1 //===- ModuleImport.cpp - LLVM to MLIR conversion ---------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the import of an LLVM IR module into an LLVM dialect 10 // module. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleImport.h" 15 #include "mlir/IR/BuiltinAttributes.h" 16 #include "mlir/Target/LLVMIR/Import.h" 17 18 #include "AttrKindDetail.h" 19 #include "DataLayoutImporter.h" 20 #include "DebugImporter.h" 21 #include "LoopAnnotationImporter.h" 22 23 #include "mlir/Dialect/DLTI/DLTI.h" 24 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/Matchers.h" 27 #include "mlir/Interfaces/DataLayoutInterfaces.h" 28 #include "mlir/Tools/mlir-translate/Translation.h" 29 30 #include "llvm/ADT/DepthFirstIterator.h" 31 #include "llvm/ADT/PostOrderIterator.h" 32 #include "llvm/ADT/ScopeExit.h" 33 #include "llvm/ADT/StringSet.h" 34 #include "llvm/ADT/TypeSwitch.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/InstIterator.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/Support/ModRef.h" 44 45 using namespace mlir; 46 using namespace mlir::LLVM; 47 using namespace mlir::LLVM::detail; 48 49 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsFromLLVM.inc" 50 51 // Utility to print an LLVM value as a string for passing to emitError(). 52 // FIXME: Diagnostic should be able to natively handle types that have 53 // operator << (raw_ostream&) defined. 54 static std::string diag(const llvm::Value &value) { 55 std::string str; 56 llvm::raw_string_ostream os(str); 57 os << value; 58 return str; 59 } 60 61 // Utility to print an LLVM metadata node as a string for passing 62 // to emitError(). The module argument is needed to print the nodes 63 // canonically numbered. 64 static std::string diagMD(const llvm::Metadata *node, 65 const llvm::Module *module) { 66 std::string str; 67 llvm::raw_string_ostream os(str); 68 node->print(os, module, /*IsForDebug=*/true); 69 return str; 70 } 71 72 /// Returns the name of the global_ctors global variables. 73 static constexpr StringRef getGlobalCtorsVarName() { 74 return "llvm.global_ctors"; 75 } 76 77 /// Prefix used for symbols of nameless llvm globals. 78 static constexpr StringRef getNamelessGlobalPrefix() { 79 return "mlir.llvm.nameless_global"; 80 } 81 82 /// Returns the name of the global_dtors global variables. 83 static constexpr StringRef getGlobalDtorsVarName() { 84 return "llvm.global_dtors"; 85 } 86 87 /// Returns the symbol name for the module-level comdat operation. It must not 88 /// conflict with the user namespace. 89 static constexpr StringRef getGlobalComdatOpName() { 90 return "__llvm_global_comdat"; 91 } 92 93 /// Converts the sync scope identifier of `inst` to the string representation 94 /// necessary to build an atomic LLVM dialect operation. Returns the empty 95 /// string if the operation has either no sync scope or the default system-level 96 /// sync scope attached. The atomic operations only set their sync scope 97 /// attribute if they have a non-default sync scope attached. 98 static StringRef getLLVMSyncScope(llvm::Instruction *inst) { 99 std::optional<llvm::SyncScope::ID> syncScopeID = 100 llvm::getAtomicSyncScopeID(inst); 101 if (!syncScopeID) 102 return ""; 103 104 // Search the sync scope name for the given identifier. The default 105 // system-level sync scope thereby maps to the empty string. 106 SmallVector<StringRef> syncScopeName; 107 llvm::LLVMContext &llvmContext = inst->getContext(); 108 llvmContext.getSyncScopeNames(syncScopeName); 109 auto *it = llvm::find_if(syncScopeName, [&](StringRef name) { 110 return *syncScopeID == llvmContext.getOrInsertSyncScopeID(name); 111 }); 112 if (it != syncScopeName.end()) 113 return *it; 114 llvm_unreachable("incorrect sync scope identifier"); 115 } 116 117 /// Converts an array of unsigned indices to a signed integer position array. 118 static SmallVector<int64_t> getPositionFromIndices(ArrayRef<unsigned> indices) { 119 SmallVector<int64_t> position; 120 llvm::append_range(position, indices); 121 return position; 122 } 123 124 /// Converts the LLVM instructions that have a generated MLIR builder. Using a 125 /// static implementation method called from the module import ensures the 126 /// builders have to use the `moduleImport` argument and cannot directly call 127 /// import methods. As a result, both the intrinsic and the instruction MLIR 128 /// builders have to use the `moduleImport` argument and none of them has direct 129 /// access to the private module import methods. 130 static LogicalResult convertInstructionImpl(OpBuilder &odsBuilder, 131 llvm::Instruction *inst, 132 ModuleImport &moduleImport, 133 LLVMImportInterface &iface) { 134 // Copy the operands to an LLVM operands array reference for conversion. 135 SmallVector<llvm::Value *> operands(inst->operands()); 136 ArrayRef<llvm::Value *> llvmOperands(operands); 137 138 // Convert all instructions that provide an MLIR builder. 139 if (iface.isConvertibleInstruction(inst->getOpcode())) 140 return iface.convertInstruction(odsBuilder, inst, llvmOperands, 141 moduleImport); 142 // TODO: Implement the `convertInstruction` hooks in the 143 // `LLVMDialectLLVMIRImportInterface` and move the following include there. 144 #include "mlir/Dialect/LLVMIR/LLVMOpFromLLVMIRConversions.inc" 145 return failure(); 146 } 147 148 /// Get a topologically sorted list of blocks for the given basic blocks. 149 static SetVector<llvm::BasicBlock *> 150 getTopologicallySortedBlocks(ArrayRef<llvm::BasicBlock *> basicBlocks) { 151 SetVector<llvm::BasicBlock *> blocks; 152 for (llvm::BasicBlock *basicBlock : basicBlocks) { 153 if (!blocks.contains(basicBlock)) { 154 llvm::ReversePostOrderTraversal<llvm::BasicBlock *> traversal(basicBlock); 155 blocks.insert(traversal.begin(), traversal.end()); 156 } 157 } 158 assert(blocks.size() == basicBlocks.size() && "some blocks are not sorted"); 159 return blocks; 160 } 161 162 ModuleImport::ModuleImport(ModuleOp mlirModule, 163 std::unique_ptr<llvm::Module> llvmModule, 164 bool emitExpensiveWarnings, 165 bool importEmptyDICompositeTypes) 166 : builder(mlirModule->getContext()), context(mlirModule->getContext()), 167 mlirModule(mlirModule), llvmModule(std::move(llvmModule)), 168 iface(mlirModule->getContext()), 169 typeTranslator(*mlirModule->getContext()), 170 debugImporter(std::make_unique<DebugImporter>( 171 mlirModule, importEmptyDICompositeTypes)), 172 loopAnnotationImporter( 173 std::make_unique<LoopAnnotationImporter>(*this, builder)), 174 emitExpensiveWarnings(emitExpensiveWarnings) { 175 builder.setInsertionPointToStart(mlirModule.getBody()); 176 } 177 178 ComdatOp ModuleImport::getGlobalComdatOp() { 179 if (globalComdatOp) 180 return globalComdatOp; 181 182 OpBuilder::InsertionGuard guard(builder); 183 builder.setInsertionPointToEnd(mlirModule.getBody()); 184 globalComdatOp = 185 builder.create<ComdatOp>(mlirModule.getLoc(), getGlobalComdatOpName()); 186 globalInsertionOp = globalComdatOp; 187 return globalComdatOp; 188 } 189 190 LogicalResult ModuleImport::processTBAAMetadata(const llvm::MDNode *node) { 191 Location loc = mlirModule.getLoc(); 192 193 // If `node` is a valid TBAA root node, then return its optional identity 194 // string, otherwise return failure. 195 auto getIdentityIfRootNode = 196 [&](const llvm::MDNode *node) -> FailureOr<std::optional<StringRef>> { 197 // Root node, e.g.: 198 // !0 = !{!"Simple C/C++ TBAA"} 199 // !1 = !{} 200 if (node->getNumOperands() > 1) 201 return failure(); 202 // If the operand is MDString, then assume that this is a root node. 203 if (node->getNumOperands() == 1) 204 if (const auto *op0 = dyn_cast<const llvm::MDString>(node->getOperand(0))) 205 return std::optional<StringRef>{op0->getString()}; 206 return std::optional<StringRef>{}; 207 }; 208 209 // If `node` looks like a TBAA type descriptor metadata, 210 // then return true, if it is a valid node, and false otherwise. 211 // If it does not look like a TBAA type descriptor metadata, then 212 // return std::nullopt. 213 // If `identity` and `memberTypes/Offsets` are non-null, then they will 214 // contain the converted metadata operands for a valid TBAA node (i.e. when 215 // true is returned). 216 auto isTypeDescriptorNode = [&](const llvm::MDNode *node, 217 StringRef *identity = nullptr, 218 SmallVectorImpl<TBAAMemberAttr> *members = 219 nullptr) -> std::optional<bool> { 220 unsigned numOperands = node->getNumOperands(); 221 // Type descriptor, e.g.: 222 // !1 = !{!"int", !0, /*optional*/i64 0} /* scalar int type */ 223 // !2 = !{!"agg_t", !1, i64 0} /* struct agg_t { int x; } */ 224 if (numOperands < 2) 225 return std::nullopt; 226 227 // TODO: support "new" format (D41501) for type descriptors, 228 // where the first operand is an MDNode. 229 const auto *identityNode = 230 dyn_cast<const llvm::MDString>(node->getOperand(0)); 231 if (!identityNode) 232 return std::nullopt; 233 234 // This should be a type descriptor node. 235 if (identity) 236 *identity = identityNode->getString(); 237 238 for (unsigned pairNum = 0, e = numOperands / 2; pairNum < e; ++pairNum) { 239 const auto *memberNode = 240 dyn_cast<const llvm::MDNode>(node->getOperand(2 * pairNum + 1)); 241 if (!memberNode) { 242 emitError(loc) << "operand '" << 2 * pairNum + 1 << "' must be MDNode: " 243 << diagMD(node, llvmModule.get()); 244 return false; 245 } 246 int64_t offset = 0; 247 if (2 * pairNum + 2 >= numOperands) { 248 // Allow for optional 0 offset in 2-operand nodes. 249 if (numOperands != 2) { 250 emitError(loc) << "missing member offset: " 251 << diagMD(node, llvmModule.get()); 252 return false; 253 } 254 } else { 255 auto *offsetCI = llvm::mdconst::dyn_extract<llvm::ConstantInt>( 256 node->getOperand(2 * pairNum + 2)); 257 if (!offsetCI) { 258 emitError(loc) << "operand '" << 2 * pairNum + 2 259 << "' must be ConstantInt: " 260 << diagMD(node, llvmModule.get()); 261 return false; 262 } 263 offset = offsetCI->getZExtValue(); 264 } 265 266 if (members) 267 members->push_back(TBAAMemberAttr::get( 268 cast<TBAANodeAttr>(tbaaMapping.lookup(memberNode)), offset)); 269 } 270 271 return true; 272 }; 273 274 // If `node` looks like a TBAA access tag metadata, 275 // then return true, if it is a valid node, and false otherwise. 276 // If it does not look like a TBAA access tag metadata, then 277 // return std::nullopt. 278 // If the other arguments are non-null, then they will contain 279 // the converted metadata operands for a valid TBAA node (i.e. when true is 280 // returned). 281 auto isTagNode = [&](const llvm::MDNode *node, 282 TBAATypeDescriptorAttr *baseAttr = nullptr, 283 TBAATypeDescriptorAttr *accessAttr = nullptr, 284 int64_t *offset = nullptr, 285 bool *isConstant = nullptr) -> std::optional<bool> { 286 // Access tag, e.g.: 287 // !3 = !{!1, !1, i64 0} /* scalar int access */ 288 // !4 = !{!2, !1, i64 0} /* agg_t::x access */ 289 // 290 // Optional 4th argument is ConstantInt 0/1 identifying whether 291 // the location being accessed is "constant" (see for details: 292 // https://llvm.org/docs/LangRef.html#representation). 