xref: /llvm-project/mlir/lib/Target/LLVMIR/ModuleImport.cpp (revision 54d3cf14213f18e44ef9ed2ffe3b3131e472e2f5)
1 //===- ModuleImport.cpp - LLVM to MLIR conversion ---------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the import of an LLVM IR module into an LLVM dialect
10 // module.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Target/LLVMIR/ModuleImport.h"
15 #include "mlir/IR/BuiltinAttributes.h"
16 #include "mlir/Target/LLVMIR/Import.h"
17 
18 #include "AttrKindDetail.h"
19 #include "DataLayoutImporter.h"
20 #include "DebugImporter.h"
21 #include "LoopAnnotationImporter.h"
22 
23 #include "mlir/Dialect/DLTI/DLTI.h"
24 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
25 #include "mlir/IR/Builders.h"
26 #include "mlir/IR/Matchers.h"
27 #include "mlir/Interfaces/DataLayoutInterfaces.h"
28 #include "mlir/Tools/mlir-translate/Translation.h"
29 
30 #include "llvm/ADT/DepthFirstIterator.h"
31 #include "llvm/ADT/PostOrderIterator.h"
32 #include "llvm/ADT/ScopeExit.h"
33 #include "llvm/ADT/StringSet.h"
34 #include "llvm/ADT/TypeSwitch.h"
35 #include "llvm/IR/Comdat.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/InstIterator.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/Support/ModRef.h"
44 
45 using namespace mlir;
46 using namespace mlir::LLVM;
47 using namespace mlir::LLVM::detail;
48 
49 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsFromLLVM.inc"
50 
51 // Utility to print an LLVM value as a string for passing to emitError().
52 // FIXME: Diagnostic should be able to natively handle types that have
53 // operator << (raw_ostream&) defined.
54 static std::string diag(const llvm::Value &value) {
55   std::string str;
56   llvm::raw_string_ostream os(str);
57   os << value;
58   return str;
59 }
60 
61 // Utility to print an LLVM metadata node as a string for passing
62 // to emitError(). The module argument is needed to print the nodes
63 // canonically numbered.
64 static std::string diagMD(const llvm::Metadata *node,
65                           const llvm::Module *module) {
66   std::string str;
67   llvm::raw_string_ostream os(str);
68   node->print(os, module, /*IsForDebug=*/true);
69   return str;
70 }
71 
72 /// Returns the name of the global_ctors global variables.
73 static constexpr StringRef getGlobalCtorsVarName() {
74   return "llvm.global_ctors";
75 }
76 
77 /// Prefix used for symbols of nameless llvm globals.
78 static constexpr StringRef getNamelessGlobalPrefix() {
79   return "mlir.llvm.nameless_global";
80 }
81 
82 /// Returns the name of the global_dtors global variables.
83 static constexpr StringRef getGlobalDtorsVarName() {
84   return "llvm.global_dtors";
85 }
86 
87 /// Returns the symbol name for the module-level comdat operation. It must not
88 /// conflict with the user namespace.
89 static constexpr StringRef getGlobalComdatOpName() {
90   return "__llvm_global_comdat";
91 }
92 
93 /// Converts the sync scope identifier of `inst` to the string representation
94 /// necessary to build an atomic LLVM dialect operation. Returns the empty
95 /// string if the operation has either no sync scope or the default system-level
96 /// sync scope attached. The atomic operations only set their sync scope
97 /// attribute if they have a non-default sync scope attached.
98 static StringRef getLLVMSyncScope(llvm::Instruction *inst) {
99   std::optional<llvm::SyncScope::ID> syncScopeID =
100       llvm::getAtomicSyncScopeID(inst);
101   if (!syncScopeID)
102     return "";
103 
104   // Search the sync scope name for the given identifier. The default
105   // system-level sync scope thereby maps to the empty string.
106   SmallVector<StringRef> syncScopeName;
107   llvm::LLVMContext &llvmContext = inst->getContext();
108   llvmContext.getSyncScopeNames(syncScopeName);
109   auto *it = llvm::find_if(syncScopeName, [&](StringRef name) {
110     return *syncScopeID == llvmContext.getOrInsertSyncScopeID(name);
111   });
112   if (it != syncScopeName.end())
113     return *it;
114   llvm_unreachable("incorrect sync scope identifier");
115 }
116 
117 /// Converts an array of unsigned indices to a signed integer position array.
118 static SmallVector<int64_t> getPositionFromIndices(ArrayRef<unsigned> indices) {
119   SmallVector<int64_t> position;
120   llvm::append_range(position, indices);
121   return position;
122 }
123 
124 /// Converts the LLVM instructions that have a generated MLIR builder. Using a
125 /// static implementation method called from the module import ensures the
126 /// builders have to use the `moduleImport` argument and cannot directly call
127 /// import methods. As a result, both the intrinsic and the instruction MLIR
128 /// builders have to use the `moduleImport` argument and none of them has direct
129 /// access to the private module import methods.
130 static LogicalResult convertInstructionImpl(OpBuilder &odsBuilder,
131                                             llvm::Instruction *inst,
132                                             ModuleImport &moduleImport,
133                                             LLVMImportInterface &iface) {
134   // Copy the operands to an LLVM operands array reference for conversion.
135   SmallVector<llvm::Value *> operands(inst->operands());
136   ArrayRef<llvm::Value *> llvmOperands(operands);
137 
138   // Convert all instructions that provide an MLIR builder.
139   if (iface.isConvertibleInstruction(inst->getOpcode()))
140     return iface.convertInstruction(odsBuilder, inst, llvmOperands,
141                                     moduleImport);
142     // TODO: Implement the `convertInstruction` hooks in the
143     // `LLVMDialectLLVMIRImportInterface` and move the following include there.
144 #include "mlir/Dialect/LLVMIR/LLVMOpFromLLVMIRConversions.inc"
145   return failure();
146 }
147 
148 /// Get a topologically sorted list of blocks for the given basic blocks.
149 static SetVector<llvm::BasicBlock *>
150 getTopologicallySortedBlocks(ArrayRef<llvm::BasicBlock *> basicBlocks) {
151   SetVector<llvm::BasicBlock *> blocks;
152   for (llvm::BasicBlock *basicBlock : basicBlocks) {
153     if (!blocks.contains(basicBlock)) {
154       llvm::ReversePostOrderTraversal<llvm::BasicBlock *> traversal(basicBlock);
155       blocks.insert(traversal.begin(), traversal.end());
156     }
157   }
158   assert(blocks.size() == basicBlocks.size() && "some blocks are not sorted");
159   return blocks;
160 }
161 
162 ModuleImport::ModuleImport(ModuleOp mlirModule,
163                            std::unique_ptr<llvm::Module> llvmModule,
164                            bool emitExpensiveWarnings,
165                            bool importEmptyDICompositeTypes)
166     : builder(mlirModule->getContext()), context(mlirModule->getContext()),
167       mlirModule(mlirModule), llvmModule(std::move(llvmModule)),
168       iface(mlirModule->getContext()),
169       typeTranslator(*mlirModule->getContext()),
170       debugImporter(std::make_unique<DebugImporter>(
171           mlirModule, importEmptyDICompositeTypes)),
172       loopAnnotationImporter(
173           std::make_unique<LoopAnnotationImporter>(*this, builder)),
174       emitExpensiveWarnings(emitExpensiveWarnings) {
175   builder.setInsertionPointToStart(mlirModule.getBody());
176 }
177 
178 ComdatOp ModuleImport::getGlobalComdatOp() {
179   if (globalComdatOp)
180     return globalComdatOp;
181 
182   OpBuilder::InsertionGuard guard(builder);
183   builder.setInsertionPointToEnd(mlirModule.getBody());
184   globalComdatOp =
185       builder.create<ComdatOp>(mlirModule.getLoc(), getGlobalComdatOpName());
186   globalInsertionOp = globalComdatOp;
187   return globalComdatOp;
188 }
189 
190 LogicalResult ModuleImport::processTBAAMetadata(const llvm::MDNode *node) {
191   Location loc = mlirModule.getLoc();
192 
193   // If `node` is a valid TBAA root node, then return its optional identity
194   // string, otherwise return failure.
195   auto getIdentityIfRootNode =
196       [&](const llvm::MDNode *node) -> FailureOr<std::optional<StringRef>> {
197     // Root node, e.g.:
198     //   !0 = !{!"Simple C/C++ TBAA"}
199     //   !1 = !{}
200     if (node->getNumOperands() > 1)
201       return failure();
202     // If the operand is MDString, then assume that this is a root node.
203     if (node->getNumOperands() == 1)
204       if (const auto *op0 = dyn_cast<const llvm::MDString>(node->getOperand(0)))
205         return std::optional<StringRef>{op0->getString()};
206     return std::optional<StringRef>{};
207   };
208 
209   // If `node` looks like a TBAA type descriptor metadata,
210   // then return true, if it is a valid node, and false otherwise.
211   // If it does not look like a TBAA type descriptor metadata, then
212   // return std::nullopt.
213   // If `identity` and `memberTypes/Offsets` are non-null, then they will
214   // contain the converted metadata operands for a valid TBAA node (i.e. when
215   // true is returned).
216   auto isTypeDescriptorNode = [&](const llvm::MDNode *node,
217                                   StringRef *identity = nullptr,
218                                   SmallVectorImpl<TBAAMemberAttr> *members =
219                                       nullptr) -> std::optional<bool> {
220     unsigned numOperands = node->getNumOperands();
221     // Type descriptor, e.g.:
222     //   !1 = !{!"int", !0, /*optional*/i64 0} /* scalar int type */
223     //   !2 = !{!"agg_t", !1, i64 0} /* struct agg_t { int x; } */
224     if (numOperands < 2)
225       return std::nullopt;
226 
227     // TODO: support "new" format (D41501) for type descriptors,
228     //       where the first operand is an MDNode.
229     const auto *identityNode =
230         dyn_cast<const llvm::MDString>(node->getOperand(0));
231     if (!identityNode)
232       return std::nullopt;
233 
234     // This should be a type descriptor node.
