(position, indices);
121   return position;
122 }
123 
124 /// Converts the LLVM instructions that have a generated MLIR builder. Using a
125 /// static implementation method called from the module import ensures the
126 /// builders have to use the `moduleImport` argument and cannot directly call
127 /// import methods. As a result, both the intrinsic and the instruction MLIR
128 /// builders have to use the `moduleImport` argument and none of them has direct
129 /// access to the private module import methods.
130 static LogicalResult convertInstructionImpl(OpBuilder &odsBuilder,
131                                             llvm::Instruction *inst,
132                                             ModuleImport &moduleImport,
133                                             LLVMImportInterface &iface) {
134   // Copy the operands to an LLVM operands array reference for conversion.
135   SmallVector<llvm::Value *> operands(inst->operands());
136   ArrayRef<llvm::Value *> llvmOperands(operands);
137 
138   // Convert all instructions that provide an MLIR builder.
139   if (iface.isConvertibleInstruction(inst->getOpcode()))
140     return iface.convertInstruction(odsBuilder, inst, llvmOperands,
141                                     moduleImport);
142     // TODO: Implement the `convertInstruction` hooks in the
143     // `LLVMDialectLLVMIRImportInterface` and move the following include there.
144 #include "mlir/Dialect/LLVMIR/LLVMOpFromLLVMIRConversions.inc"
145   return failure();
146 }
147 
148 /// Get a topologically sorted list of blocks for the given basic blocks.
149 static SetVector<llvm::BasicBlock *>
150 getTopologicallySortedBlocks(ArrayRef<llvm::BasicBlock *> basicBlocks) {
151   SetVector<llvm::BasicBlock *> blocks;
152   for (llvm::BasicBlock *basicBlock : basicBlocks) {
153     if (!blocks.contains(basicBlock)) {
154       llvm::ReversePostOrderTraversal<llvm::BasicBlock *> traversal(basicBlock);
155       blocks.insert(traversal.begin(), traversal.end());
156     }
157   }
158   assert(blocks.size() == basicBlocks.size() && "some blocks are not sorted");
159   return blocks;
160 }
161 
162 ModuleImport::ModuleImport(ModuleOp mlirModule,
163                            std::unique_ptr<llvm::Module> llvmModule,
164                            bool emitExpensiveWarnings,
165                            bool importEmptyDICompositeTypes)
166     : builder(mlirModule->getContext()), context(mlirModule->getContext()),
167       mlirModule(mlirModule), llvmModule(std::move(llvmModule)),
168       iface(mlirModule->getContext()),
169       typeTranslator(*mlirModule->getContext()),
170       debugImporter(std::make_unique<DebugImporter>(
171           mlirModule, importEmptyDICompositeTypes)),
172       loopAnnotationImporter(
173           std::make_unique<LoopAnnotationImporter>(*this, builder)),
174       emitExpensiveWarnings(emitExpensiveWarnings) {
175   builder.setInsertionPointToStart(mlirModule.getBody());
176 }
177 
178 ComdatOp ModuleImport::getGlobalComdatOp() {
179   if (globalComdatOp)
180     return globalComdatOp;
181 
182   OpBuilder::InsertionGuard guard(builder);
183   builder.setInsertionPointToEnd(mlirModule.getBody());
184   globalComdatOp =
185       builder.create<ComdatOp>(mlirModule.getLoc(), getGlobalComdatOpName());
186   globalInsertionOp = globalComdatOp;
187   return globalComdatOp;
188 }
189 
190 LogicalResult ModuleImport::processTBAAMetadata(const llvm::MDNode *node) {
191   Location loc = mlirModule.getLoc();
192 
193   // If `node` is a valid TBAA root node, then return its optional identity
194   // string, otherwise return failure.
195   auto getIdentityIfRootNode =
196       [&](const llvm::MDNode *node) -> FailureOr<std::optional<StringRef>> {
197     // Root node, e.g.:
198     //   !0 = !{!"Simple C/C++ TBAA"}
199     //   !1 = !{}
200     if (node->getNumOperands() > 1)
201       return failure();
202     // If the operand is MDString, then assume that this is a root node.
203     if (node->getNumOperands() == 1)
204       if (const auto *op0 = dyn_cast<const llvm::MDString>(node->getOperand(0)))
205         return std::optional<StringRef>{op0->getString()};
206     return std::optional<StringRef>{};
207   };
208 
209   // If `node` looks like a TBAA type descriptor metadata,
210   // then return true, if it is a valid node, and false otherwise.
211   // If it does not look like a TBAA type descriptor metadata, then
212   // return std::nullopt.
213   // If `identity` and `memberTypes/Offsets` are non-null, then they will
214   // contain the converted metadata operands for a valid TBAA node (i.e. when
215   // true is returned).
216   auto isTypeDescriptorNode = [&](const llvm::MDNode *node,
217                                   StringRef *identity = nullptr,
218                                   SmallVectorImpl<TBAAMemberAttr> *members =
219                                       nullptr) -> std::optional<bool> {
220     unsigned numOperands = node->getNumOperands();
221     // Type descriptor, e.g.:
222     //   !1 = !{!"int", !0, /*optional*/i64 0} /* scalar int type */
223     //   !2 = !{!"agg_t", !1, i64 0} /* struct agg_t { int x; } */
224     if (numOperands < 2)
225       return std::nullopt;
226 
227     // TODO: support "new" format (D41501) for type descriptors,
228     //       where the first operand is an MDNode.
229     const auto *identityNode =
230         dyn_cast<const llvm::MDString>(node->getOperand(0));
231     if (!identityNode)
232       return std::nullopt;
233 
234     // This should be a type descriptor node.
235     if (identity)
236       *identity = identityNode->getString();
237 
238     for (unsigned pairNum = 0, e = numOperands / 2; pairNum < e; ++pairNum) {
239       const auto *memberNode =
240           dyn_cast<const llvm::MDNode>(node->getOperand(2 * pairNum + 1));
241       if (!memberNode) {
242         emitError(loc) << "operand '" << 2 * pairNum + 1 << "' must be MDNode: "
243                        << diagMD(node, llvmModule.get());
244         return false;
245       }
246       int64_t offset = 0;
247       if (2 * pairNum + 2 >= numOperands) {
248         // Allow for optional 0 offset in 2-operand nodes.
249         if (numOperands != 2) {
250           emitError(loc) << "missing member offset: "
251                          << diagMD(node, llvmModule.get());
252           return false;
253         }
254       } else {
255         auto *offsetCI = llvm::mdconst::dyn_extract<llvm::ConstantInt>(
256             node->getOperand(2 * pairNum + 2));
257         if (!offsetCI) {
258           emitError(loc) << "operand '" << 2 * pairNum + 2
259                          << "' must be ConstantInt: "
260                          << diagMD(node, llvmModule.get());
261           return false;
262         }
263         offset = offsetCI->getZExtValue();
264       }
265 
266       if (members)
267         members->push_back(TBAAMemberAttr::get(
268             cast<TBAANodeAttr>(tbaaMapping.lookup(memberNode)), offset));
269     }
270 
271     return true;
272   };
273 
274   // If `node` looks like a TBAA access tag metadata,
275   // then return true, if it is a valid node, and false otherwise.
276   // If it does not look like a TBAA access tag metadata, then
277   // return std::nullopt.
278   // If the other arguments are non-null, then they will contain
279   // the converted metadata operands for a valid TBAA node (i.e. when true is
280   // returned).
281   auto isTagNode = [&](const llvm::MDNode *node,
282                        TBAATypeDescriptorAttr *baseAttr = nullptr,
283                        TBAATypeDescriptorAttr *accessAttr = nullptr,
284                        int64_t *offset = nullptr,
285                        bool *isConstant = nullptr) -> std::optional<bool> {
286     // Access tag, e.g.:
287     //   !3 = !{!1, !1, i64 0} /* scalar int access */
288     //   !4 = !{!2, !1, i64 0} /* agg_t::x access */
289     //
290     // Optional 4th argument is ConstantInt 0/1 identifying whether
291     // the location being accessed is "constant" (see for details:
292     // https://llvm.org/docs/LangRef.html#representation).
293     unsigned numOperands = node->getNumOperands();
294     if (numOperands != 3 && numOperands != 4)
295       return std::nullopt;
296     const auto *baseMD = dyn_cast<const llvm::MDNode>(node->getOperand(0));
297     const auto *accessMD = dyn_cast<const llvm::MDNode>(node->getOperand(1));
298     auto *offsetCI =
299         llvm::mdconst::dyn_extract<llvm::ConstantInt>(node->getOperand(2));
300     if (!baseMD || !accessMD || !offsetCI)
301       return std::nullopt;
302     // TODO: support "new" TBAA format, if needed (see D41501).
303     // In the "old" format the first operand of the access type
304     // metadata is MDString. We have to distinguish the formats,
305     // because access tags have the same structure, but different
306     // meaning for the operands.
307     if (accessMD->getNumOperands() < 1 ||
308         !isa<llvm::MDString>(accessMD->getOperand(0)))
309       return std::nullopt;
310     bool isConst = false;
311     if (numOperands == 4) {
312       auto *isConstantCI =
313           llvm::mdconst::dyn_extract<llvm::ConstantInt>(node->getOperand(3));
314       if (!isConstantCI) {
315         emitError(loc) << "operand '3' must be ConstantInt: "
316                        << diagMD(node, llvmModule.get());
317         return false;
318       }
319       isConst = isConstantCI->getValue()[0];
320     }
321     if (baseAttr)
322       *baseAttr = cast<TBAATypeDescriptorAttr>(tbaaMapping.lookup(baseMD));
323     if (accessAttr)
324       *accessAttr = cast<TBAATypeDescriptorAttr>(tbaaMapping.lookup(accessMD));
325     if (offset)
326       *offset = offsetCI->getZExtValue();
327     if (isConstant)
328       *isConstant = isConst;
329     return true;
330   };
331 
332   // Do a post-order walk over the TBAA Graph. Since a correct TBAA Graph is a
333   // DAG, a post-order walk guarantees that we convert any metadata node we
334   // depend on, prior to converting the current node.
335   DenseSet<const llvm::MDNode *> seen;
336   SmallVector<const llvm::MDNode *> workList;
337   workList.push_back(node);
338   while (!workList.empty()) {
339     const llvm::MDNode *current = workList.back();
340     if (tbaaMapping.contains(current)) {
341       // Already converted. Just pop from the worklist.
342       workList.pop_back();
343       continue;
344     }
345 
346     // If any child of this node is not yet converted, don't pop the current
347     // node from the worklist but push the not-yet-converted children in the
348     // front of the worklist.
349     bool anyChildNotConverted = false;
350     for (const llvm::MDOperand &operand : current->operands())
351       if (auto *childNode = dyn_cast_or_null<const llvm::MDNode>(operand.get()))
352         if (!tbaaMapping.contains(childNode)) {
353           workList.push_back(childNode);
354           anyChildNotConverted = true;
355         }
356 
357     if (anyChildNotConverted) {
358       // If this is the second time we failed to convert an element in the
359       // worklist it must be because a child is dependent on it being converted
360       // and we have a cycle in the graph. Cycles are not allowed in TBAA
361       // graphs.
362       if (!seen.insert(current).second)
363         return emitError(loc) << "has cycle in TBAA graph: "
364                               << diagMD(current, llvmModule.get());
365 
366       continue;
367     }
368 
369     // Otherwise simply import the current node.
370     workList.pop_back();
371 
372     FailureOr<std::optional<StringRef>> rootNodeIdentity =
373         getIdentityIfRootNode(current);
374     if (succeeded(rootNodeIdentity)) {
375       StringAttr stringAttr = *rootNodeIdentity
376                                   ? builder.getStringAttr(**rootNodeIdentity)
377                                   : nullptr;
378       // The root nodes do not have operands, so we can create
379       // the TBAARootAttr on the first walk.