293 unsigned numOperands = node->getNumOperands(); 294 if (numOperands != 3 && numOperands != 4) 295 return std::nullopt; 296 const auto *baseMD = dyn_cast<const llvm::MDNode>(node->getOperand(0)); 297 const auto *accessMD = dyn_cast<const llvm::MDNode>(node->getOperand(1)); 298 auto *offsetCI = 299 llvm::mdconst::dyn_extract<llvm::ConstantInt>(node->getOperand(2)); 300 if (!baseMD || !accessMD || !offsetCI) 301 return std::nullopt; 302 // TODO: support "new" TBAA format, if needed (see D41501). 303 // In the "old" format the first operand of the access type 304 // metadata is MDString. We have to distinguish the formats, 305 // because access tags have the same structure, but different 306 // meaning for the operands. 307 if (accessMD->getNumOperands() < 1 || 308 !isa<llvm::MDString>(accessMD->getOperand(0))) 309 return std::nullopt; 310 bool isConst = false; 311 if (numOperands == 4) { 312 auto *isConstantCI = 313 llvm::mdconst::dyn_extract<llvm::ConstantInt>(node->getOperand(3)); 314 if (!isConstantCI) { 315 emitError(loc) << "operand '3' must be ConstantInt: " 316 << diagMD(node, llvmModule.get()); 317 return false; 318 } 319 isConst = isConstantCI->getValue()[0]; 320 } 321 if (baseAttr) 322 *baseAttr = cast<TBAATypeDescriptorAttr>(tbaaMapping.lookup(baseMD)); 323 if (accessAttr) 324 *accessAttr = cast<TBAATypeDescriptorAttr>(tbaaMapping.lookup(accessMD)); 325 if (offset) 326 *offset = offsetCI->getZExtValue(); 327 if (isConstant) 328 *isConstant = isConst; 329 return true; 330 }; 331 332 // Do a post-order walk over the TBAA Graph. Since a correct TBAA Graph is a 333 // DAG, a post-order walk guarantees that we convert any metadata node we 334 // depend on, prior to converting the current node. 335 DenseSet<const llvm::MDNode *> seen; 336 SmallVector<const llvm::MDNode *> workList; 337 workList.push_back(node); 338 while (!workList.empty()) { 339 const llvm::MDNode *current = workList.back(); 340 if (tbaaMapping.contains(current)) { 341 // Already converted. Just pop from the worklist. 342 workList.pop_back(); 343 continue; 344 } 345 346 // If any child of this node is not yet converted, don't pop the current 347 // node from the worklist but push the not-yet-converted children in the 348 // front of the worklist. 349 bool anyChildNotConverted = false; 350 for (const llvm::MDOperand &operand : current->operands()) 351 if (auto *childNode = dyn_cast_or_null<const llvm::MDNode>(operand.get())) 352 if (!tbaaMapping.contains(childNode)) { 353 workList.push_back(childNode); 354 anyChildNotConverted = true; 355 } 356 357 if (anyChildNotConverted) { 358 // If this is the second time we failed to convert an element in the 359 // worklist it must be because a child is dependent on it being converted 360 // and we have a cycle in the graph. Cycles are not allowed in TBAA 361 // graphs. 362 if (!seen.insert(current).second) 363 return emitError(loc) << "has cycle in TBAA graph: " 364 << diagMD(current, llvmModule.get()); 365 366 continue; 367 } 368 369 // Otherwise simply import the current node. 370 workList.pop_back(); 371 372 FailureOr<std::optional<StringRef>> rootNodeIdentity = 373 getIdentityIfRootNode(current); 374 if (succeeded(rootNodeIdentity)) { 375 StringAttr stringAttr = *rootNodeIdentity 376 ? builder.getStringAttr(**rootNodeIdentity) 377 : nullptr; 378 // The root nodes do not have operands, so we can create 379 // the TBAARootAttr on the first walk. 380 tbaaMapping.insert({current, builder.getAttr<TBAARootAttr>(stringAttr)}); 381 continue; 382 } 383 384 StringRef identity; 385 SmallVector<TBAAMemberAttr> members; 386 if (std::optional<bool> isValid = 387 isTypeDescriptorNode(current, &identity, &members)) { 388 assert(isValid.value() && "type descriptor node must be valid"); 389 390 tbaaMapping.insert({current, builder.getAttr<TBAATypeDescriptorAttr>( 391 identity, members)}); 392 continue; 393 } 394 395 TBAATypeDescriptorAttr baseAttr, accessAttr; 396 int64_t offset; 397 bool isConstant; 398 if (std::optional<bool> isValid = 399 isTagNode(current, &baseAttr, &accessAttr, &offset, &isConstant)) { 400 assert(isValid.value() && "access tag node must be valid"); 401 tbaaMapping.insert( 402 {current, builder.getAttr<TBAATagAttr>(baseAttr, accessAttr, offset, 403 isConstant)}); 404 continue; 405 } 406 407 return emitError(loc) << "unsupported TBAA node format: " 408 << diagMD(current, llvmModule.get()); 409 } 410 return success(); 411 } 412 413 LogicalResult 414 ModuleImport::processAccessGroupMetadata(const llvm::MDNode *node) { 415 Location loc = mlirModule.getLoc(); 416 if (failed(loopAnnotationImporter->translateAccessGroup(node, loc))) 417 return emitError(loc) << "unsupported access group node: " 418 << diagMD(node, llvmModule.get()); 419 return success(); 420 } 421 422 LogicalResult 423 ModuleImport::processAliasScopeMetadata(const llvm::MDNode *node) { 424 Location loc = mlirModule.getLoc(); 425 // Helper that verifies the node has a self reference operand. 426 auto verifySelfRef = [](const llvm::MDNode *node) { 427 return node->getNumOperands() != 0 && 428 node == dyn_cast<llvm::MDNode>(node->getOperand(0)); 429 }; 430 // Helper that verifies the given operand is a string or does not exist. 431 auto verifyDescription = [](const llvm::MDNode *node, unsigned idx) { 432 return idx >= node->getNumOperands() || 433 isa<llvm::MDString>(node->getOperand(idx)); 434 }; 435 // Helper that creates an alias scope domain attribute. 436 auto createAliasScopeDomainOp = [&](const llvm::MDNode *aliasDomain) { 437 StringAttr description = nullptr; 438 if (aliasDomain->getNumOperands() >= 2) 439 if (auto *operand = dyn_cast<llvm::MDString>(aliasDomain->getOperand(1))) 440 description = builder.getStringAttr(operand->getString()); 441 return builder.getAttr<AliasScopeDomainAttr>( 442 DistinctAttr::create(builder.getUnitAttr()), description); 443 }; 444 445 // Collect the alias scopes and domains to translate them. 446 for (const llvm::MDOperand &operand : node->operands()) { 447 if (const auto *scope = dyn_cast<llvm::MDNode>(operand)) { 448 llvm::AliasScopeNode aliasScope(scope); 449 const llvm::MDNode *domain = aliasScope.getDomain(); 450 451 // Verify the scope node points to valid scope metadata which includes 452 // verifying its domain. Perform the verification before looking it up in 453 // the alias scope mapping since it could have been inserted as a domain 454 // node before. 455 if (!verifySelfRef(scope) || !domain || !verifyDescription(scope, 2)) 456 return emitError(loc) << "unsupported alias scope node: " 457 << diagMD(scope, llvmModule.get()); 458 if (!verifySelfRef(domain) || !verifyDescription(domain, 1)) 459 return emitError(loc) << "unsupported alias domain node: " 460 << diagMD(domain, llvmModule.get()); 461 462 if (aliasScopeMapping.contains(scope)) 463 continue; 464 465 // Convert the domain metadata node if it has not been translated before. 466 auto it = aliasScopeMapping.find(aliasScope.getDomain()); 467 if (it == aliasScopeMapping.end()) { 468 auto aliasScopeDomainOp = createAliasScopeDomainOp(domain); 469 it = aliasScopeMapping.try_emplace(domain, aliasScopeDomainOp).first; 470 } 471 472 // Convert the scope metadata node if it has not been converted before. 473 StringAttr description = nullptr; 474 if (!aliasScope.getName().empty()) 475 description = builder.getStringAttr(aliasScope.getName()); 476 auto aliasScopeOp = builder.getAttr<AliasScopeAttr>( 477 DistinctAttr::create(builder.getUnitAttr()), 478 cast<AliasScopeDomainAttr>(it->second), description); 479 aliasScopeMapping.try_emplace(aliasScope.getNode(), aliasScopeOp); 480 } 481 } 482 return success(); 483 } 484 485 FailureOr<SmallVector<AliasScopeAttr>> 486 ModuleImport::lookupAliasScopeAttrs(const llvm::MDNode *node) const { 487 SmallVector<AliasScopeAttr> aliasScopes; 488 aliasScopes.reserve(node->getNumOperands()); 489 for (const llvm::MDOperand &operand : node->operands()) { 490 auto *node = cast<llvm::MDNode>(operand.get()); 491 aliasScopes.push_back( 492 dyn_cast_or_null<AliasScopeAttr>(aliasScopeMapping.lookup(node))); 493 } 494 // Return failure if one of the alias scope lookups failed. 495 if (llvm::is_contained(aliasScopes, nullptr)) 496 return failure(); 497 return aliasScopes; 498 } 499 500 void ModuleImport::addDebugIntrinsic(llvm::CallInst *intrinsic) { 501 debugIntrinsics.insert(intrinsic); 502 } 503 504 LogicalResult ModuleImport::convertLinkerOptionsMetadata() { 505 for (const llvm::NamedMDNode &named : llvmModule->named_metadata()) { 506 if (named.getName() != "llvm.linker.options") 507 continue; 508 // llvm.linker.options operands are lists of strings. 509 for (const llvm::MDNode *node : named.operands()) { 510 SmallVector<StringRef> options; 511 options.reserve(node->getNumOperands()); 512 for (const llvm::MDOperand &option : node->operands()) 513 options.push_back(cast<llvm::MDString>(option)->getString()); 514 builder.create<LLVM::LinkerOptionsOp>(mlirModule.getLoc(), 515 builder.getStrArrayAttr(options)); 516 } 517 } 518 return success(); 519 } 520 521 LogicalResult ModuleImport::convertIdentMetadata() { 522 for (const llvm::NamedMDNode &named : llvmModule->named_metadata()) { 523 // llvm.ident should have a single operand. That operand is itself an 524 // MDNode with a single string operand. 525 if (named.getName() != LLVMDialect::getIdentAttrName()) 526 continue; 527 528 if (named.getNumOperands() == 1) 529 if (auto *md = dyn_cast<llvm::MDNode>(named.getOperand(0))) 530 if (md->getNumOperands() == 1) 531 if (auto *mdStr = dyn_cast<llvm::MDString>(md->getOperand(0))) 532 mlirModule->setAttr(LLVMDialect::getIdentAttrName(), 533 builder.getStringAttr(mdStr->getString())); 534 } 535 return success(); 536 } 537 538 LogicalResult ModuleImport::convertMetadata() { 539 OpBuilder::InsertionGuard guard(builder); 540 builder.setInsertionPointToEnd(mlirModule.getBody()); 541 for (const llvm::Function &func : llvmModule->functions()) { 542 for (const llvm::Instruction &inst : llvm::instructions(func)) { 543 // Convert access group metadata nodes. 544 if (llvm::MDNode *node = 545 inst.getMetadata(llvm::LLVMContext::MD_access_group)) 546 if (failed(processAccessGroupMetadata(node))) 547 return failure(); 548 549 // Convert alias analysis metadata nodes. 