1 //===- ModuleImport.cpp - LLVM to MLIR conversion ---------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the import of an LLVM IR module into an LLVM dialect 10 // module. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleImport.h" 15 #include "mlir/IR/BuiltinAttributes.h" 16 #include "mlir/Target/LLVMIR/Import.h" 17 18 #include "AttrKindDetail.h" 19 #include "DataLayoutImporter.h" 20 #include "DebugImporter.h" 21 #include "LoopAnnotationImporter.h" 22 23 #include "mlir/Dialect/DLTI/DLTI.h" 24 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/Matchers.h" 27 #include "mlir/Interfaces/DataLayoutInterfaces.h" 28 #include "mlir/Tools/mlir-translate/Translation.h" 29 30 #include "llvm/ADT/DepthFirstIterator.h" 31 #include "llvm/ADT/PostOrderIterator.h" 32 #include "llvm/ADT/ScopeExit.h" 33 #include "llvm/ADT/StringSet.h" 34 #include "llvm/ADT/TypeSwitch.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/InstIterator.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/Support/ModRef.h" 44 45 using namespace mlir; 46 using namespace mlir::LLVM; 47 using namespace mlir::LLVM::detail; 48 49 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsFromLLVM.inc" 50 51 // Utility to print an LLVM value as a string for passing to emitError(). 52 // FIXME: Diagnostic should be able to natively handle types that have 53 // operator << (raw_ostream&) defined. 54 static std::string diag(const llvm::Value &value) { 55 std::string str; 56 llvm::raw_string_ostream os(str); 57 os << value; 58 return str; 59 } 60 61 // Utility to print an LLVM metadata node as a string for passing 62 // to emitError(). The module argument is needed to print the nodes 63 // canonically numbered. 64 static std::string diagMD(const llvm::Metadata *node, 65 const llvm::Module *module) { 66 std::string str; 67 llvm::raw_string_ostream os(str); 68 node->print(os, module, /*IsForDebug=*/true); 69 return str; 70 } 71 72 /// Returns the name of the global_ctors global variables. 73 static constexpr StringRef getGlobalCtorsVarName() { 74 return "llvm.global_ctors"; 75 } 76 77 /// Prefix used for symbols of nameless llvm globals. 78 static constexpr StringRef getNamelessGlobalPrefix() { 79 return "mlir.llvm.nameless_global"; 80 } 81 82 /// Returns the name of the global_dtors global variables. 83 static constexpr StringRef getGlobalDtorsVarName() { 84 return "llvm.global_dtors"; 85 } 86 87 /// Returns the symbol name for the module-level comdat operation. It must not 88 /// conflict with the user namespace. 89 static constexpr StringRef getGlobalComdatOpName() { 90 return "__llvm_global_comdat"; 91 } 92 93 /// Converts the sync scope identifier of `inst` to the string representation 94 /// necessary to build an atomic LLVM dialect operation. Returns the empty 95 /// string if the operation has either no sync scope or the default system-level 96 /// sync scope attached. The atomic operations only set their sync scope 97 /// attribute if they have a non-default sync scope attached. 98 static StringRef getLLVMSyncScope(llvm::Instruction *inst) { 99 std::optional<llvm::SyncScope::ID> syncScopeID = 100 llvm::getAtomicSyncScopeID(inst); 101 if (!syncScopeID) 102 return ""; 103 104 // Search the sync scope name for the given identifier. The default 105 // system-level sync scope thereby maps to the empty string. 106 SmallVector<StringRef> syncScopeName; 107 llvm::LLVMContext &llvmContext = inst->getContext(); 108 llvmContext.getSyncScopeNames(syncScopeName); 109 auto *it = llvm::find_if(syncScopeName, [&](StringRef name) { 110 return *syncScopeID == llvmContext.getOrInsertSyncScopeID(name); 111 }); 112 if (it != syncScopeName.end()) 113 return *it; 114 llvm_unreachable("incorrect sync scope identifier"); 115 } 116 117 /// Converts an array of unsigned indices to a signed integer position array. 118 static SmallVector<int64_t> getPositionFromIndices(ArrayRef<unsigned> indices) { 119 SmallVector<int64_t> position; 120 llvm::append_range(position, indices); 121 return position; 122 } 123 124 /// Converts the LLVM instructions that have a generated MLIR builder. Using a 125 /// static implementation method called from the module import ensures the 126 /// builders have to use the `moduleImport` argument and cannot directly call 127 /// import methods. As a result, both the intrinsic and the instruction MLIR 128 /// builders have to use the `moduleImport` argument and none of them has direct 129 /// access to the private module import methods. 130 static LogicalResult convertInstructionImpl(OpBuilder &odsBuilder, 131 llvm::Instruction *inst, 132 ModuleImport &moduleImport, 133 LLVMImportInterface &iface) { 134 // Copy the operands to an LLVM operands array reference for conversion. 135 SmallVector<llvm::Value *> operands(inst->operands()); 136 ArrayRef<llvm::Value *> llvmOperands(operands); 137 138 // Convert all instructions that provide an MLIR builder. 139 if (iface.isConvertibleInstruction(inst->getOpcode())) 140 return iface.convertInstruction(odsBuilder, inst, llvmOperands, 141 moduleImport); 142 // TODO: Implement the `convertInstruction` hooks in the 143 // `LLVMDialectLLVMIRImportInterface` and move the following include there. 144 #include "mlir/Dialect/LLVMIR/LLVMOpFromLLVMIRConversions.inc" 145 return failure(); 146 } 147 148 /// Get a topologically sorted list of blocks for the given basic blocks. 149 static SetVector<llvm::BasicBlock *> 150 getTopologicallySortedBlocks(ArrayRef<llvm::BasicBlock *> basicBlocks) { 151 SetVector<llvm::BasicBlock *> blocks; 152 for (llvm::BasicBlock *basicBlock : basicBlocks) { 153 if (!blocks.contains(basicBlock)) { 154 llvm::ReversePostOrderTraversal<llvm::BasicBlock *> traversal(basicBlock); 155 blocks.insert(traversal.begin(), traversal.end()); 156 } 157 } 158 assert(blocks.size() == basicBlocks.size() && "some blocks are not sorted"); 159 return blocks; 160 } 161 162 ModuleImport::ModuleImport(ModuleOp mlirModule, 163 std::unique_ptr<llvm::Module> llvmModule, 164 bool emitExpensiveWarnings, 165 bool importEmptyDICompositeTypes) 166 : builder(mlirModule->getContext()), context(mlirModule->getContext()), 167 mlirModule(mlirModule), llvmModule(std::move(llvmModule)), 168 iface(mlirModule->getContext()), 169 typeTranslator(*mlirModule->getContext()), 170 debugImporter(std::make_unique<DebugImporter>( 171 mlirModule, importEmptyDICompositeTypes)), 172 loopAnnotationImporter( 173 std::make_unique<LoopAnnotationImporter>(*this, builder)), 174 emitExpensiveWarnings(emitExpensiveWarnings) { 175 builder.setInsertionPointToStart(mlirModule.getBody()); 176 } 177 178 ComdatOp ModuleImport::getGlobalComdatOp() { 179 if (globalComdatOp) 180 return globalComdatOp; 181 182 OpBuilder::InsertionGuard guard(builder); 183 builder.setInsertionPointToEnd(mlirModule.getBody()); 184 globalComdatOp = 185 builder.create<ComdatOp>(mlirModule.getLoc(), getGlobalComdatOpName()); 186 globalInsertionOp = globalComdatOp; 187 return globalComdatOp; 188 } 189 190 LogicalResult ModuleImport::processTBAAMetadata(const llvm::MDNode *node) { 191 Location loc = mlirModule.getLoc(); 192 193 // If `node` is a valid TBAA root node, then return its optional identity 194 // string, otherwise return failure. 195 auto getIdentityIfRootNode = 196 [&](const llvm::MDNode *node) -> FailureOr<std::optional<StringRef>> { 197 // Root node, e.g.: 198 // !0 = !{!"Simple C/C++ TBAA"} 199 // !1 = !{} 200 if (node->getNumOperands() > 1) 201 return failure(); 202 // If the operand is MDString, then assume that this is a root node. 203 if (node->getNumOperands() == 1) 204 if (const auto *op0 = dyn_cast<const llvm::MDString>(node->getOperand(0))) 205 return std::optional<StringRef>{op0->getString()}; 206 return std::optional<StringRef>{}; 207 }; 208 209 // If `node` looks like a TBAA type descriptor metadata, 210 // then return true, if it is a valid node, and false otherwise. 211 // If it does not look like a TBAA type descriptor metadata, then 212 // return std::nullopt. 213 // If `identity` and `memberTypes/Offsets` are non-null, then they will 214 // contain the converted metadata operands for a valid TBAA node (i.e. when 215 // true is returned). 216 auto isTypeDescriptorNode = [&](const llvm::MDNode *node, 217 StringRef *identity = nullptr, 218 SmallVectorImpl<TBAAMemberAttr> *members = 219 nullptr) -> std::optional<bool> { 220 unsigned numOperands = node->getNumOperands(); 221 // Type descriptor, e.g.: 222 // !1 = !{!"int", !0, /*optional*/i64 0} /* scalar int type */ 223 // !2 = !{!"agg_t", !1, i64 0} /* struct agg_t { int x; } */ 224 if (numOperands < 2) 225 return std::nullopt; 226 227 // TODO: support "new" format (D41501) for type descriptors, 228 // where the first operand is an MDNode. 229 const auto *identityNode = 230 dyn_cast<const llvm::MDString>(node->getOperand(0)); 231 if (!identityNode) 232 return std::nullopt; 233 234 // This should be a type descriptor node. 235 if (identity) 236 *identity = identityNode->getString(); 237 238 for (unsigned pairNum = 0, e = numOperands / 2; pairNum < e; ++pairNum) { 239 const auto *memberNode = 240 dyn_cast<const llvm::MDNode>(node->getOperand(2 * pairNum + 1)); 241 if (!memberNode) { 242 emitError(loc) << "operand '" << 2 * pairNum + 1 << "' must be MDNode: " 243 << diagMD(node, llvmModule.get()); 244 return false; 245 } 246 int64_t offset = 0; 247 if (2 * pairNum + 2 >= numOperands) { 248 // Allow for optional 0 offset in 2-operand nodes. 249 if (numOperands != 2) { 250 emitError(loc) << "missing member offset: " 251 << diagMD(node, llvmModule.get()); 252 return false; 253 } 254 } else { 255 auto *offsetCI = llvm::mdconst::dyn_extract<llvm::ConstantInt>( 256 node->getOperand(2 * pairNum + 2)); 257 if (!offsetCI) { 258 emitError(loc) << "operand '" << 2 * pairNum + 2 259 << "' must be ConstantInt: " 260 << diagMD(node, llvmModule.get()); 261 return false; 262 } 263 offset = offsetCI->getZExtValue(); 264 } 265 266 if (members) 267 members->push_back(TBAAMemberAttr::get( 268 cast<TBAANodeAttr>(tbaaMapping.lookup(memberNode)), offset)); 269 } 270 271 return true; 272 }; 273 274 // If `node` looks like a TBAA access tag metadata, 275 // then return true, if it is a valid node, and false otherwise. 276 // If it does not look like a TBAA access tag metadata, then 277 // return std::nullopt. 278 // If the other arguments are non-null, then they will contain 279 // the converted metadata operands for a valid TBAA node (i.e. when true is 280 // returned). 281 auto isTagNode = [&](const llvm::MDNode *node, 282 TBAATypeDescriptorAttr *baseAttr = nullptr, 283 TBAATypeDescriptorAttr *accessAttr = nullptr, 284 int64_t *offset = nullptr, 285 bool *isConstant = nullptr) -> std::optional<bool> { 286 // Access tag, e.g.: 287 // !3 = !{!1, !1, i64 0} /* scalar int access */ 288 // !4 = !{!2, !1, i64 0} /* agg_t::x access */ 289 // 290 // Optional 4th argument is ConstantInt 0/1 identifying whether 291 // the location being accessed is "constant" (see for details: 292 // https://llvm.org/docs/LangRef.html#representation). 293 unsigned numOperands = node->getNumOperands(); 294 if (numOperands != 3 && numOperands != 4) 295 return std::nullopt; 296 const auto *baseMD = dyn_cast<const llvm::MDNode>(node->getOperand(0)); 297 const auto *accessMD = dyn_cast<const llvm::MDNode>(node->getOperand(1)); 298 auto *offsetCI = 299 llvm::mdconst::dyn_extract<llvm::ConstantInt>(node->getOperand(2)); 300 if (!baseMD || !accessMD || !offsetCI) 301 return std::nullopt; 302 // TODO: support "new" TBAA format, if needed (see D41501). 