380       tbaaMapping.insert({current, builder.getAttr<TBAARootAttr>(stringAttr)});
381       continue;
382     }
383 
384     StringRef identity;
385     SmallVector<TBAAMemberAttr> members;
386     if (std::optional<bool> isValid =
387             isTypeDescriptorNode(current, &identity, &members)) {
388       assert(isValid.value() && "type descriptor node must be valid");
389 
390       tbaaMapping.insert({current, builder.getAttr<TBAATypeDescriptorAttr>(
391                                        identity, members)});
392       continue;
393     }
394 
395     TBAATypeDescriptorAttr baseAttr, accessAttr;
396     int64_t offset;
397     bool isConstant;
398     if (std::optional<bool> isValid =
399             isTagNode(current, &baseAttr, &accessAttr, &offset, &isConstant)) {
400       assert(isValid.value() && "access tag node must be valid");
401       tbaaMapping.insert(
402           {current, builder.getAttr<TBAATagAttr>(baseAttr, accessAttr, offset,
403                                                  isConstant)});
404       continue;
405     }
406 
407     return emitError(loc) << "unsupported TBAA node format: "
408                           << diagMD(current, llvmModule.get());
409   }
410   return success();
411 }
412 
413 LogicalResult
414 ModuleImport::processAccessGroupMetadata(const llvm::MDNode *node) {
415   Location loc = mlirModule.getLoc();
416   if (failed(loopAnnotationImporter->translateAccessGroup(node, loc)))
417     return emitError(loc) << "unsupported access group node: "
418                           << diagMD(node, llvmModule.get());
419   return success();
420 }
421 
422 LogicalResult
423 ModuleImport::processAliasScopeMetadata(const llvm::MDNode *node) {
424   Location loc = mlirModule.getLoc();
425   // Helper that verifies the node has a self reference operand.
426   auto verifySelfRef = [](const llvm::MDNode *node) {
427     return node->getNumOperands() != 0 &&
428            node == dyn_cast<llvm::MDNode>(node->getOperand(0));
429   };
430   // Helper that verifies the given operand is a string or does not exist.
431   auto verifyDescription = [](const llvm::MDNode *node, unsigned idx) {
432     return idx >= node->getNumOperands() ||
433            isa<llvm::MDString>(node->getOperand(idx));
434   };
435   // Helper that creates an alias scope domain attribute.
436   auto createAliasScopeDomainOp = [&](const llvm::MDNode *aliasDomain) {
437     StringAttr description = nullptr;
438     if (aliasDomain->getNumOperands() >= 2)
439       if (auto *operand = dyn_cast<llvm::MDString>(aliasDomain->getOperand(1)))
440         description = builder.getStringAttr(operand->getString());
441     return builder.getAttr<AliasScopeDomainAttr>(
442         DistinctAttr::create(builder.getUnitAttr()), description);
443   };
444 
445   // Collect the alias scopes and domains to translate them.
446   for (const llvm::MDOperand &operand : node->operands()) {
447     if (const auto *scope = dyn_cast<llvm::MDNode>(operand)) {
448       llvm::AliasScopeNode aliasScope(scope);
449       const llvm::MDNode *domain = aliasScope.getDomain();
450 
451       // Verify the scope node points to valid scope metadata which includes
452       // verifying its domain. Perform the verification before looking it up in
453       // the alias scope mapping since it could have been inserted as a domain
454       // node before.
455       if (!verifySelfRef(scope) || !domain || !verifyDescription(scope, 2))
456         return emitError(loc) << "unsupported alias scope node: "
457                               << diagMD(scope, llvmModule.get());
458       if (!verifySelfRef(domain) || !verifyDescription(domain, 1))
459         return emitError(loc) << "unsupported alias domain node: "
460                               << diagMD(domain, llvmModule.get());
461 
462       if (aliasScopeMapping.contains(scope))
463         continue;
464 
465       // Convert the domain metadata node if it has not been translated before.
466       auto it = aliasScopeMapping.find(aliasScope.getDomain());
467       if (it == aliasScopeMapping.end()) {
468         auto aliasScopeDomainOp = createAliasScopeDomainOp(domain);
469         it = aliasScopeMapping.try_emplace(domain, aliasScopeDomainOp).first;
470       }
471 
472       // Convert the scope metadata node if it has not been converted before.
473       StringAttr description = nullptr;
474       if (!aliasScope.getName().empty())
475         description = builder.getStringAttr(aliasScope.getName());
476       auto aliasScopeOp = builder.getAttr<AliasScopeAttr>(
477           DistinctAttr::create(builder.getUnitAttr()),
478           cast<AliasScopeDomainAttr>(it->second), description);
479       aliasScopeMapping.try_emplace(aliasScope.getNode(), aliasScopeOp);
480     }
481   }
482   return success();
483 }
484 
485 FailureOr<SmallVector<AliasScopeAttr>>
486 ModuleImport::lookupAliasScopeAttrs(const llvm::MDNode *node) const {
487   SmallVector<AliasScopeAttr> aliasScopes;
488   aliasScopes.reserve(node->getNumOperands());
489   for (const llvm::MDOperand &operand : node->operands()) {
490     auto *node = cast<llvm::MDNode>(operand.get());
491     aliasScopes.push_back(
492         dyn_cast_or_null<AliasScopeAttr>(aliasScopeMapping.lookup(node)));
493   }
494   // Return failure if one of the alias scope lookups failed.
495   if (llvm::is_contained(aliasScopes, nullptr))
496     return failure();
497   return aliasScopes;
498 }
499 
500 void ModuleImport::addDebugIntrinsic(llvm::CallInst *intrinsic) {
501   debugIntrinsics.insert(intrinsic);
502 }
503 
504 LogicalResult ModuleImport::convertLinkerOptionsMetadata() {
505   for (const llvm::NamedMDNode &named : llvmModule->named_metadata()) {
506     if (named.getName() != "llvm.linker.options")
507       continue;
508     // llvm.linker.options operands are lists of strings.
509     for (const llvm::MDNode *node : named.operands()) {
510       SmallVector<StringRef> options;
511       options.reserve(node->getNumOperands());
512       for (const llvm::MDOperand &option : node->operands())
513         options.push_back(cast<llvm::MDString>(option)->getString());
514       builder.create<LLVM::LinkerOptionsOp>(mlirModule.getLoc(),
515                                             builder.getStrArrayAttr(options));
516     }
517   }
518   return success();
519 }
520 
521 LogicalResult ModuleImport::convertIdentMetadata() {
522   for (const llvm::NamedMDNode &named : llvmModule->named_metadata()) {
523     // llvm.ident should have a single operand. That operand is itself an
524     // MDNode with a single string operand.
525     if (named.getName() != LLVMDialect::getIdentAttrName())
526       continue;
527 
528     if (named.getNumOperands() == 1)
529       if (auto *md = dyn_cast<llvm::MDNode>(named.getOperand(0)))
530         if (md->getNumOperands() == 1)
531           if (auto *mdStr = dyn_cast<llvm::MDString>(md->getOperand(0)))
532             mlirModule->setAttr(LLVMDialect::getIdentAttrName(),
533                                 builder.getStringAttr(mdStr->getString()));
534   }
535   return success();
536 }
537 
538 LogicalResult ModuleImport::convertCommandlineMetadata() {
539   for (const llvm::NamedMDNode &nmd : llvmModule->named_metadata()) {
540     // llvm.commandline should have a single operand. That operand is itself an
541     // MDNode with a single string operand.
542     if (nmd.getName() != LLVMDialect::getCommandlineAttrName())
543       continue;
544 
545     if (nmd.getNumOperands() == 1)
546       if (auto *md = dyn_cast<llvm::MDNode>(nmd.getOperand(0)))
547         if (md->getNumOperands() == 1)
548           if (auto *mdStr = dyn_cast<llvm::MDString>(md->getOperand(0)))
549             mlirModule->setAttr(LLVMDialect::getCommandlineAttrName(),
550                                 builder.getStringAttr(mdStr->getString()));
551   }
552   return success();
553 }
554 
555 LogicalResult ModuleImport::convertMetadata() {
556   OpBuilder::InsertionGuard guard(builder);
557   builder.setInsertionPointToEnd(mlirModule.getBody());
558   for (const llvm::Function &func : llvmModule->functions()) {
559     for (const llvm::Instruction &inst : llvm::instructions(func)) {
560       // Convert access group metadata nodes.
561       if (llvm::MDNode *node =
562               inst.getMetadata(llvm::LLVMContext::MD_access_group))
563         if (failed(processAccessGroupMetadata(node)))
564           return failure();
565 
566       // Convert alias analysis metadata nodes.
567       llvm::AAMDNodes aliasAnalysisNodes = inst.getAAMetadata();
568       if (!aliasAnalysisNodes)
569         continue;
570       if (aliasAnalysisNodes.TBAA)
571         if (failed(processTBAAMetadata(aliasAnalysisNodes.TBAA)))
572           return failure();
573       if (aliasAnalysisNodes.Scope)
574         if (failed(processAliasScopeMetadata(aliasAnalysisNodes.Scope)))
575           return failure();
576       if (aliasAnalysisNodes.NoAlias)
577         if (failed(processAliasScopeMetadata(aliasAnalysisNodes.NoAlias)))
578           return failure();
579     }
580   }
581   if (failed(convertLinkerOptionsMetadata()))
582     return failure();
583   if (failed(convertIdentMetadata()))
584     return failure();
585   if (failed(convertCommandlineMetadata()))
586     return failure();
587   return success();
588 }
589 
590 void ModuleImport::processComdat(const llvm::Comdat *comdat) {
591   if (comdatMapping.contains(comdat))
592     return;
593 
594   ComdatOp comdatOp = getGlobalComdatOp();
595   OpBuilder::InsertionGuard guard(builder);
596   builder.setInsertionPointToEnd(&comdatOp.getBody().back());
597   auto selectorOp = builder.create<ComdatSelectorOp>(
598       mlirModule.getLoc(), comdat->getName(),
599       convertComdatFromLLVM(comdat->getSelectionKind()));
600   auto symbolRef =
601       SymbolRefAttr::get(builder.getContext(), getGlobalComdatOpName(),
602                          FlatSymbolRefAttr::get(selectorOp.getSymNameAttr()));
603   comdatMapping.try_emplace(comdat, symbolRef);
604 }
605 
606 LogicalResult ModuleImport::convertComdats() {
607   for (llvm::GlobalVariable &globalVar : llvmModule->globals())
608     if (globalVar.hasComdat())
609       processComdat(globalVar.getComdat());
610   for (llvm::Function &func : llvmModule->functions())
611     if (func.hasComdat())
612       processComdat(func.getComdat());
613   return success();
614 }
615 
616 LogicalResult ModuleImport::convertGlobals() {
617   for (llvm::GlobalVariable &globalVar : llvmModule->globals()) {
618     if (globalVar.getName() == getGlobalCtorsVarName() ||
619         globalVar.getName() == getGlobalDtorsVarName()) {
620       if (failed(convertGlobalCtorsAndDtors(&globalVar))) {
621         return emitError(UnknownLoc::get(context))
622                << "unhandled global variable: " << diag(globalVar);
623       }
624       continue;
625     }
626     if (failed(convertGlobal(&globalVar))) {
627       return emitError(UnknownLoc::get(context))
628              << "unhandled global variable: " << diag(globalVar);
629     }
630   }
631   return success();
632 }
633 
634 LogicalResult ModuleImport::convertDataLayout() {
635   Location loc = mlirModule.getLoc();
636   DataLayoutImporter dataLayoutImporter(context, llvmModule->getDataLayout());
637   if (!dataLayoutImporter.getDataLayout())
638     return emitError(loc, "cannot translate data layout: ")
639            << dataLayoutImporter.getLastToken();
640 
641   for (StringRef token : dataLayoutImporter.getUnhandledTokens())
642     emitWarning(loc, "unhandled data layout token: ") << token;
643 
644   mlirModule->setAttr(DLTIDialect::kDataLayoutAttrName,
645                       dataLayoutImporter.getDataLayout());
646   return success();
647 }
648 
649 LogicalResult ModuleImport::convertFunctions() {
650   for (llvm::Function &func : llvmModule->functions())
651     if (failed(processFunction(&func)))
652       return failure();
653   return success();
654 }
655 
656 void ModuleImport::setNonDebugMetadataAttrs(llvm::Instruction *inst,
657                                             Operation *op) {
658   SmallVector<std::pair<unsigned, llvm::MDNode *>> allMetadata;
659   inst->getAllMetadataOtherThanDebugLoc(allMetadata);
660   for (auto &[kind, node] : allMetadata) {
661     if (!iface.isConvertibleMetadata(kind))
662       continue;
663     if (failed(iface.setMetadataAttrs(builder, kind, node, op, *this))) {
664       if (emitExpensiveWarnings) {
665         Location loc = debugImporter->translateLoc(inst->getDebugLoc());
666         emitWarning(loc) << "unhandled metadata: "
667                          << diagMD(node, llvmModule.get()) << " on "
668                          << diag(*inst);
669       }
670     }
671   }
672 }
673 
674 void ModuleImport::setIntegerOverflowFlags(llvm::Instruction *inst,
675                                            Operation *op) const {
676   auto iface = cast<IntegerOverflowFlagsInterface>(op);
677 
678   IntegerOverflowFlags value = {};
679   value = bitEnumSet(value, IntegerOverflowFlags::nsw, inst->hasNoSignedWrap());
680   value =
681       bitEnumSet(value, IntegerOverflowFlags::nuw, inst->hasNoUnsignedWrap());
682 
683   iface.setOverflowFlags(value);
684 }
685 
686 void ModuleImport::setFastmathFlagsAttr(llvm::Instruction *inst,
687                                         Operation *op) const {
688   auto iface = cast<FastmathFlagsInterface>(op);
689 
690   // Even if the imported operation implements the fastmath interface, the
691   // original instruction may not have fastmath flags set. Exit if an
692   // instruction, such as a non floating-point function call, does not have
693   // fastmath flags.