550 llvm::AAMDNodes aliasAnalysisNodes = inst.getAAMetadata(); 551 if (!aliasAnalysisNodes) 552 continue; 553 if (aliasAnalysisNodes.TBAA) 554 if (failed(processTBAAMetadata(aliasAnalysisNodes.TBAA))) 555 return failure(); 556 if (aliasAnalysisNodes.Scope) 557 if (failed(processAliasScopeMetadata(aliasAnalysisNodes.Scope))) 558 return failure(); 559 if (aliasAnalysisNodes.NoAlias) 560 if (failed(processAliasScopeMetadata(aliasAnalysisNodes.NoAlias))) 561 return failure(); 562 } 563 } 564 if (failed(convertLinkerOptionsMetadata())) 565 return failure(); 566 if (failed(convertIdentMetadata())) 567 return failure(); 568 return success(); 569 } 570 571 void ModuleImport::processComdat(const llvm::Comdat *comdat) { 572 if (comdatMapping.contains(comdat)) 573 return; 574 575 ComdatOp comdatOp = getGlobalComdatOp(); 576 OpBuilder::InsertionGuard guard(builder); 577 builder.setInsertionPointToEnd(&comdatOp.getBody().back()); 578 auto selectorOp = builder.create<ComdatSelectorOp>( 579 mlirModule.getLoc(), comdat->getName(), 580 convertComdatFromLLVM(comdat->getSelectionKind())); 581 auto symbolRef = 582 SymbolRefAttr::get(builder.getContext(), getGlobalComdatOpName(), 583 FlatSymbolRefAttr::get(selectorOp.getSymNameAttr())); 584 comdatMapping.try_emplace(comdat, symbolRef); 585 } 586 587 LogicalResult ModuleImport::convertComdats() { 588 for (llvm::GlobalVariable &globalVar : llvmModule->globals()) 589 if (globalVar.hasComdat()) 590 processComdat(globalVar.getComdat()); 591 for (llvm::Function &func : llvmModule->functions()) 592 if (func.hasComdat()) 593 processComdat(func.getComdat()); 594 return success(); 595 } 596 597 LogicalResult ModuleImport::convertGlobals() { 598 for (llvm::GlobalVariable &globalVar : llvmModule->globals()) { 599 if (globalVar.getName() == getGlobalCtorsVarName() || 600 globalVar.getName() == getGlobalDtorsVarName()) { 601 if (failed(convertGlobalCtorsAndDtors(&globalVar))) { 602 return emitError(UnknownLoc::get(context)) 603 << "unhandled global variable: " << diag(globalVar); 604 } 605 continue; 606 } 607 if (failed(convertGlobal(&globalVar))) { 608 return emitError(UnknownLoc::get(context)) 609 << "unhandled global variable: " << diag(globalVar); 610 } 611 } 612 return success(); 613 } 614 615 LogicalResult ModuleImport::convertDataLayout() { 616 Location loc = mlirModule.getLoc(); 617 DataLayoutImporter dataLayoutImporter(context, llvmModule->getDataLayout()); 618 if (!dataLayoutImporter.getDataLayout()) 619 return emitError(loc, "cannot translate data layout: ") 620 << dataLayoutImporter.getLastToken(); 621 622 for (StringRef token : dataLayoutImporter.getUnhandledTokens()) 623 emitWarning(loc, "unhandled data layout token: ") << token; 624 625 mlirModule->setAttr(DLTIDialect::kDataLayoutAttrName, 626 dataLayoutImporter.getDataLayout()); 627 return success(); 628 } 629 630 LogicalResult ModuleImport::convertFunctions() { 631 for (llvm::Function &func : llvmModule->functions()) 632 if (failed(processFunction(&func))) 633 return failure(); 634 return success(); 635 } 636 637 void ModuleImport::setNonDebugMetadataAttrs(llvm::Instruction *inst, 638 Operation *op) { 639 SmallVector<std::pair<unsigned, llvm::MDNode *>> allMetadata; 640 inst->getAllMetadataOtherThanDebugLoc(allMetadata); 641 for (auto &[kind, node] : allMetadata) { 642 if (!iface.isConvertibleMetadata(kind)) 643 continue; 644 if (failed(iface.setMetadataAttrs(builder, kind, node, op, *this))) { 645 if (emitExpensiveWarnings) { 646 Location loc = debugImporter->translateLoc(inst->getDebugLoc()); 647 emitWarning(loc) << "unhandled metadata: " 648 << diagMD(node, llvmModule.get()) << " on " 649 << diag(*inst); 650 } 651 } 652 } 653 } 654 655 void ModuleImport::setIntegerOverflowFlags(llvm::Instruction *inst, 656 Operation *op) const { 657 auto iface = cast<IntegerOverflowFlagsInterface>(op); 658 659 IntegerOverflowFlags value = {}; 660 value = bitEnumSet(value, IntegerOverflowFlags::nsw, inst->hasNoSignedWrap()); 661 value = 662 bitEnumSet(value, IntegerOverflowFlags::nuw, inst->hasNoUnsignedWrap()); 663 664 iface.setOverflowFlags(value); 665 } 666 667 void ModuleImport::setFastmathFlagsAttr(llvm::Instruction *inst, 668 Operation *op) const { 669 auto iface = cast<FastmathFlagsInterface>(op); 670 671 // Even if the imported operation implements the fastmath interface, the 672 // original instruction may not have fastmath flags set. Exit if an 673 // instruction, such as a non floating-point function call, does not have 674 // fastmath flags. 675 if (!isa<llvm::FPMathOperator>(inst)) 676 return; 677 llvm::FastMathFlags flags = inst->getFastMathFlags(); 678 679 // Set the fastmath bits flag-by-flag. 680 FastmathFlags value = {}; 681 value = bitEnumSet(value, FastmathFlags::nnan, flags.noNaNs()); 682 value = bitEnumSet(value, FastmathFlags::ninf, flags.noInfs()); 683 value = bitEnumSet(value, FastmathFlags::nsz, flags.noSignedZeros()); 684 value = bitEnumSet(value, FastmathFlags::arcp, flags.allowReciprocal()); 685 value = bitEnumSet(value, FastmathFlags::contract, flags.allowContract()); 686 value = bitEnumSet(value, FastmathFlags::afn, flags.approxFunc()); 687 value = bitEnumSet(value, FastmathFlags::reassoc, flags.allowReassoc()); 688 FastmathFlagsAttr attr = FastmathFlagsAttr::get(builder.getContext(), value); 689 iface->setAttr(iface.getFastmathAttrName(), attr); 690 } 691 692 /// Returns if `type` is a scalar integer or floating-point type. 693 static bool isScalarType(Type type) { 694 return isa<IntegerType, FloatType>(type); 695 } 696 697 /// Returns `type` if it is a builtin integer or floating-point vector type that 698 /// can be used to create an attribute or nullptr otherwise. If provided, 699 /// `arrayShape` is added to the shape of the vector to create an attribute that 700 /// matches an array of vectors. 701 static Type getVectorTypeForAttr(Type type, ArrayRef<int64_t> arrayShape = {}) { 702 if (!LLVM::isCompatibleVectorType(type)) 703 return {}; 704 705 llvm::ElementCount numElements = LLVM::getVectorNumElements(type); 706 if (numElements.isScalable()) { 707 emitError(UnknownLoc::get(type.getContext())) 708 << "scalable vectors not supported"; 709 return {}; 710 } 711 712 // An LLVM dialect vector can only contain scalars. 713 Type elementType = LLVM::getVectorElementType(type); 714 if (!isScalarType(elementType)) 715 return {}; 716 717 SmallVector<int64_t> shape(arrayShape); 718 shape.push_back(numElements.getKnownMinValue()); 719 return VectorType::get(shape, elementType); 720 } 721 722 Type ModuleImport::getBuiltinTypeForAttr(Type type) { 723 if (!type) 724 return {}; 725 726 // Return builtin integer and floating-point types as is. 727 if (isScalarType(type)) 728 return type; 729 730 // Return builtin vectors of integer and floating-point types as is. 731 if (Type vectorType = getVectorTypeForAttr(type)) 732 return vectorType; 733 734 // Multi-dimensional array types are converted to tensors or vectors, 735 // depending on the innermost type being a scalar or a vector. 736 SmallVector<int64_t> arrayShape; 737 while (auto arrayType = dyn_cast<LLVMArrayType>(type)) { 738 arrayShape.push_back(arrayType.getNumElements()); 739 type = arrayType.getElementType(); 740 } 741 if (isScalarType(type)) 742 return RankedTensorType::get(arrayShape, type); 743 return getVectorTypeForAttr(type, arrayShape); 744 } 745 746 /// Returns an integer or float attribute for the provided scalar constant 747 /// `constScalar` or nullptr if the conversion fails. 748 static TypedAttr getScalarConstantAsAttr(OpBuilder &builder, 749 llvm::Constant *constScalar) { 750 MLIRContext *context = builder.getContext(); 751 752 // Convert scalar intergers. 753 if (auto *constInt = dyn_cast<llvm::ConstantInt>(constScalar)) { 754 return builder.getIntegerAttr( 755 IntegerType::get(context, constInt->getBitWidth()), 756 constInt->getValue()); 757 } 758 759 // Convert scalar floats. 760 if (auto *constFloat = dyn_cast<llvm::ConstantFP>(constScalar)) { 761 llvm::Type *type = constFloat->getType(); 762 FloatType floatType = 763 type->isBFloatTy() 764 ? FloatType::getBF16(context) 765 : LLVM::detail::getFloatType(context, type->getScalarSizeInBits()); 766 if (!floatType) { 767 emitError(UnknownLoc::get(builder.getContext())) 768 << "unexpected floating-point type"; 769 return {}; 770 } 771 return builder.getFloatAttr(floatType, constFloat->getValueAPF()); 772 } 773 return {}; 774 } 775 776 /// Returns an integer or float attribute array for the provided constant 777 /// sequence `constSequence` or nullptr if the conversion fails. 778 static SmallVector<Attribute> 779 getSequenceConstantAsAttrs(OpBuilder &builder, 780 llvm::ConstantDataSequential *constSequence) { 781 SmallVector<Attribute> elementAttrs; 782 elementAttrs.reserve(constSequence->getNumElements()); 783 for (auto idx : llvm::seq<int64_t>(0, constSequence->getNumElements())) { 784 llvm::Constant *constElement = constSequence->getElementAsConstant(idx); 785 elementAttrs.push_back(getScalarConstantAsAttr(builder, constElement)); 786 } 787 return elementAttrs; 788 } 789 790 Attribute ModuleImport::getConstantAsAttr(llvm::Constant *constant) { 791 // Convert scalar constants. 792 if (Attribute scalarAttr = getScalarConstantAsAttr(builder, constant)) 793 return scalarAttr; 794 795 // Returns the static shape of the provided type if possible. 796 auto getConstantShape = [&](llvm::Type *type) { 797 return llvm::dyn_cast_if_present<ShapedType>( 798 getBuiltinTypeForAttr(convertType(type))); 799 }; 800 801 // Convert one-dimensional constant arrays or vectors that store 1/2/4/8-byte 802 // integer or half/bfloat/float/double values. 803 if (auto *constArray = dyn_cast<llvm::ConstantDataSequential>(constant)) { 804 if (constArray->isString()) 805 return builder.getStringAttr(constArray->getAsString()); 806 auto shape = getConstantShape(constArray->getType()); 807 if (!shape) 808 return {}; 809 // Convert splat constants to splat elements attributes. 810 auto *constVector = dyn_cast<llvm::ConstantDataVector>(constant); 811 if (constVector && constVector->isSplat()) { 812 // A vector is guaranteed to have at least size one. 813 Attribute splatAttr = getScalarConstantAsAttr( 814 builder, constVector->getElementAsConstant(0)); 815 return SplatElementsAttr::get(shape, splatAttr); 816 } 817 // Convert non-splat constants to dense elements attributes. 818 SmallVector<Attribute> elementAttrs = 819 getSequenceConstantAsAttrs(builder, constArray); 820 return DenseElementsAttr::get(shape, elementAttrs); 821 } 822 823 // Convert multi-dimensional constant aggregates that store all kinds of 824 // integer and floating-point types. 825 if (auto *constAggregate = dyn_cast<llvm::ConstantAggregate>(constant)) { 826 auto shape = getConstantShape(constAggregate->getType()); 827 if (!shape) 828 return {}; 829 // Collect the aggregate elements in depths first order. 830 SmallVector<Attribute> elementAttrs; 831 SmallVector<llvm::Constant *> workList = {constAggregate}; 832 while (!workList.empty()) { 833 llvm::Constant *current = workList.pop_back_val(); 834 // Append any nested aggregates in reverse order to ensure the head 835 // element of the nested aggregates is at the back of the work list. 836 if (auto *constAggregate = dyn_cast<llvm::ConstantAggregate>(current)) { 837 for (auto idx : 838 reverse(llvm::seq<int64_t>(0, constAggregate->getNumOperands()))) 839 workList.push_back(constAggregate->getAggregateElement(idx)); 840 continue; 841 } 842 // Append the elements of nested constant arrays or vectors that store 843 // 1/2/4/8-byte integer or half/bfloat/float/double values. 844 if (auto *constArray = dyn_cast<llvm::ConstantDataSequential>(current)) { 845 SmallVector<Attribute> attrs = 846 getSequenceConstantAsAttrs(builder, constArray); 847 elementAttrs.append(attrs.begin(), attrs.end()); 848 continue; 849 } 850 // Append nested scalar constants that store all kinds of integer and 851 // floating-point types. 852 if (Attribute scalarAttr = getScalarConstantAsAttr(builder, current)) { 853 elementAttrs.push_back(scalarAttr); 854 continue; 855 } 856 // Bail if the aggregate contains a unsupported constant type such as a 857 // constant expression. 858 return {}; 859 } 860 return DenseElementsAttr::get(shape, elementAttrs); 861 } 862 863 // Convert zero aggregates. 864 if (auto *constZero = dyn_cast<llvm::ConstantAggregateZero>(constant)) { 865 auto shape = llvm::dyn_cast_if_present<ShapedType>( 866 getBuiltinTypeForAttr(convertType(constZero->getType()))); 867 if (!shape) 868 return {}; 869 // Convert zero aggregates with a static shape to splat elements attributes. 