303 // In the "old" format the first operand of the access type 304 // metadata is MDString. We have to distinguish the formats, 305 // because access tags have the same structure, but different 306 // meaning for the operands. 307 if (accessMD->getNumOperands() < 1 || 308 !isa<llvm::MDString>(accessMD->getOperand(0))) 309 return std::nullopt; 310 bool isConst = false; 311 if (numOperands == 4) { 312 auto *isConstantCI = 313 llvm::mdconst::dyn_extract<llvm::ConstantInt>(node->getOperand(3)); 314 if (!isConstantCI) { 315 emitError(loc) << "operand '3' must be ConstantInt: " 316 << diagMD(node, llvmModule.get()); 317 return false; 318 } 319 isConst = isConstantCI->getValue()[0]; 320 } 321 if (baseAttr) 322 *baseAttr = cast<TBAATypeDescriptorAttr>(tbaaMapping.lookup(baseMD)); 323 if (accessAttr) 324 *accessAttr = cast<TBAATypeDescriptorAttr>(tbaaMapping.lookup(accessMD)); 325 if (offset) 326 *offset = offsetCI->getZExtValue(); 327 if (isConstant) 328 *isConstant = isConst; 329 return true; 330 }; 331 332 // Do a post-order walk over the TBAA Graph. Since a correct TBAA Graph is a 333 // DAG, a post-order walk guarantees that we convert any metadata node we 334 // depend on, prior to converting the current node. 335 DenseSet<const llvm::MDNode *> seen; 336 SmallVector<const llvm::MDNode *> workList; 337 workList.push_back(node); 338 while (!workList.empty()) { 339 const llvm::MDNode *current = workList.back(); 340 if (tbaaMapping.contains(current)) { 341 // Already converted. Just pop from the worklist. 342 workList.pop_back(); 343 continue; 344 } 345 346 // If any child of this node is not yet converted, don't pop the current 347 // node from the worklist but push the not-yet-converted children in the 348 // front of the worklist. 349 bool anyChildNotConverted = false; 350 for (const llvm::MDOperand &operand : current->operands()) 351 if (auto *childNode = dyn_cast_or_null<const llvm::MDNode>(operand.get())) 352 if (!tbaaMapping.contains(childNode)) { 353 workList.push_back(childNode); 354 anyChildNotConverted = true; 355 } 356 357 if (anyChildNotConverted) { 358 // If this is the second time we failed to convert an element in the 359 // worklist it must be because a child is dependent on it being converted 360 // and we have a cycle in the graph. Cycles are not allowed in TBAA 361 // graphs. 362 if (!seen.insert(current).second) 363 return emitError(loc) << "has cycle in TBAA graph: " 364 << diagMD(current, llvmModule.get()); 365 366 continue; 367 } 368 369 // Otherwise simply import the current node. 370 workList.pop_back(); 371 372 FailureOr<std::optional<StringRef>> rootNodeIdentity = 373 getIdentityIfRootNode(current); 374 if (succeeded(rootNodeIdentity)) { 375 StringAttr stringAttr = *rootNodeIdentity 376 ? builder.getStringAttr(**rootNodeIdentity) 377 : nullptr; 378 // The root nodes do not have operands, so we can create 379 // the TBAARootAttr on the first walk. 380 tbaaMapping.insert({current, builder.getAttr<TBAARootAttr>(stringAttr)}); 381 continue; 382 } 383 384 StringRef identity; 385 SmallVector<TBAAMemberAttr> members; 386 if (std::optional<bool> isValid = 387 isTypeDescriptorNode(current, &identity, &members)) { 388 assert(isValid.value() && "type descriptor node must be valid"); 389 390 tbaaMapping.insert({current, builder.getAttr<TBAATypeDescriptorAttr>( 391 identity, members)}); 392 continue; 393 } 394 395 TBAATypeDescriptorAttr baseAttr, accessAttr; 396 int64_t offset; 397 bool isConstant; 398 if (std::optional<bool> isValid = 399 isTagNode(current, &baseAttr, &accessAttr, &offset, &isConstant)) { 400 assert(isValid.value() && "access tag node must be valid"); 401 tbaaMapping.insert( 402 {current, builder.getAttr<TBAATagAttr>(baseAttr, accessAttr, offset, 403 isConstant)}); 404 continue; 405 } 406 407 return emitError(loc) << "unsupported TBAA node format: " 408 << diagMD(current, llvmModule.get()); 409 } 410 return success(); 411 } 412 413 LogicalResult 414 ModuleImport::processAccessGroupMetadata(const llvm::MDNode *node) { 415 Location loc = mlirModule.getLoc(); 416 if (failed(loopAnnotationImporter->translateAccessGroup(node, loc))) 417 return emitError(loc) << "unsupported access group node: " 418 << diagMD(node, llvmModule.get()); 419 return success(); 420 } 421 422 LogicalResult 423 ModuleImport::processAliasScopeMetadata(const llvm::MDNode *node) { 424 Location loc = mlirModule.getLoc(); 425 // Helper that verifies the node has a self reference operand. 426 auto verifySelfRef = [](const llvm::MDNode *node) { 427 return node->getNumOperands() != 0 && 428 node == dyn_cast<llvm::MDNode>(node->getOperand(0)); 429 }; 430 // Helper that verifies the given operand is a string or does not exist. 431 auto verifyDescription = [](const llvm::MDNode *node, unsigned idx) { 432 return idx >= node->getNumOperands() || 433 isa<llvm::MDString>(node->getOperand(idx)); 434 }; 435 // Helper that creates an alias scope domain attribute. 436 auto createAliasScopeDomainOp = [&](const llvm::MDNode *aliasDomain) { 437 StringAttr description = nullptr; 438 if (aliasDomain->getNumOperands() >= 2) 439 if (auto *operand = dyn_cast<llvm::MDString>(aliasDomain->getOperand(1))) 440 description = builder.getStringAttr(operand->getString()); 441 return builder.getAttr<AliasScopeDomainAttr>( 442 DistinctAttr::create(builder.getUnitAttr()), description); 443 }; 444 445 // Collect the alias scopes and domains to translate them. 446 for (const llvm::MDOperand &operand : node->operands()) { 447 if (const auto *scope = dyn_cast<llvm::MDNode>(operand)) { 448 llvm::AliasScopeNode aliasScope(scope); 449 const llvm::MDNode *domain = aliasScope.getDomain(); 450 451 // Verify the scope node points to valid scope metadata which includes 452 // verifying its domain. Perform the verification before looking it up in 453 // the alias scope mapping since it could have been inserted as a domain 454 // node before. 455 if (!verifySelfRef(scope) || !domain || !verifyDescription(scope, 2)) 456 return emitError(loc) << "unsupported alias scope node: " 457 << diagMD(scope, llvmModule.get()); 458 if (!verifySelfRef(domain) || !verifyDescription(domain, 1)) 459 return emitError(loc) << "unsupported alias domain node: " 460 << diagMD(domain, llvmModule.get()); 461 462 if (aliasScopeMapping.contains(scope)) 463 continue; 464 465 // Convert the domain metadata node if it has not been translated before. 466 auto it = aliasScopeMapping.find(aliasScope.getDomain()); 467 if (it == aliasScopeMapping.end()) { 468 auto aliasScopeDomainOp = createAliasScopeDomainOp(domain); 469 it = aliasScopeMapping.try_emplace(domain, aliasScopeDomainOp).first; 470 } 471 472 // Convert the scope metadata node if it has not been converted before. 473 StringAttr description = nullptr; 474 if (!aliasScope.getName().empty()) 475 description = builder.getStringAttr(aliasScope.getName()); 476 auto aliasScopeOp = builder.getAttr<AliasScopeAttr>( 477 DistinctAttr::create(builder.getUnitAttr()), 478 cast<AliasScopeDomainAttr>(it->second), description); 479 aliasScopeMapping.try_emplace(aliasScope.getNode(), aliasScopeOp); 480 } 481 } 482 return success(); 483 } 484 485 FailureOr<SmallVector<AliasScopeAttr>> 486 ModuleImport::lookupAliasScopeAttrs(const llvm::MDNode *node) const { 487 SmallVector<AliasScopeAttr> aliasScopes; 488 aliasScopes.reserve(node->getNumOperands()); 489 for (const llvm::MDOperand &operand : node->operands()) { 490 auto *node = cast<llvm::MDNode>(operand.get()); 491 aliasScopes.push_back( 492 dyn_cast_or_null<AliasScopeAttr>(aliasScopeMapping.lookup(node))); 493 } 494 // Return failure if one of the alias scope lookups failed. 495 if (llvm::is_contained(aliasScopes, nullptr)) 496 return failure(); 497 return aliasScopes; 498 } 499 500 void ModuleImport::addDebugIntrinsic(llvm::CallInst *intrinsic) { 501 debugIntrinsics.insert(intrinsic); 502 } 503 504 LogicalResult ModuleImport::convertLinkerOptionsMetadata() { 505 for (const llvm::NamedMDNode &named : llvmModule->named_metadata()) { 506 if (named.getName() != "llvm.linker.options") 507 continue; 508 // llvm.linker.options operands are lists of strings. 509 for (const llvm::MDNode *node : named.operands()) { 510 SmallVector<StringRef> options; 511 options.reserve(node->getNumOperands()); 512 for (const llvm::MDOperand &option : node->operands()) 513 options.push_back(cast<llvm::MDString>(option)->getString()); 514 builder.create<LLVM::LinkerOptionsOp>(mlirModule.getLoc(), 515 builder.getStrArrayAttr(options)); 516 } 517 } 518 return success(); 519 } 520 521 LogicalResult ModuleImport::convertIdentMetadata() { 522 for (const llvm::NamedMDNode &named : llvmModule->named_metadata()) { 523 // llvm.ident should have a single operand. That operand is itself an 524 // MDNode with a single string operand. 525 if (named.getName() != LLVMDialect::getIdentAttrName()) 526 continue; 527 528 if (named.getNumOperands() == 1) 529 if (auto *md = dyn_cast<llvm::MDNode>(named.getOperand(0))) 530 if (md->getNumOperands() == 1) 531 if (auto *mdStr = dyn_cast<llvm::MDString>(md->getOperand(0))) 532 mlirModule->setAttr(LLVMDialect::getIdentAttrName(), 533 builder.getStringAttr(mdStr->getString())); 534 } 535 return success(); 536 } 537 538 LogicalResult ModuleImport::convertCommandlineMetadata() { 539 for (const llvm::NamedMDNode &nmd : llvmModule->named_metadata()) { 540 // llvm.commandline should have a single operand. That operand is itself an 541 // MDNode with a single string operand. 542 if (nmd.getName() != LLVMDialect::getCommandlineAttrName()) 543 continue; 544 545 if (nmd.getNumOperands() == 1) 546 if (auto *md = dyn_cast<llvm::MDNode>(nmd.getOperand(0))) 547 if (md->getNumOperands() == 1) 548 if (auto *mdStr = dyn_cast<llvm::MDString>(md->getOperand(0))) 549 mlirModule->setAttr(LLVMDialect::getCommandlineAttrName(), 550 builder.getStringAttr(mdStr->getString())); 551 } 552 return success(); 553 } 554 555 LogicalResult ModuleImport::convertMetadata() { 556 OpBuilder::InsertionGuard guard(builder); 557 builder.setInsertionPointToEnd(mlirModule.getBody()); 558 for (const llvm::Function &func : llvmModule->functions()) { 559 for (const llvm::Instruction &inst : llvm::instructions(func)) { 560 // Convert access group metadata nodes. 561 if (llvm::MDNode *node = 562 inst.getMetadata(llvm::LLVMContext::MD_access_group)) 563 if (failed(processAccessGroupMetadata(node))) 564 return failure(); 565 566 // Convert alias analysis metadata nodes. 