235     if (identity)
236       *identity = identityNode->getString();
237 
238     for (unsigned pairNum = 0, e = numOperands / 2; pairNum < e; ++pairNum) {
239       const auto *memberNode =
240           dyn_cast<const llvm::MDNode>(node->getOperand(2 * pairNum + 1));
241       if (!memberNode) {
242         emitError(loc) << "operand '" << 2 * pairNum + 1 << "' must be MDNode: "
243                        << diagMD(node, llvmModule.get());
244         return false;
245       }
246       int64_t offset = 0;
247       if (2 * pairNum + 2 >= numOperands) {
248         // Allow for optional 0 offset in 2-operand nodes.
249         if (numOperands != 2) {
250           emitError(loc) << "missing member offset: "
251                          << diagMD(node, llvmModule.get());
252           return false;
253         }
254       } else {
255         auto *offsetCI = llvm::mdconst::dyn_extract<llvm::ConstantInt>(
256             node->getOperand(2 * pairNum + 2));
257         if (!offsetCI) {
258           emitError(loc) << "operand '" << 2 * pairNum + 2
259                          << "' must be ConstantInt: "
260                          << diagMD(node, llvmModule.get());
261           return false;
262         }
263         offset = offsetCI->getZExtValue();
264       }
265 
266       if (members)
267         members->push_back(TBAAMemberAttr::get(
268             cast<TBAANodeAttr>(tbaaMapping.lookup(memberNode)), offset));
269     }
270 
271     return true;
272   };
273 
274   // If `node` looks like a TBAA access tag metadata,
275   // then return true, if it is a valid node, and false otherwise.
276   // If it does not look like a TBAA access tag metadata, then
277   // return std::nullopt.
278   // If the other arguments are non-null, then they will contain
279   // the converted metadata operands for a valid TBAA node (i.e. when true is
280   // returned).
281   auto isTagNode = [&](const llvm::MDNode *node,
282                        TBAATypeDescriptorAttr *baseAttr = nullptr,
283                        TBAATypeDescriptorAttr *accessAttr = nullptr,
284                        int64_t *offset = nullptr,
285                        bool *isConstant = nullptr) -> std::optional<bool> {
286     // Access tag, e.g.:
287     //   !3 = !{!1, !1, i64 0} /* scalar int access */
288     //   !4 = !{!2, !1, i64 0} /* agg_t::x access */
289     //
290     // Optional 4th argument is ConstantInt 0/1 identifying whether
291     // the location being accessed is "constant" (see for details:
292     // https://llvm.org/docs/LangRef.html#representation).
293     unsigned numOperands = node->getNumOperands();
294     if (numOperands != 3 && numOperands != 4)
295       return std::nullopt;
296     const auto *baseMD = dyn_cast<const llvm::MDNode>(node->getOperand(0));
297     const auto *accessMD = dyn_cast<const llvm::MDNode>(node->getOperand(1));
298     auto *offsetCI =
299         llvm::mdconst::dyn_extract<llvm::ConstantInt>(node->getOperand(2));
300     if (!baseMD || !accessMD || !offsetCI)
301       return std::nullopt;
302     // TODO: support "new" TBAA format, if needed (see D41501).
303     // In the "old" format the first operand of the access type
304     // metadata is MDString. We have to distinguish the formats,
305     // because access tags have the same structure, but different
306     // meaning for the operands.
307     if (accessMD->getNumOperands() < 1 ||
308         !isa<llvm::MDString>(accessMD->getOperand(0)))
309       return std::nullopt;
310     bool isConst = false;
311     if (numOperands == 4) {
312       auto *isConstantCI =
313           llvm::mdconst::dyn_extract<llvm::ConstantInt>(node->getOperand(3));
314       if (!isConstantCI) {
315         emitError(loc) << "operand '3' must be ConstantInt: "
316                        << diagMD(node, llvmModule.get());
317         return false;
318       }
319       isConst = isConstantCI->getValue()[0];
320     }
321     if (baseAttr)
322       *baseAttr = cast<TBAATypeDescriptorAttr>(tbaaMapping.lookup(baseMD));
323     if (accessAttr)
324       *accessAttr = cast<TBAATypeDescriptorAttr>(tbaaMapping.lookup(accessMD));
325     if (offset)
326       *offset = offsetCI->getZExtValue();
327     if (isConstant)
328       *isConstant = isConst;
329     return true;
330   };
331 
332   // Do a post-order walk over the TBAA Graph. Since a correct TBAA Graph is a
333   // DAG, a post-order walk guarantees that we convert any metadata node we
334   // depend on, prior to converting the current node.
335   DenseSet<const llvm::MDNode *> seen;
336   SmallVector<const llvm::MDNode *> workList;
337   workList.push_back(node);
338   while (!workList.empty()) {
339     const llvm::MDNode *current = workList.back();
340     if (tbaaMapping.contains(current)) {
341       // Already converted. Just pop from the worklist.
342       workList.pop_back();
343       continue;
344     }
345 
346     // If any child of this node is not yet converted, don't pop the current
347     // node from the worklist but push the not-yet-converted children in the
348     // front of the worklist.
349     bool anyChildNotConverted = false;
350     for (const llvm::MDOperand &operand : current->operands())
351       if (auto *childNode = dyn_cast_or_null<const llvm::MDNode>(operand.get()))
352         if (!tbaaMapping.contains(childNode)) {
353           workList.push_back(childNode);
354           anyChildNotConverted = true;
355         }
356 
357     if (anyChildNotConverted) {
358       // If this is the second time we failed to convert an element in the
359       // worklist it must be because a child is dependent on it being converted
360       // and we have a cycle in the graph. Cycles are not allowed in TBAA
361       // graphs.
362       if (!seen.insert(current).second)
363         return emitError(loc) << "has cycle in TBAA graph: "
364                               << diagMD(current, llvmModule.get());
365 
366       continue;
367     }
368 
369     // Otherwise simply import the current node.
370     workList.pop_back();
371 
372     FailureOr<std::optional<StringRef>> rootNodeIdentity =
373         getIdentityIfRootNode(current);
374     if (succeeded(rootNodeIdentity)) {
375       StringAttr stringAttr = *rootNodeIdentity
376                                   ? builder.getStringAttr(**rootNodeIdentity)
377                                   : nullptr;
378       // The root nodes do not have operands, so we can create
379       // the TBAARootAttr on the first walk.
380       tbaaMapping.insert({current, builder.getAttr<TBAARootAttr>(stringAttr)});
381       continue;
382     }
383 
384     StringRef identity;
385     SmallVector<TBAAMemberAttr> members;
386     if (std::optional<bool> isValid =
387             isTypeDescriptorNode(current, &identity, &members)) {
388       assert(isValid.value() && "type descriptor node must be valid");
389 
390       tbaaMapping.insert({current, builder.getAttr<TBAATypeDescriptorAttr>(
391                                        identity, members)});
392       continue;
393     }
394 
395     TBAATypeDescriptorAttr baseAttr, accessAttr;
396     int64_t offset;
397     bool isConstant;
398     if (std::optional<bool> isValid =
399             isTagNode(current, &baseAttr, &accessAttr, &offset, &isConstant)) {
400       assert(isValid.value() && "access tag node must be valid");
401       tbaaMapping.insert(
402           {current, builder.getAttr<TBAATagAttr>(baseAttr, accessAttr, offset,
403                                                  isConstant)});
404       continue;
405     }
406 
407     return emitError(loc) << "unsupported TBAA node format: "
408                           << diagMD(current, llvmModule.get());
409   }
410   return success();
411 }
412 
413 LogicalResult
414 ModuleImport::processAccessGroupMetadata(const llvm::MDNode *node) {
415   Location loc = mlirModule.getLoc();
416   if (failed(loopAnnotationImporter->translateAccessGroup(node, loc)))
417     return emitError(loc) << "unsupported access group node: "
418                           << diagMD(node, llvmModule.get());
419   return success();
420 }
421 
422 LogicalResult
423 ModuleImport::processAliasScopeMetadata(const llvm::MDNode *node) {
424   Location loc = mlirModule.getLoc();
425   // Helper that verifies the node has a self reference operand.
426   auto verifySelfRef = [](const llvm::MDNode *node) {
427     return node->getNumOperands() != 0 &&
428            node == dyn_cast<llvm::MDNode>(node->getOperand(0));
429   };
430   // Helper that verifies the given operand is a string or does not exist.
431   auto verifyDescription = [](const llvm::MDNode *node, unsigned idx) {
432     return idx >= node->getNumOperands() ||
433            isa<llvm::MDString>(node->getOperand(idx));
434   };
435   // Helper that creates an alias scope domain attribute.
436   auto createAliasScopeDomainOp = [&](const llvm::MDNode *aliasDomain) {
437     StringAttr description = nullptr;
438     if (aliasDomain->getNumOperands() >= 2)
439       if (auto *operand = dyn_cast<llvm::MDString>(aliasDomain->getOperand(1)))
440         description = builder.getStringAttr(operand->getString());
441     return builder.getAttr<AliasScopeDomainAttr>(
442         DistinctAttr::create(builder.getUnitAttr()), description);
443   };
444 
445   // Collect the alias scopes and domains to translate them.
446   for (const llvm::MDOperand &operand : node->operands()) {
447     if (const auto *scope = dyn_cast<llvm::MDNode>(operand)) {
448       llvm::AliasScopeNode aliasScope(scope);
449       const llvm::MDNode *domain = aliasScope.getDomain();
450 
451       // Verify the scope node points to valid scope metadata which includes
452       // verifying its domain. Perform the verification before looking it up in
453       // the alias scope mapping since it could have been inserted as a domain
454       // node before.
455       if (!verifySelfRef(scope) || !domain || !verifyDescription(scope, 2))
456         return emitError(loc) << "unsupported alias scope node: "
457                               << diagMD(scope, llvmModule.get());
458       if (!verifySelfRef(domain) || !verifyDescription(domain, 1))
459         return emitError(loc) << "unsupported alias domain node: "
460                               << diagMD(domain, llvmModule.get());
461 
462       if (aliasScopeMapping.contains(scope))
463         continue;
464 
465       // Convert the domain metadata node if it has not been translated before.
466       auto it = aliasScopeMapping.find(aliasScope.getDomain());
467       if (it == aliasScopeMapping.end()) {
468         auto aliasScopeDomainOp = createAliasScopeDomainOp(domain);
469         it = aliasScopeMapping.try_emplace(domain, aliasScopeDomainOp).first;
470       }
471 
472       // Convert the scope metadata node if it has not been converted before.