870 Attribute splatAttr = builder.getZeroAttr(shape.getElementType()); 871 assert(splatAttr && "expected non-null zero attribute for scalar types"); 872 return SplatElementsAttr::get(shape, splatAttr); 873 } 874 return {}; 875 } 876 877 FlatSymbolRefAttr 878 ModuleImport::getOrCreateNamelessSymbolName(llvm::GlobalVariable *globalVar) { 879 assert(globalVar->getName().empty() && 880 "expected to work with a nameless global"); 881 auto [it, success] = namelessGlobals.try_emplace(globalVar); 882 if (!success) 883 return it->second; 884 885 // Make sure the symbol name does not clash with an existing symbol. 886 SmallString<128> globalName = SymbolTable::generateSymbolName<128>( 887 getNamelessGlobalPrefix(), 888 [this](StringRef newName) { return llvmModule->getNamedValue(newName); }, 889 namelessGlobalId); 890 auto symbolRef = FlatSymbolRefAttr::get(context, globalName); 891 it->getSecond() = symbolRef; 892 return symbolRef; 893 } 894 895 LogicalResult ModuleImport::convertGlobal(llvm::GlobalVariable *globalVar) { 896 // Insert the global after the last one or at the start of the module. 897 OpBuilder::InsertionGuard guard(builder); 898 if (!globalInsertionOp) 899 builder.setInsertionPointToStart(mlirModule.getBody()); 900 else 901 builder.setInsertionPointAfter(globalInsertionOp); 902 903 Attribute valueAttr; 904 if (globalVar->hasInitializer()) 905 valueAttr = getConstantAsAttr(globalVar->getInitializer()); 906 Type type = convertType(globalVar->getValueType()); 907 908 uint64_t alignment = 0; 909 llvm::MaybeAlign maybeAlign = globalVar->getAlign(); 910 if (maybeAlign.has_value()) { 911 llvm::Align align = *maybeAlign; 912 alignment = align.value(); 913 } 914 915 // Get the global expression associated with this global variable and convert 916 // it. 917 DIGlobalVariableExpressionAttr globalExpressionAttr; 918 SmallVector<llvm::DIGlobalVariableExpression *> globalExpressions; 919 globalVar->getDebugInfo(globalExpressions); 920 921 // There should only be a single global expression. 922 if (!globalExpressions.empty()) 923 globalExpressionAttr = 924 debugImporter->translateGlobalVariableExpression(globalExpressions[0]); 925 926 // Workaround to support LLVM's nameless globals. MLIR, in contrast to LLVM, 927 // always requires a symbol name. 928 StringRef globalName = globalVar->getName(); 929 if (globalName.empty()) 930 globalName = getOrCreateNamelessSymbolName(globalVar).getValue(); 931 932 GlobalOp globalOp = builder.create<GlobalOp>( 933 mlirModule.getLoc(), type, globalVar->isConstant(), 934 convertLinkageFromLLVM(globalVar->getLinkage()), StringRef(globalName), 935 valueAttr, alignment, /*addr_space=*/globalVar->getAddressSpace(), 936 /*dso_local=*/globalVar->isDSOLocal(), 937 /*thread_local=*/globalVar->isThreadLocal(), /*comdat=*/SymbolRefAttr(), 938 /*attrs=*/ArrayRef<NamedAttribute>(), /*dbgExpr=*/globalExpressionAttr); 939 globalInsertionOp = globalOp; 940 941 if (globalVar->hasInitializer() && !valueAttr) { 942 clearRegionState(); 943 Block *block = builder.createBlock(&globalOp.getInitializerRegion()); 944 setConstantInsertionPointToStart(block); 945 FailureOr<Value> initializer = 946 convertConstantExpr(globalVar->getInitializer()); 947 if (failed(initializer)) 948 return failure(); 949 builder.create<ReturnOp>(globalOp.getLoc(), *initializer); 950 } 951 if (globalVar->hasAtLeastLocalUnnamedAddr()) { 952 globalOp.setUnnamedAddr( 953 convertUnnamedAddrFromLLVM(globalVar->getUnnamedAddr())); 954 } 955 if (globalVar->hasSection()) 956 globalOp.setSection(globalVar->getSection()); 957 globalOp.setVisibility_( 958 convertVisibilityFromLLVM(globalVar->getVisibility())); 959 960 if (globalVar->hasComdat()) 961 globalOp.setComdatAttr(comdatMapping.lookup(globalVar->getComdat())); 962 963 return success(); 964 } 965 966 LogicalResult 967 ModuleImport::convertGlobalCtorsAndDtors(llvm::GlobalVariable *globalVar) { 968 if (!globalVar->hasInitializer() || !globalVar->hasAppendingLinkage()) 969 return failure(); 970 auto *initializer = 971 dyn_cast<llvm::ConstantArray>(globalVar->getInitializer()); 972 if (!initializer) 973 return failure(); 974 975 SmallVector<Attribute> funcs; 976 SmallVector<int32_t> priorities; 977 for (llvm::Value *operand : initializer->operands()) { 978 auto *aggregate = dyn_cast<llvm::ConstantAggregate>(operand); 979 if (!aggregate || aggregate->getNumOperands() != 3) 980 return failure(); 981 982 auto *priority = dyn_cast<llvm::ConstantInt>(aggregate->getOperand(0)); 983 auto *func = dyn_cast<llvm::Function>(aggregate->getOperand(1)); 984 auto *data = dyn_cast<llvm::Constant>(aggregate->getOperand(2)); 985 if (!priority || !func || !data) 986 return failure(); 987 988 // GlobalCtorsOps and GlobalDtorsOps do not support non-null data fields. 989 if (!data->isNullValue()) 990 return failure(); 991 992 funcs.push_back(FlatSymbolRefAttr::get(context, func->getName())); 993 priorities.push_back(priority->getValue().getZExtValue()); 994 } 995 996 OpBuilder::InsertionGuard guard(builder); 997 if (!globalInsertionOp) 998 builder.setInsertionPointToStart(mlirModule.getBody()); 999 else 1000 builder.setInsertionPointAfter(globalInsertionOp); 1001 1002 if (globalVar->getName() == getGlobalCtorsVarName()) { 1003 globalInsertionOp = builder.create<LLVM::GlobalCtorsOp>( 1004 mlirModule.getLoc(), builder.getArrayAttr(funcs), 1005 builder.getI32ArrayAttr(priorities)); 1006 return success(); 1007 } 1008 globalInsertionOp = builder.create<LLVM::GlobalDtorsOp>( 1009 mlirModule.getLoc(), builder.getArrayAttr(funcs), 1010 builder.getI32ArrayAttr(priorities)); 1011 return success(); 1012 } 1013 1014 SetVector<llvm::Constant *> 1015 ModuleImport::getConstantsToConvert(llvm::Constant *constant) { 1016 // Return the empty set if the constant has been translated before. 1017 if (valueMapping.contains(constant)) 1018 return {}; 1019 1020 // Traverse the constants in post-order and stop the traversal if a constant 1021 // already has a `valueMapping` from an earlier constant translation or if the 1022 // constant is traversed a second time. 1023 SetVector<llvm::Constant *> orderedSet; 1024 SetVector<llvm::Constant *> workList; 1025 DenseMap<llvm::Constant *, SmallVector<llvm::Constant *>> adjacencyLists; 1026 workList.insert(constant); 1027 while (!workList.empty()) { 1028 llvm::Constant *current = workList.back(); 1029 // References of global objects are just pointers to the object. Avoid 1030 // walking the elements of these here. 1031 if (isa<llvm::GlobalObject>(current)) { 1032 orderedSet.insert(current); 1033 workList.pop_back(); 1034 continue; 1035 } 1036 1037 // Collect all dependencies of the current constant and add them to the 1038 // adjacency list if none has been computed before. 1039 auto [adjacencyIt, inserted] = adjacencyLists.try_emplace(current); 1040 if (inserted) { 1041 // Add all constant operands to the adjacency list and skip any other 1042 // values such as basic block addresses. 1043 for (llvm::Value *operand : current->operands()) 1044 if (auto *constDependency = dyn_cast<llvm::Constant>(operand)) 1045 adjacencyIt->getSecond().push_back(constDependency); 1046 // Use the getElementValue method to add the dependencies of zero 1047 // initialized aggregate constants since they do not take any operands. 1048 if (auto *constAgg = dyn_cast<llvm::ConstantAggregateZero>(current)) { 1049 unsigned numElements = constAgg->getElementCount().getFixedValue(); 1050 for (unsigned i = 0, e = numElements; i != e; ++i) 1051 adjacencyIt->getSecond().push_back(constAgg->getElementValue(i)); 1052 } 1053 } 1054 // Add the current constant to the `orderedSet` of the traversed nodes if 1055 // all its dependencies have been traversed before. Additionally, remove the 1056 // constant from the `workList` and continue the traversal. 1057 if (adjacencyIt->getSecond().empty()) { 1058 orderedSet.insert(current); 1059 workList.pop_back(); 1060 continue; 1061 } 1062 // Add the next dependency from the adjacency list to the `workList` and 1063 // continue the traversal. Remove the dependency from the adjacency list to 1064 // mark that it has been processed. Only enqueue the dependency if it has no 1065 // `valueMapping` from an earlier translation and if it has not been 1066 // enqueued before. 1067 llvm::Constant *dependency = adjacencyIt->getSecond().pop_back_val(); 1068 if (valueMapping.contains(dependency) || workList.contains(dependency) || 1069 orderedSet.contains(dependency)) 1070 continue; 1071 workList.insert(dependency); 1072 } 1073 1074 return orderedSet; 1075 } 1076 1077 FailureOr<Value> ModuleImport::convertConstant(llvm::Constant *constant) { 1078 Location loc = UnknownLoc::get(context); 1079 1080 // Convert constants that can be represented as attributes. 1081 if (Attribute attr = getConstantAsAttr(constant)) { 1082 Type type = convertType(constant->getType()); 1083 if (auto symbolRef = dyn_cast<FlatSymbolRefAttr>(attr)) { 1084 return builder.create<AddressOfOp>(loc, type, symbolRef.getValue()) 1085 .getResult(); 1086 } 1087 return builder.create<ConstantOp>(loc, type, attr).getResult(); 1088 } 1089 1090 // Convert null pointer constants. 1091 if (auto *nullPtr = dyn_cast<llvm::ConstantPointerNull>(constant)) { 1092 Type type = convertType(nullPtr->getType()); 1093 return builder.create<ZeroOp>(loc, type).getResult(); 1094 } 1095 1096 // Convert none token constants. 1097 if (isa<llvm::ConstantTokenNone>(constant)) { 1098 return builder.create<NoneTokenOp>(loc).getResult(); 1099 } 1100 1101 // Convert poison. 1102 if (auto *poisonVal = dyn_cast<llvm::PoisonValue>(constant)) { 1103 Type type = convertType(poisonVal->getType()); 1104 return builder.create<PoisonOp>(loc, type).getResult(); 1105 } 1106 1107 // Convert undef. 1108 if (auto *undefVal = dyn_cast<llvm::UndefValue>(constant)) { 1109 Type type = convertType(undefVal->getType()); 1110 return builder.create<UndefOp>(loc, type).getResult(); 1111 } 1112 1113 // Convert global variable accesses. 1114 if (auto *globalObj = dyn_cast<llvm::GlobalObject>(constant)) { 1115 Type type = convertType(globalObj->getType()); 1116 StringRef globalName = globalObj->getName(); 1117 FlatSymbolRefAttr symbolRef; 1118 // Empty names are only allowed for global variables. 1119 if (globalName.empty()) 1120 symbolRef = 1121 getOrCreateNamelessSymbolName(cast<llvm::GlobalVariable>(globalObj)); 1122 else 1123 symbolRef = FlatSymbolRefAttr::get(context, globalName); 1124 return builder.create<AddressOfOp>(loc, type, symbolRef).getResult(); 1125 } 1126 1127 // Convert constant expressions. 1128 if (auto *constExpr = dyn_cast<llvm::ConstantExpr>(constant)) { 1129 // Convert the constant expression to a temporary LLVM instruction and 1130 // translate it using the `processInstruction` method. Delete the 1131 // instruction after the translation and remove it from `valueMapping`, 1132 // since later calls to `getAsInstruction` may return the same address 1133 // resulting in a conflicting `valueMapping` entry. 1134 llvm::Instruction *inst = constExpr->getAsInstruction(); 1135 auto guard = llvm::make_scope_exit([&]() { 1136 assert(!noResultOpMapping.contains(inst) && 1137 "expected constant expression to return a result"); 1138 valueMapping.erase(inst); 1139 inst->deleteValue(); 1140 }); 1141 // Note: `processInstruction` does not call `convertConstant` recursively 1142 // since all constant dependencies have been converted before. 