567 llvm::AAMDNodes aliasAnalysisNodes = inst.getAAMetadata(); 568 if (!aliasAnalysisNodes) 569 continue; 570 if (aliasAnalysisNodes.TBAA) 571 if (failed(processTBAAMetadata(aliasAnalysisNodes.TBAA))) 572 return failure(); 573 if (aliasAnalysisNodes.Scope) 574 if (failed(processAliasScopeMetadata(aliasAnalysisNodes.Scope))) 575 return failure(); 576 if (aliasAnalysisNodes.NoAlias) 577 if (failed(processAliasScopeMetadata(aliasAnalysisNodes.NoAlias))) 578 return failure(); 579 } 580 } 581 if (failed(convertLinkerOptionsMetadata())) 582 return failure(); 583 if (failed(convertIdentMetadata())) 584 return failure(); 585 if (failed(convertCommandlineMetadata())) 586 return failure(); 587 return success(); 588 } 589 590 void ModuleImport::processComdat(const llvm::Comdat *comdat) { 591 if (comdatMapping.contains(comdat)) 592 return; 593 594 ComdatOp comdatOp = getGlobalComdatOp(); 595 OpBuilder::InsertionGuard guard(builder); 596 builder.setInsertionPointToEnd(&comdatOp.getBody().back()); 597 auto selectorOp = builder.create<ComdatSelectorOp>( 598 mlirModule.getLoc(), comdat->getName(), 599 convertComdatFromLLVM(comdat->getSelectionKind())); 600 auto symbolRef = 601 SymbolRefAttr::get(builder.getContext(), getGlobalComdatOpName(), 602 FlatSymbolRefAttr::get(selectorOp.getSymNameAttr())); 603 comdatMapping.try_emplace(comdat, symbolRef); 604 } 605 606 LogicalResult ModuleImport::convertComdats() { 607 for (llvm::GlobalVariable &globalVar : llvmModule->globals()) 608 if (globalVar.hasComdat()) 609 processComdat(globalVar.getComdat()); 610 for (llvm::Function &func : llvmModule->functions()) 611 if (func.hasComdat()) 612 processComdat(func.getComdat()); 613 return success(); 614 } 615 616 LogicalResult ModuleImport::convertGlobals() { 617 for (llvm::GlobalVariable &globalVar : llvmModule->globals()) { 618 if (globalVar.getName() == getGlobalCtorsVarName() || 619 globalVar.getName() == getGlobalDtorsVarName()) { 620 if (failed(convertGlobalCtorsAndDtors(&globalVar))) { 621 return emitError(UnknownLoc::get(context)) 622 << "unhandled global variable: " << diag(globalVar); 623 } 624 continue; 625 } 626 if (failed(convertGlobal(&globalVar))) { 627 return emitError(UnknownLoc::get(context)) 628 << "unhandled global variable: " << diag(globalVar); 629 } 630 } 631 return success(); 632 } 633 634 LogicalResult ModuleImport::convertDataLayout() { 635 Location loc = mlirModule.getLoc(); 636 DataLayoutImporter dataLayoutImporter(context, llvmModule->getDataLayout()); 637 if (!dataLayoutImporter.getDataLayout()) 638 return emitError(loc, "cannot translate data layout: ") 639 << dataLayoutImporter.getLastToken(); 640 641 for (StringRef token : dataLayoutImporter.getUnhandledTokens()) 642 emitWarning(loc, "unhandled data layout token: ") << token; 643 644 mlirModule->setAttr(DLTIDialect::kDataLayoutAttrName, 645 dataLayoutImporter.getDataLayout()); 646 return success(); 647 } 648 649 LogicalResult ModuleImport::convertFunctions() { 650 for (llvm::Function &func : llvmModule->functions()) 651 if (failed(processFunction(&func))) 652 return failure(); 653 return success(); 654 } 655 656 void ModuleImport::setNonDebugMetadataAttrs(llvm::Instruction *inst, 657 Operation *op) { 658 SmallVector<std::pair<unsigned, llvm::MDNode *>> allMetadata; 659 inst->getAllMetadataOtherThanDebugLoc(allMetadata); 660 for (auto &[kind, node] : allMetadata) { 661 if (!iface.isConvertibleMetadata(kind)) 662 continue; 663 if (failed(iface.setMetadataAttrs(builder, kind, node, op, *this))) { 664 if (emitExpensiveWarnings) { 665 Location loc = debugImporter->translateLoc(inst->getDebugLoc()); 666 emitWarning(loc) << "unhandled metadata: " 667 << diagMD(node, llvmModule.get()) << " on " 668 << diag(*inst); 669 } 670 } 671 } 672 } 673 674 void ModuleImport::setIntegerOverflowFlags(llvm::Instruction *inst, 675 Operation *op) const { 676 auto iface = cast<IntegerOverflowFlagsInterface>(op); 677 678 IntegerOverflowFlags value = {}; 679 value = bitEnumSet(value, IntegerOverflowFlags::nsw, inst->hasNoSignedWrap()); 680 value = 681 bitEnumSet(value, IntegerOverflowFlags::nuw, inst->hasNoUnsignedWrap()); 682 683 iface.setOverflowFlags(value); 684 } 685 686 void ModuleImport::setExactFlag(llvm::Instruction *inst, Operation *op) const { 687 auto iface = cast<ExactFlagInterface>(op); 688 689 iface.setIsExact(inst->isExact()); 690 } 691 692 void ModuleImport::setNonNegFlag(llvm::Instruction *inst, Operation *op) const { 693 auto iface = cast<NonNegFlagInterface>(op); 694 695 iface.setNonNeg(inst->hasNonNeg()); 696 } 697 698 void ModuleImport::setFastmathFlagsAttr(llvm::Instruction *inst, 699 Operation *op) const { 700 auto iface = cast<FastmathFlagsInterface>(op); 701 702 // Even if the imported operation implements the fastmath interface, the 703 // original instruction may not have fastmath flags set. Exit if an 704 // instruction, such as a non floating-point function call, does not have 705 // fastmath flags. 706 if (!isa<llvm::FPMathOperator>(inst)) 707 return; 708 llvm::FastMathFlags flags = inst->getFastMathFlags(); 709 710 // Set the fastmath bits flag-by-flag. 711 FastmathFlags value = {}; 712 value = bitEnumSet(value, FastmathFlags::nnan, flags.noNaNs()); 713 value = bitEnumSet(value, FastmathFlags::ninf, flags.noInfs()); 714 value = bitEnumSet(value, FastmathFlags::nsz, flags.noSignedZeros()); 715 value = bitEnumSet(value, FastmathFlags::arcp, flags.allowReciprocal()); 716 value = bitEnumSet(value, FastmathFlags::contract, flags.allowContract()); 717 value = bitEnumSet(value, FastmathFlags::afn, flags.approxFunc()); 718 value = bitEnumSet(value, FastmathFlags::reassoc, flags.allowReassoc()); 719 FastmathFlagsAttr attr = FastmathFlagsAttr::get(builder.getContext(), value); 720 iface->setAttr(iface.getFastmathAttrName(), attr); 721 } 722 723 /// Returns if `type` is a scalar integer or floating-point type. 724 static bool isScalarType(Type type) { 725 return isa<IntegerType, FloatType>(type); 726 } 727 728 /// Returns `type` if it is a builtin integer or floating-point vector type that 729 /// can be used to create an attribute or nullptr otherwise. If provided, 730 /// `arrayShape` is added to the shape of the vector to create an attribute that 731 /// matches an array of vectors. 732 static Type getVectorTypeForAttr(Type type, ArrayRef<int64_t> arrayShape = {}) { 733 if (!LLVM::isCompatibleVectorType(type)) 734 return {}; 735 736 llvm::ElementCount numElements = LLVM::getVectorNumElements(type); 737 if (numElements.isScalable()) { 738 emitError(UnknownLoc::get(type.getContext())) 739 << "scalable vectors not supported"; 740 return {}; 741 } 742 743 // An LLVM dialect vector can only contain scalars. 744 Type elementType = LLVM::getVectorElementType(type); 745 if (!isScalarType(elementType)) 746 return {}; 747 748 SmallVector<int64_t> shape(arrayShape); 749 shape.push_back(numElements.getKnownMinValue()); 750 return VectorType::get(shape, elementType); 751 } 752 753 Type ModuleImport::getBuiltinTypeForAttr(Type type) { 754 if (!type) 755 return {}; 756 757 // Return builtin integer and floating-point types as is. 758 if (isScalarType(type)) 759 return type; 760 761 // Return builtin vectors of integer and floating-point types as is. 762 if (Type vectorType = getVectorTypeForAttr(type)) 763 return vectorType; 764 765 // Multi-dimensional array types are converted to tensors or vectors, 766 // depending on the innermost type being a scalar or a vector. 767 SmallVector<int64_t> arrayShape; 768 while (auto arrayType = dyn_cast<LLVMArrayType>(type)) { 769 arrayShape.push_back(arrayType.getNumElements()); 770 type = arrayType.getElementType(); 771 } 772 if (isScalarType(type)) 773 return RankedTensorType::get(arrayShape, type); 774 return getVectorTypeForAttr(type, arrayShape); 775 } 776 777 /// Returns an integer or float attribute for the provided scalar constant 778 /// `constScalar` or nullptr if the conversion fails. 779 static TypedAttr getScalarConstantAsAttr(OpBuilder &builder, 780 llvm::Constant *constScalar) { 781 MLIRContext *context = builder.getContext(); 782 783 // Convert scalar intergers. 784 if (auto *constInt = dyn_cast<llvm::ConstantInt>(constScalar)) { 785 return builder.getIntegerAttr( 786 IntegerType::get(context, constInt->getBitWidth()), 787 constInt->getValue()); 788 } 789 790 // Convert scalar floats. 791 if (auto *constFloat = dyn_cast<llvm::ConstantFP>(constScalar)) { 792 llvm::Type *type = constFloat->getType(); 793 FloatType floatType = 794 type->isBFloatTy() 795 ? FloatType::getBF16(context) 796 : LLVM::detail::getFloatType(context, type->getScalarSizeInBits()); 797 if (!floatType) { 798 emitError(UnknownLoc::get(builder.getContext())) 799 << "unexpected floating-point type"; 800 return {}; 801 } 802 return builder.getFloatAttr(floatType, constFloat->getValueAPF()); 803 } 804 return {}; 805 } 806 807 /// Returns an integer or float attribute array for the provided constant 808 /// sequence `constSequence` or nullptr if the conversion fails. 809 static SmallVector<Attribute> 810 getSequenceConstantAsAttrs(OpBuilder &builder, 811 llvm::ConstantDataSequential *constSequence) { 812 SmallVector<Attribute> elementAttrs; 813 elementAttrs.reserve(constSequence->getNumElements()); 814 for (auto idx : llvm::seq<int64_t>(0, constSequence->getNumElements())) { 815 llvm::Constant *constElement = constSequence->getElementAsConstant(idx); 816 elementAttrs.push_back(getScalarConstantAsAttr(builder, constElement)); 817 } 818 return elementAttrs; 819 } 820 821 Attribute ModuleImport::getConstantAsAttr(llvm::Constant *constant) { 822 // Convert scalar constants. 823 if (Attribute scalarAttr = getScalarConstantAsAttr(builder, constant)) 824 return scalarAttr; 825 826 // Returns the static shape of the provided type if possible. 827 auto getConstantShape = [&](llvm::Type *type) { 828 return llvm::dyn_cast_if_present<ShapedType>( 829 getBuiltinTypeForAttr(convertType(type))); 830 }; 831 832 // Convert one-dimensional constant arrays or vectors that store 1/2/4/8-byte 833 // integer or half/bfloat/float/double values. 834 if (auto *constArray = dyn_cast<llvm::ConstantDataSequential>(constant)) { 835 if (constArray->isString()) 836 return builder.getStringAttr(constArray->getAsString()); 837 auto shape = getConstantShape(constArray->getType()); 838 if (!shape) 839 return {}; 840 // Convert splat constants to splat elements attributes. 841 auto *constVector = dyn_cast<llvm::ConstantDataVector>(constant); 842 if (constVector && constVector->isSplat()) { 843 // A vector is guaranteed to have at least size one. 844 Attribute splatAttr = getScalarConstantAsAttr( 845 builder, constVector->getElementAsConstant(0)); 846 return SplatElementsAttr::get(shape, splatAttr); 847 } 848 // Convert non-splat constants to dense elements attributes. 849 SmallVector<Attribute> elementAttrs = 850 getSequenceConstantAsAttrs(builder, constArray); 851 return DenseElementsAttr::get(shape, elementAttrs); 852 } 853 854 // Convert multi-dimensional constant aggregates that store all kinds of 855 // integer and floating-point types. 856 if (auto *constAggregate = dyn_cast<llvm::ConstantAggregate>(constant)) { 857 auto shape = getConstantShape(constAggregate->getType()); 858 if (!shape) 859 return {}; 860 // Collect the aggregate elements in depths first order. 861 SmallVector<Attribute> elementAttrs; 862 SmallVector<llvm::Constant *> workList = {constAggregate}; 863 while (!workList.empty()) { 864 llvm::Constant *current = workList.pop_back_val(); 865 // Append any nested aggregates in reverse order to ensure the head 866 // element of the nested aggregates is at the back of the work list. 867 if (auto *constAggregate = dyn_cast<llvm::ConstantAggregate>(current)) { 868 for (auto idx : 869 reverse(llvm::seq<int64_t>(0, constAggregate->getNumOperands()))) 870 workList.push_back(constAggregate->getAggregateElement(idx)); 871 continue; 872 } 873 // Append the elements of nested constant arrays or vectors that store 874 // 1/2/4/8-byte integer or half/bfloat/float/double values. 875 if (auto *constArray = dyn_cast<llvm::ConstantDataSequential>(current)) { 876 SmallVector<Attribute> attrs = 877 getSequenceConstantAsAttrs(builder, constArray); 878 elementAttrs.append(attrs.begin(), attrs.end()); 879 continue; 880 } 881 // Append nested scalar constants that store all kinds of integer and 882 // floating-point types. 883 if (Attribute scalarAttr = getScalarConstantAsAttr(builder, current)) { 884 elementAttrs.push_back(scalarAttr); 885 continue; 886 } 887 // Bail if the aggregate contains a unsupported constant type such as a 888 // constant expression. 889 return {}; 890 } 891 return DenseElementsAttr::get(shape, elementAttrs); 892 } 893 894 // Convert zero aggregates. 