473       StringAttr description = nullptr;
474       if (!aliasScope.getName().empty())
475         description = builder.getStringAttr(aliasScope.getName());
476       auto aliasScopeOp = builder.getAttr<AliasScopeAttr>(
477           DistinctAttr::create(builder.getUnitAttr()),
478           cast<AliasScopeDomainAttr>(it->second), description);
479       aliasScopeMapping.try_emplace(aliasScope.getNode(), aliasScopeOp);
480     }
481   }
482   return success();
483 }
484 
485 FailureOr<SmallVector<AliasScopeAttr>>
486 ModuleImport::lookupAliasScopeAttrs(const llvm::MDNode *node) const {
487   SmallVector<AliasScopeAttr> aliasScopes;
488   aliasScopes.reserve(node->getNumOperands());
489   for (const llvm::MDOperand &operand : node->operands()) {
490     auto *node = cast<llvm::MDNode>(operand.get());
491     aliasScopes.push_back(
492         dyn_cast_or_null<AliasScopeAttr>(aliasScopeMapping.lookup(node)));
493   }
494   // Return failure if one of the alias scope lookups failed.
495   if (llvm::is_contained(aliasScopes, nullptr))
496     return failure();
497   return aliasScopes;
498 }
499 
500 void ModuleImport::addDebugIntrinsic(llvm::CallInst *intrinsic) {
501   debugIntrinsics.insert(intrinsic);
502 }
503 
504 LogicalResult ModuleImport::convertLinkerOptionsMetadata() {
505   for (const llvm::NamedMDNode &named : llvmModule->named_metadata()) {
506     if (named.getName() != "llvm.linker.options")
507       continue;
508     // llvm.linker.options operands are lists of strings.
509     for (const llvm::MDNode *node : named.operands()) {
510       SmallVector<StringRef> options;
511       options.reserve(node->getNumOperands());
512       for (const llvm::MDOperand &option : node->operands())
513         options.push_back(cast<llvm::MDString>(option)->getString());
514       builder.create<LLVM::LinkerOptionsOp>(mlirModule.getLoc(),
515                                             builder.getStrArrayAttr(options));
516     }
517   }
518   return success();
519 }
520 
521 LogicalResult ModuleImport::convertIdentMetadata() {
522   for (const llvm::NamedMDNode &named : llvmModule->named_metadata()) {
523     // llvm.ident should have a single operand. That operand is itself an
524     // MDNode with a single string operand.
525     if (named.getName() != LLVMDialect::getIdentAttrName())
526       continue;
527 
528     if (named.getNumOperands() == 1)
529       if (auto *md = dyn_cast<llvm::MDNode>(named.getOperand(0)))
530         if (md->getNumOperands() == 1)
531           if (auto *mdStr = dyn_cast<llvm::MDString>(md->getOperand(0)))
532             mlirModule->setAttr(LLVMDialect::getIdentAttrName(),
533                                 builder.getStringAttr(mdStr->getString()));
534   }
535   return success();
536 }
537 
538 LogicalResult ModuleImport::convertMetadata() {
539   OpBuilder::InsertionGuard guard(builder);
540   builder.setInsertionPointToEnd(mlirModule.getBody());
541   for (const llvm::Function &func : llvmModule->functions()) {
542     for (const llvm::Instruction &inst : llvm::instructions(func)) {
543       // Convert access group metadata nodes.
544       if (llvm::MDNode *node =
545               inst.getMetadata(llvm::LLVMContext::MD_access_group))
546         if (failed(processAccessGroupMetadata(node)))
547           return failure();
548 
549       // Convert alias analysis metadata nodes.
550       llvm::AAMDNodes aliasAnalysisNodes = inst.getAAMetadata();
551       if (!aliasAnalysisNodes)
552         continue;
553       if (aliasAnalysisNodes.TBAA)
554         if (failed(processTBAAMetadata(aliasAnalysisNodes.TBAA)))
555           return failure();
556       if (aliasAnalysisNodes.Scope)
557         if (failed(processAliasScopeMetadata(aliasAnalysisNodes.Scope)))
558           return failure();
559       if (aliasAnalysisNodes.NoAlias)
560         if (failed(processAliasScopeMetadata(aliasAnalysisNodes.NoAlias)))
561           return failure();
562     }
563   }
564   if (failed(convertLinkerOptionsMetadata()))
565     return failure();
566   if (failed(convertIdentMetadata()))
567     return failure();
568   return success();
569 }
570 
571 void ModuleImport::processComdat(const llvm::Comdat *comdat) {
572   if (comdatMapping.contains(comdat))
573     return;
574 
575   ComdatOp comdatOp = getGlobalComdatOp();
576   OpBuilder::InsertionGuard guard(builder);
577   builder.setInsertionPointToEnd(&comdatOp.getBody().back());
578   auto selectorOp = builder.create<ComdatSelectorOp>(
579       mlirModule.getLoc(), comdat->getName(),
580       convertComdatFromLLVM(comdat->getSelectionKind()));
581   auto symbolRef =
582       SymbolRefAttr::get(builder.getContext(), getGlobalComdatOpName(),
583                          FlatSymbolRefAttr::get(selectorOp.getSymNameAttr()));
584   comdatMapping.try_emplace(comdat, symbolRef);
585 }
586 
587 LogicalResult ModuleImport::convertComdats() {
588   for (llvm::GlobalVariable &globalVar : llvmModule->globals())
589     if (globalVar.hasComdat())
590       processComdat(globalVar.getComdat());
591   for (llvm::Function &func : llvmModule->functions())
592     if (func.hasComdat())
593       processComdat(func.getComdat());
594   return success();
595 }
596 
597 LogicalResult ModuleImport::convertGlobals() {
598   for (llvm::GlobalVariable &globalVar : llvmModule->globals()) {
599     if (globalVar.getName() == getGlobalCtorsVarName() ||
600         globalVar.getName() == getGlobalDtorsVarName()) {
601       if (failed(convertGlobalCtorsAndDtors(&globalVar))) {
602         return emitError(UnknownLoc::get(context))
603                << "unhandled global variable: " << diag(globalVar);
604       }
605       continue;
606     }
607     if (failed(convertGlobal(&globalVar))) {
608       return emitError(UnknownLoc::get(context))
609              << "unhandled global variable: " << diag(globalVar);
610     }
611   }
612   return success();
613 }
614 
615 LogicalResult ModuleImport::convertDataLayout() {
616   Location loc = mlirModule.getLoc();
617   DataLayoutImporter dataLayoutImporter(context, llvmModule->getDataLayout());
618   if (!dataLayoutImporter.getDataLayout())
619     return emitError(loc, "cannot translate data layout: ")
620            << dataLayoutImporter.getLastToken();
621 
622   for (StringRef token : dataLayoutImporter.getUnhandledTokens())
623     emitWarning(loc, "unhandled data layout token: ") << token;
624 
625   mlirModule->setAttr(DLTIDialect::kDataLayoutAttrName,
626                       dataLayoutImporter.getDataLayout());
627   return success();
628 }
629 
630 LogicalResult ModuleImport::convertFunctions() {
631   for (llvm::Function &func : llvmModule->functions())
632     if (failed(processFunction(&func)))
633       return failure();
634   return success();
635 }
636 
637 void ModuleImport::setNonDebugMetadataAttrs(llvm::Instruction *inst,
638                                             Operation *op) {
639   SmallVector<std::pair<unsigned, llvm::MDNode *>> allMetadata;
640   inst->getAllMetadataOtherThanDebugLoc(allMetadata);
641   for (auto &[kind, node] : allMetadata) {
642     if (!iface.isConvertibleMetadata(kind))
643       continue;
644     if (failed(iface.setMetadataAttrs(builder, kind, node, op, *this))) {
645       if (emitExpensiveWarnings) {
646         Location loc = debugImporter->translateLoc(inst->getDebugLoc());
647         emitWarning(loc) << "unhandled metadata: "
648                          << diagMD(node, llvmModule.get()) << " on "
649                          << diag(*inst);
650       }
651     }
652   }
653 }
654 
655 void ModuleImport::setIntegerOverflowFlags(llvm::Instruction *inst,
656                                            Operation *op) const {
657   auto iface = cast<IntegerOverflowFlagsInterface>(op);
658 
659   IntegerOverflowFlags value = {};
660   value = bitEnumSet(value, IntegerOverflowFlags::nsw, inst->hasNoSignedWrap());
661   value =
662       bitEnumSet(value, IntegerOverflowFlags::nuw, inst->hasNoUnsignedWrap());
663 
664   iface.setOverflowFlags(value);
665 }
666 
667 void ModuleImport::setFastmathFlagsAttr(llvm::Instruction *inst,
668                                         Operation *op) const {
669   auto iface = cast<FastmathFlagsInterface>(op);
670 
671   // Even if the imported operation implements the fastmath interface, the
672   // original instruction may not have fastmath flags set. Exit if an
673   // instruction, such as a non floating-point function call, does not have
674   // fastmath flags.
675   if (!isa<llvm::FPMathOperator>(inst))
676     return;
677   llvm::FastMathFlags flags = inst->getFastMathFlags();
678 
679   // Set the fastmath bits flag-by-flag.
680   FastmathFlags value = {};
681   value = bitEnumSet(value, FastmathFlags::nnan, flags.noNaNs());
682   value = bitEnumSet(value, FastmathFlags::ninf, flags.noInfs());
683   value = bitEnumSet(value, FastmathFlags::nsz, flags.noSignedZeros());
684   value = bitEnumSet(value, FastmathFlags::arcp, flags.allowReciprocal());
685   value = bitEnumSet(value, FastmathFlags::contract, flags.allowContract());
686   value = bitEnumSet(value, FastmathFlags::afn, flags.approxFunc());
687   value = bitEnumSet(value, FastmathFlags::reassoc, flags.allowReassoc());
688   FastmathFlagsAttr attr = FastmathFlagsAttr::get(builder.getContext(), value);
689   iface->setAttr(iface.getFastmathAttrName(), attr);
690 }
691 
692 /// Returns if `type` is a scalar integer or floating-point type.
693 static bool isScalarType(Type type) {
694   return isa<IntegerType, FloatType>(type);
695 }
696 
697 /// Returns `type` if it is a builtin integer or floating-point vector type that
698 /// can be used to create an attribute or nullptr otherwise. If provided,
699 /// `arrayShape` is added to the shape of the vector to create an attribute that
700 /// matches an array of vectors.