694   if (!isa<llvm::FPMathOperator>(inst))
695     return;
696   llvm::FastMathFlags flags = inst->getFastMathFlags();
697 
698   // Set the fastmath bits flag-by-flag.
699   FastmathFlags value = {};
700   value = bitEnumSet(value, FastmathFlags::nnan, flags.noNaNs());
701   value = bitEnumSet(value, FastmathFlags::ninf, flags.noInfs());
702   value = bitEnumSet(value, FastmathFlags::nsz, flags.noSignedZeros());
703   value = bitEnumSet(value, FastmathFlags::arcp, flags.allowReciprocal());
704   value = bitEnumSet(value, FastmathFlags::contract, flags.allowContract());
705   value = bitEnumSet(value, FastmathFlags::afn, flags.approxFunc());
706   value = bitEnumSet(value, FastmathFlags::reassoc, flags.allowReassoc());
707   FastmathFlagsAttr attr = FastmathFlagsAttr::get(builder.getContext(), value);
708   iface->setAttr(iface.getFastmathAttrName(), attr);
709 }
710 
711 /// Returns if `type` is a scalar integer or floating-point type.
712 static bool isScalarType(Type type) {
713   return isa<IntegerType, FloatType>(type);
714 }
715 
716 /// Returns `type` if it is a builtin integer or floating-point vector type that
717 /// can be used to create an attribute or nullptr otherwise. If provided,
718 /// `arrayShape` is added to the shape of the vector to create an attribute that
719 /// matches an array of vectors.
720 static Type getVectorTypeForAttr(Type type, ArrayRef<int64_t> arrayShape = {}) {
721   if (!LLVM::isCompatibleVectorType(type))
722     return {};
723 
724   llvm::ElementCount numElements = LLVM::getVectorNumElements(type);
725   if (numElements.isScalable()) {
726     emitError(UnknownLoc::get(type.getContext()))
727         << "scalable vectors not supported";
728     return {};
729   }
730 
731   // An LLVM dialect vector can only contain scalars.
732   Type elementType = LLVM::getVectorElementType(type);
733   if (!isScalarType(elementType))
734     return {};
735 
736   SmallVector<int64_t> shape(arrayShape);
737   shape.push_back(numElements.getKnownMinValue());
738   return VectorType::get(shape, elementType);
739 }
740 
741 Type ModuleImport::getBuiltinTypeForAttr(Type type) {
742   if (!type)
743     return {};
744 
745   // Return builtin integer and floating-point types as is.
746   if (isScalarType(type))
747     return type;
748 
749   // Return builtin vectors of integer and floating-point types as is.
750   if (Type vectorType = getVectorTypeForAttr(type))
751     return vectorType;
752 
753   // Multi-dimensional array types are converted to tensors or vectors,
754   // depending on the innermost type being a scalar or a vector.
755   SmallVector<int64_t> arrayShape;
756   while (auto arrayType = dyn_cast<LLVMArrayType>(type)) {
757     arrayShape.push_back(arrayType.getNumElements());
758     type = arrayType.getElementType();
759   }
760   if (isScalarType(type))
761     return RankedTensorType::get(arrayShape, type);
762   return getVectorTypeForAttr(type, arrayShape);
763 }
764 
765 /// Returns an integer or float attribute for the provided scalar constant
766 /// `constScalar` or nullptr if the conversion fails.
767 static TypedAttr getScalarConstantAsAttr(OpBuilder &builder,
768                                          llvm::Constant *constScalar) {
769   MLIRContext *context = builder.getContext();
770 
771   // Convert scalar intergers.
772   if (auto *constInt = dyn_cast<llvm::ConstantInt>(constScalar)) {
773     return builder.getIntegerAttr(
774         IntegerType::get(context, constInt->getBitWidth()),
775         constInt->getValue());
776   }
777 
778   // Convert scalar floats.
779   if (auto *constFloat = dyn_cast<llvm::ConstantFP>(constScalar)) {
780     llvm::Type *type = constFloat->getType();
781     FloatType floatType =
782         type->isBFloatTy()
783             ? FloatType::getBF16(context)
784             : LLVM::detail::getFloatType(context, type->getScalarSizeInBits());
785     if (!floatType) {
786       emitError(UnknownLoc::get(builder.getContext()))
787           << "unexpected floating-point type";
788       return {};
789     }
790     return builder.getFloatAttr(floatType, constFloat->getValueAPF());
791   }
792   return {};
793 }
794 
795 /// Returns an integer or float attribute array for the provided constant
796 /// sequence `constSequence` or nullptr if the conversion fails.
797 static SmallVector<Attribute>
798 getSequenceConstantAsAttrs(OpBuilder &builder,
799                            llvm::ConstantDataSequential *constSequence) {
800   SmallVector<Attribute> elementAttrs;
801   elementAttrs.reserve(constSequence->getNumElements());
802   for (auto idx : llvm::seq<int64_t>(0, constSequence->getNumElements())) {
803     llvm::Constant *constElement = constSequence->getElementAsConstant(idx);
804     elementAttrs.push_back(getScalarConstantAsAttr(builder, constElement));
805   }
806   return elementAttrs;
807 }
808 
809 Attribute ModuleImport::getConstantAsAttr(llvm::Constant *constant) {
810   // Convert scalar constants.
811   if (Attribute scalarAttr = getScalarConstantAsAttr(builder, constant))
812     return scalarAttr;
813 
814   // Convert function references.
815   if (auto *func = dyn_cast<llvm::Function>(constant))
816     return SymbolRefAttr::get(builder.getContext(), func->getName());
817 
818   // Returns the static shape of the provided type if possible.
819   auto getConstantShape = [&](llvm::Type *type) {
820     return llvm::dyn_cast_if_present<ShapedType>(
821         getBuiltinTypeForAttr(convertType(type)));
822   };
823 
824   // Convert one-dimensional constant arrays or vectors that store 1/2/4/8-byte
825   // integer or half/bfloat/float/double values.
826   if (auto *constArray = dyn_cast<llvm::ConstantDataSequential>(constant)) {
827     if (constArray->isString())
828       return builder.getStringAttr(constArray->getAsString());
829     auto shape = getConstantShape(constArray->getType());
830     if (!shape)
831       return {};
832     // Convert splat constants to splat elements attributes.
833     auto *constVector = dyn_cast<llvm::ConstantDataVector>(constant);
834     if (constVector && constVector->isSplat()) {
835       // A vector is guaranteed to have at least size one.
836       Attribute splatAttr = getScalarConstantAsAttr(
837           builder, constVector->getElementAsConstant(0));
838       return SplatElementsAttr::get(shape, splatAttr);
839     }
840     // Convert non-splat constants to dense elements attributes.
841     SmallVector<Attribute> elementAttrs =
842         getSequenceConstantAsAttrs(builder, constArray);
843     return DenseElementsAttr::get(shape, elementAttrs);
844   }
845 
846   // Convert multi-dimensional constant aggregates that store all kinds of
847   // integer and floating-point types.
848   if (auto *constAggregate = dyn_cast<llvm::ConstantAggregate>(constant)) {
849     auto shape = getConstantShape(constAggregate->getType());
850     if (!shape)
851       return {};
852     // Collect the aggregate elements in depths first order.
853     SmallVector<Attribute> elementAttrs;
854     SmallVector<llvm::Constant *> workList = {constAggregate};
855     while (!workList.empty()) {
856       llvm::Constant *current = workList.pop_back_val();
857       // Append any nested aggregates in reverse order to ensure the head
858       // element of the nested aggregates is at the back of the work list.
859       if (auto *constAggregate = dyn_cast<llvm::ConstantAggregate>(current)) {
860         for (auto idx :
861              reverse(llvm::seq<int64_t>(0, constAggregate->getNumOperands())))
862           workList.push_back(constAggregate->getAggregateElement(idx));
863         continue;
864       }
865       // Append the elements of nested constant arrays or vectors that store
866       // 1/2/4/8-byte integer or half/bfloat/float/double values.
867       if (auto *constArray = dyn_cast<llvm::ConstantDataSequential>(current)) {
868         SmallVector<Attribute> attrs =
869             getSequenceConstantAsAttrs(builder, constArray);
870         elementAttrs.append(attrs.begin(), attrs.end());
871         continue;
872       }
873       // Append nested scalar constants that store all kinds of integer and
874       // floating-point types.
875       if (Attribute scalarAttr = getScalarConstantAsAttr(builder, current)) {
876         elementAttrs.push_back(scalarAttr);
877         continue;
878       }
879       // Bail if the aggregate contains a unsupported constant type such as a
880       // constant expression.
881       return {};
882     }
883     return DenseElementsAttr::get(shape, elementAttrs);
884   }
885 
886   // Convert zero aggregates.
887   if (auto *constZero = dyn_cast<llvm::ConstantAggregateZero>(constant)) {
888     auto shape = llvm::dyn_cast_if_present<ShapedType>(
889         getBuiltinTypeForAttr(convertType(constZero->getType())));
890     if (!shape)
891       return {};
892     // Convert zero aggregates with a static shape to splat elements attributes.
893     Attribute splatAttr = builder.getZeroAttr(shape.getElementType());
894     assert(splatAttr && "expected non-null zero attribute for scalar types");
895     return SplatElementsAttr::get(shape, splatAttr);
896   }
897   return {};
898 }
899 
900 LogicalResult ModuleImport::convertGlobal(llvm::GlobalVariable *globalVar) {
901   // Insert the global after the last one or at the start of the module.
902   OpBuilder::InsertionGuard guard(builder);
903   if (!globalInsertionOp)
904     builder.setInsertionPointToStart(mlirModule.getBody());
905   else
906     builder.setInsertionPointAfter(globalInsertionOp);
907 
908   Attribute valueAttr;
909   if (globalVar->hasInitializer())
910     valueAttr = getConstantAsAttr(globalVar->getInitializer());
911   Type type = convertType(globalVar->getValueType());
912 
913   uint64_t alignment = 0;
914   llvm::MaybeAlign maybeAlign = globalVar->getAlign();
915   if (maybeAlign.has_value()) {
916     llvm::Align align = *maybeAlign;
917     alignment = align.value();
918   }
919 
920   // Get the global expression associated with this global variable and convert
921   // it.
922   DIGlobalVariableExpressionAttr globalExpressionAttr;
923   SmallVector<llvm::DIGlobalVariableExpression *> globalExpressions;
924   globalVar->getDebugInfo(globalExpressions);
925 
926   // There should only be a single global expression.
927   if (!globalExpressions.empty())
928     globalExpressionAttr =
929         debugImporter->translateGlobalVariableExpression(globalExpressions[0]);
930 
931   // Workaround to support LLVM's nameless globals. MLIR, in contrast to LLVM,
932   // always requires a symbol name.
933   SmallString<128> globalName(globalVar->getName());
934   if (globalName.empty()) {
935     // Make sure the symbol name does not clash with an existing symbol.