1143 assert(llvm::all_of(inst->operands(), [&](llvm::Value *value) { 1144 return valueMapping.contains(value); 1145 })); 1146 if (failed(processInstruction(inst))) 1147 return failure(); 1148 return lookupValue(inst); 1149 } 1150 1151 // Convert aggregate constants. 1152 if (isa<llvm::ConstantAggregate>(constant) || 1153 isa<llvm::ConstantAggregateZero>(constant)) { 1154 // Lookup the aggregate elements that have been converted before. 1155 SmallVector<Value> elementValues; 1156 if (auto *constAgg = dyn_cast<llvm::ConstantAggregate>(constant)) { 1157 elementValues.reserve(constAgg->getNumOperands()); 1158 for (llvm::Value *operand : constAgg->operands()) 1159 elementValues.push_back(lookupValue(operand)); 1160 } 1161 if (auto *constAgg = dyn_cast<llvm::ConstantAggregateZero>(constant)) { 1162 unsigned numElements = constAgg->getElementCount().getFixedValue(); 1163 elementValues.reserve(numElements); 1164 for (unsigned i = 0, e = numElements; i != e; ++i) 1165 elementValues.push_back(lookupValue(constAgg->getElementValue(i))); 1166 } 1167 assert(llvm::count(elementValues, nullptr) == 0 && 1168 "expected all elements have been converted before"); 1169 1170 // Generate an UndefOp as root value and insert the aggregate elements. 1171 Type rootType = convertType(constant->getType()); 1172 bool isArrayOrStruct = isa<LLVMArrayType, LLVMStructType>(rootType); 1173 assert((isArrayOrStruct || LLVM::isCompatibleVectorType(rootType)) && 1174 "unrecognized aggregate type"); 1175 Value root = builder.create<UndefOp>(loc, rootType); 1176 for (const auto &it : llvm::enumerate(elementValues)) { 1177 if (isArrayOrStruct) { 1178 root = builder.create<InsertValueOp>(loc, root, it.value(), it.index()); 1179 } else { 1180 Attribute indexAttr = builder.getI32IntegerAttr(it.index()); 1181 Value indexValue = 1182 builder.create<ConstantOp>(loc, builder.getI32Type(), indexAttr); 1183 root = builder.create<InsertElementOp>(loc, rootType, root, it.value(), 1184 indexValue); 1185 } 1186 } 1187 return root; 1188 } 1189 1190 if (auto *constTargetNone = dyn_cast<llvm::ConstantTargetNone>(constant)) { 1191 LLVMTargetExtType targetExtType = 1192 cast<LLVMTargetExtType>(convertType(constTargetNone->getType())); 1193 assert(targetExtType.hasProperty(LLVMTargetExtType::HasZeroInit) && 1194 "target extension type does not support zero-initialization"); 1195 // Create llvm.mlir.zero operation to represent zero-initialization of 1196 // target extension type. 1197 return builder.create<LLVM::ZeroOp>(loc, targetExtType).getRes(); 1198 } 1199 1200 StringRef error = ""; 1201 if (isa<llvm::BlockAddress>(constant)) 1202 error = " since blockaddress(...) is unsupported"; 1203 1204 return emitError(loc) << "unhandled constant: " << diag(*constant) << error; 1205 } 1206 1207 FailureOr<Value> ModuleImport::convertConstantExpr(llvm::Constant *constant) { 1208 // Only call the function for constants that have not been translated before 1209 // since it updates the constant insertion point assuming the converted 1210 // constant has been introduced at the end of the constant section. 1211 assert(!valueMapping.contains(constant) && 1212 "expected constant has not been converted before"); 1213 assert(constantInsertionBlock && 1214 "expected the constant insertion block to be non-null"); 1215 1216 // Insert the constant after the last one or at the start of the entry block. 1217 OpBuilder::InsertionGuard guard(builder); 1218 if (!constantInsertionOp) 1219 builder.setInsertionPointToStart(constantInsertionBlock); 1220 else 1221 builder.setInsertionPointAfter(constantInsertionOp); 1222 1223 // Convert all constants of the expression and add them to `valueMapping`. 1224 SetVector<llvm::Constant *> constantsToConvert = 1225 getConstantsToConvert(constant); 1226 for (llvm::Constant *constantToConvert : constantsToConvert) { 1227 FailureOr<Value> converted = convertConstant(constantToConvert); 1228 if (failed(converted)) 1229 return failure(); 1230 mapValue(constantToConvert, *converted); 1231 } 1232 1233 // Update the constant insertion point and return the converted constant. 1234 Value result = lookupValue(constant); 1235 constantInsertionOp = result.getDefiningOp(); 1236 return result; 1237 } 1238 1239 FailureOr<Value> ModuleImport::convertValue(llvm::Value *value) { 1240 assert(!isa<llvm::MetadataAsValue>(value) && 1241 "expected value to not be metadata"); 1242 1243 // Return the mapped value if it has been converted before. 1244 auto it = valueMapping.find(value); 1245 if (it != valueMapping.end()) 1246 return it->getSecond(); 1247 1248 // Convert constants such as immediate values that have no mapping yet. 1249 if (auto *constant = dyn_cast<llvm::Constant>(value)) 1250 return convertConstantExpr(constant); 1251 1252 Location loc = UnknownLoc::get(context); 1253 if (auto *inst = dyn_cast<llvm::Instruction>(value)) 1254 loc = translateLoc(inst->getDebugLoc()); 1255 return emitError(loc) << "unhandled value: " << diag(*value); 1256 } 1257 1258 FailureOr<Value> ModuleImport::convertMetadataValue(llvm::Value *value) { 1259 // A value may be wrapped as metadata, for example, when passed to a debug 1260 // intrinsic. Unwrap these values before the conversion. 1261 auto *nodeAsVal = dyn_cast<llvm::MetadataAsValue>(value); 1262 if (!nodeAsVal) 1263 return failure(); 1264 auto *node = dyn_cast<llvm::ValueAsMetadata>(nodeAsVal->getMetadata()); 1265 if (!node) 1266 return failure(); 1267 value = node->getValue(); 1268 1269 // Return the mapped value if it has been converted before. 1270 auto it = valueMapping.find(value); 1271 if (it != valueMapping.end()) 1272 return it->getSecond(); 1273 1274 // Convert constants such as immediate values that have no mapping yet. 1275 if (auto *constant = dyn_cast<llvm::Constant>(value)) 1276 return convertConstantExpr(constant); 1277 return failure(); 1278 } 1279 1280 FailureOr<SmallVector<Value>> 1281 ModuleImport::convertValues(ArrayRef<llvm::Value *> values) { 1282 SmallVector<Value> remapped; 1283 remapped.reserve(values.size()); 1284 for (llvm::Value *value : values) { 1285 FailureOr<Value> converted = convertValue(value); 1286 if (failed(converted)) 1287 return failure(); 1288 remapped.push_back(*converted); 1289 } 1290 return remapped; 1291 } 1292 1293 LogicalResult ModuleImport::convertIntrinsicArguments( 1294 ArrayRef<llvm::Value *> values, ArrayRef<unsigned> immArgPositions, 1295 ArrayRef<StringLiteral> immArgAttrNames, SmallVectorImpl<Value> &valuesOut, 1296 SmallVectorImpl<NamedAttribute> &attrsOut) { 1297 assert(immArgPositions.size() == immArgAttrNames.size() && 1298 "LLVM `immArgPositions` and MLIR `immArgAttrNames` should have equal " 1299 "length"); 1300 1301 SmallVector<llvm::Value *> operands(values); 1302 for (auto [immArgPos, immArgName] : 1303 llvm::zip(immArgPositions, immArgAttrNames)) { 1304 auto &value = operands[immArgPos]; 1305 auto *constant = llvm::cast<llvm::Constant>(value); 1306 auto attr = getScalarConstantAsAttr(builder, constant); 1307 assert(attr && attr.getType().isIntOrFloat() && 1308 "expected immarg to be float or integer constant"); 1309 auto nameAttr = StringAttr::get(attr.getContext(), immArgName); 1310 attrsOut.push_back({nameAttr, attr}); 1311 // Mark matched attribute values as null (so they can be removed below). 1312 value = nullptr; 1313 } 1314 1315 for (llvm::Value *value : operands) { 1316 if (!value) 1317 continue; 1318 auto mlirValue = convertValue(value); 1319 if (failed(mlirValue)) 1320 return failure(); 1321 valuesOut.push_back(*mlirValue); 1322 } 1323 1324 return success(); 1325 } 1326 1327 IntegerAttr ModuleImport::matchIntegerAttr(llvm::Value *value) { 1328 IntegerAttr integerAttr; 1329 FailureOr<Value> converted = convertValue(value); 1330 bool success = succeeded(converted) && 1331 matchPattern(*converted, m_Constant(&integerAttr)); 1332 assert(success && "expected a constant integer value"); 1333 (void)success; 1334 return integerAttr; 1335 } 1336 1337 FloatAttr ModuleImport::matchFloatAttr(llvm::Value *value) { 1338 FloatAttr floatAttr; 1339 FailureOr<Value> converted = convertValue(value); 1340 bool success = 1341 succeeded(converted) && matchPattern(*converted, m_Constant(&floatAttr)); 1342 assert(success && "expected a constant float value"); 1343 (void)success; 1344 return floatAttr; 1345 } 1346 1347 DILocalVariableAttr ModuleImport::matchLocalVariableAttr(llvm::Value *value) { 1348 auto *nodeAsVal = cast<llvm::MetadataAsValue>(value); 1349 auto *node = cast<llvm::DILocalVariable>(nodeAsVal->getMetadata()); 1350 return debugImporter->translate(node); 1351 } 1352 1353 DILabelAttr ModuleImport::matchLabelAttr(llvm::Value *value) { 1354 auto *nodeAsVal = cast<llvm::MetadataAsValue>(value); 1355 auto *node = cast<llvm::DILabel>(nodeAsVal->getMetadata()); 1356 return debugImporter->translate(node); 1357 } 1358 1359 FPExceptionBehaviorAttr 1360 ModuleImport::matchFPExceptionBehaviorAttr(llvm::Value *value) { 1361 auto *metadata = cast<llvm::MetadataAsValue>(value); 1362 auto *mdstr = cast<llvm::MDString>(metadata->getMetadata()); 1363 std::optional<llvm::fp::ExceptionBehavior> optLLVM = 1364 llvm::convertStrToExceptionBehavior(mdstr->getString()); 1365 assert(optLLVM && "Expecting FP exception behavior"); 1366 return builder.getAttr<FPExceptionBehaviorAttr>( 1367 convertFPExceptionBehaviorFromLLVM(*optLLVM)); 1368 } 1369 1370 RoundingModeAttr ModuleImport::matchRoundingModeAttr(llvm::Value *value) { 1371 auto *metadata = cast<llvm::MetadataAsValue>(value); 1372 auto *mdstr = cast<llvm::MDString>(metadata->getMetadata()); 1373 std::optional<llvm::RoundingMode> optLLVM = 1374 llvm::convertStrToRoundingMode(mdstr->getString()); 1375 assert(optLLVM && "Expecting rounding mode"); 1376 return builder.getAttr<RoundingModeAttr>( 1377 convertRoundingModeFromLLVM(*optLLVM)); 1378 } 1379 1380 FailureOr<SmallVector<AliasScopeAttr>> 1381 ModuleImport::matchAliasScopeAttrs(llvm::Value *value) { 1382 auto *nodeAsVal = cast<llvm::MetadataAsValue>(value); 1383 auto *node = cast<llvm::MDNode>(nodeAsVal->getMetadata()); 1384 return lookupAliasScopeAttrs(node); 1385 } 1386 1387 Location ModuleImport::translateLoc(llvm::DILocation *loc) { 1388 return debugImporter->translateLoc(loc); 1389 } 1390 1391 LogicalResult 1392 ModuleImport::convertBranchArgs(llvm::Instruction *branch, 1393 llvm::BasicBlock *target, 1394 SmallVectorImpl<Value> &blockArguments) { 1395 for (auto inst = target->begin(); isa<llvm::PHINode>(inst); ++inst) { 1396 auto *phiInst = cast<llvm::PHINode>(&*inst); 1397 llvm::Value *value = phiInst->getIncomingValueForBlock(branch->getParent()); 1398 FailureOr<Value> converted = convertValue(value); 1399 if (failed(converted)) 1400 return failure(); 1401 blockArguments.push_back(*converted); 1402 } 1403 return success(); 1404 } 1405 1406 LogicalResult 1407 ModuleImport::convertCallTypeAndOperands(llvm::CallBase *callInst, 1408 SmallVectorImpl<Type> &types, 1409 SmallVectorImpl<Value> &operands) { 1410 if (!callInst->getType()->isVoidTy()) 1411 types.push_back(convertType(callInst->getType())); 1412 1413 if (!callInst->getCalledFunction()) { 1414 FailureOr<Value> called = convertValue(callInst->getCalledOperand()); 1415 if (failed(called)) 1416 return failure(); 1417 operands.push_back(*called); 1418 } 1419 SmallVector<llvm::Value *> args(callInst->args()); 1420 FailureOr<SmallVector<Value>> arguments = convertValues(args); 1421 if (failed(arguments)) 1422 return failure(); 1423 llvm::append_range(operands, *arguments); 1424 return success(); 1425 } 1426 1427 LogicalResult ModuleImport::convertIntrinsic(llvm::CallInst *inst) { 1428 if (succeeded(iface.convertIntrinsic(builder, inst, *this))) 1429 return success(); 1430 1431 Location loc = translateLoc(inst->getDebugLoc()); 1432 return emitError(loc) << "unhandled intrinsic: " << diag(*inst); 1433 } 1434 1435 LogicalResult ModuleImport::convertInstruction(llvm::Instruction *inst) { 1436 // Convert all instructions that do not provide an MLIR builder. 