701 static Type getVectorTypeForAttr(Type type, ArrayRef<int64_t> arrayShape = {}) {
702   if (!LLVM::isCompatibleVectorType(type))
703     return {};
704 
705   llvm::ElementCount numElements = LLVM::getVectorNumElements(type);
706   if (numElements.isScalable()) {
707     emitError(UnknownLoc::get(type.getContext()))
708         << "scalable vectors not supported";
709     return {};
710   }
711 
712   // An LLVM dialect vector can only contain scalars.
713   Type elementType = LLVM::getVectorElementType(type);
714   if (!isScalarType(elementType))
715     return {};
716 
717   SmallVector<int64_t> shape(arrayShape);
718   shape.push_back(numElements.getKnownMinValue());
719   return VectorType::get(shape, elementType);
720 }
721 
722 Type ModuleImport::getBuiltinTypeForAttr(Type type) {
723   if (!type)
724     return {};
725 
726   // Return builtin integer and floating-point types as is.
727   if (isScalarType(type))
728     return type;
729 
730   // Return builtin vectors of integer and floating-point types as is.
731   if (Type vectorType = getVectorTypeForAttr(type))
732     return vectorType;
733 
734   // Multi-dimensional array types are converted to tensors or vectors,
735   // depending on the innermost type being a scalar or a vector.
736   SmallVector<int64_t> arrayShape;
737   while (auto arrayType = dyn_cast<LLVMArrayType>(type)) {
738     arrayShape.push_back(arrayType.getNumElements());
739     type = arrayType.getElementType();
740   }
741   if (isScalarType(type))
742     return RankedTensorType::get(arrayShape, type);
743   return getVectorTypeForAttr(type, arrayShape);
744 }
745 
746 /// Returns an integer or float attribute for the provided scalar constant
747 /// `constScalar` or nullptr if the conversion fails.
748 static TypedAttr getScalarConstantAsAttr(OpBuilder &builder,
749                                          llvm::Constant *constScalar) {
750   MLIRContext *context = builder.getContext();
751 
752   // Convert scalar intergers.
753   if (auto *constInt = dyn_cast<llvm::ConstantInt>(constScalar)) {
754     return builder.getIntegerAttr(
755         IntegerType::get(context, constInt->getBitWidth()),
756         constInt->getValue());
757   }
758 
759   // Convert scalar floats.
760   if (auto *constFloat = dyn_cast<llvm::ConstantFP>(constScalar)) {
761     llvm::Type *type = constFloat->getType();
762     FloatType floatType =
763         type->isBFloatTy()
764             ? FloatType::getBF16(context)
765             : LLVM::detail::getFloatType(context, type->getScalarSizeInBits());
766     if (!floatType) {
767       emitError(UnknownLoc::get(builder.getContext()))
768           << "unexpected floating-point type";
769       return {};
770     }
771     return builder.getFloatAttr(floatType, constFloat->getValueAPF());
772   }
773   return {};
774 }
775 
776 /// Returns an integer or float attribute array for the provided constant
777 /// sequence `constSequence` or nullptr if the conversion fails.
778 static SmallVector<Attribute>
779 getSequenceConstantAsAttrs(OpBuilder &builder,
780                            llvm::ConstantDataSequential *constSequence) {
781   SmallVector<Attribute> elementAttrs;
782   elementAttrs.reserve(constSequence->getNumElements());
783   for (auto idx : llvm::seq<int64_t>(0, constSequence->getNumElements())) {
784     llvm::Constant *constElement = constSequence->getElementAsConstant(idx);
785     elementAttrs.push_back(getScalarConstantAsAttr(builder, constElement));
786   }
787   return elementAttrs;
788 }
789 
790 Attribute ModuleImport::getConstantAsAttr(llvm::Constant *constant) {
791   // Convert scalar constants.
792   if (Attribute scalarAttr = getScalarConstantAsAttr(builder, constant))
793     return scalarAttr;
794 
795   // Returns the static shape of the provided type if possible.
796   auto getConstantShape = [&](llvm::Type *type) {
797     return llvm::dyn_cast_if_present<ShapedType>(
798         getBuiltinTypeForAttr(convertType(type)));
799   };
800 
801   // Convert one-dimensional constant arrays or vectors that store 1/2/4/8-byte
802   // integer or half/bfloat/float/double values.
803   if (auto *constArray = dyn_cast<llvm::ConstantDataSequential>(constant)) {
804     if (constArray->isString())
805       return builder.getStringAttr(constArray->getAsString());
806     auto shape = getConstantShape(constArray->getType());
807     if (!shape)
808       return {};
809     // Convert splat constants to splat elements attributes.
810     auto *constVector = dyn_cast<llvm::ConstantDataVector>(constant);
811     if (constVector && constVector->isSplat()) {
812       // A vector is guaranteed to have at least size one.
813       Attribute splatAttr = getScalarConstantAsAttr(
814           builder, constVector->getElementAsConstant(0));
815       return SplatElementsAttr::get(shape, splatAttr);
816     }
817     // Convert non-splat constants to dense elements attributes.
818     SmallVector<Attribute> elementAttrs =
819         getSequenceConstantAsAttrs(builder, constArray);
820     return DenseElementsAttr::get(shape, elementAttrs);
821   }
822 
823   // Convert multi-dimensional constant aggregates that store all kinds of
824   // integer and floating-point types.
825   if (auto *constAggregate = dyn_cast<llvm::ConstantAggregate>(constant)) {
826     auto shape = getConstantShape(constAggregate->getType());
827     if (!shape)
828       return {};
829     // Collect the aggregate elements in depths first order.
830     SmallVector<Attribute> elementAttrs;
831     SmallVector<llvm::Constant *> workList = {constAggregate};
832     while (!workList.empty()) {
833       llvm::Constant *current = workList.pop_back_val();
834       // Append any nested aggregates in reverse order to ensure the head
835       // element of the nested aggregates is at the back of the work list.
836       if (auto *constAggregate = dyn_cast<llvm::ConstantAggregate>(current)) {
837         for (auto idx :
838              reverse(llvm::seq<int64_t>(0, constAggregate->getNumOperands())))
839           workList.push_back(constAggregate->getAggregateElement(idx));
840         continue;
841       }
842       // Append the elements of nested constant arrays or vectors that store
843       // 1/2/4/8-byte integer or half/bfloat/float/double values.
844       if (auto *constArray = dyn_cast<llvm::ConstantDataSequential>(current)) {
845         SmallVector<Attribute> attrs =
846             getSequenceConstantAsAttrs(builder, constArray);
847         elementAttrs.append(attrs.begin(), attrs.end());
848         continue;
849       }
850       // Append nested scalar constants that store all kinds of integer and
851       // floating-point types.
852       if (Attribute scalarAttr = getScalarConstantAsAttr(builder, current)) {
853         elementAttrs.push_back(scalarAttr);
854         continue;
855       }
856       // Bail if the aggregate contains a unsupported constant type such as a
857       // constant expression.
858       return {};
859     }
860     return DenseElementsAttr::get(shape, elementAttrs);
861   }
862 
863   // Convert zero aggregates.
864   if (auto *constZero = dyn_cast<llvm::ConstantAggregateZero>(constant)) {
865     auto shape = llvm::dyn_cast_if_present<ShapedType>(
866         getBuiltinTypeForAttr(convertType(constZero->getType())));
867     if (!shape)
868       return {};
869     // Convert zero aggregates with a static shape to splat elements attributes.
870     Attribute splatAttr = builder.getZeroAttr(shape.getElementType());
871     assert(splatAttr && "expected non-null zero attribute for scalar types");
872     return SplatElementsAttr::get(shape, splatAttr);
873   }
874   return {};
875 }
876 
877 FlatSymbolRefAttr
878 ModuleImport::getOrCreateNamelessSymbolName(llvm::GlobalVariable *globalVar) {
879   assert(globalVar->getName().empty() &&
880          "expected to work with a nameless global");
881   auto [it, success] = namelessGlobals.try_emplace(globalVar);
882   if (!success)
883     return it->second;
884 
885   // Make sure the symbol name does not clash with an existing symbol.
886   SmallString<128> globalName = SymbolTable::generateSymbolName<128>(
887       getNamelessGlobalPrefix(),
888       [this](StringRef newName) { return llvmModule->getNamedValue(newName); },
889       namelessGlobalId);
890   auto symbolRef = FlatSymbolRefAttr::get(context, globalName);
891   it->getSecond() = symbolRef;
892   return symbolRef;
893 }
894 
895 LogicalResult ModuleImport::convertGlobal(llvm::GlobalVariable *globalVar) {
896   // Insert the global after the last one or at the start of the module.
897   OpBuilder::InsertionGuard guard(builder);
898   if (!globalInsertionOp)
899     builder.setInsertionPointToStart(mlirModule.getBody());
900   else
901     builder.setInsertionPointAfter(globalInsertionOp);
902 
903   Attribute valueAttr;
904   if (globalVar->hasInitializer())
905     valueAttr = getConstantAsAttr(globalVar->getInitializer());
906   Type type = convertType(globalVar->getValueType());
907 
908   uint64_t alignment = 0;
909   llvm::MaybeAlign maybeAlign = globalVar->getAlign();
910   if (maybeAlign.has_value()) {
911     llvm::Align align = *maybeAlign;
912     alignment = align.value();
913   }
914 
915   // Get the global expression associated with this global variable and convert
916   // it.
917   DIGlobalVariableExpressionAttr globalExpressionAttr;
918   SmallVector<llvm::DIGlobalVariableExpression *> globalExpressions;
919   globalVar->getDebugInfo(globalExpressions);
920 
921   // There should only be a single global expression.
922   if (!globalExpressions.empty())
923     globalExpressionAttr =
924         debugImporter->translateGlobalVariableExpression(globalExpressions[0]);
925 
926   // Workaround to support LLVM's nameless globals. MLIR, in contrast to LLVM,
927   // always requires a symbol name.