936     globalName = SymbolTable::generateSymbolName<128>(
937         getNamelessGlobalPrefix(),
938         [this](StringRef newName) {
939           return llvmModule->getNamedValue(newName);
940         },
941         namelessGlobalId);
942     namelessGlobals[globalVar] = FlatSymbolRefAttr::get(context, globalName);
943   }
944   GlobalOp globalOp = builder.create<GlobalOp>(
945       mlirModule.getLoc(), type, globalVar->isConstant(),
946       convertLinkageFromLLVM(globalVar->getLinkage()), StringRef(globalName),
947       valueAttr, alignment, /*addr_space=*/globalVar->getAddressSpace(),
948       /*dso_local=*/globalVar->isDSOLocal(),
949       /*thread_local=*/globalVar->isThreadLocal(), /*comdat=*/SymbolRefAttr(),
950       /*attrs=*/ArrayRef<NamedAttribute>(), /*dbgExpr=*/globalExpressionAttr);
951   globalInsertionOp = globalOp;
952 
953   if (globalVar->hasInitializer() && !valueAttr) {
954     clearRegionState();
955     Block *block = builder.createBlock(&globalOp.getInitializerRegion());
956     setConstantInsertionPointToStart(block);
957     FailureOr<Value> initializer =
958         convertConstantExpr(globalVar->getInitializer());
959     if (failed(initializer))
960       return failure();
961     builder.create<ReturnOp>(globalOp.getLoc(), *initializer);
962   }
963   if (globalVar->hasAtLeastLocalUnnamedAddr()) {
964     globalOp.setUnnamedAddr(
965         convertUnnamedAddrFromLLVM(globalVar->getUnnamedAddr()));
966   }
967   if (globalVar->hasSection())
968     globalOp.setSection(globalVar->getSection());
969   globalOp.setVisibility_(
970       convertVisibilityFromLLVM(globalVar->getVisibility()));
971 
972   if (globalVar->hasComdat())
973     globalOp.setComdatAttr(comdatMapping.lookup(globalVar->getComdat()));
974 
975   return success();
976 }
977 
978 LogicalResult
979 ModuleImport::convertGlobalCtorsAndDtors(llvm::GlobalVariable *globalVar) {
980   if (!globalVar->hasInitializer() || !globalVar->hasAppendingLinkage())
981     return failure();
982   auto *initializer =
983       dyn_cast<llvm::ConstantArray>(globalVar->getInitializer());
984   if (!initializer)
985     return failure();
986 
987   SmallVector<Attribute> funcs;
988   SmallVector<int32_t> priorities;
989   for (llvm::Value *operand : initializer->operands()) {
990     auto *aggregate = dyn_cast<llvm::ConstantAggregate>(operand);
991     if (!aggregate || aggregate->getNumOperands() != 3)
992       return failure();
993 
994     auto *priority = dyn_cast<llvm::ConstantInt>(aggregate->getOperand(0));
995     auto *func = dyn_cast<llvm::Function>(aggregate->getOperand(1));
996     auto *data = dyn_cast<llvm::Constant>(aggregate->getOperand(2));
997     if (!priority || !func || !data)
998       return failure();
999 
1000     // GlobalCtorsOps and GlobalDtorsOps do not support non-null data fields.
1001     if (!data->isNullValue())
1002       return failure();
1003 
1004     funcs.push_back(FlatSymbolRefAttr::get(context, func->getName()));
1005     priorities.push_back(priority->getValue().getZExtValue());
1006   }
1007 
1008   OpBuilder::InsertionGuard guard(builder);
1009   if (!globalInsertionOp)
1010     builder.setInsertionPointToStart(mlirModule.getBody());
1011   else
1012     builder.setInsertionPointAfter(globalInsertionOp);
1013 
1014   if (globalVar->getName() == getGlobalCtorsVarName()) {
1015     globalInsertionOp = builder.create<LLVM::GlobalCtorsOp>(
1016         mlirModule.getLoc(), builder.getArrayAttr(funcs),
1017         builder.getI32ArrayAttr(priorities));
1018     return success();
1019   }
1020   globalInsertionOp = builder.create<LLVM::GlobalDtorsOp>(
1021       mlirModule.getLoc(), builder.getArrayAttr(funcs),
1022       builder.getI32ArrayAttr(priorities));
1023   return success();
1024 }
1025 
1026 SetVector<llvm::Constant *>
1027 ModuleImport::getConstantsToConvert(llvm::Constant *constant) {
1028   // Return the empty set if the constant has been translated before.
1029   if (valueMapping.contains(constant))
1030     return {};
1031 
1032   // Traverse the constants in post-order and stop the traversal if a constant
1033   // already has a `valueMapping` from an earlier constant translation or if the
1034   // constant is traversed a second time.
1035   SetVector<llvm::Constant *> orderedSet;
1036   SetVector<llvm::Constant *> workList;
1037   DenseMap<llvm::Constant *, SmallVector<llvm::Constant *>> adjacencyLists;
1038   workList.insert(constant);
1039   while (!workList.empty()) {
1040     llvm::Constant *current = workList.back();
1041     // Collect all dependencies of the current constant and add them to the
1042     // adjacency list if none has been computed before.
1043     auto [adjacencyIt, inserted] = adjacencyLists.try_emplace(current);
1044     if (inserted) {
1045       // Add all constant operands to the adjacency list and skip any other
1046       // values such as basic block addresses.
1047       for (llvm::Value *operand : current->operands())
1048         if (auto *constDependency = dyn_cast<llvm::Constant>(operand))
1049           adjacencyIt->getSecond().push_back(constDependency);
1050       // Use the getElementValue method to add the dependencies of zero
1051       // initialized aggregate constants since they do not take any operands.
1052       if (auto *constAgg = dyn_cast<llvm::ConstantAggregateZero>(current)) {
1053         unsigned numElements = constAgg->getElementCount().getFixedValue();
1054         for (unsigned i = 0, e = numElements; i != e; ++i)
1055           adjacencyIt->getSecond().push_back(constAgg->getElementValue(i));
1056       }
1057     }
1058     // Add the current constant to the `orderedSet` of the traversed nodes if
1059     // all its dependencies have been traversed before. Additionally, remove the
1060     // constant from the `workList` and continue the traversal.
1061     if (adjacencyIt->getSecond().empty()) {
1062       orderedSet.insert(current);
1063       workList.pop_back();
1064       continue;
1065     }
1066     // Add the next dependency from the adjacency list to the `workList` and
1067     // continue the traversal. Remove the dependency from the adjacency list to
1068     // mark that it has been processed. Only enqueue the dependency if it has no
1069     // `valueMapping` from an earlier translation and if it has not been
1070     // enqueued before.
1071     llvm::Constant *dependency = adjacencyIt->getSecond().pop_back_val();
1072     if (valueMapping.contains(dependency) || workList.contains(dependency) ||
1073         orderedSet.contains(dependency))
1074       continue;
1075     workList.insert(dependency);
1076   }
1077 
1078   return orderedSet;
1079 }
1080 
1081 FailureOr<Value> ModuleImport::convertConstant(llvm::Constant *constant) {
1082   Location loc = UnknownLoc::get(context);
1083 
1084   // Convert constants that can be represented as attributes.
1085   if (Attribute attr = getConstantAsAttr(constant)) {
1086     Type type = convertType(constant->getType());
1087     if (auto symbolRef = dyn_cast<FlatSymbolRefAttr>(attr)) {
1088       return builder.create<AddressOfOp>(loc, type, symbolRef.getValue())
1089           .getResult();
1090     }
1091     return builder.create<ConstantOp>(loc, type, attr).getResult();
1092   }
1093 
1094   // Convert null pointer constants.
1095   if (auto *nullPtr = dyn_cast<llvm::ConstantPointerNull>(constant)) {
1096     Type type = convertType(nullPtr->getType());
1097     return builder.create<ZeroOp>(loc, type).getResult();
1098   }
1099 
1100   // Convert none token constants.
1101   if (isa<llvm::ConstantTokenNone>(constant)) {
1102     return builder.create<NoneTokenOp>(loc).getResult();
1103   }
1104 
1105   // Convert poison.
1106   if (auto *poisonVal = dyn_cast<llvm::PoisonValue>(constant)) {
1107     Type type = convertType(poisonVal->getType());
1108     return builder.create<PoisonOp>(loc, type).getResult();
1109   }
1110 
1111   // Convert undef.
1112   if (auto *undefVal = dyn_cast<llvm::UndefValue>(constant)) {
1113     Type type = convertType(undefVal->getType());
1114     return builder.create<UndefOp>(loc, type).getResult();
1115   }
1116 
1117   // Convert global variable accesses.
1118   if (auto *globalVar = dyn_cast<llvm::GlobalVariable>(constant)) {
1119     Type type = convertType(globalVar->getType());
1120     StringRef globalName = globalVar->getName();
1121     FlatSymbolRefAttr symbolRef;
1122     if (globalName.empty())
1123       symbolRef = namelessGlobals[globalVar];
1124     else
1125       symbolRef = FlatSymbolRefAttr::get(context, globalName);
1126     return builder.create<AddressOfOp>(loc, type, symbolRef).getResult();
1127   }
1128 
1129   // Convert constant expressions.
1130   if (auto *constExpr = dyn_cast<llvm::ConstantExpr>(constant)) {
1131     // Convert the constant expression to a temporary LLVM instruction and
1132     // translate it using the `processInstruction` method. Delete the
1133     // instruction after the translation and remove it from `valueMapping`,
1134     // since later calls to `getAsInstruction` may return the same address
1135     // resulting in a conflicting `valueMapping` entry.
1136     llvm::Instruction *inst = constExpr->getAsInstruction();
1137     auto guard = llvm::make_scope_exit([&]() {
1138       assert(!noResultOpMapping.contains(inst) &&
1139              "expected constant expression to return a result");
1140       valueMapping.erase(inst);
1141       inst->deleteValue();
1142     });
1143     // Note: `processInstruction` does not call `convertConstant` recursively
1144     // since all constant dependencies have been converted before.
1145     assert(llvm::all_of(inst->operands(), [&](llvm::Value *value) {
1146       return valueMapping.contains(value);
1147     }));
1148     if (failed(processInstruction(inst)))
1149       return failure();
1150     return lookupValue(inst);
1151   }
1152 
1153   // Convert aggregate constants.
1154   if (isa<llvm::ConstantAggregate>(constant) ||
1155       isa<llvm::ConstantAggregateZero>(constant)) {
1156     // Lookup the aggregate elements that have been converted before.
1157     SmallVector<Value> elementValues;
1158     if (auto *constAgg = dyn_cast<llvm::ConstantAggregate>(constant)) {
1159       elementValues.reserve(constAgg->getNumOperands());
1160       for (llvm::Value *operand : constAgg->operands())
1161         elementValues.push_back(lookupValue(operand));
1162     }
1163     if (auto *constAgg = dyn_cast<llvm::ConstantAggregateZero>(constant)) {
1164       unsigned numElements = constAgg->getElementCount().getFixedValue();
1165       elementValues.reserve(numElements);
1166       for (unsigned i = 0, e = numElements; i != e; ++i)
1167         elementValues.push_back(lookupValue(constAgg->getElementValue(i)));
1168     }
1169     assert(llvm::count(elementValues, nullptr) == 0 &&
1170            "expected all elements have been converted before");
1171 
1172     // Generate an UndefOp as root value and insert the aggregate elements.
1173     Type rootType = convertType(constant->getType());
1174     bool isArrayOrStruct = isa<LLVMArrayType, LLVMStructType>(rootType);
1175     assert((isArrayOrStruct || LLVM::isCompatibleVectorType(rootType)) &&
1176            "unrecognized aggregate type");
1177     Value root = builder.create<UndefOp>(loc, rootType);
1178     for (const auto &it : llvm::enumerate(elementValues)) {
1179       if (isArrayOrStruct) {
1180         root = builder.create<InsertValueOp>(loc, root, it.value(), it.index());
1181       } else {
1182         Attribute indexAttr = builder.getI32IntegerAttr(it.index());
1183         Value indexValue =
1184             builder.create<ConstantOp>(loc, builder.getI32Type(), indexAttr);
1185         root = builder.create<InsertElementOp>(loc, rootType, root, it.value(),
1186                                                indexValue);
1187       }
1188     }
1189     return root;
1190   }
1191 
1192   if (auto *constTargetNone = dyn_cast<llvm::ConstantTargetNone>(constant)) {
1193     LLVMTargetExtType targetExtType =
1194         cast<LLVMTargetExtType>(convertType(constTargetNone->getType()));
1195     assert(targetExtType.hasProperty(LLVMTargetExtType::HasZeroInit) &&
1196            "target extension type does not support zero-initialization");
1197     // Create llvm.mlir.zero operation to represent zero-initialization of
1198     // target extension type.
1199     return builder.create<LLVM::ZeroOp>(loc, targetExtType).getRes();
1200   }
1201 
1202   StringRef error = "";
1203   if (isa<llvm::BlockAddress>(constant))
1204     error = " since blockaddress(...) is unsupported";
1205 
1206   return emitError(loc) << "unhandled constant: " << diag(*constant) << error;
1207 }
1208 
1209 FailureOr<Value> ModuleImport::convertConstantExpr(llvm::Constant *constant) {
1210   // Only call the function for constants that have not been translated before
1211   // since it updates the constant insertion point assuming the converted
1212   // constant has been introduced at the end of the constant section.