1437 Location loc = translateLoc(inst->getDebugLoc()); 1438 if (inst->getOpcode() == llvm::Instruction::Br) { 1439 auto *brInst = cast<llvm::BranchInst>(inst); 1440 1441 SmallVector<Block *> succBlocks; 1442 SmallVector<SmallVector<Value>> succBlockArgs; 1443 for (auto i : llvm::seq<unsigned>(0, brInst->getNumSuccessors())) { 1444 llvm::BasicBlock *succ = brInst->getSuccessor(i); 1445 SmallVector<Value> blockArgs; 1446 if (failed(convertBranchArgs(brInst, succ, blockArgs))) 1447 return failure(); 1448 succBlocks.push_back(lookupBlock(succ)); 1449 succBlockArgs.push_back(blockArgs); 1450 } 1451 1452 if (!brInst->isConditional()) { 1453 auto brOp = builder.create<LLVM::BrOp>(loc, succBlockArgs.front(), 1454 succBlocks.front()); 1455 mapNoResultOp(inst, brOp); 1456 return success(); 1457 } 1458 FailureOr<Value> condition = convertValue(brInst->getCondition()); 1459 if (failed(condition)) 1460 return failure(); 1461 auto condBrOp = builder.create<LLVM::CondBrOp>( 1462 loc, *condition, succBlocks.front(), succBlockArgs.front(), 1463 succBlocks.back(), succBlockArgs.back()); 1464 mapNoResultOp(inst, condBrOp); 1465 return success(); 1466 } 1467 if (inst->getOpcode() == llvm::Instruction::Switch) { 1468 auto *swInst = cast<llvm::SwitchInst>(inst); 1469 // Process the condition value. 1470 FailureOr<Value> condition = convertValue(swInst->getCondition()); 1471 if (failed(condition)) 1472 return failure(); 1473 SmallVector<Value> defaultBlockArgs; 1474 // Process the default case. 1475 llvm::BasicBlock *defaultBB = swInst->getDefaultDest(); 1476 if (failed(convertBranchArgs(swInst, defaultBB, defaultBlockArgs))) 1477 return failure(); 1478 1479 // Process the cases. 1480 unsigned numCases = swInst->getNumCases(); 1481 SmallVector<SmallVector<Value>> caseOperands(numCases); 1482 SmallVector<ValueRange> caseOperandRefs(numCases); 1483 SmallVector<APInt> caseValues(numCases); 1484 SmallVector<Block *> caseBlocks(numCases); 1485 for (const auto &it : llvm::enumerate(swInst->cases())) { 1486 const llvm::SwitchInst::CaseHandle &caseHandle = it.value(); 1487 llvm::BasicBlock *succBB = caseHandle.getCaseSuccessor(); 1488 if (failed(convertBranchArgs(swInst, succBB, caseOperands[it.index()]))) 1489 return failure(); 1490 caseOperandRefs[it.index()] = caseOperands[it.index()]; 1491 caseValues[it.index()] = caseHandle.getCaseValue()->getValue(); 1492 caseBlocks[it.index()] = lookupBlock(succBB); 1493 } 1494 1495 auto switchOp = builder.create<SwitchOp>( 1496 loc, *condition, lookupBlock(defaultBB), defaultBlockArgs, caseValues, 1497 caseBlocks, caseOperandRefs); 1498 mapNoResultOp(inst, switchOp); 1499 return success(); 1500 } 1501 if (inst->getOpcode() == llvm::Instruction::PHI) { 1502 Type type = convertType(inst->getType()); 1503 mapValue(inst, builder.getInsertionBlock()->addArgument( 1504 type, translateLoc(inst->getDebugLoc()))); 1505 return success(); 1506 } 1507 if (inst->getOpcode() == llvm::Instruction::Call) { 1508 auto *callInst = cast<llvm::CallInst>(inst); 1509 1510 SmallVector<Type> types; 1511 SmallVector<Value> operands; 1512 if (failed(convertCallTypeAndOperands(callInst, types, operands))) 1513 return failure(); 1514 1515 auto funcTy = 1516 dyn_cast<LLVMFunctionType>(convertType(callInst->getFunctionType())); 1517 if (!funcTy) 1518 return failure(); 1519 1520 CallOp callOp; 1521 1522 if (llvm::Function *callee = callInst->getCalledFunction()) { 1523 callOp = builder.create<CallOp>( 1524 loc, funcTy, SymbolRefAttr::get(context, callee->getName()), 1525 operands); 1526 } else { 1527 callOp = builder.create<CallOp>(loc, funcTy, operands); 1528 } 1529 callOp.setCConv(convertCConvFromLLVM(callInst->getCallingConv())); 1530 callOp.setTailCallKind( 1531 convertTailCallKindFromLLVM(callInst->getTailCallKind())); 1532 setFastmathFlagsAttr(inst, callOp); 1533 1534 // Handle function attributes. 1535 if (callInst->hasFnAttr(llvm::Attribute::Convergent)) 1536 callOp.setConvergent(true); 1537 if (callInst->hasFnAttr(llvm::Attribute::NoUnwind)) 1538 callOp.setNoUnwind(true); 1539 if (callInst->hasFnAttr(llvm::Attribute::WillReturn)) 1540 callOp.setWillReturn(true); 1541 1542 llvm::MemoryEffects memEffects = callInst->getMemoryEffects(); 1543 ModRefInfo othermem = convertModRefInfoFromLLVM( 1544 memEffects.getModRef(llvm::MemoryEffects::Location::Other)); 1545 ModRefInfo argMem = convertModRefInfoFromLLVM( 1546 memEffects.getModRef(llvm::MemoryEffects::Location::ArgMem)); 1547 ModRefInfo inaccessibleMem = convertModRefInfoFromLLVM( 1548 memEffects.getModRef(llvm::MemoryEffects::Location::InaccessibleMem)); 1549 auto memAttr = MemoryEffectsAttr::get(callOp.getContext(), othermem, argMem, 1550 inaccessibleMem); 1551 // Only set the attribute when it does not match the default value. 1552 if (!memAttr.isReadWrite()) 1553 callOp.setMemoryEffectsAttr(memAttr); 1554 1555 if (!callInst->getType()->isVoidTy()) 1556 mapValue(inst, callOp.getResult()); 1557 else 1558 mapNoResultOp(inst, callOp); 1559 return success(); 1560 } 1561 if (inst->getOpcode() == llvm::Instruction::LandingPad) { 1562 auto *lpInst = cast<llvm::LandingPadInst>(inst); 1563 1564 SmallVector<Value> operands; 1565 operands.reserve(lpInst->getNumClauses()); 1566 for (auto i : llvm::seq<unsigned>(0, lpInst->getNumClauses())) { 1567 FailureOr<Value> operand = convertValue(lpInst->getClause(i)); 1568 if (failed(operand)) 1569 return failure(); 1570 operands.push_back(*operand); 1571 } 1572 1573 Type type = convertType(lpInst->getType()); 1574 auto lpOp = 1575 builder.create<LandingpadOp>(loc, type, lpInst->isCleanup(), operands); 1576 mapValue(inst, lpOp); 1577 return success(); 1578 } 1579 if (inst->getOpcode() == llvm::Instruction::Invoke) { 1580 auto *invokeInst = cast<llvm::InvokeInst>(inst); 1581 1582 SmallVector<Type> types; 1583 SmallVector<Value> operands; 1584 if (failed(convertCallTypeAndOperands(invokeInst, types, operands))) 1585 return failure(); 1586 1587 // Check whether the invoke result is an argument to the normal destination 1588 // block. 1589 bool invokeResultUsedInPhi = llvm::any_of( 1590 invokeInst->getNormalDest()->phis(), [&](const llvm::PHINode &phi) { 1591 return phi.getIncomingValueForBlock(invokeInst->getParent()) == 1592 invokeInst; 1593 }); 1594 1595 Block *normalDest = lookupBlock(invokeInst->getNormalDest()); 1596 Block *directNormalDest = normalDest; 1597 if (invokeResultUsedInPhi) { 1598 // The invoke result cannot be an argument to the normal destination 1599 // block, as that would imply using the invoke operation result in its 1600 // definition, so we need to create a dummy block to serve as an 1601 // intermediate destination. 1602 OpBuilder::InsertionGuard g(builder); 1603 directNormalDest = builder.createBlock(normalDest); 1604 } 1605 1606 SmallVector<Value> unwindArgs; 1607 if (failed(convertBranchArgs(invokeInst, invokeInst->getUnwindDest(), 1608 unwindArgs))) 1609 return failure(); 1610 1611 auto funcTy = 1612 dyn_cast<LLVMFunctionType>(convertType(invokeInst->getFunctionType())); 1613 if (!funcTy) 1614 return failure(); 1615 1616 // Create the invoke operation. Normal destination block arguments will be 1617 // added later on to handle the case in which the operation result is 1618 // included in this list. 1619 InvokeOp invokeOp; 1620 if (llvm::Function *callee = invokeInst->getCalledFunction()) { 1621 invokeOp = builder.create<InvokeOp>( 1622 loc, funcTy, 1623 SymbolRefAttr::get(builder.getContext(), callee->getName()), operands, 1624 directNormalDest, ValueRange(), 1625 lookupBlock(invokeInst->getUnwindDest()), unwindArgs); 1626 } else { 1627 invokeOp = builder.create<InvokeOp>( 1628 loc, funcTy, /*callee=*/nullptr, operands, directNormalDest, 1629 ValueRange(), lookupBlock(invokeInst->getUnwindDest()), unwindArgs); 1630 } 1631 invokeOp.setCConv(convertCConvFromLLVM(invokeInst->getCallingConv())); 1632 if (!invokeInst->getType()->isVoidTy()) 1633 mapValue(inst, invokeOp.getResults().front()); 1634 else 1635 mapNoResultOp(inst, invokeOp); 1636 1637 SmallVector<Value> normalArgs; 1638 if (failed(convertBranchArgs(invokeInst, invokeInst->getNormalDest(), 1639 normalArgs))) 1640 return failure(); 1641 1642 if (invokeResultUsedInPhi) { 1643 // The dummy normal dest block will just host an unconditional branch 1644 // instruction to the normal destination block passing the required block 1645 // arguments (including the invoke operation's result). 1646 OpBuilder::InsertionGuard g(builder); 1647 builder.setInsertionPointToStart(directNormalDest); 1648 builder.create<LLVM::BrOp>(loc, normalArgs, normalDest); 1649 } else { 1650 // If the invoke operation's result is not a block argument to the normal 1651 // destination block, just add the block arguments as usual. 1652 assert(llvm::none_of( 1653 normalArgs, 1654 [&](Value val) { return val.getDefiningOp() == invokeOp; }) && 1655 "An llvm.invoke operation cannot pass its result as a block " 1656 "argument."); 1657 invokeOp.getNormalDestOperandsMutable().append(normalArgs); 1658 } 1659 1660 return success(); 1661 } 1662 if (inst->getOpcode() == llvm::Instruction::GetElementPtr) { 1663 auto *gepInst = cast<llvm::GetElementPtrInst>(inst); 1664 Type sourceElementType = convertType(gepInst->getSourceElementType()); 1665 FailureOr<Value> basePtr = convertValue(gepInst->getOperand(0)); 1666 if (failed(basePtr)) 1667 return failure(); 1668 1669 // Treat every indices as dynamic since GEPOp::build will refine those 1670 // indices into static attributes later. One small downside of this 1671 // approach is that many unused `llvm.mlir.constant` would be emitted 1672 // at first place. 1673 SmallVector<GEPArg> indices; 1674 for (llvm::Value *operand : llvm::drop_begin(gepInst->operand_values())) { 1675 FailureOr<Value> index = convertValue(operand); 1676 if (failed(index)) 1677 return failure(); 1678 indices.push_back(*index); 1679 } 1680 1681 Type type = convertType(inst->getType()); 1682 auto gepOp = builder.create<GEPOp>(loc, type, sourceElementType, *basePtr, 1683 indices, gepInst->isInBounds()); 1684 mapValue(inst, gepOp); 1685 return success(); 1686 } 1687 1688 // Convert all instructions that have an mlirBuilder. 1689 if (succeeded(convertInstructionImpl(builder, inst, *this, iface))) 1690 return success(); 1691 1692 return emitError(loc) << "unhandled instruction: " << diag(*inst); 1693 } 1694 1695 LogicalResult ModuleImport::processInstruction(llvm::Instruction *inst) { 1696 // FIXME: Support uses of SubtargetData. 