928   StringRef globalName = globalVar->getName();
929   if (globalName.empty())
930     globalName = getOrCreateNamelessSymbolName(globalVar).getValue();
931 
932   GlobalOp globalOp = builder.create<GlobalOp>(
933       mlirModule.getLoc(), type, globalVar->isConstant(),
934       convertLinkageFromLLVM(globalVar->getLinkage()), StringRef(globalName),
935       valueAttr, alignment, /*addr_space=*/globalVar->getAddressSpace(),
936       /*dso_local=*/globalVar->isDSOLocal(),
937       /*thread_local=*/globalVar->isThreadLocal(), /*comdat=*/SymbolRefAttr(),
938       /*attrs=*/ArrayRef<NamedAttribute>(), /*dbgExpr=*/globalExpressionAttr);
939   globalInsertionOp = globalOp;
940 
941   if (globalVar->hasInitializer() && !valueAttr) {
942     clearRegionState();
943     Block *block = builder.createBlock(&globalOp.getInitializerRegion());
944     setConstantInsertionPointToStart(block);
945     FailureOr<Value> initializer =
946         convertConstantExpr(globalVar->getInitializer());
947     if (failed(initializer))
948       return failure();
949     builder.create<ReturnOp>(globalOp.getLoc(), *initializer);
950   }
951   if (globalVar->hasAtLeastLocalUnnamedAddr()) {
952     globalOp.setUnnamedAddr(
953         convertUnnamedAddrFromLLVM(globalVar->getUnnamedAddr()));
954   }
955   if (globalVar->hasSection())
956     globalOp.setSection(globalVar->getSection());
957   globalOp.setVisibility_(
958       convertVisibilityFromLLVM(globalVar->getVisibility()));
959 
960   if (globalVar->hasComdat())
961     globalOp.setComdatAttr(comdatMapping.lookup(globalVar->getComdat()));
962 
963   return success();
964 }
965 
966 LogicalResult
967 ModuleImport::convertGlobalCtorsAndDtors(llvm::GlobalVariable *globalVar) {
968   if (!globalVar->hasInitializer() || !globalVar->hasAppendingLinkage())
969     return failure();
970   auto *initializer =
971       dyn_cast<llvm::ConstantArray>(globalVar->getInitializer());
972   if (!initializer)
973     return failure();
974 
975   SmallVector<Attribute> funcs;
976   SmallVector<int32_t> priorities;
977   for (llvm::Value *operand : initializer->operands()) {
978     auto *aggregate = dyn_cast<llvm::ConstantAggregate>(operand);
979     if (!aggregate || aggregate->getNumOperands() != 3)
980       return failure();
981 
982     auto *priority = dyn_cast<llvm::ConstantInt>(aggregate->getOperand(0));
983     auto *func = dyn_cast<llvm::Function>(aggregate->getOperand(1));
984     auto *data = dyn_cast<llvm::Constant>(aggregate->getOperand(2));
985     if (!priority || !func || !data)
986       return failure();
987 
988     // GlobalCtorsOps and GlobalDtorsOps do not support non-null data fields.
989     if (!data->isNullValue())
990       return failure();
991 
992     funcs.push_back(FlatSymbolRefAttr::get(context, func->getName()));
993     priorities.push_back(priority->getValue().getZExtValue());
994   }
995 
996   OpBuilder::InsertionGuard guard(builder);
997   if (!globalInsertionOp)
998     builder.setInsertionPointToStart(mlirModule.getBody());
999   else
1000     builder.setInsertionPointAfter(globalInsertionOp);
1001 
1002   if (globalVar->getName() == getGlobalCtorsVarName()) {
1003     globalInsertionOp = builder.create<LLVM::GlobalCtorsOp>(
1004         mlirModule.getLoc(), builder.getArrayAttr(funcs),
1005         builder.getI32ArrayAttr(priorities));
1006     return success();
1007   }
1008   globalInsertionOp = builder.create<LLVM::GlobalDtorsOp>(
1009       mlirModule.getLoc(), builder.getArrayAttr(funcs),
1010       builder.getI32ArrayAttr(priorities));
1011   return success();
1012 }
1013 
1014 SetVector<llvm::Constant *>
1015 ModuleImport::getConstantsToConvert(llvm::Constant *constant) {
1016   // Return the empty set if the constant has been translated before.
1017   if (valueMapping.contains(constant))
1018     return {};
1019 
1020   // Traverse the constants in post-order and stop the traversal if a constant
1021   // already has a `valueMapping` from an earlier constant translation or if the
1022   // constant is traversed a second time.
1023   SetVector<llvm::Constant *> orderedSet;
1024   SetVector<llvm::Constant *> workList;
1025   DenseMap<llvm::Constant *, SmallVector<llvm::Constant *>> adjacencyLists;
1026   workList.insert(constant);
1027   while (!workList.empty()) {
1028     llvm::Constant *current = workList.back();
1029     // References of global objects are just pointers to the object. Avoid
1030     // walking the elements of these here.
1031     if (isa<llvm::GlobalObject>(current)) {
1032       orderedSet.insert(current);
1033       workList.pop_back();
1034       continue;
1035     }
1036 
1037     // Collect all dependencies of the current constant and add them to the
1038     // adjacency list if none has been computed before.
1039     auto [adjacencyIt, inserted] = adjacencyLists.try_emplace(current);
1040     if (inserted) {
1041       // Add all constant operands to the adjacency list and skip any other
1042       // values such as basic block addresses.
1043       for (llvm::Value *operand : current->operands())
1044         if (auto *constDependency = dyn_cast<llvm::Constant>(operand))
1045           adjacencyIt->getSecond().push_back(constDependency);
1046       // Use the getElementValue method to add the dependencies of zero
1047       // initialized aggregate constants since they do not take any operands.
1048       if (auto *constAgg = dyn_cast<llvm::ConstantAggregateZero>(current)) {
1049         unsigned numElements = constAgg->getElementCount().getFixedValue();
1050         for (unsigned i = 0, e = numElements; i != e; ++i)
1051           adjacencyIt->getSecond().push_back(constAgg->getElementValue(i));
1052       }
1053     }
1054     // Add the current constant to the `orderedSet` of the traversed nodes if
1055     // all its dependencies have been traversed before. Additionally, remove the
1056     // constant from the `workList` and continue the traversal.
1057     if (adjacencyIt->getSecond().empty()) {
1058       orderedSet.insert(current);
1059       workList.pop_back();
1060       continue;
1061     }
1062     // Add the next dependency from the adjacency list to the `workList` and
1063     // continue the traversal. Remove the dependency from the adjacency list to
1064     // mark that it has been processed. Only enqueue the dependency if it has no
1065     // `valueMapping` from an earlier translation and if it has not been
1066     // enqueued before.
1067     llvm::Constant *dependency = adjacencyIt->getSecond().pop_back_val();
1068     if (valueMapping.contains(dependency) || workList.contains(dependency) ||
1069         orderedSet.contains(dependency))
1070       continue;
1071     workList.insert(dependency);
1072   }
1073 
1074   return orderedSet;
1075 }
1076 
1077 FailureOr<Value> ModuleImport::convertConstant(llvm::Constant *constant) {
1078   Location loc = UnknownLoc::get(context);
1079 
1080   // Convert constants that can be represented as attributes.
1081   if (Attribute attr = getConstantAsAttr(constant)) {
1082     Type type = convertType(constant->getType());
1083     if (auto symbolRef = dyn_cast<FlatSymbolRefAttr>(attr)) {
1084       return builder.create<AddressOfOp>(loc, type, symbolRef.getValue())
1085           .getResult();
1086     }
1087     return builder.create<ConstantOp>(loc, type, attr).getResult();
1088   }
1089 
1090   // Convert null pointer constants.
1091   if (auto *nullPtr = dyn_cast<llvm::ConstantPointerNull>(constant)) {
1092     Type type = convertType(nullPtr->getType());
1093     return builder.create<ZeroOp>(loc, type).getResult();
1094   }
1095 
1096   // Convert none token constants.
1097   if (isa<llvm::ConstantTokenNone>(constant)) {
1098     return builder.create<NoneTokenOp>(loc).getResult();
1099   }
1100 
1101   // Convert poison.
1102   if (auto *poisonVal = dyn_cast<llvm::PoisonValue>(constant)) {
1103     Type type = convertType(poisonVal->getType());
1104     return builder.create<PoisonOp>(loc, type).getResult();
1105   }
1106 
1107   // Convert undef.
1108   if (auto *undefVal = dyn_cast<llvm::UndefValue>(constant)) {
1109     Type type = convertType(undefVal->getType());
1110     return builder.create<UndefOp>(loc, type).getResult();
1111   }
1112 
1113   // Convert global variable accesses.
1114   if (auto *globalObj = dyn_cast<llvm::GlobalObject>(constant)) {
1115     Type type = convertType(globalObj->getType());
1116     StringRef globalName = globalObj->getName();
1117     FlatSymbolRefAttr symbolRef;
1118     // Empty names are only allowed for global variables.
1119     if (globalName.empty())
1120       symbolRef =
1121           getOrCreateNamelessSymbolName(cast<llvm::GlobalVariable>(globalObj));
1122     else
1123       symbolRef = FlatSymbolRefAttr::get(context, globalName);
1124     return builder.create<AddressOfOp>(loc, type, symbolRef).getResult();
1125   }
1126 
1127   // Convert constant expressions.
1128   if (auto *constExpr = dyn_cast<llvm::ConstantExpr>(constant)) {
1129     // Convert the constant expression to a temporary LLVM instruction and
1130     // translate it using the `processInstruction` method. Delete the
1131     // instruction after the translation and remove it from `valueMapping`,
1132     // since later calls to `getAsInstruction` may return the same address
1133     // resulting in a conflicting `valueMapping` entry.
1134     llvm::Instruction *inst = constExpr->getAsInstruction();
1135     auto guard = llvm::make_scope_exit([&]() {
1136       assert(!noResultOpMapping.contains(inst) &&
1137              "expected constant expression to return a result");
1138       valueMapping.erase(inst);
1139       inst->deleteValue();
1140     });
1141     // Note: `processInstruction` does not call `convertConstant` recursively
1142     // since all constant dependencies have been converted before.
1143     assert(llvm::all_of(inst->operands(), [&](llvm::Value *value) {
1144       return valueMapping.contains(value);
1145     }));
1146     if (failed(processInstruction(inst)))
1147       return failure();
1148     return lookupValue(inst);
1149   }
1150 
1151   // Convert aggregate constants.