1213   assert(!valueMapping.contains(constant) &&
1214          "expected constant has not been converted before");
1215   assert(constantInsertionBlock &&
1216          "expected the constant insertion block to be non-null");
1217 
1218   // Insert the constant after the last one or at the start of the entry block.
1219   OpBuilder::InsertionGuard guard(builder);
1220   if (!constantInsertionOp)
1221     builder.setInsertionPointToStart(constantInsertionBlock);
1222   else
1223     builder.setInsertionPointAfter(constantInsertionOp);
1224 
1225   // Convert all constants of the expression and add them to `valueMapping`.
1226   SetVector<llvm::Constant *> constantsToConvert =
1227       getConstantsToConvert(constant);
1228   for (llvm::Constant *constantToConvert : constantsToConvert) {
1229     FailureOr<Value> converted = convertConstant(constantToConvert);
1230     if (failed(converted))
1231       return failure();
1232     mapValue(constantToConvert, *converted);
1233   }
1234 
1235   // Update the constant insertion point and return the converted constant.
1236   Value result = lookupValue(constant);
1237   constantInsertionOp = result.getDefiningOp();
1238   return result;
1239 }
1240 
1241 FailureOr<Value> ModuleImport::convertValue(llvm::Value *value) {
1242   assert(!isa<llvm::MetadataAsValue>(value) &&
1243          "expected value to not be metadata");
1244 
1245   // Return the mapped value if it has been converted before.
1246   auto it = valueMapping.find(value);
1247   if (it != valueMapping.end())
1248     return it->getSecond();
1249 
1250   // Convert constants such as immediate values that have no mapping yet.
1251   if (auto *constant = dyn_cast<llvm::Constant>(value))
1252     return convertConstantExpr(constant);
1253 
1254   Location loc = UnknownLoc::get(context);
1255   if (auto *inst = dyn_cast<llvm::Instruction>(value))
1256     loc = translateLoc(inst->getDebugLoc());
1257   return emitError(loc) << "unhandled value: " << diag(*value);
1258 }
1259 
1260 FailureOr<Value> ModuleImport::convertMetadataValue(llvm::Value *value) {
1261   // A value may be wrapped as metadata, for example, when passed to a debug
1262   // intrinsic. Unwrap these values before the conversion.
1263   auto *nodeAsVal = dyn_cast<llvm::MetadataAsValue>(value);
1264   if (!nodeAsVal)
1265     return failure();
1266   auto *node = dyn_cast<llvm::ValueAsMetadata>(nodeAsVal->getMetadata());
1267   if (!node)
1268     return failure();
1269   value = node->getValue();
1270 
1271   // Return the mapped value if it has been converted before.
1272   auto it = valueMapping.find(value);
1273   if (it != valueMapping.end())
1274     return it->getSecond();
1275 
1276   // Convert constants such as immediate values that have no mapping yet.
1277   if (auto *constant = dyn_cast<llvm::Constant>(value))
1278     return convertConstantExpr(constant);
1279   return failure();
1280 }
1281 
1282 FailureOr<SmallVector<Value>>
1283 ModuleImport::convertValues(ArrayRef<llvm::Value *> values) {
1284   SmallVector<Value> remapped;
1285   remapped.reserve(values.size());
1286   for (llvm::Value *value : values) {
1287     FailureOr<Value> converted = convertValue(value);
1288     if (failed(converted))
1289       return failure();
1290     remapped.push_back(*converted);
1291   }
1292   return remapped;
1293 }
1294 
1295 LogicalResult ModuleImport::convertIntrinsicArguments(
1296     ArrayRef<llvm::Value *> values, ArrayRef<unsigned> immArgPositions,
1297     ArrayRef<StringLiteral> immArgAttrNames, SmallVectorImpl<Value> &valuesOut,
1298     SmallVectorImpl<NamedAttribute> &attrsOut) {
1299   assert(immArgPositions.size() == immArgAttrNames.size() &&
1300          "LLVM `immArgPositions` and MLIR `immArgAttrNames` should have equal "
1301          "length");
1302 
1303   SmallVector<llvm::Value *> operands(values);
1304   for (auto [immArgPos, immArgName] :
1305        llvm::zip(immArgPositions, immArgAttrNames)) {
1306     auto &value = operands[immArgPos];
1307     auto *constant = llvm::cast<llvm::Constant>(value);
1308     auto attr = getScalarConstantAsAttr(builder, constant);
1309     assert(attr && attr.getType().isIntOrFloat() &&
1310            "expected immarg to be float or integer constant");
1311     auto nameAttr = StringAttr::get(attr.getContext(), immArgName);
1312     attrsOut.push_back({nameAttr, attr});
1313     // Mark matched attribute values as null (so they can be removed below).
1314     value = nullptr;
1315   }
1316 
1317   for (llvm::Value *value : operands) {
1318     if (!value)
1319       continue;
1320     auto mlirValue = convertValue(value);
1321     if (failed(mlirValue))
1322       return failure();
1323     valuesOut.push_back(*mlirValue);
1324   }
1325 
1326   return success();
1327 }
1328 
1329 IntegerAttr ModuleImport::matchIntegerAttr(llvm::Value *value) {
1330   IntegerAttr integerAttr;
1331   FailureOr<Value> converted = convertValue(value);
1332   bool success = succeeded(converted) &&
1333                  matchPattern(*converted, m_Constant(&integerAttr));
1334   assert(success && "expected a constant integer value");
1335   (void)success;
1336   return integerAttr;
1337 }
1338 
1339 FloatAttr ModuleImport::matchFloatAttr(llvm::Value *value) {
1340   FloatAttr floatAttr;
1341   FailureOr<Value> converted = convertValue(value);
1342   bool success =
1343       succeeded(converted) && matchPattern(*converted, m_Constant(&floatAttr));
1344   assert(success && "expected a constant float value");
1345   (void)success;
1346   return floatAttr;
1347 }
1348 
1349 DILocalVariableAttr ModuleImport::matchLocalVariableAttr(llvm::Value *value) {
1350   auto *nodeAsVal = cast<llvm::MetadataAsValue>(value);
1351   auto *node = cast<llvm::DILocalVariable>(nodeAsVal->getMetadata());
1352   return debugImporter->translate(node);
1353 }
1354 
1355 DILabelAttr ModuleImport::matchLabelAttr(llvm::Value *value) {
1356   auto *nodeAsVal = cast<llvm::MetadataAsValue>(value);
1357   auto *node = cast<llvm::DILabel>(nodeAsVal->getMetadata());
1358   return debugImporter->translate(node);
1359 }
1360 
1361 FPExceptionBehaviorAttr
1362 ModuleImport::matchFPExceptionBehaviorAttr(llvm::Value *value) {
1363   auto *metadata = cast<llvm::MetadataAsValue>(value);
1364   auto *mdstr = cast<llvm::MDString>(metadata->getMetadata());
1365   std::optional<llvm::fp::ExceptionBehavior> optLLVM =
1366       llvm::convertStrToExceptionBehavior(mdstr->getString());
1367   assert(optLLVM && "Expecting FP exception behavior");
1368   return builder.getAttr<FPExceptionBehaviorAttr>(
1369       convertFPExceptionBehaviorFromLLVM(*optLLVM));
1370 }
1371 
1372 RoundingModeAttr ModuleImport::matchRoundingModeAttr(llvm::Value *value) {
1373   auto *metadata = cast<llvm::MetadataAsValue>(value);
1374   auto *mdstr = cast<llvm::MDString>(metadata->getMetadata());
1375   std::optional<llvm::RoundingMode> optLLVM =
1376       llvm::convertStrToRoundingMode(mdstr->getString());
1377   assert(optLLVM && "Expecting rounding mode");
1378   return builder.getAttr<RoundingModeAttr>(
1379       convertRoundingModeFromLLVM(*optLLVM));
1380 }
1381 
1382 FailureOr<SmallVector<AliasScopeAttr>>
1383 ModuleImport::matchAliasScopeAttrs(llvm::Value *value) {
1384   auto *nodeAsVal = cast<llvm::MetadataAsValue>(value);
1385   auto *node = cast<llvm::MDNode>(nodeAsVal->getMetadata());
1386   return lookupAliasScopeAttrs(node);
1387 }
1388 
1389 Location ModuleImport::translateLoc(llvm::DILocation *loc) {
1390   return debugImporter->translateLoc(loc);
1391 }
1392 
1393 LogicalResult
1394 ModuleImport::convertBranchArgs(llvm::Instruction *branch,
1395                                 llvm::BasicBlock *target,
1396                                 SmallVectorImpl<Value> &blockArguments) {
1397   for (auto inst = target->begin(); isa<llvm::PHINode>(inst); ++inst) {
1398     auto *phiInst = cast<llvm::PHINode>(&*inst);
1399     llvm::Value *value = phiInst->getIncomingValueForBlock(branch->getParent());
1400     FailureOr<Value> converted = convertValue(value);
1401     if (failed(converted))
1402       return failure();
1403     blockArguments.push_back(*converted);
1404   }
1405   return success();
1406 }
1407 
1408 LogicalResult
1409 ModuleImport::convertCallTypeAndOperands(llvm::CallBase *callInst,
1410                                          SmallVectorImpl<Type> &types,
1411                                          SmallVectorImpl<Value> &operands) {
1412   if (!callInst->getType()->isVoidTy())
1413     types.push_back(convertType(callInst->getType()));
1414 
1415   if (!callInst->getCalledFunction()) {
1416     FailureOr<Value> called = convertValue(callInst->getCalledOperand());
1417     if (failed(called))
1418       return failure();
1419     operands.push_back(*called);
1420   }
1421   SmallVector<llvm::Value *> args(callInst->args());
1422   FailureOr<SmallVector<Value>> arguments = convertValues(args);
1423   if (failed(arguments))
1424     return failure();
1425   llvm::append_range(operands, *arguments);
1426   return success();
1427 }
1428 
1429 LogicalResult ModuleImport::convertIntrinsic(llvm::CallInst *inst) {
1430   if (succeeded(iface.convertIntrinsic(builder, inst, *this)))
1431     return success();
1432 
1433   Location loc = translateLoc(inst->getDebugLoc());
1434   return emitError(loc) << "unhandled intrinsic: " << diag(*inst);
1435 }
1436 
1437 LogicalResult ModuleImport::convertInstruction(llvm::Instruction *inst) {
1438   // Convert all instructions that do not provide an MLIR builder.
1439   Location loc = translateLoc(inst->getDebugLoc());
1440   if (inst->getOpcode() == llvm::Instruction::Br) {
1441     auto *brInst = cast<llvm::BranchInst>(inst);
1442 
1443     SmallVector<Block *> succBlocks;
1444     SmallVector<SmallVector<Value>> succBlockArgs;
1445     for (auto i : llvm::seq<unsigned>(0, brInst->getNumSuccessors())) {
1446       llvm::BasicBlock *succ = brInst->getSuccessor(i);
1447       SmallVector<Value> blockArgs;
1448       if (failed(convertBranchArgs(brInst, succ, blockArgs)))
1449         return failure();
1450       succBlocks.push_back(lookupBlock(succ));
1451       succBlockArgs.push_back(blockArgs);
1452     }
1453 
1454     if (!brInst->isConditional()) {
1455       auto brOp = builder.create<LLVM::BrOp>(loc, succBlockArgs.front(),
1456                                              succBlocks.front());
1457       mapNoResultOp(inst, brOp);
1458       return success();
1459     }
1460     FailureOr<Value> condition = convertValue(brInst->getCondition());
1461     if (failed(condition))
1462       return failure();
1463     auto condBrOp = builder.create<LLVM::CondBrOp>(
1464         loc, *condition, succBlocks.front(), succBlockArgs.front(),
1465         succBlocks.back(), succBlockArgs.back());
1466     mapNoResultOp(inst, condBrOp);
1467     return success();
1468   }
1469   if (inst->getOpcode() == llvm::Instruction::Switch) {
1470     auto *swInst = cast<llvm::SwitchInst>(inst);
1471     // Process the condition value.
1472     FailureOr<Value> condition = convertValue(swInst->getCondition());
1473     if (failed(condition))
1474       return failure();
1475     SmallVector<Value> defaultBlockArgs;
1476     // Process the default case.
1477     llvm::BasicBlock *defaultBB = swInst->getDefaultDest();
1478     if (failed(convertBranchArgs(swInst, defaultBB, defaultBlockArgs)))
1479       return failure();
1480 
1481     // Process the cases.