895 if (auto *constZero = dyn_cast<llvm::ConstantAggregateZero>(constant)) { 896 auto shape = llvm::dyn_cast_if_present<ShapedType>( 897 getBuiltinTypeForAttr(convertType(constZero->getType()))); 898 if (!shape) 899 return {}; 900 // Convert zero aggregates with a static shape to splat elements attributes. 901 Attribute splatAttr = builder.getZeroAttr(shape.getElementType()); 902 assert(splatAttr && "expected non-null zero attribute for scalar types"); 903 return SplatElementsAttr::get(shape, splatAttr); 904 } 905 return {}; 906 } 907 908 FlatSymbolRefAttr 909 ModuleImport::getOrCreateNamelessSymbolName(llvm::GlobalVariable *globalVar) { 910 assert(globalVar->getName().empty() && 911 "expected to work with a nameless global"); 912 auto [it, success] = namelessGlobals.try_emplace(globalVar); 913 if (!success) 914 return it->second; 915 916 // Make sure the symbol name does not clash with an existing symbol. 917 SmallString<128> globalName = SymbolTable::generateSymbolName<128>( 918 getNamelessGlobalPrefix(), 919 [this](StringRef newName) { return llvmModule->getNamedValue(newName); }, 920 namelessGlobalId); 921 auto symbolRef = FlatSymbolRefAttr::get(context, globalName); 922 it->getSecond() = symbolRef; 923 return symbolRef; 924 } 925 926 LogicalResult ModuleImport::convertGlobal(llvm::GlobalVariable *globalVar) { 927 // Insert the global after the last one or at the start of the module. 928 OpBuilder::InsertionGuard guard(builder); 929 if (!globalInsertionOp) 930 builder.setInsertionPointToStart(mlirModule.getBody()); 931 else 932 builder.setInsertionPointAfter(globalInsertionOp); 933 934 Attribute valueAttr; 935 if (globalVar->hasInitializer()) 936 valueAttr = getConstantAsAttr(globalVar->getInitializer()); 937 Type type = convertType(globalVar->getValueType()); 938 939 uint64_t alignment = 0; 940 llvm::MaybeAlign maybeAlign = globalVar->getAlign(); 941 if (maybeAlign.has_value()) { 942 llvm::Align align = *maybeAlign; 943 alignment = align.value(); 944 } 945 946 // Get the global expression associated with this global variable and convert 947 // it. 948 SmallVector<Attribute> globalExpressionAttrs; 949 SmallVector<llvm::DIGlobalVariableExpression *> globalExpressions; 950 globalVar->getDebugInfo(globalExpressions); 951 952 for (llvm::DIGlobalVariableExpression *expr : globalExpressions) { 953 DIGlobalVariableExpressionAttr globalExpressionAttr = 954 debugImporter->translateGlobalVariableExpression(expr); 955 globalExpressionAttrs.push_back(globalExpressionAttr); 956 } 957 958 // Workaround to support LLVM's nameless globals. MLIR, in contrast to LLVM, 959 // always requires a symbol name. 960 StringRef globalName = globalVar->getName(); 961 if (globalName.empty()) 962 globalName = getOrCreateNamelessSymbolName(globalVar).getValue(); 963 964 GlobalOp globalOp = builder.create<GlobalOp>( 965 mlirModule.getLoc(), type, globalVar->isConstant(), 966 convertLinkageFromLLVM(globalVar->getLinkage()), StringRef(globalName), 967 valueAttr, alignment, /*addr_space=*/globalVar->getAddressSpace(), 968 /*dso_local=*/globalVar->isDSOLocal(), 969 /*thread_local=*/globalVar->isThreadLocal(), /*comdat=*/SymbolRefAttr(), 970 /*attrs=*/ArrayRef<NamedAttribute>(), /*dbgExprs=*/globalExpressionAttrs); 971 globalInsertionOp = globalOp; 972 973 if (globalVar->hasInitializer() && !valueAttr) { 974 clearRegionState(); 975 Block *block = builder.createBlock(&globalOp.getInitializerRegion()); 976 setConstantInsertionPointToStart(block); 977 FailureOr<Value> initializer = 978 convertConstantExpr(globalVar->getInitializer()); 979 if (failed(initializer)) 980 return failure(); 981 builder.create<ReturnOp>(globalOp.getLoc(), *initializer); 982 } 983 if (globalVar->hasAtLeastLocalUnnamedAddr()) { 984 globalOp.setUnnamedAddr( 985 convertUnnamedAddrFromLLVM(globalVar->getUnnamedAddr())); 986 } 987 if (globalVar->hasSection()) 988 globalOp.setSection(globalVar->getSection()); 989 globalOp.setVisibility_( 990 convertVisibilityFromLLVM(globalVar->getVisibility())); 991 992 if (globalVar->hasComdat()) 993 globalOp.setComdatAttr(comdatMapping.lookup(globalVar->getComdat())); 994 995 return success(); 996 } 997 998 LogicalResult 999 ModuleImport::convertGlobalCtorsAndDtors(llvm::GlobalVariable *globalVar) { 1000 if (!globalVar->hasInitializer() || !globalVar->hasAppendingLinkage()) 1001 return failure(); 1002 auto *initializer = 1003 dyn_cast<llvm::ConstantArray>(globalVar->getInitializer()); 1004 if (!initializer) 1005 return failure(); 1006 1007 SmallVector<Attribute> funcs; 1008 SmallVector<int32_t> priorities; 1009 for (llvm::Value *operand : initializer->operands()) { 1010 auto *aggregate = dyn_cast<llvm::ConstantAggregate>(operand); 1011 if (!aggregate || aggregate->getNumOperands() != 3) 1012 return failure(); 1013 1014 auto *priority = dyn_cast<llvm::ConstantInt>(aggregate->getOperand(0)); 1015 auto *func = dyn_cast<llvm::Function>(aggregate->getOperand(1)); 1016 auto *data = dyn_cast<llvm::Constant>(aggregate->getOperand(2)); 1017 if (!priority || !func || !data) 1018 return failure(); 1019 1020 // GlobalCtorsOps and GlobalDtorsOps do not support non-null data fields. 1021 if (!data->isNullValue()) 1022 return failure(); 1023 1024 funcs.push_back(FlatSymbolRefAttr::get(context, func->getName())); 1025 priorities.push_back(priority->getValue().getZExtValue()); 1026 } 1027 1028 OpBuilder::InsertionGuard guard(builder); 1029 if (!globalInsertionOp) 1030 builder.setInsertionPointToStart(mlirModule.getBody()); 1031 else 1032 builder.setInsertionPointAfter(globalInsertionOp); 1033 1034 if (globalVar->getName() == getGlobalCtorsVarName()) { 1035 globalInsertionOp = builder.create<LLVM::GlobalCtorsOp>( 1036 mlirModule.getLoc(), builder.getArrayAttr(funcs), 1037 builder.getI32ArrayAttr(priorities)); 1038 return success(); 1039 } 1040 globalInsertionOp = builder.create<LLVM::GlobalDtorsOp>( 1041 mlirModule.getLoc(), builder.getArrayAttr(funcs), 1042 builder.getI32ArrayAttr(priorities)); 1043 return success(); 1044 } 1045 1046 SetVector<llvm::Constant *> 1047 ModuleImport::getConstantsToConvert(llvm::Constant *constant) { 1048 // Return the empty set if the constant has been translated before. 1049 if (valueMapping.contains(constant)) 1050 return {}; 1051 1052 // Traverse the constants in post-order and stop the traversal if a constant 1053 // already has a `valueMapping` from an earlier constant translation or if the 1054 // constant is traversed a second time. 1055 SetVector<llvm::Constant *> orderedSet; 1056 SetVector<llvm::Constant *> workList; 1057 DenseMap<llvm::Constant *, SmallVector<llvm::Constant *>> adjacencyLists; 1058 workList.insert(constant); 1059 while (!workList.empty()) { 1060 llvm::Constant *current = workList.back(); 1061 // References of global objects are just pointers to the object. Avoid 1062 // walking the elements of these here. 1063 if (isa<llvm::GlobalObject>(current)) { 1064 orderedSet.insert(current); 1065 workList.pop_back(); 1066 continue; 1067 } 1068 1069 // Collect all dependencies of the current constant and add them to the 1070 // adjacency list if none has been computed before. 1071 auto [adjacencyIt, inserted] = adjacencyLists.try_emplace(current); 1072 if (inserted) { 1073 // Add all constant operands to the adjacency list and skip any other 1074 // values such as basic block addresses. 1075 for (llvm::Value *operand : current->operands()) 1076 if (auto *constDependency = dyn_cast<llvm::Constant>(operand)) 1077 adjacencyIt->getSecond().push_back(constDependency); 1078 // Use the getElementValue method to add the dependencies of zero 1079 // initialized aggregate constants since they do not take any operands. 1080 if (auto *constAgg = dyn_cast<llvm::ConstantAggregateZero>(current)) { 1081 unsigned numElements = constAgg->getElementCount().getFixedValue(); 1082 for (unsigned i = 0, e = numElements; i != e; ++i) 1083 adjacencyIt->getSecond().push_back(constAgg->getElementValue(i)); 1084 } 1085 } 1086 // Add the current constant to the `orderedSet` of the traversed nodes if 1087 // all its dependencies have been traversed before. Additionally, remove the 1088 // constant from the `workList` and continue the traversal. 1089 if (adjacencyIt->getSecond().empty()) { 1090 orderedSet.insert(current); 1091 workList.pop_back(); 1092 continue; 1093 } 1094 // Add the next dependency from the adjacency list to the `workList` and 1095 // continue the traversal. Remove the dependency from the adjacency list to 1096 // mark that it has been processed. Only enqueue the dependency if it has no 1097 // `valueMapping` from an earlier translation and if it has not been 1098 // enqueued before. 1099 llvm::Constant *dependency = adjacencyIt->getSecond().pop_back_val(); 1100 if (valueMapping.contains(dependency) || workList.contains(dependency) || 1101 orderedSet.contains(dependency)) 1102 continue; 1103 workList.insert(dependency); 1104 } 1105 1106 return orderedSet; 1107 } 1108 1109 FailureOr<Value> ModuleImport::convertConstant(llvm::Constant *constant) { 1110 Location loc = UnknownLoc::get(context); 1111 1112 // Convert constants that can be represented as attributes. 1113 if (Attribute attr = getConstantAsAttr(constant)) { 1114 Type type = convertType(constant->getType()); 1115 if (auto symbolRef = dyn_cast<FlatSymbolRefAttr>(attr)) { 1116 return builder.create<AddressOfOp>(loc, type, symbolRef.getValue()) 1117 .getResult(); 1118 } 1119 return builder.create<ConstantOp>(loc, type, attr).getResult(); 1120 } 1121 1122 // Convert null pointer constants. 1123 if (auto *nullPtr = dyn_cast<llvm::ConstantPointerNull>(constant)) { 1124 Type type = convertType(nullPtr->getType()); 1125 return builder.create<ZeroOp>(loc, type).getResult(); 1126 } 1127 1128 // Convert none token constants. 1129 if (isa<llvm::ConstantTokenNone>(constant)) { 1130 return builder.create<NoneTokenOp>(loc).getResult(); 1131 } 1132 1133 // Convert poison. 1134 if (auto *poisonVal = dyn_cast<llvm::PoisonValue>(constant)) { 1135 Type type = convertType(poisonVal->getType()); 1136 return builder.create<PoisonOp>(loc, type).getResult(); 1137 } 1138 1139 // Convert undef. 1140 if (auto *undefVal = dyn_cast<llvm::UndefValue>(constant)) { 1141 Type type = convertType(undefVal->getType()); 1142 return builder.create<UndefOp>(loc, type).getResult(); 1143 } 1144 1145 // Convert global variable accesses. 1146 if (auto *globalObj = dyn_cast<llvm::GlobalObject>(constant)) { 1147 Type type = convertType(globalObj->getType()); 1148 StringRef globalName = globalObj->getName(); 1149 FlatSymbolRefAttr symbolRef; 1150 // Empty names are only allowed for global variables. 1151 if (globalName.empty()) 1152 symbolRef = 1153 getOrCreateNamelessSymbolName(cast<llvm::GlobalVariable>(globalObj)); 1154 else 1155 symbolRef = FlatSymbolRefAttr::get(context, globalName); 1156 return builder.create<AddressOfOp>(loc, type, symbolRef).getResult(); 1157 } 1158 1159 // Convert constant expressions. 1160 if (auto *constExpr = dyn_cast<llvm::ConstantExpr>(constant)) { 1161 // Convert the constant expression to a temporary LLVM instruction and 1162 // translate it using the `processInstruction` method. Delete the 1163 // instruction after the translation and remove it from `valueMapping`, 1164 // since later calls to `getAsInstruction` may return the same address 1165 // resulting in a conflicting `valueMapping` entry. 1166 llvm::Instruction *inst = constExpr->getAsInstruction(); 1167 auto guard = llvm::make_scope_exit([&]() { 1168 assert(!noResultOpMapping.contains(inst) && 1169 "expected constant expression to return a result"); 1170 valueMapping.erase(inst); 1171 inst->deleteValue(); 1172 }); 1173 // Note: `processInstruction` does not call `convertConstant` recursively 1174 // since all constant dependencies have been converted before. 