1152   if (isa<llvm::ConstantAggregate>(constant) ||
1153       isa<llvm::ConstantAggregateZero>(constant)) {
1154     // Lookup the aggregate elements that have been converted before.
1155     SmallVector<Value> elementValues;
1156     if (auto *constAgg = dyn_cast<llvm::ConstantAggregate>(constant)) {
1157       elementValues.reserve(constAgg->getNumOperands());
1158       for (llvm::Value *operand : constAgg->operands())
1159         elementValues.push_back(lookupValue(operand));
1160     }
1161     if (auto *constAgg = dyn_cast<llvm::ConstantAggregateZero>(constant)) {
1162       unsigned numElements = constAgg->getElementCount().getFixedValue();
1163       elementValues.reserve(numElements);
1164       for (unsigned i = 0, e = numElements; i != e; ++i)
1165         elementValues.push_back(lookupValue(constAgg->getElementValue(i)));
1166     }
1167     assert(llvm::count(elementValues, nullptr) == 0 &&
1168            "expected all elements have been converted before");
1169 
1170     // Generate an UndefOp as root value and insert the aggregate elements.
1171     Type rootType = convertType(constant->getType());
1172     bool isArrayOrStruct = isa<LLVMArrayType, LLVMStructType>(rootType);
1173     assert((isArrayOrStruct || LLVM::isCompatibleVectorType(rootType)) &&
1174            "unrecognized aggregate type");
1175     Value root = builder.create<UndefOp>(loc, rootType);
1176     for (const auto &it : llvm::enumerate(elementValues)) {
1177       if (isArrayOrStruct) {
1178         root = builder.create<InsertValueOp>(loc, root, it.value(), it.index());
1179       } else {
1180         Attribute indexAttr = builder.getI32IntegerAttr(it.index());
1181         Value indexValue =
1182             builder.create<ConstantOp>(loc, builder.getI32Type(), indexAttr);
1183         root = builder.create<InsertElementOp>(loc, rootType, root, it.value(),
1184                                                indexValue);
1185       }
1186     }
1187     return root;
1188   }
1189 
1190   if (auto *constTargetNone = dyn_cast<llvm::ConstantTargetNone>(constant)) {
1191     LLVMTargetExtType targetExtType =
1192         cast<LLVMTargetExtType>(convertType(constTargetNone->getType()));
1193     assert(targetExtType.hasProperty(LLVMTargetExtType::HasZeroInit) &&
1194            "target extension type does not support zero-initialization");
1195     // Create llvm.mlir.zero operation to represent zero-initialization of
1196     // target extension type.
1197     return builder.create<LLVM::ZeroOp>(loc, targetExtType).getRes();
1198   }
1199 
1200   StringRef error = "";
1201   if (isa<llvm::BlockAddress>(constant))
1202     error = " since blockaddress(...) is unsupported";
1203 
1204   return emitError(loc) << "unhandled constant: " << diag(*constant) << error;
1205 }
1206 
1207 FailureOr<Value> ModuleImport::convertConstantExpr(llvm::Constant *constant) {
1208   // Only call the function for constants that have not been translated before
1209   // since it updates the constant insertion point assuming the converted
1210   // constant has been introduced at the end of the constant section.
1211   assert(!valueMapping.contains(constant) &&
1212          "expected constant has not been converted before");
1213   assert(constantInsertionBlock &&
1214          "expected the constant insertion block to be non-null");
1215 
1216   // Insert the constant after the last one or at the start of the entry block.
1217   OpBuilder::InsertionGuard guard(builder);
1218   if (!constantInsertionOp)
1219     builder.setInsertionPointToStart(constantInsertionBlock);
1220   else
1221     builder.setInsertionPointAfter(constantInsertionOp);
1222 
1223   // Convert all constants of the expression and add them to `valueMapping`.
1224   SetVector<llvm::Constant *> constantsToConvert =
1225       getConstantsToConvert(constant);
1226   for (llvm::Constant *constantToConvert : constantsToConvert) {
1227     FailureOr<Value> converted = convertConstant(constantToConvert);
1228     if (failed(converted))
1229       return failure();
1230     mapValue(constantToConvert, *converted);
1231   }
1232 
1233   // Update the constant insertion point and return the converted constant.
1234   Value result = lookupValue(constant);
1235   constantInsertionOp = result.getDefiningOp();
1236   return result;
1237 }
1238 
1239 FailureOr<Value> ModuleImport::convertValue(llvm::Value *value) {
1240   assert(!isa<llvm::MetadataAsValue>(value) &&
1241          "expected value to not be metadata");
1242 
1243   // Return the mapped value if it has been converted before.
1244   auto it = valueMapping.find(value);
1245   if (it != valueMapping.end())
1246     return it->getSecond();
1247 
1248   // Convert constants such as immediate values that have no mapping yet.
1249   if (auto *constant = dyn_cast<llvm::Constant>(value))
1250     return convertConstantExpr(constant);
1251 
1252   Location loc = UnknownLoc::get(context);
1253   if (auto *inst = dyn_cast<llvm::Instruction>(value))
1254     loc = translateLoc(inst->getDebugLoc());
1255   return emitError(loc) << "unhandled value: " << diag(*value);
1256 }
1257 
1258 FailureOr<Value> ModuleImport::convertMetadataValue(llvm::Value *value) {
1259   // A value may be wrapped as metadata, for example, when passed to a debug
1260   // intrinsic. Unwrap these values before the conversion.
1261   auto *nodeAsVal = dyn_cast<llvm::MetadataAsValue>(value);
1262   if (!nodeAsVal)
1263     return failure();
1264   auto *node = dyn_cast<llvm::ValueAsMetadata>(nodeAsVal->getMetadata());
1265   if (!node)
1266     return failure();
1267   value = node->getValue();
1268 
1269   // Return the mapped value if it has been converted before.
1270   auto it = valueMapping.find(value);
1271   if (it != valueMapping.end())
1272     return it->getSecond();
1273 
1274   // Convert constants such as immediate values that have no mapping yet.
1275   if (auto *constant = dyn_cast<llvm::Constant>(value))
1276     return convertConstantExpr(constant);
1277   return failure();
1278 }
1279 
1280 FailureOr<SmallVector<Value>>
1281 ModuleImport::convertValues(ArrayRef<llvm::Value *> values) {
1282   SmallVector<Value> remapped;
1283   remapped.reserve(values.size());
1284   for (llvm::Value *value : values) {
1285     FailureOr<Value> converted = convertValue(value);
1286     if (failed(converted))
1287       return failure();
1288     remapped.push_back(*converted);
1289   }
1290   return remapped;
1291 }
1292 
1293 LogicalResult ModuleImport::convertIntrinsicArguments(
1294     ArrayRef<llvm::Value *> values, ArrayRef<unsigned> immArgPositions,
1295     ArrayRef<StringLiteral> immArgAttrNames, SmallVectorImpl<Value> &valuesOut,
1296     SmallVectorImpl<NamedAttribute> &attrsOut) {
1297   assert(immArgPositions.size() == immArgAttrNames.size() &&
1298          "LLVM `immArgPositions` and MLIR `immArgAttrNames` should have equal "
1299          "length");
1300 
1301   SmallVector<llvm::Value *> operands(values);
1302   for (auto [immArgPos, immArgName] :
1303        llvm::zip(immArgPositions, immArgAttrNames)) {
1304     auto &value = operands[immArgPos];
1305     auto *constant = llvm::cast<llvm::Constant>(value);
1306     auto attr = getScalarConstantAsAttr(builder, constant);
1307     assert(attr && attr.getType().isIntOrFloat() &&
1308            "expected immarg to be float or integer constant");
1309     auto nameAttr = StringAttr::get(attr.getContext(), immArgName);
1310     attrsOut.push_back({nameAttr, attr});
1311     // Mark matched attribute values as null (so they can be removed below).