1697 // FIXME: Add support for call / operand attributes. 1698 // FIXME: Add support for the indirectbr, cleanupret, catchret, catchswitch, 1699 // callbr, vaarg, catchpad, cleanuppad instructions. 1700 1701 // Convert LLVM intrinsics calls to MLIR intrinsics. 1702 if (auto *intrinsic = dyn_cast<llvm::IntrinsicInst>(inst)) 1703 return convertIntrinsic(intrinsic); 1704 1705 // Convert all remaining LLVM instructions to MLIR operations. 1706 return convertInstruction(inst); 1707 } 1708 1709 FlatSymbolRefAttr ModuleImport::getPersonalityAsAttr(llvm::Function *f) { 1710 if (!f->hasPersonalityFn()) 1711 return nullptr; 1712 1713 llvm::Constant *pf = f->getPersonalityFn(); 1714 1715 // If it directly has a name, we can use it. 1716 if (pf->hasName()) 1717 return SymbolRefAttr::get(builder.getContext(), pf->getName()); 1718 1719 // If it doesn't have a name, currently, only function pointers that are 1720 // bitcast to i8* are parsed. 1721 if (auto *ce = dyn_cast<llvm::ConstantExpr>(pf)) { 1722 if (ce->getOpcode() == llvm::Instruction::BitCast && 1723 ce->getType() == llvm::PointerType::getUnqual(f->getContext())) { 1724 if (auto *func = dyn_cast<llvm::Function>(ce->getOperand(0))) 1725 return SymbolRefAttr::get(builder.getContext(), func->getName()); 1726 } 1727 } 1728 return FlatSymbolRefAttr(); 1729 } 1730 1731 static void processMemoryEffects(llvm::Function *func, LLVMFuncOp funcOp) { 1732 llvm::MemoryEffects memEffects = func->getMemoryEffects(); 1733 1734 auto othermem = convertModRefInfoFromLLVM( 1735 memEffects.getModRef(llvm::MemoryEffects::Location::Other)); 1736 auto argMem = convertModRefInfoFromLLVM( 1737 memEffects.getModRef(llvm::MemoryEffects::Location::ArgMem)); 1738 auto inaccessibleMem = convertModRefInfoFromLLVM( 1739 memEffects.getModRef(llvm::MemoryEffects::Location::InaccessibleMem)); 1740 auto memAttr = MemoryEffectsAttr::get(funcOp.getContext(), othermem, argMem, 1741 inaccessibleMem); 1742 // Only set the attr when it does not match the default value. 1743 if (memAttr.isReadWrite()) 1744 return; 1745 funcOp.setMemoryEffectsAttr(memAttr); 1746 } 1747 1748 // List of LLVM IR attributes that map to an explicit attribute on the MLIR 1749 // LLVMFuncOp. 1750 static constexpr std::array kExplicitAttributes{ 1751 StringLiteral("aarch64_in_za"), 1752 StringLiteral("aarch64_inout_za"), 1753 StringLiteral("aarch64_new_za"), 1754 StringLiteral("aarch64_out_za"), 1755 StringLiteral("aarch64_preserves_za"), 1756 StringLiteral("aarch64_pstate_sm_body"), 1757 StringLiteral("aarch64_pstate_sm_compatible"), 1758 StringLiteral("aarch64_pstate_sm_enabled"), 1759 StringLiteral("alwaysinline"), 1760 StringLiteral("approx-func-fp-math"), 1761 StringLiteral("convergent"), 1762 StringLiteral("denormal-fp-math"), 1763 StringLiteral("denormal-fp-math-f32"), 1764 StringLiteral("fp-contract"), 1765 StringLiteral("frame-pointer"), 1766 StringLiteral("no-infs-fp-math"), 1767 StringLiteral("no-nans-fp-math"), 1768 StringLiteral("no-signed-zeros-fp-math"), 1769 StringLiteral("noinline"), 1770 StringLiteral("nounwind"), 1771 StringLiteral("optnone"), 1772 StringLiteral("target-features"), 1773 StringLiteral("tune-cpu"), 1774 StringLiteral("unsafe-fp-math"), 1775 StringLiteral("vscale_range"), 1776 StringLiteral("willreturn"), 1777 }; 1778 1779 static void processPassthroughAttrs(llvm::Function *func, LLVMFuncOp funcOp) { 1780 MLIRContext *context = funcOp.getContext(); 1781 SmallVector<Attribute> passthroughs; 1782 llvm::AttributeSet funcAttrs = func->getAttributes().getAttributes( 1783 llvm::AttributeList::AttrIndex::FunctionIndex); 1784 for (llvm::Attribute attr : funcAttrs) { 1785 // Skip the memory attribute since the LLVMFuncOp has an explicit memory 1786 // attribute. 1787 if (attr.hasAttribute(llvm::Attribute::Memory)) 1788 continue; 1789 1790 // Skip invalid type attributes. 1791 if (attr.isTypeAttribute()) { 1792 emitWarning(funcOp.getLoc(), 1793 "type attributes on a function are invalid, skipping it"); 1794 continue; 1795 } 1796 1797 StringRef attrName; 1798 if (attr.isStringAttribute()) 1799 attrName = attr.getKindAsString(); 1800 else 1801 attrName = llvm::Attribute::getNameFromAttrKind(attr.getKindAsEnum()); 1802 auto keyAttr = StringAttr::get(context, attrName); 1803 1804 // Skip attributes that map to an explicit attribute on the LLVMFuncOp. 1805 if (llvm::is_contained(kExplicitAttributes, attrName)) 1806 continue; 1807 1808 if (attr.isStringAttribute()) { 1809 StringRef val = attr.getValueAsString(); 1810 if (val.empty()) { 1811 passthroughs.push_back(keyAttr); 1812 continue; 1813 } 1814 passthroughs.push_back( 1815 ArrayAttr::get(context, {keyAttr, StringAttr::get(context, val)})); 1816 continue; 1817 } 1818 if (attr.isIntAttribute()) { 1819 auto val = std::to_string(attr.getValueAsInt()); 1820 passthroughs.push_back( 1821 ArrayAttr::get(context, {keyAttr, StringAttr::get(context, val)})); 1822 continue; 1823 } 1824 if (attr.isEnumAttribute()) { 1825 passthroughs.push_back(keyAttr); 1826 continue; 1827 } 1828 1829 llvm_unreachable("unexpected attribute kind"); 1830 } 1831 1832 if (!passthroughs.empty()) 1833 funcOp.setPassthroughAttr(ArrayAttr::get(context, passthroughs)); 1834 } 1835 1836 void ModuleImport::processFunctionAttributes(llvm::Function *func, 1837 LLVMFuncOp funcOp) { 1838 processMemoryEffects(func, funcOp); 1839 processPassthroughAttrs(func, funcOp); 1840 1841 if (func->hasFnAttribute(llvm::Attribute::NoInline)) 1842 funcOp.setNoInline(true); 1843 if (func->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1844 funcOp.setAlwaysInline(true); 1845 if (func->hasFnAttribute(llvm::Attribute::OptimizeNone)) 1846 funcOp.setOptimizeNone(true); 1847 if (func->hasFnAttribute(llvm::Attribute::Convergent)) 1848 funcOp.setConvergent(true); 1849 if (func->hasFnAttribute(llvm::Attribute::NoUnwind)) 1850 funcOp.setNoUnwind(true); 1851 if (func->hasFnAttribute(llvm::Attribute::WillReturn)) 1852 funcOp.setWillReturn(true); 1853 1854 if (func->hasFnAttribute("aarch64_pstate_sm_enabled")) 1855 funcOp.setArmStreaming(true); 1856 else if (func->hasFnAttribute("aarch64_pstate_sm_body")) 1857 funcOp.setArmLocallyStreaming(true); 1858 else if (func->hasFnAttribute("aarch64_pstate_sm_compatible")) 1859 funcOp.setArmStreamingCompatible(true); 1860 1861 if (func->hasFnAttribute("aarch64_new_za")) 1862 funcOp.setArmNewZa(true); 1863 else if (func->hasFnAttribute("aarch64_in_za")) 1864 funcOp.setArmInZa(true); 1865 else if (func->hasFnAttribute("aarch64_out_za")) 1866 funcOp.setArmOutZa(true); 1867 else if (func->hasFnAttribute("aarch64_inout_za")) 1868 funcOp.setArmInoutZa(true); 1869 else if (func->hasFnAttribute("aarch64_preserves_za")) 1870 funcOp.setArmPreservesZa(true); 1871 1872 llvm::Attribute attr = func->getFnAttribute(llvm::Attribute::VScaleRange); 1873 if (attr.isValid()) { 1874 MLIRContext *context = funcOp.getContext(); 1875 auto intTy = IntegerType::get(context, 32); 1876 funcOp.setVscaleRangeAttr(LLVM::VScaleRangeAttr::get( 1877 context, IntegerAttr::get(intTy, attr.getVScaleRangeMin()), 1878 IntegerAttr::get(intTy, attr.getVScaleRangeMax().value_or(0)))); 1879 } 1880 1881 // Process frame-pointer attribute. 1882 if (func->hasFnAttribute("frame-pointer")) { 1883 StringRef stringRefFramePointerKind = 1884 func->getFnAttribute("frame-pointer").getValueAsString(); 1885 funcOp.setFramePointerAttr(LLVM::FramePointerKindAttr::get( 1886 funcOp.getContext(), LLVM::framePointerKind::symbolizeFramePointerKind( 1887 stringRefFramePointerKind) 1888 .value())); 1889 } 1890 1891 if (llvm::Attribute attr = func->getFnAttribute("target-cpu"); 1892 attr.isStringAttribute()) 1893 funcOp.setTargetCpuAttr(StringAttr::get(context, attr.getValueAsString())); 1894 1895 if (llvm::Attribute attr = func->getFnAttribute("tune-cpu"); 1896 attr.isStringAttribute()) 1897 funcOp.setTuneCpuAttr(StringAttr::get(context, attr.getValueAsString())); 1898 1899 if (llvm::Attribute attr = func->getFnAttribute("target-features"); 1900 attr.isStringAttribute()) 1901 funcOp.setTargetFeaturesAttr( 1902 LLVM::TargetFeaturesAttr::get(context, attr.getValueAsString())); 1903 1904 if (llvm::Attribute attr = func->getFnAttribute("unsafe-fp-math"); 1905 attr.isStringAttribute()) 1906 funcOp.setUnsafeFpMath(attr.getValueAsBool()); 1907 1908 if (llvm::Attribute attr = func->getFnAttribute("no-infs-fp-math"); 1909 attr.isStringAttribute()) 1910 funcOp.setNoInfsFpMath(attr.getValueAsBool()); 1911 1912 if (llvm::Attribute attr = func->getFnAttribute("no-nans-fp-math"); 1913 attr.isStringAttribute()) 1914 funcOp.setNoNansFpMath(attr.getValueAsBool()); 1915 1916 if (llvm::Attribute attr = func->getFnAttribute("approx-func-fp-math"); 1917 attr.isStringAttribute()) 1918 funcOp.setApproxFuncFpMath(attr.getValueAsBool()); 1919 1920 if (llvm::Attribute attr = func->getFnAttribute("no-signed-zeros-fp-math"); 1921 attr.isStringAttribute()) 1922 funcOp.setNoSignedZerosFpMath(attr.getValueAsBool()); 1923 1924 if (llvm::Attribute attr = func->getFnAttribute("denormal-fp-math"); 1925 attr.isStringAttribute()) 1926 funcOp.setDenormalFpMathAttr( 1927 StringAttr::get(context, attr.getValueAsString())); 1928 1929 if (llvm::Attribute attr = func->getFnAttribute("denormal-fp-math-f32"); 1930 attr.isStringAttribute()) 1931 funcOp.setDenormalFpMathF32Attr( 1932 StringAttr::get(context, attr.getValueAsString())); 1933 1934 if (llvm::Attribute attr = func->getFnAttribute("fp-contract"); 1935 attr.isStringAttribute()) 1936 funcOp.setFpContractAttr(StringAttr::get(context, attr.getValueAsString())); 1937 } 1938 1939 DictionaryAttr 1940 ModuleImport::convertParameterAttribute(llvm::AttributeSet llvmParamAttrs, 1941 OpBuilder &builder) { 1942 SmallVector<NamedAttribute> paramAttrs; 1943 for (auto [llvmKind, mlirName] : getAttrKindToNameMapping()) { 1944 auto llvmAttr = llvmParamAttrs.getAttribute(llvmKind); 1945 // Skip attributes that are not attached. 1946 if (!llvmAttr.isValid()) 1947 continue; 1948 Attribute mlirAttr; 1949 if (llvmAttr.isTypeAttribute()) 1950 mlirAttr = TypeAttr::get(convertType(llvmAttr.getValueAsType())); 1951 else if (llvmAttr.isIntAttribute()) 1952 mlirAttr = builder.getI64IntegerAttr(llvmAttr.getValueAsInt()); 1953 else if (llvmAttr.isEnumAttribute()) 1954 mlirAttr = builder.getUnitAttr(); 1955 else 1956 llvm_unreachable("unexpected parameter attribute kind"); 1957 paramAttrs.push_back(builder.getNamedAttr(mlirName, mlirAttr)); 1958 } 1959 1960 return builder.getDictionaryAttr(paramAttrs); 1961 } 1962 1963 void ModuleImport::convertParameterAttributes(llvm::Function *func, 1964 LLVMFuncOp funcOp, 1965 OpBuilder &builder) { 1966 auto llvmAttrs = func->getAttributes(); 1967 for (size_t i = 0, e = funcOp.getNumArguments(); i < e; ++i) { 1968 llvm::AttributeSet llvmArgAttrs = llvmAttrs.getParamAttrs(i); 1969 funcOp.setArgAttrs(i, convertParameterAttribute(llvmArgAttrs, builder)); 1970 } 1971 // Convert the result attributes and attach them wrapped in an ArrayAttribute 1972 // to the funcOp. 