1175 assert(llvm::all_of(inst->operands(), [&](llvm::Value *value) { 1176 return valueMapping.contains(value); 1177 })); 1178 if (failed(processInstruction(inst))) 1179 return failure(); 1180 return lookupValue(inst); 1181 } 1182 1183 // Convert aggregate constants. 1184 if (isa<llvm::ConstantAggregate>(constant) || 1185 isa<llvm::ConstantAggregateZero>(constant)) { 1186 // Lookup the aggregate elements that have been converted before. 1187 SmallVector<Value> elementValues; 1188 if (auto *constAgg = dyn_cast<llvm::ConstantAggregate>(constant)) { 1189 elementValues.reserve(constAgg->getNumOperands()); 1190 for (llvm::Value *operand : constAgg->operands()) 1191 elementValues.push_back(lookupValue(operand)); 1192 } 1193 if (auto *constAgg = dyn_cast<llvm::ConstantAggregateZero>(constant)) { 1194 unsigned numElements = constAgg->getElementCount().getFixedValue(); 1195 elementValues.reserve(numElements); 1196 for (unsigned i = 0, e = numElements; i != e; ++i) 1197 elementValues.push_back(lookupValue(constAgg->getElementValue(i))); 1198 } 1199 assert(llvm::count(elementValues, nullptr) == 0 && 1200 "expected all elements have been converted before"); 1201 1202 // Generate an UndefOp as root value and insert the aggregate elements. 1203 Type rootType = convertType(constant->getType()); 1204 bool isArrayOrStruct = isa<LLVMArrayType, LLVMStructType>(rootType); 1205 assert((isArrayOrStruct || LLVM::isCompatibleVectorType(rootType)) && 1206 "unrecognized aggregate type"); 1207 Value root = builder.create<UndefOp>(loc, rootType); 1208 for (const auto &it : llvm::enumerate(elementValues)) { 1209 if (isArrayOrStruct) { 1210 root = builder.create<InsertValueOp>(loc, root, it.value(), it.index()); 1211 } else { 1212 Attribute indexAttr = builder.getI32IntegerAttr(it.index()); 1213 Value indexValue = 1214 builder.create<ConstantOp>(loc, builder.getI32Type(), indexAttr); 1215 root = builder.create<InsertElementOp>(loc, rootType, root, it.value(), 1216 indexValue); 1217 } 1218 } 1219 return root; 1220 } 1221 1222 if (auto *constTargetNone = dyn_cast<llvm::ConstantTargetNone>(constant)) { 1223 LLVMTargetExtType targetExtType = 1224 cast<LLVMTargetExtType>(convertType(constTargetNone->getType())); 1225 assert(targetExtType.hasProperty(LLVMTargetExtType::HasZeroInit) && 1226 "target extension type does not support zero-initialization"); 1227 // Create llvm.mlir.zero operation to represent zero-initialization of 1228 // target extension type. 1229 return builder.create<LLVM::ZeroOp>(loc, targetExtType).getRes(); 1230 } 1231 1232 StringRef error = ""; 1233 if (isa<llvm::BlockAddress>(constant)) 1234 error = " since blockaddress(...) is unsupported"; 1235 1236 return emitError(loc) << "unhandled constant: " << diag(*constant) << error; 1237 } 1238 1239 FailureOr<Value> ModuleImport::convertConstantExpr(llvm::Constant *constant) { 1240 // Only call the function for constants that have not been translated before 1241 // since it updates the constant insertion point assuming the converted 1242 // constant has been introduced at the end of the constant section. 1243 assert(!valueMapping.contains(constant) && 1244 "expected constant has not been converted before"); 1245 assert(constantInsertionBlock && 1246 "expected the constant insertion block to be non-null"); 1247 1248 // Insert the constant after the last one or at the start of the entry block. 1249 OpBuilder::InsertionGuard guard(builder); 1250 if (!constantInsertionOp) 1251 builder.setInsertionPointToStart(constantInsertionBlock); 1252 else 1253 builder.setInsertionPointAfter(constantInsertionOp); 1254 1255 // Convert all constants of the expression and add them to `valueMapping`. 1256 SetVector<llvm::Constant *> constantsToConvert = 1257 getConstantsToConvert(constant); 1258 for (llvm::Constant *constantToConvert : constantsToConvert) { 1259 FailureOr<Value> converted = convertConstant(constantToConvert); 1260 if (failed(converted)) 1261 return failure(); 1262 mapValue(constantToConvert, *converted); 1263 } 1264 1265 // Update the constant insertion point and return the converted constant. 1266 Value result = lookupValue(constant); 1267 constantInsertionOp = result.getDefiningOp(); 1268 return result; 1269 } 1270 1271 FailureOr<Value> ModuleImport::convertValue(llvm::Value *value) { 1272 assert(!isa<llvm::MetadataAsValue>(value) && 1273 "expected value to not be metadata"); 1274 1275 // Return the mapped value if it has been converted before. 1276 auto it = valueMapping.find(value); 1277 if (it != valueMapping.end()) 1278 return it->getSecond(); 1279 1280 // Convert constants such as immediate values that have no mapping yet. 1281 if (auto *constant = dyn_cast<llvm::Constant>(value)) 1282 return convertConstantExpr(constant); 1283 1284 Location loc = UnknownLoc::get(context); 1285 if (auto *inst = dyn_cast<llvm::Instruction>(value)) 1286 loc = translateLoc(inst->getDebugLoc()); 1287 return emitError(loc) << "unhandled value: " << diag(*value); 1288 } 1289 1290 FailureOr<Value> ModuleImport::convertMetadataValue(llvm::Value *value) { 1291 // A value may be wrapped as metadata, for example, when passed to a debug 1292 // intrinsic. Unwrap these values before the conversion. 1293 auto *nodeAsVal = dyn_cast<llvm::MetadataAsValue>(value); 1294 if (!nodeAsVal) 1295 return failure(); 1296 auto *node = dyn_cast<llvm::ValueAsMetadata>(nodeAsVal->getMetadata()); 1297 if (!node) 1298 return failure(); 1299 value = node->getValue(); 1300 1301 // Return the mapped value if it has been converted before. 1302 auto it = valueMapping.find(value); 1303 if (it != valueMapping.end()) 1304 return it->getSecond(); 1305 1306 // Convert constants such as immediate values that have no mapping yet. 1307 if (auto *constant = dyn_cast<llvm::Constant>(value)) 1308 return convertConstantExpr(constant); 1309 return failure(); 1310 } 1311 1312 FailureOr<SmallVector<Value>> 1313 ModuleImport::convertValues(ArrayRef<llvm::Value *> values) { 1314 SmallVector<Value> remapped; 1315 remapped.reserve(values.size()); 1316 for (llvm::Value *value : values) { 1317 FailureOr<Value> converted = convertValue(value); 1318 if (failed(converted)) 1319 return failure(); 1320 remapped.push_back(*converted); 1321 } 1322 return remapped; 1323 } 1324 1325 LogicalResult ModuleImport::convertIntrinsicArguments( 1326 ArrayRef<llvm::Value *> values, ArrayRef<llvm::OperandBundleUse> opBundles, 1327 bool requiresOpBundles, ArrayRef<unsigned> immArgPositions, 1328 ArrayRef<StringLiteral> immArgAttrNames, SmallVectorImpl<Value> &valuesOut, 1329 SmallVectorImpl<NamedAttribute> &attrsOut) { 1330 assert(immArgPositions.size() == immArgAttrNames.size() && 1331 "LLVM `immArgPositions` and MLIR `immArgAttrNames` should have equal " 1332 "length"); 1333 1334 SmallVector<llvm::Value *> operands(values); 1335 for (auto [immArgPos, immArgName] : 1336 llvm::zip(immArgPositions, immArgAttrNames)) { 1337 auto &value = operands[immArgPos]; 1338 auto *constant = llvm::cast<llvm::Constant>(value); 1339 auto attr = getScalarConstantAsAttr(builder, constant); 1340 assert(attr && attr.getType().isIntOrFloat() && 1341 "expected immarg to be float or integer constant"); 1342 auto nameAttr = StringAttr::get(attr.getContext(), immArgName); 1343 attrsOut.push_back({nameAttr, attr}); 1344 // Mark matched attribute values as null (so they can be removed below). 1345 value = nullptr; 1346 } 1347 1348 for (llvm::Value *value : operands) { 1349 if (!value) 1350 continue; 1351 auto mlirValue = convertValue(value); 1352 if (failed(mlirValue)) 1353 return failure(); 1354 valuesOut.push_back(*mlirValue); 1355 } 1356 1357 SmallVector<int> opBundleSizes; 1358 SmallVector<Attribute> opBundleTagAttrs; 1359 if (requiresOpBundles) { 1360 opBundleSizes.reserve(opBundles.size()); 1361 opBundleTagAttrs.reserve(opBundles.size()); 1362 1363 for (const llvm::OperandBundleUse &bundle : opBundles) { 1364 opBundleSizes.push_back(bundle.Inputs.size()); 1365 opBundleTagAttrs.push_back(StringAttr::get(context, bundle.getTagName())); 1366 1367 for (const llvm::Use &opBundleOperand : bundle.Inputs) { 1368 auto operandMlirValue = convertValue(opBundleOperand.get()); 1369 if (failed(operandMlirValue)) 1370 return failure(); 1371 valuesOut.push_back(*operandMlirValue); 1372 } 1373 } 1374 1375 auto opBundleSizesAttr = DenseI32ArrayAttr::get(context, opBundleSizes); 1376 auto opBundleSizesAttrNameAttr = 1377 StringAttr::get(context, LLVMDialect::getOpBundleSizesAttrName()); 1378 attrsOut.push_back({opBundleSizesAttrNameAttr, opBundleSizesAttr}); 1379 1380 auto opBundleTagsAttr = ArrayAttr::get(context, opBundleTagAttrs); 1381 auto opBundleTagsAttrNameAttr = 1382 StringAttr::get(context, LLVMDialect::getOpBundleTagsAttrName()); 1383 attrsOut.push_back({opBundleTagsAttrNameAttr, opBundleTagsAttr}); 1384 } 1385 1386 return success(); 1387 } 1388 1389 IntegerAttr ModuleImport::matchIntegerAttr(llvm::Value *value) { 1390 IntegerAttr integerAttr; 1391 FailureOr<Value> converted = convertValue(value); 1392 bool success = succeeded(converted) && 1393 matchPattern(*converted, m_Constant(&integerAttr)); 1394 assert(success && "expected a constant integer value"); 1395 (void)success; 1396 return integerAttr; 1397 } 1398 1399 FloatAttr ModuleImport::matchFloatAttr(llvm::Value *value) { 1400 FloatAttr floatAttr; 1401 FailureOr<Value> converted = convertValue(value); 1402 bool success = 1403 succeeded(converted) && matchPattern(*converted, m_Constant(&floatAttr)); 1404 assert(success && "expected a constant float value"); 1405 (void)success; 1406 return floatAttr; 1407 } 1408 1409 DILocalVariableAttr ModuleImport::matchLocalVariableAttr(llvm::Value *value) { 1410 auto *nodeAsVal = cast<llvm::MetadataAsValue>(value); 1411 auto *node = cast<llvm::DILocalVariable>(nodeAsVal->getMetadata()); 1412 return debugImporter->translate(node); 1413 } 1414 1415 DILabelAttr ModuleImport::matchLabelAttr(llvm::Value *value) { 1416 auto *nodeAsVal = cast<llvm::MetadataAsValue>(value); 1417 auto *node = cast<llvm::DILabel>(nodeAsVal->getMetadata()); 1418 return debugImporter->translate(node); 1419 } 1420 1421 FPExceptionBehaviorAttr 1422 ModuleImport::matchFPExceptionBehaviorAttr(llvm::Value *value) { 1423 auto *metadata = cast<llvm::MetadataAsValue>(value); 1424 auto *mdstr = cast<llvm::MDString>(metadata->getMetadata()); 1425 std::optional<llvm::fp::ExceptionBehavior> optLLVM = 1426 llvm::convertStrToExceptionBehavior(mdstr->getString()); 1427 assert(optLLVM && "Expecting FP exception behavior"); 1428 return builder.getAttr<FPExceptionBehaviorAttr>( 1429 convertFPExceptionBehaviorFromLLVM(*optLLVM)); 1430 } 1431 1432 RoundingModeAttr ModuleImport::matchRoundingModeAttr(llvm::Value *value) { 1433 auto *metadata = cast<llvm::MetadataAsValue>(value); 1434 auto *mdstr = cast<llvm::MDString>(metadata->getMetadata()); 1435 std::optional<llvm::RoundingMode> optLLVM = 1436 llvm::convertStrToRoundingMode(mdstr->getString()); 1437 assert(optLLVM && "Expecting rounding mode"); 1438 return builder.getAttr<RoundingModeAttr>( 1439 convertRoundingModeFromLLVM(*optLLVM)); 1440 } 1441 1442 FailureOr<SmallVector<AliasScopeAttr>> 1443 ModuleImport::matchAliasScopeAttrs(llvm::Value *value) { 1444 auto *nodeAsVal = cast<llvm::MetadataAsValue>(value); 1445 auto *node = cast<llvm::MDNode>(nodeAsVal->getMetadata()); 1446 return lookupAliasScopeAttrs(node); 1447 } 1448 1449 Location ModuleImport::translateLoc(llvm::DILocation *loc) { 1450 