1312     value = nullptr;
1313   }
1314 
1315   for (llvm::Value *value : operands) {
1316     if (!value)
1317       continue;
1318     auto mlirValue = convertValue(value);
1319     if (failed(mlirValue))
1320       return failure();
1321     valuesOut.push_back(*mlirValue);
1322   }
1323 
1324   return success();
1325 }
1326 
1327 IntegerAttr ModuleImport::matchIntegerAttr(llvm::Value *value) {
1328   IntegerAttr integerAttr;
1329   FailureOr<Value> converted = convertValue(value);
1330   bool success = succeeded(converted) &&
1331                  matchPattern(*converted, m_Constant(&integerAttr));
1332   assert(success && "expected a constant integer value");
1333   (void)success;
1334   return integerAttr;
1335 }
1336 
1337 FloatAttr ModuleImport::matchFloatAttr(llvm::Value *value) {
1338   FloatAttr floatAttr;
1339   FailureOr<Value> converted = convertValue(value);
1340   bool success =
1341       succeeded(converted) && matchPattern(*converted, m_Constant(&floatAttr));
1342   assert(success && "expected a constant float value");
1343   (void)success;
1344   return floatAttr;
1345 }
1346 
1347 DILocalVariableAttr ModuleImport::matchLocalVariableAttr(llvm::Value *value) {
1348   auto *nodeAsVal = cast<llvm::MetadataAsValue>(value);
1349   auto *node = cast<llvm::DILocalVariable>(nodeAsVal->getMetadata());
1350   return debugImporter->translate(node);
1351 }
1352 
1353 DILabelAttr ModuleImport::matchLabelAttr(llvm::Value *value) {
1354   auto *nodeAsVal = cast<llvm::MetadataAsValue>(value);
1355   auto *node = cast<llvm::DILabel>(nodeAsVal->getMetadata());
1356   return debugImporter->translate(node);
1357 }
1358 
1359 FPExceptionBehaviorAttr
1360 ModuleImport::matchFPExceptionBehaviorAttr(llvm::Value *value) {
1361   auto *metadata = cast<llvm::MetadataAsValue>(value);
1362   auto *mdstr = cast<llvm::MDString>(metadata->getMetadata());
1363   std::optional<llvm::fp::ExceptionBehavior> optLLVM =
1364       llvm::convertStrToExceptionBehavior(mdstr->getString());
1365   assert(optLLVM && "Expecting FP exception behavior");
1366   return builder.getAttr<FPExceptionBehaviorAttr>(
1367       convertFPExceptionBehaviorFromLLVM(*optLLVM));
1368 }
1369 
1370 RoundingModeAttr ModuleImport::matchRoundingModeAttr(llvm::Value *value) {
1371   auto *metadata = cast<llvm::MetadataAsValue>(value);
1372   auto *mdstr = cast<llvm::MDString>(metadata->getMetadata());
1373   std::optional<llvm::RoundingMode> optLLVM =
1374       llvm::convertStrToRoundingMode(mdstr->getString());
1375   assert(optLLVM && "Expecting rounding mode");
1376   return builder.getAttr<RoundingModeAttr>(
1377       convertRoundingModeFromLLVM(*optLLVM));
1378 }
1379 
1380 FailureOr<SmallVector<AliasScopeAttr>>
1381 ModuleImport::matchAliasScopeAttrs(llvm::Value *value) {
1382   auto *nodeAsVal = cast<llvm::MetadataAsValue>(value);
1383   auto *node = cast<llvm::MDNode>(nodeAsVal->getMetadata());
1384   return lookupAliasScopeAttrs(node);
1385 }
1386 
1387 Location ModuleImport::translateLoc(llvm::DILocation *loc) {
1388   return debugImporter->translateLoc(loc);
1389 }
1390 
1391 LogicalResult
1392 ModuleImport::convertBranchArgs(llvm::Instruction *branch,
1393                                 llvm::BasicBlock *target,
1394                                 SmallVectorImpl<Value> &blockArguments) {
1395   for (auto inst = target->begin(); isa<llvm::PHINode>(inst); ++inst) {
1396     auto *phiInst = cast<llvm::PHINode>(&*inst);
1397     llvm::Value *value = phiInst->getIncomingValueForBlock(branch->getParent());
1398     FailureOr<Value> converted = convertValue(value);
1399     if (failed(converted))
1400       return failure();
1401     blockArguments.push_back(*converted);
1402   }
1403   return success();
1404 }
1405 
1406 LogicalResult
1407 ModuleImport::convertCallTypeAndOperands(llvm::CallBase *callInst,
1408                                          SmallVectorImpl<Type> &types,
1409                                          SmallVectorImpl<Value> &operands) {
1410   if (!callInst->getType()->isVoidTy())
1411     types.push_back(convertType(callInst->getType()));
1412 
1413   if (!callInst->getCalledFunction()) {
1414     FailureOr<Value> called = convertValue(callInst->getCalledOperand());
1415     if (failed(called))
1416       return failure();
1417     operands.push_back(*called);
1418   }
1419   SmallVector<llvm::Value *> args(callInst->args());
1420   FailureOr<SmallVector<Value>> arguments = convertValues(args);
1421   if (failed(arguments))
1422     return failure();
1423   llvm::append_range(operands, *arguments);
1424   return success();
1425 }
1426 
1427 LogicalResult ModuleImport::convertIntrinsic(llvm::CallInst *inst) {
1428   if (succeeded(iface.convertIntrinsic(builder, inst, *this)))
1429     return success();
1430 
1431   Location loc = translateLoc(inst->getDebugLoc());
1432   return emitError(loc) << "unhandled intrinsic: " << diag(*inst);
1433 }
1434 
1435 LogicalResult ModuleImport::convertInstruction(llvm::Instruction *inst) {
1436   // Convert all instructions that do not provide an MLIR builder.
1437   Location loc = translateLoc(inst->getDebugLoc());
1438   if (inst->getOpcode() == llvm::Instruction::Br) {
1439     auto *brInst = cast<llvm::BranchInst>(inst);
1440 
1441     SmallVector<Block *> succBlocks;
1442     SmallVector<SmallVector<Value>> succBlockArgs;
1443     for (auto i : llvm::seq<unsigned>(0, brInst->getNumSuccessors())) {
1444       llvm::BasicBlock *succ = brInst->getSuccessor(i);
1445       SmallVector<Value> blockArgs;
1446       if (failed(convertBranchArgs(brInst, succ, blockArgs)))
1447         return failure();
1448       succBlocks.push_back(lookupBlock(succ));
1449       succBlockArgs.push_back(blockArgs);
1450     }
1451 
1452     if (!brInst->isConditional()) {
1453       auto brOp = builder.create<LLVM::BrOp>(loc, succBlockArgs.front(),
1454                                              succBlocks.front());
1455       mapNoResultOp(inst, brOp);
1456       return success();
1457     }
1458     FailureOr<Value> condition = convertValue(brInst->getCondition());
1459     if (failed(condition))
1460       return failure();
1461     auto condBrOp = builder.create<LLVM::CondBrOp>(
1462         loc, *condition, succBlocks.front(), succBlockArgs.front(),
1463         succBlocks.back(), succBlockArgs.back());
1464     mapNoResultOp(inst, condBrOp);
1465     return success();
1466   }
1467   if (inst->getOpcode() == llvm::Instruction::Switch) {
1468     auto *swInst = cast<llvm::SwitchInst>(inst);
1469     // Process the condition value.
1470     FailureOr<Value> condition = convertValue(swInst->getCondition());
1471     if (failed(condition))
1472       return failure();
1473     SmallVector<Value> defaultBlockArgs;
1474     // Process the default case.
1475     llvm::BasicBlock *defaultBB = swInst->getDefaultDest();
1476     if (failed(convertBranchArgs(swInst, defaultBB, defaultBlockArgs)))
1477       return failure();
1478 
1479     // Process the cases.
1480     unsigned numCases = swInst->getNumCases();
1481     SmallVector<SmallVector<Value>> caseOperands(numCases);
1482     SmallVector<ValueRange> caseOperandRefs(numCases);
1483     SmallVector<APInt> caseValues(numCases);
1484     SmallVector<Block *> caseBlocks(numCases);
1485     for (const auto &it : llvm::enumerate(swInst->cases())) {
1486       const llvm::SwitchInst::CaseHandle &caseHandle = it.value();
1487       llvm::BasicBlock *succBB = caseHandle.getCaseSuccessor();
1488       if (failed(convertBranchArgs(swInst, succBB, caseOperands[it.index()])))
1489         return failure();
1490       caseOperandRefs[it.index()] = caseOperands[it.index()];
1491       caseValues[it.index()] = caseHandle.getCaseValue()->getValue();
1492       caseBlocks[it.index()] = lookupBlock(succBB);
1493     }
1494 
1495     auto switchOp = builder.create<SwitchOp>(
1496         loc, *condition, lookupBlock(defaultBB), defaultBlockArgs, caseValues,
1497         caseBlocks, caseOperandRefs);
1498     mapNoResultOp(inst, switchOp);
1499     return success();
1500   }
1501   if (inst->getOpcode() == llvm::Instruction::PHI) {
1502     Type type = convertType(inst->getType());
1503     mapValue(inst, builder.getInsertionBlock()->addArgument(
1504                        type, translateLoc(inst->getDebugLoc())));
1505     return success();
1506   }
1507   if (inst->getOpcode() == llvm::Instruction::Call) {
1508     auto *callInst = cast<llvm::CallInst>(inst);
1509 
1510     SmallVector<Type> types;
1511     SmallVector<Value> operands;
1512     if (failed(convertCallTypeAndOperands(callInst, types, operands)))
1513       return failure();
1514 
1515     auto funcTy =
1516         dyn_cast<LLVMFunctionType>(convertType(callInst->getFunctionType()));
1517     if (!funcTy)
1518       return failure();
1519 
1520     CallOp callOp;
1521 
1522     if (llvm::Function *callee = callInst->getCalledFunction()) {
1523       callOp = builder.create<CallOp>(
1524           loc, funcTy, SymbolRefAttr::get(context, callee->getName()),
1525           operands);
1526     } else {
1527       callOp = builder.create<CallOp>(loc, funcTy, operands);
1528     }
1529     callOp.setCConv(convertCConvFromLLVM(callInst->getCallingConv()));
1530     callOp.setTailCallKind(
1531         convertTailCallKindFromLLVM(callInst->getTailCallKind()));
1532     setFastmathFlagsAttr(inst, callOp);
1533 
1534     // Handle function attributes.
1535     if (callInst->hasFnAttr(llvm::Attribute::Convergent))
1536       callOp.setConvergent(true);
1537     if (callInst->hasFnAttr(llvm::Attribute::NoUnwind))
1538       callOp.setNoUnwind(true);
1539     if (callInst->hasFnAttr(llvm::Attribute::WillReturn))
1540       callOp.setWillReturn(true);
1541 
1542     llvm::MemoryEffects memEffects = callInst->getMemoryEffects();
1543     ModRefInfo othermem = convertModRefInfoFromLLVM(
1544         memEffects.getModRef(llvm::MemoryEffects::Location::Other));
1545     ModRefInfo argMem = convertModRefInfoFromLLVM(
1546         memEffects.getModRef(llvm::MemoryEffects::Location::ArgMem));
1547     ModRefInfo inaccessibleMem = convertModRefInfoFromLLVM(
1548         memEffects.getModRef(llvm::MemoryEffects::Location::InaccessibleMem));
1549     auto memAttr = MemoryEffectsAttr::get(callOp.getContext(), othermem, argMem,
1550                                           inaccessibleMem);
1551     // Only set the attribute when it does not match the default value.
1552     if (!memAttr.isReadWrite())
1553       callOp.setMemoryEffectsAttr(memAttr);
1554 
1555     if (!callInst->getType()->isVoidTy())
1556       mapValue(inst, callOp.getResult());
1557     else
1558       mapNoResultOp(inst, callOp);
1559     return success();
1560   }
1561   if (inst->getOpcode() == llvm::Instruction::LandingPad) {
1562     auto *lpInst = cast<llvm::LandingPadInst>(inst);
1563 
1564     SmallVector<Value> operands;
1565     operands.reserve(lpInst->getNumClauses());
1566     for (auto i : llvm::seq<unsigned>(0, lpInst->getNumClauses())) {
1567       FailureOr<Value> operand = convertValue(lpInst->getClause(i));
1568       if (failed(operand))
1569         return failure();
1570       operands.push_back(*operand);
1571     }
1572 
1573     Type type = convertType(lpInst->getType());
1574     auto lpOp =
1575         builder.create<LandingpadOp>(loc, type, lpInst->isCleanup(), operands);
1576     mapValue(inst, lpOp);
1577     return success();
1578   }
1579   if (inst->getOpcode() == llvm::Instruction::Invoke) {
1580     auto *invokeInst = cast<llvm::InvokeInst>(inst);
1581 
1582     SmallVector<Type> types;
1583     SmallVector<Value> operands;
1584     if (failed(convertCallTypeAndOperands(invokeInst, types, operands)))
1585       return failure();
1586 
1587     // Check whether the invoke result is an argument to the normal destination
1588     // block.