1973 llvm::AttributeSet llvmResAttr = llvmAttrs.getRetAttrs(); 1974 if (!llvmResAttr.hasAttributes()) 1975 return; 1976 funcOp.setResAttrsAttr( 1977 builder.getArrayAttr(convertParameterAttribute(llvmResAttr, builder))); 1978 } 1979 1980 LogicalResult ModuleImport::processFunction(llvm::Function *func) { 1981 clearRegionState(); 1982 1983 auto functionType = 1984 dyn_cast<LLVMFunctionType>(convertType(func->getFunctionType())); 1985 if (func->isIntrinsic() && 1986 iface.isConvertibleIntrinsic(func->getIntrinsicID())) 1987 return success(); 1988 1989 bool dsoLocal = func->hasLocalLinkage(); 1990 CConv cconv = convertCConvFromLLVM(func->getCallingConv()); 1991 1992 // Insert the function at the end of the module. 1993 OpBuilder::InsertionGuard guard(builder); 1994 builder.setInsertionPoint(mlirModule.getBody(), mlirModule.getBody()->end()); 1995 1996 Location loc = debugImporter->translateFuncLocation(func); 1997 LLVMFuncOp funcOp = builder.create<LLVMFuncOp>( 1998 loc, func->getName(), functionType, 1999 convertLinkageFromLLVM(func->getLinkage()), dsoLocal, cconv); 2000 2001 convertParameterAttributes(func, funcOp, builder); 2002 2003 if (FlatSymbolRefAttr personality = getPersonalityAsAttr(func)) 2004 funcOp.setPersonalityAttr(personality); 2005 else if (func->hasPersonalityFn()) 2006 emitWarning(funcOp.getLoc(), "could not deduce personality, skipping it"); 2007 2008 if (func->hasGC()) 2009 funcOp.setGarbageCollector(StringRef(func->getGC())); 2010 2011 if (func->hasAtLeastLocalUnnamedAddr()) 2012 funcOp.setUnnamedAddr(convertUnnamedAddrFromLLVM(func->getUnnamedAddr())); 2013 2014 if (func->hasSection()) 2015 funcOp.setSection(StringRef(func->getSection())); 2016 2017 funcOp.setVisibility_(convertVisibilityFromLLVM(func->getVisibility())); 2018 2019 if (func->hasComdat()) 2020 funcOp.setComdatAttr(comdatMapping.lookup(func->getComdat())); 2021 2022 if (llvm::MaybeAlign maybeAlign = func->getAlign()) 2023 funcOp.setAlignment(maybeAlign->value()); 2024 2025 // Handle Function attributes. 2026 processFunctionAttributes(func, funcOp); 2027 2028 // Convert non-debug metadata by using the dialect interface. 2029 SmallVector<std::pair<unsigned, llvm::MDNode *>> allMetadata; 2030 func->getAllMetadata(allMetadata); 2031 for (auto &[kind, node] : allMetadata) { 2032 if (!iface.isConvertibleMetadata(kind)) 2033 continue; 2034 if (failed(iface.setMetadataAttrs(builder, kind, node, funcOp, *this))) { 2035 emitWarning(funcOp.getLoc()) 2036 << "unhandled function metadata: " << diagMD(node, llvmModule.get()) 2037 << " on " << diag(*func); 2038 } 2039 } 2040 2041 if (func->isDeclaration()) 2042 return success(); 2043 2044 // Collect the set of basic blocks reachable from the function's entry block. 2045 // This step is crucial as LLVM IR can contain unreachable blocks that 2046 // self-dominate. As a result, an operation might utilize a variable it 2047 // defines, which the import does not support. Given that MLIR lacks block 2048 // label support, we can safely remove unreachable blocks, as there are no 2049 // indirect branch instructions that could potentially target these blocks. 2050 llvm::df_iterator_default_set<llvm::BasicBlock *> reachable; 2051 for (llvm::BasicBlock *basicBlock : llvm::depth_first_ext(func, reachable)) 2052 (void)basicBlock; 2053 2054 // Eagerly create all reachable blocks. 2055 SmallVector<llvm::BasicBlock *> reachableBasicBlocks; 2056 for (llvm::BasicBlock &basicBlock : *func) { 2057 // Skip unreachable blocks. 2058 if (!reachable.contains(&basicBlock)) 2059 continue; 2060 Region &body = funcOp.getBody(); 2061 Block *block = builder.createBlock(&body, body.end()); 2062 mapBlock(&basicBlock, block); 2063 reachableBasicBlocks.push_back(&basicBlock); 2064 } 2065 2066 // Add function arguments to the entry block. 2067 for (const auto &it : llvm::enumerate(func->args())) { 2068 BlockArgument blockArg = funcOp.getFunctionBody().addArgument( 2069 functionType.getParamType(it.index()), funcOp.getLoc()); 2070 mapValue(&it.value(), blockArg); 2071 } 2072 2073 // Process the blocks in topological order. The ordered traversal ensures 2074 // operands defined in a dominating block have a valid mapping to an MLIR 2075 // value once a block is translated. 2076 SetVector<llvm::BasicBlock *> blocks = 2077 getTopologicallySortedBlocks(reachableBasicBlocks); 2078 setConstantInsertionPointToStart(lookupBlock(blocks.front())); 2079 for (llvm::BasicBlock *basicBlock : blocks) 2080 if (failed(processBasicBlock(basicBlock, lookupBlock(basicBlock)))) 2081 return failure(); 2082 2083 // Process the debug intrinsics that require a delayed conversion after 2084 // everything else was converted. 2085 if (failed(processDebugIntrinsics())) 2086 return failure(); 2087 2088 return success(); 2089 } 2090 2091 /// Checks if `dbgIntr` is a kill location that holds metadata instead of an SSA 2092 /// value. 2093 static bool isMetadataKillLocation(llvm::DbgVariableIntrinsic *dbgIntr) { 2094 if (!dbgIntr->isKillLocation()) 2095 return false; 2096 llvm::Value *value = dbgIntr->getArgOperand(0); 2097 auto *nodeAsVal = dyn_cast<llvm::MetadataAsValue>(value); 2098 if (!nodeAsVal) 2099 return false; 2100 return !isa<llvm::ValueAsMetadata>(nodeAsVal->getMetadata()); 2101 } 2102 2103 LogicalResult 2104 ModuleImport::processDebugIntrinsic(llvm::DbgVariableIntrinsic *dbgIntr, 2105 DominanceInfo &domInfo) { 2106 Location loc = translateLoc(dbgIntr->getDebugLoc()); 2107 auto emitUnsupportedWarning = [&]() { 2108 if (emitExpensiveWarnings) 2109 emitWarning(loc) << "dropped intrinsic: " << diag(*dbgIntr); 2110 return success(); 2111 }; 2112 // Drop debug intrinsics with arg lists. 2113 // TODO: Support debug intrinsics that have arg lists. 2114 if (dbgIntr->hasArgList()) 2115 return emitUnsupportedWarning(); 2116 // Kill locations can have metadata nodes as location operand. This 2117 // cannot be converted to poison as the type cannot be reconstructed. 2118 // TODO: find a way to support this case. 2119 if (isMetadataKillLocation(dbgIntr)) 2120 return emitUnsupportedWarning(); 2121 // Drop debug intrinsics if the associated variable information cannot be 2122 // translated due to cyclic debug metadata. 2123 // TODO: Support cyclic debug metadata. 2124 DILocalVariableAttr localVariableAttr = 2125 matchLocalVariableAttr(dbgIntr->getArgOperand(1)); 2126 if (!localVariableAttr) 2127 return emitUnsupportedWarning(); 2128 FailureOr<Value> argOperand = convertMetadataValue(dbgIntr->getArgOperand(0)); 2129 if (failed(argOperand)) 2130 return emitError(loc) << "failed to convert a debug intrinsic operand: " 2131 << diag(*dbgIntr); 2132 2133 // Ensure that the debug instrinsic is inserted right after its operand is 2134 // defined. Otherwise, the operand might not necessarily dominate the 2135 // intrinsic. If the defining operation is a terminator, insert the intrinsic 2136 // into a dominated block. 2137 OpBuilder::InsertionGuard guard(builder); 2138 if (Operation *op = argOperand->getDefiningOp(); 2139 op && op->hasTrait<OpTrait::IsTerminator>()) { 2140 // Find a dominated block that can hold the debug intrinsic. 2141 auto dominatedBlocks = domInfo.getNode(op->getBlock())->children(); 2142 // If no block is dominated by the terminator, this intrinisc cannot be 2143 // converted. 2144 if (dominatedBlocks.empty()) 2145 return emitUnsupportedWarning(); 2146 // Set insertion point before the terminator, to avoid inserting something 2147 // before landingpads. 2148 Block *dominatedBlock = (*dominatedBlocks.begin())->getBlock(); 2149 builder.setInsertionPoint(dominatedBlock->getTerminator()); 2150 } else { 2151 builder.setInsertionPointAfterValue(*argOperand); 2152 } 2153 auto locationExprAttr = 2154 debugImporter->translateExpression(dbgIntr->getExpression()); 2155 Operation *op = 2156 llvm::TypeSwitch<llvm::DbgVariableIntrinsic *, Operation *>(dbgIntr) 2157 .Case([&](llvm::DbgDeclareInst *) { 2158 return builder.create<LLVM::DbgDeclareOp>( 2159 loc, *argOperand, localVariableAttr, locationExprAttr); 2160 }) 2161 .Case([&](llvm::DbgValueInst *) { 2162 return builder.create<LLVM::DbgValueOp>( 2163 loc, *argOperand, localVariableAttr, locationExprAttr); 2164 }); 2165 mapNoResultOp(dbgIntr, op); 2166 setNonDebugMetadataAttrs(dbgIntr, op); 2167 return success(); 2168 } 2169 2170 LogicalResult ModuleImport::processDebugIntrinsics() { 2171 DominanceInfo domInfo; 2172 for (llvm::Instruction *inst : debugIntrinsics) { 2173 auto *intrCall = cast<llvm::DbgVariableIntrinsic>(inst); 2174 if (failed(processDebugIntrinsic(intrCall, domInfo))) 2175 return failure(); 2176 } 2177 return success(); 2178 } 2179 2180 LogicalResult ModuleImport::processBasicBlock(llvm::BasicBlock *bb, 2181 Block *block) { 2182 builder.setInsertionPointToStart(block); 2183 for (llvm::Instruction &inst : *bb) { 2184 if (failed(processInstruction(&inst))) 2185 return failure(); 2186 2187 // Skip additional processing when the instructions is a debug intrinsics 2188 // that was not yet converted. 2189 if (debugIntrinsics.contains(&inst)) 2190 continue; 2191 2192 // Set the non-debug metadata attributes on the imported operation and emit 2193 // a warning if an instruction other than a phi instruction is dropped 2194 // during the import. 2195 if (Operation *op = lookupOperation(&inst)) { 2196 setNonDebugMetadataAttrs(&inst, op); 2197 } else if (inst.getOpcode() != llvm::Instruction::PHI) { 2198 if (emitExpensiveWarnings) { 2199 Location loc = debugImporter->translateLoc(inst.getDebugLoc()); 2200 emitWarning(loc) << "dropped instruction: " << diag(inst); 2201 } 2202 } 2203 } 2204 return success(); 2205 } 2206 2207 FailureOr<SmallVector<AccessGroupAttr>> 2208 ModuleImport::lookupAccessGroupAttrs(const llvm::MDNode *node) const { 2209 return loopAnnotationImporter->lookupAccessGroupAttrs(node); 2210 } 2211 2212 LoopAnnotationAttr 2213 ModuleImport::translateLoopAnnotationAttr(const llvm::MDNode *node, 2214 Location loc) const { 2215 return loopAnnotationImporter->translateLoopAnnotation(node, loc); 2216 } 2217 2218 OwningOpRef<ModuleOp> 2219 mlir::translateLLVMIRToModule(std::unique_ptr<llvm::Module> llvmModule, 2220 MLIRContext *context, bool emitExpensiveWarnings, 2221 bool dropDICompositeTypeElements) { 2222 // Preload all registered dialects to allow the import to iterate the 2223 // registered LLVMImportDialectInterface implementations and query the 2224 // supported LLVM IR constructs before starting the translation. Assumes the 2225 // LLVM and DLTI dialects that convert the core LLVM IR constructs have been 2226 // registered before. 2227 assert(llvm::is_contained(context->getAvailableDialects(), 2228 LLVMDialect::getDialectNamespace())); 2229 assert(llvm::is_contained(context->getAvailableDialects(), 2230 DLTIDialect::getDialectNamespace())); 2231 context->loadAllAvailableDialects(); 2232 OwningOpRef<ModuleOp> module(ModuleOp::create(FileLineColLoc::get( 2233 StringAttr::get(context, llvmModule->getSourceFileName()), /*line=*/0, 2234 /*column=*/0))); 2235 2236 ModuleImport moduleImport(module.get(), std::move(llvmModule), 2237 emitExpensiveWarnings, dropDICompositeTypeElements); 2238 if (failed(moduleImport.initializeImportInterface())) 2239 return {}; 2240 if (failed(moduleImport.convertDataLayout())) 2241 return {}; 2242 if (failed(moduleImport.convertComdats())) 2243 return {}; 2244 if (failed(moduleImport.convertMetadata())) 2245 return {}; 2246 if (failed(moduleImport.convertGlobals())) 2247 return {}; 2248 if (failed(moduleImport.convertFunctions())) 2249 return {}; 2250 2251 return module; 2252 } 2253