return debugImporter->translateLoc(loc); 1451 } 1452 1453 LogicalResult 1454 ModuleImport::convertBranchArgs(llvm::Instruction *branch, 1455 llvm::BasicBlock *target, 1456 SmallVectorImpl<Value> &blockArguments) { 1457 for (auto inst = target->begin(); isa<llvm::PHINode>(inst); ++inst) { 1458 auto *phiInst = cast<llvm::PHINode>(&*inst); 1459 llvm::Value *value = phiInst->getIncomingValueForBlock(branch->getParent()); 1460 FailureOr<Value> converted = convertValue(value); 1461 if (failed(converted)) 1462 return failure(); 1463 blockArguments.push_back(*converted); 1464 } 1465 return success(); 1466 } 1467 1468 LogicalResult 1469 ModuleImport::convertCallTypeAndOperands(llvm::CallBase *callInst, 1470 SmallVectorImpl<Type> &types, 1471 SmallVectorImpl<Value> &operands) { 1472 if (!callInst->getType()->isVoidTy()) 1473 types.push_back(convertType(callInst->getType())); 1474 1475 if (!callInst->getCalledFunction()) { 1476 FailureOr<Value> called = convertValue(callInst->getCalledOperand()); 1477 if (failed(called)) 1478 return failure(); 1479 operands.push_back(*called); 1480 } 1481 SmallVector<llvm::Value *> args(callInst->args()); 1482 FailureOr<SmallVector<Value>> arguments = convertValues(args); 1483 if (failed(arguments)) 1484 return failure(); 1485 llvm::append_range(operands, *arguments); 1486 return success(); 1487 } 1488 1489 LogicalResult ModuleImport::convertIntrinsic(llvm::CallInst *inst) { 1490 if (succeeded(iface.convertIntrinsic(builder, inst, *this))) 1491 return success(); 1492 1493 Location loc = translateLoc(inst->getDebugLoc()); 1494 return emitError(loc) << "unhandled intrinsic: " << diag(*inst); 1495 } 1496 1497 LogicalResult ModuleImport::convertInstruction(llvm::Instruction *inst) { 1498 // Convert all instructions that do not provide an MLIR builder. 1499 Location loc = translateLoc(inst->getDebugLoc()); 1500 if (inst->getOpcode() == llvm::Instruction::Br) { 1501 auto *brInst = cast<llvm::BranchInst>(inst); 1502 1503 SmallVector<Block *> succBlocks; 1504 SmallVector<SmallVector<Value>> succBlockArgs; 1505 for (auto i : llvm::seq<unsigned>(0, brInst->getNumSuccessors())) { 1506 llvm::BasicBlock *succ = brInst->getSuccessor(i); 1507 SmallVector<Value> blockArgs; 1508 if (failed(convertBranchArgs(brInst, succ, blockArgs))) 1509 return failure(); 1510 succBlocks.push_back(lookupBlock(succ)); 1511 succBlockArgs.push_back(blockArgs); 1512 } 1513 1514 if (!brInst->isConditional()) { 1515 auto brOp = builder.create<LLVM::BrOp>(loc, succBlockArgs.front(), 1516 succBlocks.front()); 1517 mapNoResultOp(inst, brOp); 1518 return success(); 1519 } 1520 FailureOr<Value> condition = convertValue(brInst->getCondition()); 1521 if (failed(condition)) 1522 return failure(); 1523 auto condBrOp = builder.create<LLVM::CondBrOp>( 1524 loc, *condition, succBlocks.front(), succBlockArgs.front(), 1525 succBlocks.back(), succBlockArgs.back()); 1526 mapNoResultOp(inst, condBrOp); 1527 return success(); 1528 } 1529 if (inst->getOpcode() == llvm::Instruction::Switch) { 1530 auto *swInst = cast<llvm::SwitchInst>(inst); 1531 // Process the condition value. 1532 FailureOr<Value> condition = convertValue(swInst->getCondition()); 1533 if (failed(condition)) 1534 return failure(); 1535 SmallVector<Value> defaultBlockArgs; 1536 // Process the default case. 1537 llvm::BasicBlock *defaultBB = swInst->getDefaultDest(); 1538 if (failed(convertBranchArgs(swInst, defaultBB, defaultBlockArgs))) 1539 return failure(); 1540 1541 // Process the cases. 1542 unsigned numCases = swInst->getNumCases(); 1543 SmallVector<SmallVector<Value>> caseOperands(numCases); 1544 SmallVector<ValueRange> caseOperandRefs(numCases); 1545 SmallVector<APInt> caseValues(numCases); 1546 SmallVector<Block *> caseBlocks(numCases); 1547 for (const auto &it : llvm::enumerate(swInst->cases())) { 1548 const llvm::SwitchInst::CaseHandle &caseHandle = it.value(); 1549 llvm::BasicBlock *succBB = caseHandle.getCaseSuccessor(); 1550 if (failed(convertBranchArgs(swInst, succBB, caseOperands[it.index()]))) 1551 return failure(); 1552 caseOperandRefs[it.index()] = caseOperands[it.index()]; 1553 caseValues[it.index()] = caseHandle.getCaseValue()->getValue(); 1554 caseBlocks[it.index()] = lookupBlock(succBB); 1555 } 1556 1557 auto switchOp = builder.create<SwitchOp>( 1558 loc, *condition, lookupBlock(defaultBB), defaultBlockArgs, caseValues, 1559 caseBlocks, caseOperandRefs); 1560 mapNoResultOp(inst, switchOp); 1561 return success(); 1562 } 1563 if (inst->getOpcode() == llvm::Instruction::PHI) { 1564 Type type = convertType(inst->getType()); 1565 mapValue(inst, builder.getInsertionBlock()->addArgument( 1566 type, translateLoc(inst->getDebugLoc()))); 1567 return success(); 1568 } 1569 if (inst->getOpcode() == llvm::Instruction::Call) { 1570 auto *callInst = cast<llvm::CallInst>(inst); 1571 1572 SmallVector<Type> types; 1573 SmallVector<Value> operands; 1574 if (failed(convertCallTypeAndOperands(callInst, types, operands))) 1575 return failure(); 1576 1577 auto funcTy = 1578 dyn_cast<LLVMFunctionType>(convertType(callInst->getFunctionType())); 1579 if (!funcTy) 1580 return failure(); 1581 1582 CallOp callOp; 1583 1584 if (llvm::Function *callee = callInst->getCalledFunction()) { 1585 callOp = builder.create<CallOp>( 1586 loc, funcTy, SymbolRefAttr::get(context, callee->getName()), 1587 operands); 1588 } else { 1589 callOp = builder.create<CallOp>(loc, funcTy, operands); 1590 } 1591 callOp.setCConv(convertCConvFromLLVM(callInst->getCallingConv())); 1592 callOp.setTailCallKind( 1593 convertTailCallKindFromLLVM(callInst->getTailCallKind())); 1594 setFastmathFlagsAttr(inst, callOp); 1595 1596 // Handle function attributes. 1597 if (callInst->hasFnAttr(llvm::Attribute::Convergent)) 1598 callOp.setConvergent(true); 1599 if (callInst->hasFnAttr(llvm::Attribute::NoUnwind)) 1600 callOp.setNoUnwind(true); 1601 if (callInst->hasFnAttr(llvm::Attribute::WillReturn)) 1602 callOp.setWillReturn(true); 1603 1604 llvm::MemoryEffects memEffects = callInst->getMemoryEffects(); 1605 ModRefInfo othermem = convertModRefInfoFromLLVM( 1606 memEffects.getModRef(llvm::MemoryEffects::Location::Other)); 1607 ModRefInfo argMem = convertModRefInfoFromLLVM( 1608 memEffects.getModRef(llvm::MemoryEffects::Location::ArgMem)); 1609 ModRefInfo inaccessibleMem = convertModRefInfoFromLLVM( 1610 memEffects.getModRef(llvm::MemoryEffects::Location::InaccessibleMem)); 1611 auto memAttr = MemoryEffectsAttr::get(callOp.getContext(), othermem, argMem, 1612 inaccessibleMem); 1613 // Only set the attribute when it does not match the default value. 1614 if (!memAttr.isReadWrite()) 1615 callOp.setMemoryEffectsAttr(memAttr); 1616 1617 if (!callInst->getType()->isVoidTy()) 1618 mapValue(inst, callOp.getResult()); 1619 else 1620 mapNoResultOp(inst, callOp); 1621 return success(); 1622 } 1623 if (inst->getOpcode() == llvm::Instruction::LandingPad) { 1624 auto *lpInst = cast<llvm::LandingPadInst>(inst); 1625 1626 SmallVector<Value> operands; 1627 operands.reserve(lpInst->getNumClauses()); 1628 for (auto i : llvm::seq<unsigned>(0, lpInst->getNumClauses())) { 1629 FailureOr<Value> operand = convertValue(lpInst->getClause(i)); 1630 if (failed(operand)) 1631 return failure(); 1632 operands.push_back(*operand); 1633 } 1634 1635 Type type = convertType(lpInst->getType()); 1636 auto lpOp = 1637 builder.create<LandingpadOp>(loc, type, lpInst->isCleanup(), operands); 1638 mapValue(inst, lpOp); 1639 return success(); 1640 } 1641 if (inst->getOpcode() == llvm::Instruction::Invoke) { 1642 auto *invokeInst = cast<llvm::InvokeInst>(inst); 1643 1644 SmallVector<Type> types; 1645 SmallVector<Value> operands; 1646 if (failed(convertCallTypeAndOperands(invokeInst, types, operands))) 1647 return failure(); 1648 1649 // Check whether the invoke result is an argument to the normal destination 1650 // block. 1651 bool invokeResultUsedInPhi = llvm::any_of( 1652 invokeInst->getNormalDest()->phis(), [&](const llvm::PHINode &phi) { 1653 return phi.getIncomingValueForBlock(invokeInst->getParent()) == 1654 invokeInst; 1655 }); 1656 1657 Block *normalDest = lookupBlock(invokeInst->getNormalDest()); 1658 Block *directNormalDest = normalDest; 1659 if (invokeResultUsedInPhi) { 1660 // The invoke result cannot be an argument to the normal destination 1661 // block, as that would imply using the invoke operation result in its 1662 // definition, so we need to create a dummy block to serve as an 1663 // intermediate destination. 1664 OpBuilder::InsertionGuard g(builder); 1665 directNormalDest = builder.createBlock(normalDest); 1666 } 1667 1668 SmallVector<Value> unwindArgs; 1669 if (failed(convertBranchArgs(invokeInst, invokeInst->getUnwindDest(), 1670 unwindArgs))) 1671 return failure(); 1672 1673 auto funcTy = 1674 dyn_cast<LLVMFunctionType>(convertType(invokeInst->getFunctionType())); 1675 if (!funcTy) 1676 return failure(); 1677 1678 // Create the invoke operation. Normal destination block arguments will be 1679 // added later on to handle the case in which the operation result is 1680 // included in this list. 1681 InvokeOp invokeOp; 1682 if (llvm::Function *callee = invokeInst->getCalledFunction()) { 1683 invokeOp = builder.create<InvokeOp>( 1684 loc, funcTy, 1685 SymbolRefAttr::get(builder.getContext(), callee->getName()), operands, 1686 directNormalDest, ValueRange(), 1687 lookupBlock(invokeInst->getUnwindDest()), unwindArgs); 1688 } else { 1689 invokeOp = builder.create<InvokeOp>( 1690 loc, funcTy, /*callee=*/nullptr, operands, directNormalDest, 1691 ValueRange(), lookupBlock(invokeInst->getUnwindDest()), unwindArgs); 1692 } 1693 invokeOp.setCConv(convertCConvFromLLVM(invokeInst->getCallingConv())); 1694 if (!invokeInst->getType()->isVoidTy()) 1695 mapValue(inst, invokeOp.getResults().front()); 1696 else 1697 mapNoResultOp(inst, invokeOp); 1698 1699 SmallVector<Value> normalArgs; 1700 if (failed(convertBranchArgs(invokeInst, invokeInst->getNormalDest(), 1701 normalArgs))) 1702 return failure(); 1703 1704 if (invokeResultUsedInPhi) { 1705 // The dummy normal dest block will just host an unconditional branch 1706 // instruction to the normal destination block passing the required block 1707 // arguments (including the invoke operation's result). 1708 OpBuilder::InsertionGuard g(builder); 1709 builder.setInsertionPointToStart(directNormalDest); 1710 builder.create<LLVM::BrOp>(loc, normalArgs, normalDest); 1711 } else { 1712 // If the invoke operation's result is not a block argument to the normal 1713 // destination block, just add the block arguments as usual. 1714 assert(llvm::none_of( 1715 normalArgs, 1716 [&](Value val) { return val.getDefiningOp() == invokeOp; }) && 1717 "An llvm.invoke operation cannot pass its result as a block " 1718 "argument."); 1719 invokeOp.getNormalDestOperandsMutable().append(normalArgs); 1720 } 1721 1722 return success(); 1723 } 1724 if (inst->getOpcode() == llvm::Instruction::GetElementPtr) { 1725 auto *gepInst = cast<llvm::GetElementPtrInst>(inst); 1726 Type sourceElementType = convertType(gepInst->getSourceElementType()); 1727 FailureOr<Value> basePtr = convertValue(gepInst->getOperand(0)); 1728 if (failed(basePtr)) 1729 return failure(); 1730 1731 // Treat every indices as dynamic since GEPOp::build will refine those 1732 // indices into static attributes later. One small downside of this 1733 // approach is that many unused `llvm.mlir.constant` would be emitted 1734 // at first place. 