1482     unsigned numCases = swInst->getNumCases();
1483     SmallVector<SmallVector<Value>> caseOperands(numCases);
1484     SmallVector<ValueRange> caseOperandRefs(numCases);
1485     SmallVector<APInt> caseValues(numCases);
1486     SmallVector<Block *> caseBlocks(numCases);
1487     for (const auto &it : llvm::enumerate(swInst->cases())) {
1488       const llvm::SwitchInst::CaseHandle &caseHandle = it.value();
1489       llvm::BasicBlock *succBB = caseHandle.getCaseSuccessor();
1490       if (failed(convertBranchArgs(swInst, succBB, caseOperands[it.index()])))
1491         return failure();
1492       caseOperandRefs[it.index()] = caseOperands[it.index()];
1493       caseValues[it.index()] = caseHandle.getCaseValue()->getValue();
1494       caseBlocks[it.index()] = lookupBlock(succBB);
1495     }
1496 
1497     auto switchOp = builder.create<SwitchOp>(
1498         loc, *condition, lookupBlock(defaultBB), defaultBlockArgs, caseValues,
1499         caseBlocks, caseOperandRefs);
1500     mapNoResultOp(inst, switchOp);
1501     return success();
1502   }
1503   if (inst->getOpcode() == llvm::Instruction::PHI) {
1504     Type type = convertType(inst->getType());
1505     mapValue(inst, builder.getInsertionBlock()->addArgument(
1506                        type, translateLoc(inst->getDebugLoc())));
1507     return success();
1508   }
1509   if (inst->getOpcode() == llvm::Instruction::Call) {
1510     auto *callInst = cast<llvm::CallInst>(inst);
1511 
1512     SmallVector<Type> types;
1513     SmallVector<Value> operands;
1514     if (failed(convertCallTypeAndOperands(callInst, types, operands)))
1515       return failure();
1516 
1517     auto funcTy =
1518         dyn_cast<LLVMFunctionType>(convertType(callInst->getFunctionType()));
1519     if (!funcTy)
1520       return failure();
1521 
1522     CallOp callOp;
1523 
1524     if (llvm::Function *callee = callInst->getCalledFunction()) {
1525       callOp = builder.create<CallOp>(
1526           loc, funcTy, SymbolRefAttr::get(context, callee->getName()),
1527           operands);
1528     } else {
1529       callOp = builder.create<CallOp>(loc, funcTy, operands);
1530     }
1531     callOp.setCConv(convertCConvFromLLVM(callInst->getCallingConv()));
1532     callOp.setTailCallKind(
1533         convertTailCallKindFromLLVM(callInst->getTailCallKind()));
1534     setFastmathFlagsAttr(inst, callOp);
1535 
1536     // Handle function attributes.
1537     if (callInst->hasFnAttr(llvm::Attribute::Convergent))
1538       callOp.setConvergent(true);
1539     if (callInst->hasFnAttr(llvm::Attribute::NoUnwind))
1540       callOp.setNoUnwind(true);
1541     if (callInst->hasFnAttr(llvm::Attribute::WillReturn))
1542       callOp.setWillReturn(true);
1543 
1544     llvm::MemoryEffects memEffects = callInst->getMemoryEffects();
1545     ModRefInfo othermem = convertModRefInfoFromLLVM(
1546         memEffects.getModRef(llvm::MemoryEffects::Location::Other));
1547     ModRefInfo argMem = convertModRefInfoFromLLVM(
1548         memEffects.getModRef(llvm::MemoryEffects::Location::ArgMem));
1549     ModRefInfo inaccessibleMem = convertModRefInfoFromLLVM(
1550         memEffects.getModRef(llvm::MemoryEffects::Location::InaccessibleMem));
1551     auto memAttr = MemoryEffectsAttr::get(callOp.getContext(), othermem, argMem,
1552                                           inaccessibleMem);
1553     // Only set the attribute when it does not match the default value.
1554     if (!memAttr.isReadWrite())
1555       callOp.setMemoryEffectsAttr(memAttr);
1556 
1557     if (!callInst->getType()->isVoidTy())
1558       mapValue(inst, callOp.getResult());
1559     else
1560       mapNoResultOp(inst, callOp);
1561     return success();
1562   }
1563   if (inst->getOpcode() == llvm::Instruction::LandingPad) {
1564     auto *lpInst = cast<llvm::LandingPadInst>(inst);
1565 
1566     SmallVector<Value> operands;
1567     operands.reserve(lpInst->getNumClauses());
1568     for (auto i : llvm::seq<unsigned>(0, lpInst->getNumClauses())) {
1569       FailureOr<Value> operand = convertValue(lpInst->getClause(i));
1570       if (failed(operand))
1571         return failure();
1572       operands.push_back(*operand);
1573     }
1574 
1575     Type type = convertType(lpInst->getType());
1576     auto lpOp =
1577         builder.create<LandingpadOp>(loc, type, lpInst->isCleanup(), operands);
1578     mapValue(inst, lpOp);
1579     return success();
1580   }
1581   if (inst->getOpcode() == llvm::Instruction::Invoke) {
1582     auto *invokeInst = cast<llvm::InvokeInst>(inst);
1583 
1584     SmallVector<Type> types;
1585     SmallVector<Value> operands;
1586     if (failed(convertCallTypeAndOperands(invokeInst, types, operands)))
1587       return failure();
1588 
1589     // Check whether the invoke result is an argument to the normal destination
1590     // block.
1591     bool invokeResultUsedInPhi = llvm::any_of(
1592         invokeInst->getNormalDest()->phis(), [&](const llvm::PHINode &phi) {
1593           return phi.getIncomingValueForBlock(invokeInst->getParent()) ==
1594                  invokeInst;
1595         });
1596 
1597     Block *normalDest = lookupBlock(invokeInst->getNormalDest());
1598     Block *directNormalDest = normalDest;
1599     if (invokeResultUsedInPhi) {
1600       // The invoke result cannot be an argument to the normal destination
1601       // block, as that would imply using the invoke operation result in its
1602       // definition, so we need to create a dummy block to serve as an
1603       // intermediate destination.
1604       OpBuilder::InsertionGuard g(builder);
1605       directNormalDest = builder.createBlock(normalDest);
1606     }
1607 
1608     SmallVector<Value> unwindArgs;
1609     if (failed(convertBranchArgs(invokeInst, invokeInst->getUnwindDest(),
1610                                  unwindArgs)))
1611       return failure();
1612 
1613     auto funcTy =
1614         dyn_cast<LLVMFunctionType>(convertType(invokeInst->getFunctionType()));
1615     if (!funcTy)
1616       return failure();
1617 
1618     // Create the invoke operation. Normal destination block arguments will be
1619     // added later on to handle the case in which the operation result is
1620     // included in this list.
1621     InvokeOp invokeOp;
1622     if (llvm::Function *callee = invokeInst->getCalledFunction()) {
1623       invokeOp = builder.create<InvokeOp>(
1624           loc, funcTy,
1625           SymbolRefAttr::get(builder.getContext(), callee->getName()), operands,
1626           directNormalDest, ValueRange(),
1627           lookupBlock(invokeInst->getUnwindDest()), unwindArgs);
1628     } else {
1629       invokeOp = builder.create<InvokeOp>(
1630           loc, funcTy, /*callee=*/nullptr, operands, directNormalDest,
1631           ValueRange(), lookupBlock(invokeInst->getUnwindDest()), unwindArgs);
1632     }
1633     invokeOp.setCConv(convertCConvFromLLVM(invokeInst->getCallingConv()));
1634     if (!invokeInst->getType()->isVoidTy())
1635       mapValue(inst, invokeOp.getResults().front());
1636     else
1637       mapNoResultOp(inst, invokeOp);
1638 
1639     SmallVector<Value> normalArgs;
1640     if (failed(convertBranchArgs(invokeInst, invokeInst->getNormalDest(),
1641                                  normalArgs)))
1642       return failure();
1643 
1644     if (invokeResultUsedInPhi) {
1645       // The dummy normal dest block will just host an unconditional branch
1646       // instruction to the normal destination block passing the required block
1647       // arguments (including the invoke operation's result).
1648       OpBuilder::InsertionGuard g(builder);
1649       builder.setInsertionPointToStart(directNormalDest);
1650       builder.create<LLVM::BrOp>(loc, normalArgs, normalDest);
1651     } else {
1652       // If the invoke operation's result is not a block argument to the normal
1653       // destination block, just add the block arguments as usual.
1654       assert(llvm::none_of(
1655                  normalArgs,
1656                  [&](Value val) { return val.getDefiningOp() == invokeOp; }) &&
1657              "An llvm.invoke operation cannot pass its result as a block "
1658              "argument.");
1659       invokeOp.getNormalDestOperandsMutable().append(normalArgs);
1660     }
1661 
1662     return success();
1663   }
1664   if (inst->getOpcode() == llvm::Instruction::GetElementPtr) {
1665     auto *gepInst = cast<llvm::GetElementPtrInst>(inst);
1666     Type sourceElementType = convertType(gepInst->getSourceElementType());
1667     FailureOr<Value> basePtr = convertValue(gepInst->getOperand(0));
1668     if (failed(basePtr))
1669       return failure();
1670 
1671     // Treat every indices as dynamic since GEPOp::build will refine those
1672     // indices into static attributes later. One small downside of this
1673     // approach is that many unused `llvm.mlir.constant` would be emitted
1674     // at first place.
1675     SmallVector<GEPArg> indices;
1676     for (llvm::Value *operand : llvm::drop_begin(gepInst->operand_values())) {
1677       FailureOr<Value> index = convertValue(operand);
1678       if (failed(index))
1679         return failure();
1680       indices.push_back(*index);
1681     }
1682 
1683     Type type = convertType(inst->getType());
1684     auto gepOp = builder.create<GEPOp>(loc, type, sourceElementType, *basePtr,
1685                                        indices, gepInst->isInBounds());
1686     mapValue(inst, gepOp);
1687     return success();
1688   }
1689 
1690   // Convert all instructions that have an mlirBuilder.
1691   if (succeeded(convertInstructionImpl(builder, inst, *this, iface)))
1692     return success();
1693 
1694   return emitError(loc) << "unhandled instruction: " << diag(*inst);
1695 }
1696 
1697 LogicalResult ModuleImport::processInstruction(llvm::Instruction *inst) {
1698   // FIXME: Support uses of SubtargetData.
1699   // FIXME: Add support for call / operand attributes.
1700   // FIXME: Add support for the indirectbr, cleanupret, catchret, catchswitch,
1701   // callbr, vaarg, catchpad, cleanuppad instructions.
1702 
1703   // Convert LLVM intrinsics calls to MLIR intrinsics.
1704   if (auto *intrinsic = dyn_cast<llvm::IntrinsicInst>(inst))
1705     return convertIntrinsic(intrinsic);
1706 
1707   // Convert all remaining LLVM instructions to MLIR operations.
1708   return convertInstruction(inst);
1709 }
1710 
1711 FlatSymbolRefAttr ModuleImport::getPersonalityAsAttr(llvm::Function *f) {
1712   if (!f->hasPersonalityFn())
1713     return nullptr;
1714 
1715   llvm::Constant *pf = f->getPersonalityFn();
1716 
1717   // If it directly has a name, we can use it.
1718   if (pf->hasName())
1719     return SymbolRefAttr::get(builder.getContext(), pf->getName());
1720 
1721   // If it doesn't have a name, currently, only function pointers that are
1722   // bitcast to i8* are parsed.
1723   if (auto *ce = dyn_cast<llvm::ConstantExpr>(pf)) {
1724     if (ce->getOpcode() == llvm::Instruction::BitCast &&
1725         ce->getType() == llvm::PointerType::getUnqual(f->getContext())) {
1726       if (auto *func = dyn_cast<llvm::Function>(ce->getOperand(0)))
1727         return SymbolRefAttr::get(builder.getContext(), func->getName());
1728     }
1729   }
1730   return FlatSymbolRefAttr();
1731 }
1732 
1733 static void processMemoryEffects(llvm::Function *func, LLVMFuncOp funcOp) {
1734   llvm::MemoryEffects memEffects = func->getMemoryEffects();
1735 
1736   auto othermem = convertModRefInfoFromLLVM(
1737       memEffects.getModRef(llvm::MemoryEffects::Location::Other));
1738   auto argMem = convertModRefInfoFromLLVM(
1739       memEffects.getModRef(llvm::MemoryEffects::Location::ArgMem));
1740   auto inaccessibleMem = convertModRefInfoFromLLVM(
1741       memEffects.getModRef(llvm::MemoryEffects::Location::InaccessibleMem));
1742   auto memAttr = MemoryEffectsAttr::get(funcOp.getContext(), othermem, argMem,
1743                                         inaccessibleMem);
1744   // Only set the attr when it does not match the default value.