1735 SmallVector<GEPArg> indices; 1736 for (llvm::Value *operand : llvm::drop_begin(gepInst->operand_values())) { 1737 FailureOr<Value> index = convertValue(operand); 1738 if (failed(index)) 1739 return failure(); 1740 indices.push_back(*index); 1741 } 1742 1743 Type type = convertType(inst->getType()); 1744 auto gepOp = builder.create<GEPOp>(loc, type, sourceElementType, *basePtr, 1745 indices, gepInst->isInBounds()); 1746 mapValue(inst, gepOp); 1747 return success(); 1748 } 1749 1750 // Convert all instructions that have an mlirBuilder. 1751 if (succeeded(convertInstructionImpl(builder, inst, *this, iface))) 1752 return success(); 1753 1754 return emitError(loc) << "unhandled instruction: " << diag(*inst); 1755 } 1756 1757 LogicalResult ModuleImport::processInstruction(llvm::Instruction *inst) { 1758 // FIXME: Support uses of SubtargetData. 1759 // FIXME: Add support for call / operand attributes. 1760 // FIXME: Add support for the indirectbr, cleanupret, catchret, catchswitch, 1761 // callbr, vaarg, catchpad, cleanuppad instructions. 1762 1763 // Convert LLVM intrinsics calls to MLIR intrinsics. 1764 if (auto *intrinsic = dyn_cast<llvm::IntrinsicInst>(inst)) 1765 return convertIntrinsic(intrinsic); 1766 1767 // Convert all remaining LLVM instructions to MLIR operations. 1768 return convertInstruction(inst); 1769 } 1770 1771 FlatSymbolRefAttr ModuleImport::getPersonalityAsAttr(llvm::Function *f) { 1772 if (!f->hasPersonalityFn()) 1773 return nullptr; 1774 1775 llvm::Constant *pf = f->getPersonalityFn(); 1776 1777 // If it directly has a name, we can use it. 1778 if (pf->hasName()) 1779 return SymbolRefAttr::get(builder.getContext(), pf->getName()); 1780 1781 // If it doesn't have a name, currently, only function pointers that are 1782 // bitcast to i8* are parsed. 1783 if (auto *ce = dyn_cast<llvm::ConstantExpr>(pf)) { 1784 if (ce->getOpcode() == llvm::Instruction::BitCast && 1785 ce->getType() == llvm::PointerType::getUnqual(f->getContext())) { 1786 if (auto *func = dyn_cast<llvm::Function>(ce->getOperand(0))) 1787 return SymbolRefAttr::get(builder.getContext(), func->getName()); 1788 } 1789 } 1790 return FlatSymbolRefAttr(); 1791 } 1792 1793 static void processMemoryEffects(llvm::Function *func, LLVMFuncOp funcOp) { 1794 llvm::MemoryEffects memEffects = func->getMemoryEffects(); 1795 1796 auto othermem = convertModRefInfoFromLLVM( 1797 memEffects.getModRef(llvm::MemoryEffects::Location::Other)); 1798 auto argMem = convertModRefInfoFromLLVM( 1799 memEffects.getModRef(llvm::MemoryEffects::Location::ArgMem)); 1800 auto inaccessibleMem = convertModRefInfoFromLLVM( 1801 memEffects.getModRef(llvm::MemoryEffects::Location::InaccessibleMem)); 1802 auto memAttr = MemoryEffectsAttr::get(funcOp.getContext(), othermem, argMem, 1803 inaccessibleMem); 1804 // Only set the attr when it does not match the default value. 1805 if (memAttr.isReadWrite()) 1806 return; 1807 funcOp.setMemoryEffectsAttr(memAttr); 1808 } 1809 1810 // List of LLVM IR attributes that map to an explicit attribute on the MLIR 1811 // LLVMFuncOp. 1812 static constexpr std::array kExplicitAttributes{ 1813 StringLiteral("aarch64_in_za"), 1814 StringLiteral("aarch64_inout_za"), 1815 StringLiteral("aarch64_new_za"), 1816 StringLiteral("aarch64_out_za"), 1817 StringLiteral("aarch64_preserves_za"), 1818 StringLiteral("aarch64_pstate_sm_body"), 1819 StringLiteral("aarch64_pstate_sm_compatible"), 1820 StringLiteral("aarch64_pstate_sm_enabled"), 1821 StringLiteral("alwaysinline"), 1822 StringLiteral("approx-func-fp-math"), 1823 StringLiteral("convergent"), 1824 StringLiteral("denormal-fp-math"), 1825 StringLiteral("denormal-fp-math-f32"), 1826 StringLiteral("fp-contract"), 1827 StringLiteral("frame-pointer"), 1828 StringLiteral("no-infs-fp-math"), 1829 StringLiteral("no-nans-fp-math"), 1830 StringLiteral("no-signed-zeros-fp-math"), 1831 StringLiteral("noinline"), 1832 StringLiteral("nounwind"), 1833 StringLiteral("optnone"), 1834 StringLiteral("target-features"), 1835 StringLiteral("tune-cpu"), 1836 StringLiteral("unsafe-fp-math"), 1837 StringLiteral("vscale_range"), 1838 StringLiteral("willreturn"), 1839 }; 1840 1841 static void processPassthroughAttrs(llvm::Function *func, LLVMFuncOp funcOp) { 1842 MLIRContext *context = funcOp.getContext(); 1843 SmallVector<Attribute> passthroughs; 1844 llvm::AttributeSet funcAttrs = func->getAttributes().getAttributes( 1845 llvm::AttributeList::AttrIndex::FunctionIndex); 1846 for (llvm::Attribute attr : funcAttrs) { 1847 // Skip the memory attribute since the LLVMFuncOp has an explicit memory 1848 // attribute. 1849 if (attr.hasAttribute(llvm::Attribute::Memory)) 1850 continue; 1851 1852 // Skip invalid type attributes. 1853 if (attr.isTypeAttribute()) { 1854 emitWarning(funcOp.getLoc(), 1855 "type attributes on a function are invalid, skipping it"); 1856 continue; 1857 } 1858 1859 StringRef attrName; 1860 if (attr.isStringAttribute()) 1861 attrName = attr.getKindAsString(); 1862 else 1863 attrName = llvm::Attribute::getNameFromAttrKind(attr.getKindAsEnum()); 1864 auto keyAttr = StringAttr::get(context, attrName); 1865 1866 // Skip attributes that map to an explicit attribute on the LLVMFuncOp. 1867 if (llvm::is_contained(kExplicitAttributes, attrName)) 1868 continue; 1869 1870 if (attr.isStringAttribute()) { 1871 StringRef val = attr.getValueAsString(); 1872 if (val.empty()) { 1873 passthroughs.push_back(keyAttr); 1874 continue; 1875 } 1876 passthroughs.push_back( 1877 ArrayAttr::get(context, {keyAttr, StringAttr::get(context, val)})); 1878 continue; 1879 } 1880 if (attr.isIntAttribute()) { 1881 auto val = std::to_string(attr.getValueAsInt()); 1882 passthroughs.push_back( 1883 ArrayAttr::get(context, {keyAttr, StringAttr::get(context, val)})); 1884 continue; 1885 } 1886 if (attr.isEnumAttribute()) { 1887 passthroughs.push_back(keyAttr); 1888 continue; 1889 } 1890 1891 llvm_unreachable("unexpected attribute kind"); 1892 } 1893 1894 if (!passthroughs.empty()) 1895 funcOp.setPassthroughAttr(ArrayAttr::get(context, passthroughs)); 1896 } 1897 1898 void ModuleImport::processFunctionAttributes(llvm::Function *func, 1899 LLVMFuncOp funcOp) { 1900 processMemoryEffects(func, funcOp); 1901 processPassthroughAttrs(func, funcOp); 1902 1903 if (func->hasFnAttribute(llvm::Attribute::NoInline)) 1904 funcOp.setNoInline(true); 1905 if (func->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1906 funcOp.setAlwaysInline(true); 1907 if (func->hasFnAttribute(llvm::Attribute::OptimizeNone)) 1908 funcOp.setOptimizeNone(true); 1909 if (func->hasFnAttribute(llvm::Attribute::Convergent)) 1910 funcOp.setConvergent(true); 1911 if (func->hasFnAttribute(llvm::Attribute::NoUnwind)) 1912 funcOp.setNoUnwind(true); 1913 if (func->hasFnAttribute(llvm::Attribute::WillReturn)) 1914 funcOp.setWillReturn(true); 1915 1916 if (func->hasFnAttribute("aarch64_pstate_sm_enabled")) 1917 funcOp.setArmStreaming(true); 1918 else if (func->hasFnAttribute("aarch64_pstate_sm_body")) 1919 funcOp.setArmLocallyStreaming(true); 1920 else if (func->hasFnAttribute("aarch64_pstate_sm_compatible")) 1921 funcOp.setArmStreamingCompatible(true); 1922 1923 if (func->hasFnAttribute("aarch64_new_za")) 1924 funcOp.setArmNewZa(true); 1925 else if (func->hasFnAttribute("aarch64_in_za")) 1926 funcOp.setArmInZa(true); 1927 else if (func->hasFnAttribute("aarch64_out_za")) 1928 funcOp.setArmOutZa(true); 1929 else if (func->hasFnAttribute("aarch64_inout_za")) 1930 funcOp.setArmInoutZa(true); 1931 else if (func->hasFnAttribute("aarch64_preserves_za")) 1932 funcOp.setArmPreservesZa(true); 1933 1934 llvm::Attribute attr = func->getFnAttribute(llvm::Attribute::VScaleRange); 1935 if (attr.isValid()) { 1936 MLIRContext *context = funcOp.getContext(); 1937 auto intTy = IntegerType::get(context, 32); 1938 funcOp.setVscaleRangeAttr(LLVM::VScaleRangeAttr::get( 1939 context, IntegerAttr::get(intTy, attr.getVScaleRangeMin()), 1940 IntegerAttr::get(intTy, attr.getVScaleRangeMax().value_or(0)))); 1941 } 1942 1943 // Process frame-pointer attribute. 1944 if (func->hasFnAttribute("frame-pointer")) { 1945 StringRef stringRefFramePointerKind = 1946 func->getFnAttribute("frame-pointer").getValueAsString(); 1947 funcOp.setFramePointerAttr(LLVM::FramePointerKindAttr::get( 1948 funcOp.getContext(), LLVM::framePointerKind::symbolizeFramePointerKind( 1949 stringRefFramePointerKind) 1950 .value())); 1951 } 1952 1953 if (llvm::Attribute attr = func->getFnAttribute("target-cpu"); 1954 attr.isStringAttribute()) 1955 funcOp.setTargetCpuAttr(StringAttr::get(context, attr.getValueAsString())); 1956 1957 if (llvm::Attribute attr = func->getFnAttribute("tune-cpu"); 1958 attr.isStringAttribute()) 1959 funcOp.setTuneCpuAttr(StringAttr::get(context, attr.getValueAsString())); 1960 1961 if (llvm::Attribute attr = func->getFnAttribute("target-features"); 1962 attr.isStringAttribute()) 1963 funcOp.setTargetFeaturesAttr( 1964 LLVM::TargetFeaturesAttr::get(context, attr.getValueAsString())); 1965 1966 if (llvm::Attribute attr = func->getFnAttribute("unsafe-fp-math"); 1967 attr.isStringAttribute()) 1968 funcOp.setUnsafeFpMath(attr.getValueAsBool()); 1969 1970 if (llvm::Attribute attr = func->getFnAttribute("no-infs-fp-math"); 1971 attr.isStringAttribute()) 1972 funcOp.setNoInfsFpMath(attr.getValueAsBool()); 1973 1974 if (llvm::Attribute attr = func->getFnAttribute("no-nans-fp-math"); 1975 attr.isStringAttribute()) 1976 funcOp.setNoNansFpMath(attr.getValueAsBool()); 1977 1978 if (llvm::Attribute attr = func->getFnAttribute("approx-func-fp-math"); 1979 attr.isStringAttribute()) 1980 funcOp.setApproxFuncFpMath(attr.getValueAsBool()); 1981 1982 if (llvm::Attribute attr = func->getFnAttribute("no-signed-zeros-fp-math"); 1983 attr.isStringAttribute()) 1984 funcOp.setNoSignedZerosFpMath(attr.getValueAsBool()); 1985 1986 if (llvm::Attribute attr = func->getFnAttribute("denormal-fp-math"); 1987 attr.isStringAttribute()) 1988 funcOp.setDenormalFpMathAttr( 1989 StringAttr::get(context, attr.getValueAsString())); 1990 1991 if (llvm::Attribute attr = func->getFnAttribute("denormal-fp-math-f32"); 1992 attr.isStringAttribute()) 1993 funcOp.setDenormalFpMathF32Attr( 1994 StringAttr::get(context, attr.getValueAsString())); 1995 1996 if (llvm::Attribute attr = func->getFnAttribute("fp-contract"); 1997 attr.isStringAttribute()) 1998 funcOp.setFpContractAttr(StringAttr::get(context, attr.getValueAsString())); 1999 } 2000 2001 DictionaryAttr 2002 ModuleImport::convertParameterAttribute(llvm::AttributeSet llvmParamAttrs, 2003 OpBuilder &builder) { 2004 SmallVector<NamedAttribute> paramAttrs; 2005 for (auto [llvmKind, mlirName] : getAttrKindToNameMapping()) { 2006 auto llvmAttr = llvmParamAttrs.getAttribute(llvmKind); 2007 // Skip attributes that are not attached. 2008 if (!llvmAttr.isValid()) 2009 continue; 2010 Attribute mlirAttr; 2011 if (llvmAttr.isTypeAttribute()) 2012 mlirAttr = TypeAttr::get(convertType(llvmAttr.getValueAsType())); 2013 else if (llvmAttr.isIntAttribute()) 2014 mlirAttr = builder.getI64IntegerAttr(llvmAttr.getValueAsInt()); 2015 else if (llvmAttr.isEnumAttribute()) 2016 mlirAttr = builder.getUnitAttr(); 2017 else 2018 llvm_unreachable("unexpected parameter attribute kind"); 2019 paramAttrs.push_back(builder.getNamedAttr(mlirName, mlirAttr)); 2020 } 2021 2022 return builder.getDictionaryAttr(paramAttrs); 2023 } 2024 2025 void ModuleImport::convertParameterAttributes(llvm::Function *func, 2026 LLVMFuncOp funcOp, 2027 OpBuilder &builder) { 2028 auto llvmAttrs = func->getAttributes(); 2029 for (size_t i = 0, e = funcOp.getNumArguments(); i < e; ++i) { 2030 llvm::AttributeSet llvmArgAttrs = llvmAttrs.getParamAttrs(i); 2031 funcOp.setArgAttrs(i, convertParameterAttribute(llvmArgAttrs, builder)); 2032 } 2033 // Convert the result attributes and attach them wrapped in an ArrayAttribute 2034 // to the funcOp. 2035 llvm::AttributeSet llvmResAttr = llvmAttrs.getRetAttrs(); 2036 if (!llvmResAttr.hasAttributes()) 2037 return; 2038 funcOp.setResAttrsAttr( 2039 builder.getArrayAttr(convertParameterAttribute(llvmResAttr, builder))); 2040 } 2041 2042 LogicalResult ModuleImport::processFunction(llvm::Function *func) { 2043 clearRegionState(); 2044 2045 auto functionType = 2046 dyn_cast<LLVMFunctionType>(convertType(func->getFunctionType())); 2047 if (func->isIntrinsic() && 2048 iface.isConvertibleIntrinsic(func->getIntrinsicID())) 2049 return success(); 2050 2051 bool dsoLocal = func->hasLocalLinkage(); 2052 CConv cconv = convertCConvFromLLVM(func->getCallingConv()); 2053 2054 // Insert the function at the end of the module. 2055 OpBuilder::InsertionGuard guard(builder); 2056 builder.setInsertionPointToEnd(mlirModule.getBody()); 2057 2058 Location loc = debugImporter->translateFuncLocation(func); 2059 LLVMFuncOp funcOp = builder.create<LLVMFuncOp>( 2060 loc, func->getName(), functionType, 2061 convertLinkageFromLLVM(func->getLinkage()), dsoLocal, cconv); 2062 2063 convertParameterAttributes(func, funcOp, builder); 2064 2065 if (FlatSymbolRefAttr personality = getPersonalityAsAttr(func)) 2066 funcOp.setPersonalityAttr(personality); 2067 else if (func->hasPersonalityFn()) 2068 emitWarning(funcOp.getLoc(), "could not deduce personality, skipping it"); 2069 2070 if (func->hasGC()) 2071 funcOp.setGarbageCollector(StringRef(func->getGC())); 2072 2073 if (func->hasAtLeastLocalUnnamedAddr()) 2074 funcOp.setUnnamedAddr(convertUnnamedAddrFromLLVM(func->getUnnamedAddr())); 2075 2076 if (func->hasSection()) 2077 funcOp.setSection(StringRef(func->getSection())); 2078 2079 funcOp.setVisibility_(convertVisibilityFromLLVM(func->getVisibility())); 2080 2081 if (func->hasComdat()) 2082 funcOp.setComdatAttr(comdatMapping.lookup(func->getComdat())); 2083 2084 if (llvm::MaybeAlign maybeAlign = func->getAlign()) 2085 funcOp.setAlignment(maybeAlign->value()); 2086 2087 // Handle Function attributes. 2088 processFunctionAttributes(func, funcOp); 2089 2090 // Convert non-debug metadata by using the dialect interface. 2091 SmallVector<std::pair<unsigned, llvm::MDNode *>> allMetadata; 2092 func->getAllMetadata(allMetadata); 2093 for (auto &[kind, node] : allMetadata) { 2094 if (!iface.isConvertibleMetadata(kind)) 2095 continue; 2096 if (failed(iface.setMetadataAttrs(builder, kind, node, funcOp, *this))) { 2097 emitWarning(funcOp.getLoc()) 2098 << "unhandled function metadata: " << diagMD(node, llvmModule.get()) 2099 << " on " << diag(*func); 2100 } 2101 } 2102 2103 if (func->isDeclaration()) 2104 return success(); 2105 2106 // Collect the set of basic blocks reachable from the function's entry block. 2107 // This step is crucial as LLVM IR can contain unreachable blocks that 2108 // self-dominate. As a result, an operation might utilize a variable it 2109 // defines, which the import does not support. Given that MLIR lacks block 2110 // label support, we can safely remove unreachable blocks, as there are no 2111 // indirect branch instructions that could potentially target these blocks. 2112 llvm::df_iterator_default_set<llvm::BasicBlock *> reachable; 2113 for (llvm::BasicBlock *basicBlock : llvm::depth_first_ext(func, reachable)) 2114 (void)basicBlock; 2115 2116 // Eagerly create all reachable blocks. 2117 SmallVector<llvm::BasicBlock *> reachableBasicBlocks; 2118 for (llvm::BasicBlock &basicBlock : *func) { 2119 // Skip unreachable blocks. 2120 if (!reachable.contains(&basicBlock)) 2121 continue; 2122 Region &body = funcOp.getBody(); 2123 Block *block = builder.createBlock(&body, body.end()); 2124 mapBlock(&basicBlock, block); 2125 reachableBasicBlocks.push_back(&basicBlock); 2126 } 2127 2128 // Add function arguments to the entry block. 2129 for (const auto &it : llvm::enumerate(func->args())) { 2130 BlockArgument blockArg = funcOp.getFunctionBody().addArgument( 2131 functionType.getParamType(it.index()), funcOp.getLoc()); 2132 mapValue(&it.value(), blockArg); 2133 } 2134 2135 // Process the blocks in topological order. The ordered traversal ensures 2136 // operands defined in a dominating block have a valid mapping to an MLIR 2137 // value once a block is translated. 2138 SetVector<llvm::BasicBlock *> blocks = 2139 getTopologicallySortedBlocks(reachableBasicBlocks); 2140 setConstantInsertionPointToStart(lookupBlock(blocks.front())); 2141 for (llvm::BasicBlock *basicBlock : blocks) 2142 if (failed(processBasicBlock(basicBlock, lookupBlock(basicBlock)))) 2143 return failure(); 2144 2145 // Process the debug intrinsics that require a delayed conversion after 2146 // everything else was converted. 2147 if (failed(processDebugIntrinsics())) 2148 return failure(); 2149 2150 return success(); 2151 } 2152 2153 /// Checks if `dbgIntr` is a kill location that holds metadata instead of an SSA 2154 /// value. 2155 static bool isMetadataKillLocation(llvm::DbgVariableIntrinsic *dbgIntr) { 2156 if (!dbgIntr->isKillLocation()) 2157 return false; 2158 llvm::Value *value = dbgIntr->getArgOperand(0); 2159 auto *nodeAsVal = dyn_cast<llvm::MetadataAsValue>(value); 2160 if (!nodeAsVal) 2161 return false; 2162 return !isa<llvm::ValueAsMetadata>(nodeAsVal->getMetadata()); 2163 } 2164 2165 LogicalResult 2166 ModuleImport::processDebugIntrinsic(llvm::DbgVariableIntrinsic *dbgIntr, 2167 DominanceInfo &domInfo) { 2168 Location loc = translateLoc(dbgIntr->getDebugLoc()); 2169 auto emitUnsupportedWarning = [&]() { 2170 if (emitExpensiveWarnings) 2171 emitWarning(loc) << "dropped intrinsic: " << diag(*dbgIntr); 2172 return success(); 2173 }; 2174 // Drop debug intrinsics with arg lists. 2175 // TODO: Support debug intrinsics that have arg lists. 2176 if (dbgIntr->hasArgList()) 2177 return emitUnsupportedWarning(); 2178 // Kill locations can have metadata nodes as location operand. This 2179 // cannot be converted to poison as the type cannot be reconstructed. 2180 // TODO: find a way to support this case. 2181 if (isMetadataKillLocation(dbgIntr)) 2182 return emitUnsupportedWarning(); 2183 // Drop debug intrinsics if the associated variable information cannot be 2184 // translated due to cyclic debug metadata. 2185 // TODO: Support cyclic debug metadata. 2186 DILocalVariableAttr localVariableAttr = 2187 matchLocalVariableAttr(dbgIntr->getArgOperand(1)); 2188 if (!localVariableAttr) 2189 return emitUnsupportedWarning(); 2190 FailureOr<Value> argOperand = convertMetadataValue(dbgIntr->getArgOperand(0)); 2191 if (failed(argOperand)) 2192 return emitError(loc) << "failed to convert a debug intrinsic operand: " 2193 << diag(*dbgIntr); 2194 2195 // Ensure that the debug intrinsic is inserted right after its operand is 2196 // defined. Otherwise, the operand might not necessarily dominate the 2197 // intrinsic. If the defining operation is a terminator, insert the intrinsic 2198 // into a dominated block. 2199 OpBuilder::InsertionGuard guard(builder); 2200 if (Operation *op = argOperand->getDefiningOp(); 2201 op && op->hasTrait<OpTrait::IsTerminator>()) { 2202 // Find a dominated block that can hold the debug intrinsic. 2203 auto dominatedBlocks = domInfo.getNode(op->getBlock())->children(); 2204 // If no block is dominated by the terminator, this intrinisc cannot be 2205 // converted. 2206 if (dominatedBlocks.empty()) 2207 return emitUnsupportedWarning(); 2208 // Set insertion point before the terminator, to avoid inserting something 2209 // before landingpads. 2210 Block *dominatedBlock = (*dominatedBlocks.begin())->getBlock(); 2211 builder.setInsertionPoint(dominatedBlock->getTerminator()); 2212 } else { 2213 builder.setInsertionPointAfterValue(*argOperand); 2214 } 2215 auto locationExprAttr = 2216 debugImporter->translateExpression(dbgIntr->getExpression()); 2217 Operation *op = 2218 llvm::TypeSwitch<llvm::DbgVariableIntrinsic *, Operation *>(dbgIntr) 2219 .Case([&](llvm::DbgDeclareInst *) { 2220 return builder.create<LLVM::DbgDeclareOp>( 2221 loc, *argOperand, localVariableAttr, locationExprAttr); 2222 }) 2223 .Case([&](llvm::DbgValueInst *) { 2224 return builder.create<LLVM::DbgValueOp>( 2225 loc, *argOperand, localVariableAttr, locationExprAttr); 2226 }); 2227 mapNoResultOp(dbgIntr, op); 2228 setNonDebugMetadataAttrs(dbgIntr, op); 2229 return success(); 2230 } 2231 2232 LogicalResult ModuleImport::processDebugIntrinsics() { 2233 DominanceInfo domInfo; 2234 for (llvm::Instruction *inst : debugIntrinsics) { 2235 auto *intrCall = cast<llvm::DbgVariableIntrinsic>(inst); 2236 if (failed(processDebugIntrinsic(intrCall, domInfo))) 2237 return failure(); 2238 } 2239 return success(); 2240 } 2241 2242 LogicalResult ModuleImport::processBasicBlock(llvm::BasicBlock *bb, 2243 Block *block) { 2244 builder.setInsertionPointToStart(block); 2245 for (llvm::Instruction &inst : *bb) { 2246 if (failed(processInstruction(&inst))) 2247 return failure(); 2248 2249 // Skip additional processing when the instructions is a debug intrinsics 2250 // that was not yet converted. 2251 if (debugIntrinsics.contains(&inst)) 2252 continue; 2253 2254 // Set the non-debug metadata attributes on the imported operation and emit 2255 // a warning if an instruction other than a phi instruction is dropped 2256 // during the import. 2257 if (Operation *op = lookupOperation(&inst)) { 2258 setNonDebugMetadataAttrs(&inst, op); 2259 } else if (inst.getOpcode() != llvm::Instruction::PHI) { 2260 if (emitExpensiveWarnings) { 2261 Location loc = debugImporter->translateLoc(inst.getDebugLoc()); 2262 emitWarning(loc) << "dropped instruction: " << diag(inst); 2263 } 2264 } 2265 } 2266 return success(); 2267 } 2268 2269 FailureOr<SmallVector<AccessGroupAttr>> 2270 ModuleImport::lookupAccessGroupAttrs(const llvm::MDNode *node) const { 2271 return loopAnnotationImporter->lookupAccessGroupAttrs(node); 2272 } 2273 2274 LoopAnnotationAttr 2275 ModuleImport::translateLoopAnnotationAttr(const llvm::MDNode *node, 2276 Location loc) const { 2277 return loopAnnotationImporter->translateLoopAnnotation(node, loc); 2278 } 2279 2280 OwningOpRef<ModuleOp> 2281 mlir::translateLLVMIRToModule(std::unique_ptr<llvm::Module> llvmModule, 2282 MLIRContext *context, bool emitExpensiveWarnings, 2283 bool dropDICompositeTypeElements) { 2284 // Preload all registered dialects to allow the import to iterate the 2285 // registered LLVMImportDialectInterface implementations and query the 2286 // supported LLVM IR constructs before starting the translation. Assumes the 2287 // LLVM and DLTI dialects that convert the core LLVM IR constructs have been 2288 // registered before. 2289 assert(llvm::is_contained(context->getAvailableDialects(), 2290 LLVMDialect::getDialectNamespace())); 2291 assert(llvm::is_contained(context->getAvailableDialects(), 2292 DLTIDialect::getDialectNamespace())); 2293 context->loadAllAvailableDialects(); 2294 OwningOpRef<ModuleOp> module(ModuleOp::create(FileLineColLoc::get( 2295 StringAttr::get(context, llvmModule->getSourceFileName()), /*line=*/0, 2296 /*column=*/0))); 2297 2298 ModuleImport moduleImport(module.get(), std::move(llvmModule), 2299 emitExpensiveWarnings, dropDICompositeTypeElements); 2300 if (failed(moduleImport.initializeImportInterface())) 2301 return {}; 2302 if (failed(moduleImport.convertDataLayout())) 2303 return {}; 2304 if (failed(moduleImport.convertComdats())) 2305 return {}; 2306 if (failed(moduleImport.convertMetadata())) 2307 return {}; 2308 if (failed(moduleImport.convertGlobals())) 2309 return {}; 2310 if (failed(moduleImport.convertFunctions())) 2311 return {}; 2312 2313 return module; 2314 } 2315