1745   if (memAttr.isReadWrite())
1746     return;
1747   funcOp.setMemoryEffectsAttr(memAttr);
1748 }
1749 
1750 // List of LLVM IR attributes that map to an explicit attribute on the MLIR
1751 // LLVMFuncOp.
1752 static constexpr std::array kExplicitAttributes{
1753     StringLiteral("aarch64_in_za"),
1754     StringLiteral("aarch64_inout_za"),
1755     StringLiteral("aarch64_new_za"),
1756     StringLiteral("aarch64_out_za"),
1757     StringLiteral("aarch64_preserves_za"),
1758     StringLiteral("aarch64_pstate_sm_body"),
1759     StringLiteral("aarch64_pstate_sm_compatible"),
1760     StringLiteral("aarch64_pstate_sm_enabled"),
1761     StringLiteral("alwaysinline"),
1762     StringLiteral("approx-func-fp-math"),
1763     StringLiteral("convergent"),
1764     StringLiteral("denormal-fp-math"),
1765     StringLiteral("denormal-fp-math-f32"),
1766     StringLiteral("fp-contract"),
1767     StringLiteral("frame-pointer"),
1768     StringLiteral("no-infs-fp-math"),
1769     StringLiteral("no-nans-fp-math"),
1770     StringLiteral("no-signed-zeros-fp-math"),
1771     StringLiteral("noinline"),
1772     StringLiteral("nounwind"),
1773     StringLiteral("optnone"),
1774     StringLiteral("target-features"),
1775     StringLiteral("tune-cpu"),
1776     StringLiteral("unsafe-fp-math"),
1777     StringLiteral("vscale_range"),
1778     StringLiteral("willreturn"),
1779 };
1780 
1781 static void processPassthroughAttrs(llvm::Function *func, LLVMFuncOp funcOp) {
1782   MLIRContext *context = funcOp.getContext();
1783   SmallVector<Attribute> passthroughs;
1784   llvm::AttributeSet funcAttrs = func->getAttributes().getAttributes(
1785       llvm::AttributeList::AttrIndex::FunctionIndex);
1786   for (llvm::Attribute attr : funcAttrs) {
1787     // Skip the memory attribute since the LLVMFuncOp has an explicit memory
1788     // attribute.
1789     if (attr.hasAttribute(llvm::Attribute::Memory))
1790       continue;
1791 
1792     // Skip invalid type attributes.
1793     if (attr.isTypeAttribute()) {
1794       emitWarning(funcOp.getLoc(),
1795                   "type attributes on a function are invalid, skipping it");
1796       continue;
1797     }
1798 
1799     StringRef attrName;
1800     if (attr.isStringAttribute())
1801       attrName = attr.getKindAsString();
1802     else
1803       attrName = llvm::Attribute::getNameFromAttrKind(attr.getKindAsEnum());
1804     auto keyAttr = StringAttr::get(context, attrName);
1805 
1806     // Skip attributes that map to an explicit attribute on the LLVMFuncOp.
1807     if (llvm::is_contained(kExplicitAttributes, attrName))
1808       continue;
1809 
1810     if (attr.isStringAttribute()) {
1811       StringRef val = attr.getValueAsString();
1812       if (val.empty()) {
1813         passthroughs.push_back(keyAttr);
1814         continue;
1815       }
1816       passthroughs.push_back(
1817           ArrayAttr::get(context, {keyAttr, StringAttr::get(context, val)}));
1818       continue;
1819     }
1820     if (attr.isIntAttribute()) {
1821       auto val = std::to_string(attr.getValueAsInt());
1822       passthroughs.push_back(
1823           ArrayAttr::get(context, {keyAttr, StringAttr::get(context, val)}));
1824       continue;
1825     }
1826     if (attr.isEnumAttribute()) {
1827       passthroughs.push_back(keyAttr);
1828       continue;
1829     }
1830 
1831     llvm_unreachable("unexpected attribute kind");
1832   }
1833 
1834   if (!passthroughs.empty())
1835     funcOp.setPassthroughAttr(ArrayAttr::get(context, passthroughs));
1836 }
1837 
1838 void ModuleImport::processFunctionAttributes(llvm::Function *func,
1839                                              LLVMFuncOp funcOp) {
1840   processMemoryEffects(func, funcOp);
1841   processPassthroughAttrs(func, funcOp);
1842 
1843   if (func->hasFnAttribute(llvm::Attribute::NoInline))
1844     funcOp.setNoInline(true);
1845   if (func->hasFnAttribute(llvm::Attribute::AlwaysInline))
1846     funcOp.setAlwaysInline(true);
1847   if (func->hasFnAttribute(llvm::Attribute::OptimizeNone))
1848     funcOp.setOptimizeNone(true);
1849   if (func->hasFnAttribute(llvm::Attribute::Convergent))
1850     funcOp.setConvergent(true);
1851   if (func->hasFnAttribute(llvm::Attribute::NoUnwind))
1852     funcOp.setNoUnwind(true);
1853   if (func->hasFnAttribute(llvm::Attribute::WillReturn))
1854     funcOp.setWillReturn(true);
1855 
1856   if (func->hasFnAttribute("aarch64_pstate_sm_enabled"))
1857     funcOp.setArmStreaming(true);
1858   else if (func->hasFnAttribute("aarch64_pstate_sm_body"))
1859     funcOp.setArmLocallyStreaming(true);
1860   else if (func->hasFnAttribute("aarch64_pstate_sm_compatible"))
1861     funcOp.setArmStreamingCompatible(true);
1862 
1863   if (func->hasFnAttribute("aarch64_new_za"))
1864     funcOp.setArmNewZa(true);
1865   else if (func->hasFnAttribute("aarch64_in_za"))
1866     funcOp.setArmInZa(true);
1867   else if (func->hasFnAttribute("aarch64_out_za"))
1868     funcOp.setArmOutZa(true);
1869   else if (func->hasFnAttribute("aarch64_inout_za"))
1870     funcOp.setArmInoutZa(true);
1871   else if (func->hasFnAttribute("aarch64_preserves_za"))
1872     funcOp.setArmPreservesZa(true);
1873 
1874   llvm::Attribute attr = func->getFnAttribute(llvm::Attribute::VScaleRange);
1875   if (attr.isValid()) {
1876     MLIRContext *context = funcOp.getContext();
1877     auto intTy = IntegerType::get(context, 32);
1878     funcOp.setVscaleRangeAttr(LLVM::VScaleRangeAttr::get(
1879         context, IntegerAttr::get(intTy, attr.getVScaleRangeMin()),
1880         IntegerAttr::get(intTy, attr.getVScaleRangeMax().value_or(0))));
1881   }
1882 
1883   // Process frame-pointer attribute.
1884   if (func->hasFnAttribute("frame-pointer")) {
1885     StringRef stringRefFramePointerKind =
1886         func->getFnAttribute("frame-pointer").getValueAsString();
1887     funcOp.setFramePointerAttr(LLVM::FramePointerKindAttr::get(
1888         funcOp.getContext(), LLVM::framePointerKind::symbolizeFramePointerKind(
1889                                  stringRefFramePointerKind)
1890                                  .value()));
1891   }
1892 
1893   if (llvm::Attribute attr = func->getFnAttribute("target-cpu");
1894       attr.isStringAttribute())
1895     funcOp.setTargetCpuAttr(StringAttr::get(context, attr.getValueAsString()));
1896 
1897   if (llvm::Attribute attr = func->getFnAttribute("tune-cpu");
1898       attr.isStringAttribute())
1899     funcOp.setTuneCpuAttr(StringAttr::get(context, attr.getValueAsString()));
1900 
1901   if (llvm::Attribute attr = func->getFnAttribute("target-features");
1902       attr.isStringAttribute())
1903     funcOp.setTargetFeaturesAttr(
1904         LLVM::TargetFeaturesAttr::get(context, attr.getValueAsString()));
1905 
1906   if (llvm::Attribute attr = func->getFnAttribute("unsafe-fp-math");
1907       attr.isStringAttribute())
1908     funcOp.setUnsafeFpMath(attr.getValueAsBool());
1909 
1910   if (llvm::Attribute attr = func->getFnAttribute("no-infs-fp-math");
1911       attr.isStringAttribute())
1912     funcOp.setNoInfsFpMath(attr.getValueAsBool());
1913 
1914   if (llvm::Attribute attr = func->getFnAttribute("no-nans-fp-math");
1915       attr.isStringAttribute())
1916     funcOp.setNoNansFpMath(attr.getValueAsBool());
1917 
1918   if (llvm::Attribute attr = func->getFnAttribute("approx-func-fp-math");
1919       attr.isStringAttribute())
1920     funcOp.setApproxFuncFpMath(attr.getValueAsBool());
1921 
1922   if (llvm::Attribute attr = func->getFnAttribute("no-signed-zeros-fp-math");
1923       attr.isStringAttribute())
1924     funcOp.setNoSignedZerosFpMath(attr.getValueAsBool());
1925 
1926   if (llvm::Attribute attr = func->getFnAttribute("denormal-fp-math");
1927       attr.isStringAttribute())
1928     funcOp.setDenormalFpMathAttr(
1929         StringAttr::get(context, attr.getValueAsString()));
1930 
1931   if (llvm::Attribute attr = func->getFnAttribute("denormal-fp-math-f32");
1932       attr.isStringAttribute())
1933     funcOp.setDenormalFpMathF32Attr(
1934         StringAttr::get(context, attr.getValueAsString()));
1935 
1936   if (llvm::Attribute attr = func->getFnAttribute("fp-contract");
1937       attr.isStringAttribute())
1938     funcOp.setFpContractAttr(StringAttr::get(context, attr.getValueAsString()));
1939 }
1940 
1941 DictionaryAttr
1942 ModuleImport::convertParameterAttribute(llvm::AttributeSet llvmParamAttrs,
1943                                         OpBuilder &builder) {
1944   SmallVector<NamedAttribute> paramAttrs;
1945   for (auto [llvmKind, mlirName] : getAttrKindToNameMapping()) {
1946     auto llvmAttr = llvmParamAttrs.getAttribute(llvmKind);
1947     // Skip attributes that are not attached.
1948     if (!llvmAttr.isValid())
1949       continue;
1950     Attribute mlirAttr;
1951     if (llvmAttr.isTypeAttribute())
1952       mlirAttr = TypeAttr::get(convertType(llvmAttr.getValueAsType()));
1953     else if (llvmAttr.isIntAttribute())
1954       mlirAttr = builder.getI64IntegerAttr(llvmAttr.getValueAsInt());
1955     else if (llvmAttr.isEnumAttribute())
1956       mlirAttr = builder.getUnitAttr();
1957     else
1958       llvm_unreachable("unexpected parameter attribute kind");
1959     paramAttrs.push_back(builder.getNamedAttr(mlirName, mlirAttr));
1960   }
1961 
1962   return builder.getDictionaryAttr(paramAttrs);
1963 }
1964 
1965 void ModuleImport::convertParameterAttributes(llvm::Function *func,
1966                                               LLVMFuncOp funcOp,
1967                                               OpBuilder &builder) {
1968   auto llvmAttrs = func->getAttributes();
1969   for (size_t i = 0, e = funcOp.getNumArguments(); i < e; ++i) {
1970     llvm::AttributeSet llvmArgAttrs = llvmAttrs.getParamAttrs(i);
1971     funcOp.setArgAttrs(i, convertParameterAttribute(llvmArgAttrs, builder));
1972   }
1973   // Convert the result attributes and attach them wrapped in an ArrayAttribute
1974   // to the funcOp.
1975   llvm::AttributeSet llvmResAttr = llvmAttrs.getRetAttrs();
1976   if (!llvmResAttr.hasAttributes())
1977     return;
1978   funcOp.setResAttrsAttr(
1979       builder.getArrayAttr(convertParameterAttribute(llvmResAttr, builder)));
1980 }
1981 
1982 LogicalResult ModuleImport::processFunction(llvm::Function *func) {
1983   clearRegionState();
1984 
1985   auto functionType =
1986       dyn_cast<LLVMFunctionType>(convertType(func->getFunctionType()));
1987   if (func->isIntrinsic() &&
1988       iface.isConvertibleIntrinsic(func->getIntrinsicID()))
1989     return success();
1990 
1991   bool dsoLocal = func->hasLocalLinkage();
1992   CConv cconv = convertCConvFromLLVM(func->getCallingConv());
1993 
1994   // Insert the function at the end of the module.
1995   OpBuilder::InsertionGuard guard(builder);
1996   builder.setInsertionPoint(mlirModule.getBody(), mlirModule.getBody()->end());
1997 
1998   Location loc = debugImporter->translateFuncLocation(func);
1999   LLVMFuncOp funcOp = builder.create<LLVMFuncOp>(
2000       loc, func->getName(), functionType,
2001       convertLinkageFromLLVM(func->getLinkage()), dsoLocal, cconv);
2002 
2003   convertParameterAttributes(func, funcOp, builder);
2004 
2005   if (FlatSymbolRefAttr personality = getPersonalityAsAttr(func))
2006     funcOp.setPersonalityAttr(personality);
2007   else if (func->hasPersonalityFn())
2008     emitWarning(funcOp.getLoc(), "could not deduce personality, skipping it");
2009 
2010   if (func->hasGC())
2011     funcOp.setGarbageCollector(StringRef(func->getGC()));
2012 
2013   if (func->hasAtLeastLocalUnnamedAddr())
2014     funcOp.setUnnamedAddr(convertUnnamedAddrFromLLVM(func->getUnnamedAddr()));
2015 
2016   if (func->hasSection())
2017     funcOp.setSection(StringRef(func->getSection()));
2018 
2019   funcOp.setVisibility_(convertVisibilityFromLLVM(func->getVisibility()));
2020 
2021   if (func->hasComdat())
2022     funcOp.setComdatAttr(comdatMapping.lookup(func->getComdat()));
2023 
2024   if (llvm::MaybeAlign maybeAlign = func->getAlign())
2025     funcOp.setAlignment(maybeAlign->value());
2026 
2027   // Handle Function attributes.
2028   processFunctionAttributes(func, funcOp);
2029 
2030   // Convert non-debug metadata by using the dialect interface.
2031   SmallVector<std::pair<unsigned, llvm::MDNode *>> allMetadata;
2032   func->getAllMetadata(allMetadata);
2033   for (auto &[kind, node] : allMetadata) {
2034     if (!iface.isConvertibleMetadata(kind))
2035       continue;
2036     if (failed(iface.setMetadataAttrs(builder, kind, node, funcOp, *this))) {
2037       emitWarning(funcOp.getLoc())
2038           << "unhandled function metadata: " << diagMD(node, llvmModule.get())
2039           << " on " << diag(*func);
2040     }
2041   }
2042 
2043   if (func->isDeclaration())
2044     return success();
2045 
2046   // Collect the set of basic blocks reachable from the function's entry block.
2047   // This step is crucial as LLVM IR can contain unreachable blocks that
2048   // self-dominate. As a result, an operation might utilize a variable it
2049   // defines, which the import does not support. Given that MLIR lacks block
2050   // label support, we can safely remove unreachable blocks, as there are no
2051   // indirect branch instructions that could potentially target these blocks.
2052   llvm::df_iterator_default_set<llvm::BasicBlock *> reachable;
2053   for (llvm::BasicBlock *basicBlock : llvm::depth_first_ext(func, reachable))
2054     (void)basicBlock;
2055 
2056   // Eagerly create all reachable blocks.
2057   SmallVector<llvm::BasicBlock *> reachableBasicBlocks;
2058   for (llvm::BasicBlock &basicBlock : *func) {
2059     // Skip unreachable blocks.
2060     if (!reachable.contains(&basicBlock))
2061       continue;
2062     Region &body = funcOp.getBody();
2063     Block *block = builder.createBlock(&body, body.end());
2064     mapBlock(&basicBlock, block);
2065     reachableBasicBlocks.push_back(&basicBlock);
2066   }
2067 
2068   // Add function arguments to the entry block.
2069   for (const auto &it : llvm::enumerate(func->args())) {
2070     BlockArgument blockArg = funcOp.getFunctionBody().addArgument(
2071         functionType.getParamType(it.index()), funcOp.getLoc());
2072     mapValue(&it.value(), blockArg);
2073   }
2074 
2075   // Process the blocks in topological order. The ordered traversal ensures
2076   // operands defined in a dominating block have a valid mapping to an MLIR
2077   // value once a block is translated.
2078   SetVector<llvm::BasicBlock *> blocks =
2079       getTopologicallySortedBlocks(reachableBasicBlocks);
2080   setConstantInsertionPointToStart(lookupBlock(blocks.front()));
2081   for (llvm::BasicBlock *basicBlock : blocks)
2082     if (failed(processBasicBlock(basicBlock, lookupBlock(basicBlock))))
2083       return failure();
2084 
2085   // Process the debug intrinsics that require a delayed conversion after
2086   // everything else was converted.
2087   if (failed(processDebugIntrinsics()))
2088     return failure();
2089 
2090   return success();
2091 }
2092 
2093 /// Checks if `dbgIntr` is a kill location that holds metadata instead of an SSA
2094 /// value.
2095 static bool isMetadataKillLocation(llvm::DbgVariableIntrinsic *dbgIntr) {
2096   if (!dbgIntr->isKillLocation())
2097     return false;
2098   llvm::Value *value = dbgIntr->getArgOperand(0);
2099   auto *nodeAsVal = dyn_cast<llvm::MetadataAsValue>(value);
2100   if (!nodeAsVal)
2101     return false;
2102   return !isa<llvm::ValueAsMetadata>(nodeAsVal->getMetadata());
2103 }
2104 
2105 LogicalResult
2106 ModuleImport::processDebugIntrinsic(llvm::DbgVariableIntrinsic *dbgIntr,
2107                                     DominanceInfo &domInfo) {
2108   Location loc = translateLoc(dbgIntr->getDebugLoc());
2109   auto emitUnsupportedWarning = [&]() {
2110     if (emitExpensiveWarnings)
2111       emitWarning(loc) << "dropped intrinsic: " << diag(*dbgIntr);
2112     return success();
2113   };
2114   // Drop debug intrinsics with arg lists.
2115   // TODO: Support debug intrinsics that have arg lists.
2116   if (dbgIntr->hasArgList())
2117     return emitUnsupportedWarning();
2118   // Kill locations can have metadata nodes as location operand. This
2119   // cannot be converted to poison as the type cannot be reconstructed.
2120   // TODO: find a way to support this case.
2121   if (isMetadataKillLocation(dbgIntr))
2122     return emitUnsupportedWarning();
2123   // Drop debug intrinsics if the associated variable information cannot be
2124   // translated due to cyclic debug metadata.
2125   // TODO: Support cyclic debug metadata.
2126   DILocalVariableAttr localVariableAttr =
2127       matchLocalVariableAttr(dbgIntr->getArgOperand(1));
2128   if (!localVariableAttr)
2129     return emitUnsupportedWarning();
2130   FailureOr<Value> argOperand = convertMetadataValue(dbgIntr->getArgOperand(0));
2131   if (failed(argOperand))
2132     return emitError(loc) << "failed to convert a debug intrinsic operand: "
2133                           << diag(*dbgIntr);
2134 
2135   // Ensure that the debug instrinsic is inserted right after its operand is
2136   // defined. Otherwise, the operand might not necessarily dominate the
2137   // intrinsic. If the defining operation is a terminator, insert the intrinsic
2138   // into a dominated block.
2139   OpBuilder::InsertionGuard guard(builder);
2140   if (Operation *op = argOperand->getDefiningOp();
2141       op && op->hasTrait<OpTrait::IsTerminator>()) {
2142     // Find a dominated block that can hold the debug intrinsic.
2143     auto dominatedBlocks = domInfo.getNode(op->getBlock())->children();
2144     // If no block is dominated by the terminator, this intrinisc cannot be
2145     // converted.
2146     if (dominatedBlocks.empty())
2147       return emitUnsupportedWarning();
2148     // Set insertion point before the terminator, to avoid inserting something
2149     // before landingpads.
2150     Block *dominatedBlock = (*dominatedBlocks.begin())->getBlock();
2151     builder.setInsertionPoint(dominatedBlock->getTerminator());
2152   } else {
2153     builder.setInsertionPointAfterValue(*argOperand);
2154   }
2155   auto locationExprAttr =
2156       debugImporter->translateExpression(dbgIntr->getExpression());
2157   Operation *op =
2158       llvm::TypeSwitch<llvm::DbgVariableIntrinsic *, Operation *>(dbgIntr)
2159           .Case([&](llvm::DbgDeclareInst *) {
2160             return builder.create<LLVM::DbgDeclareOp>(
2161                 loc, *argOperand, localVariableAttr, locationExprAttr);
2162           })
2163           .Case([&](llvm::DbgValueInst *) {
2164             return builder.create<LLVM::DbgValueOp>(
2165                 loc, *argOperand, localVariableAttr, locationExprAttr);
2166           });
2167   mapNoResultOp(dbgIntr, op);
2168   setNonDebugMetadataAttrs(dbgIntr, op);
2169   return success();
2170 }
2171 
2172 LogicalResult ModuleImport::processDebugIntrinsics() {
2173   DominanceInfo domInfo;
2174   for (llvm::Instruction *inst : debugIntrinsics) {
2175     auto *intrCall = cast<llvm::DbgVariableIntrinsic>(inst);
2176     if (failed(processDebugIntrinsic(intrCall, domInfo)))
2177       return failure();
2178   }
2179   return success();
2180 }
2181 
2182 LogicalResult ModuleImport::processBasicBlock(llvm::BasicBlock *bb,
2183                                               Block *block) {
2184   builder.setInsertionPointToStart(block);
2185   for (llvm::Instruction &inst : *bb) {
2186     if (failed(processInstruction(&inst)))
2187       return failure();
2188 
2189     // Skip additional processing when the instructions is a debug intrinsics
2190     // that was not yet converted.
2191     if (debugIntrinsics.contains(&inst))
2192       continue;
2193 
2194     // Set the non-debug metadata attributes on the imported operation and emit
2195     // a warning if an instruction other than a phi instruction is dropped
2196     // during the import.
2197     if (Operation *op = lookupOperation(&inst)) {
2198       setNonDebugMetadataAttrs(&inst, op);
2199     } else if (inst.getOpcode() != llvm::Instruction::PHI) {
2200       if (emitExpensiveWarnings) {
2201         Location loc = debugImporter->translateLoc(inst.getDebugLoc());
2202         emitWarning(loc) << "dropped instruction: " << diag(inst);
2203       }
2204     }
2205   }
2206   return success();
2207 }
2208 
2209 FailureOr<SmallVector<AccessGroupAttr>>
2210 ModuleImport::lookupAccessGroupAttrs(const llvm::MDNode *node) const {
2211   return loopAnnotationImporter->lookupAccessGroupAttrs(node);
2212 }
2213 
2214 LoopAnnotationAttr
2215 ModuleImport::translateLoopAnnotationAttr(const llvm::MDNode *node,
2216                                           Location loc) const {
2217   return loopAnnotationImporter->translateLoopAnnotation(node, loc);
2218 }
2219 
2220 OwningOpRef<ModuleOp>
2221 mlir::translateLLVMIRToModule(std::unique_ptr<llvm::Module> llvmModule,
2222                               MLIRContext *context, bool emitExpensiveWarnings,
2223                               bool dropDICompositeTypeElements) {
2224   // Preload all registered dialects to allow the import to iterate the
2225   // registered LLVMImportDialectInterface implementations and query the
2226   // supported LLVM IR constructs before starting the translation. Assumes the
2227   // LLVM and DLTI dialects that convert the core LLVM IR constructs have been
2228   // registered before.
2229   assert(llvm::is_contained(context->getAvailableDialects(),
2230                             LLVMDialect::getDialectNamespace()));
2231   assert(llvm::is_contained(context->getAvailableDialects(),
2232                             DLTIDialect::getDialectNamespace()));
2233   context->loadAllAvailableDialects();
2234   OwningOpRef<ModuleOp> module(ModuleOp::create(FileLineColLoc::get(
2235       StringAttr::get(context, llvmModule->getSourceFileName()), /*line=*/0,
2236       /*column=*/0)));
2237 
2238   ModuleImport moduleImport(module.get(), std::move(llvmModule),
2239                             emitExpensiveWarnings, dropDICompositeTypeElements);
2240   if (failed(moduleImport.initializeImportInterface()))
2241     return {};
2242   if (failed(moduleImport.convertDataLayout()))
2243     return {};
2244   if (failed(moduleImport.convertComdats()))
2245     return {};
2246   if (failed(moduleImport.convertMetadata()))
2247     return {};
2248   if (failed(moduleImport.convertGlobals()))
2249     return {};
2250   if (failed(moduleImport.convertFunctions()))
2251     return {};
2252 
2253   return module;
2254 }
2255