1589     bool invokeResultUsedInPhi = llvm::any_of(
1590         invokeInst->getNormalDest()->phis(), [&](const llvm::PHINode &phi) {
1591           return phi.getIncomingValueForBlock(invokeInst->getParent()) ==
1592                  invokeInst;
1593         });
1594 
1595     Block *normalDest = lookupBlock(invokeInst->getNormalDest());
1596     Block *directNormalDest = normalDest;
1597     if (invokeResultUsedInPhi) {
1598       // The invoke result cannot be an argument to the normal destination
1599       // block, as that would imply using the invoke operation result in its
1600       // definition, so we need to create a dummy block to serve as an
1601       // intermediate destination.
1602       OpBuilder::InsertionGuard g(builder);
1603       directNormalDest = builder.createBlock(normalDest);
1604     }
1605 
1606     SmallVector<Value> unwindArgs;
1607     if (failed(convertBranchArgs(invokeInst, invokeInst->getUnwindDest(),
1608                                  unwindArgs)))
1609       return failure();
1610 
1611     auto funcTy =
1612         dyn_cast<LLVMFunctionType>(convertType(invokeInst->getFunctionType()));
1613     if (!funcTy)
1614       return failure();
1615 
1616     // Create the invoke operation. Normal destination block arguments will be
1617     // added later on to handle the case in which the operation result is
1618     // included in this list.
1619     InvokeOp invokeOp;
1620     if (llvm::Function *callee = invokeInst->getCalledFunction()) {
1621       invokeOp = builder.create<InvokeOp>(
1622           loc, funcTy,
1623           SymbolRefAttr::get(builder.getContext(), callee->getName()), operands,
1624           directNormalDest, ValueRange(),
1625           lookupBlock(invokeInst->getUnwindDest()), unwindArgs);
1626     } else {
1627       invokeOp = builder.create<InvokeOp>(
1628           loc, funcTy, /*callee=*/nullptr, operands, directNormalDest,
1629           ValueRange(), lookupBlock(invokeInst->getUnwindDest()), unwindArgs);
1630     }
1631     invokeOp.setCConv(convertCConvFromLLVM(invokeInst->getCallingConv()));
1632     if (!invokeInst->getType()->isVoidTy())
1633       mapValue(inst, invokeOp.getResults().front());
1634     else
1635       mapNoResultOp(inst, invokeOp);
1636 
1637     SmallVector<Value> normalArgs;
1638     if (failed(convertBranchArgs(invokeInst, invokeInst->getNormalDest(),
1639                                  normalArgs)))
1640       return failure();
1641 
1642     if (invokeResultUsedInPhi) {
1643       // The dummy normal dest block will just host an unconditional branch
1644       // instruction to the normal destination block passing the required block
1645       // arguments (including the invoke operation's result).
1646       OpBuilder::InsertionGuard g(builder);
1647       builder.setInsertionPointToStart(directNormalDest);
1648       builder.create<LLVM::BrOp>(loc, normalArgs, normalDest);
1649     } else {
1650       // If the invoke operation's result is not a block argument to the normal
1651       // destination block, just add the block arguments as usual.
1652       assert(llvm::none_of(
1653                  normalArgs,
1654                  [&](Value val) { return val.getDefiningOp() == invokeOp; }) &&
1655              "An llvm.invoke operation cannot pass its result as a block "
1656              "argument.");
1657       invokeOp.getNormalDestOperandsMutable().append(normalArgs);
1658     }
1659 
1660     return success();
1661   }
1662   if (inst->getOpcode() == llvm::Instruction::GetElementPtr) {
1663     auto *gepInst = cast<llvm::GetElementPtrInst>(inst);
1664     Type sourceElementType = convertType(gepInst->getSourceElementType());
1665     FailureOr<Value> basePtr = convertValue(gepInst->getOperand(0));
1666     if (failed(basePtr))
1667       return failure();
1668 
1669     // Treat every indices as dynamic since GEPOp::build will refine those
1670     // indices into static attributes later. One small downside of this
1671     // approach is that many unused `llvm.mlir.constant` would be emitted
1672     // at first place.
1673     SmallVector<GEPArg> indices;
1674     for (llvm::Value *operand : llvm::drop_begin(gepInst->operand_values())) {
1675       FailureOr<Value> index = convertValue(operand);
1676       if (failed(index))
1677         return failure();
1678       indices.push_back(*index);
1679     }
1680 
1681     Type type = convertType(inst->getType());
1682     auto gepOp = builder.create<GEPOp>(loc, type, sourceElementType, *basePtr,
1683                                        indices, gepInst->isInBounds());
1684     mapValue(inst, gepOp);
1685     return success();
1686   }
1687 
1688   // Convert all instructions that have an mlirBuilder.
1689   if (succeeded(convertInstructionImpl(builder, inst, *this, iface)))
1690     return success();
1691 
1692   return emitError(loc) << "unhandled instruction: " << diag(*inst);
1693 }
1694 
1695 LogicalResult ModuleImport::processInstruction(llvm::Instruction *inst) {
1696   // FIXME: Support uses of SubtargetData.
1697   // FIXME: Add support for call / operand attributes.
1698   // FIXME: Add support for the indirectbr, cleanupret, catchret, catchswitch,
1699   // callbr, vaarg, catchpad, cleanuppad instructions.
1700 
1701   // Convert LLVM intrinsics calls to MLIR intrinsics.
1702   if (auto *intrinsic = dyn_cast<llvm::IntrinsicInst>(inst))
1703     return convertIntrinsic(intrinsic);
1704 
1705   // Convert all remaining LLVM instructions to MLIR operations.
1706   return convertInstruction(inst);
1707 }
1708 
1709 FlatSymbolRefAttr ModuleImport::getPersonalityAsAttr(llvm::Function *f) {
1710   if (!f->hasPersonalityFn())
1711     return nullptr;
1712 
1713   llvm::Constant *pf = f->getPersonalityFn();
1714 
1715   // If it directly has a name, we can use it.
1716   if (pf->hasName())
1717     return SymbolRefAttr::get(builder.getContext(), pf->getName());
1718 
1719   // If it doesn't have a name, currently, only function pointers that are
1720   // bitcast to i8* are parsed.
1721   if (auto *ce = dyn_cast<llvm::ConstantExpr>(pf)) {
1722     if (ce->getOpcode() == llvm::Instruction::BitCast &&
1723         ce->getType() == llvm::PointerType::getUnqual(f->getContext())) {
1724       if (auto *func = dyn_cast<llvm::Function>(ce->getOperand(0)))
1725         return SymbolRefAttr::get(builder.getContext(), func->getName());
1726     }
1727   }
1728   return FlatSymbolRefAttr();
1729 }
1730 
1731 static void processMemoryEffects(llvm::Function *func, LLVMFuncOp funcOp) {
1732   llvm::MemoryEffects memEffects = func->getMemoryEffects();
1733 
1734   auto othermem = convertModRefInfoFromLLVM(
1735       memEffects.getModRef(llvm::MemoryEffects::Location::Other));
1736   auto argMem = convertModRefInfoFromLLVM(
1737       memEffects.getModRef(llvm::MemoryEffects::Location::ArgMem));
1738   auto inaccessibleMem = convertModRefInfoFromLLVM(
1739       memEffects.getModRef(llvm::MemoryEffects::Location::InaccessibleMem));
1740   auto memAttr = MemoryEffectsAttr::get(funcOp.getContext(), othermem, argMem,
1741                                         inaccessibleMem);
1742   // Only set the attr when it does not match the default value.
1743   if (memAttr.isReadWrite())
1744     return;
1745   funcOp.setMemoryEffectsAttr(memAttr);
1746 }
1747 
1748 // List of LLVM IR attributes that map to an explicit attribute on the MLIR
1749 // LLVMFuncOp.
1750 static constexpr std::array kExplicitAttributes{
1751     StringLiteral("aarch64_in_za"),
1752     StringLiteral("aarch64_inout_za"),
1753     StringLiteral("aarch64_new_za"),
1754     StringLiteral("aarch64_out_za"),
1755     StringLiteral("aarch64_preserves_za"),
1756     StringLiteral("aarch64_pstate_sm_body"),
1757     StringLiteral("aarch64_pstate_sm_compatible"),
1758     StringLiteral("aarch64_pstate_sm_enabled"),
1759     StringLiteral("alwaysinline"),
1760     StringLiteral("approx-func-fp-math"),
1761     StringLiteral("convergent"),
1762     StringLiteral("denormal-fp-math"),
1763     StringLiteral("denormal-fp-math-f32"),
1764     StringLiteral("fp-contract"),
1765     StringLiteral("frame-pointer"),
1766     StringLiteral("no-infs-fp-math"),
1767     StringLiteral("no-nans-fp-math"),
1768     StringLiteral("no-signed-zeros-fp-math"),
1769     StringLiteral("noinline"),
1770     StringLiteral("nounwind"),
1771     StringLiteral("optnone"),
1772     StringLiteral("target-features"),
1773     StringLiteral("tune-cpu"),
1774     StringLiteral("unsafe-fp-math"),
1775     StringLiteral("vscale_range"),
1776     StringLiteral("willreturn"),
1777 };
1778 
1779 static void processPassthroughAttrs(llvm::Function *func, LLVMFuncOp funcOp) {
1780   MLIRContext *context = funcOp.getContext();
1781   SmallVector<Attribute> passthroughs;
1782   llvm::AttributeSet funcAttrs = func->getAttributes().getAttributes(
1783       llvm::AttributeList::AttrIndex::FunctionIndex);
1784   for (llvm::Attribute attr : funcAttrs) {
1785     // Skip the memory attribute since the LLVMFuncOp has an explicit memory
1786     // attribute.
1787     if (attr.hasAttribute(llvm::Attribute::Memory))
1788       continue;
1789 
1790     // Skip invalid type attributes.
1791     if (attr.isTypeAttribute()) {
1792       emitWarning(funcOp.getLoc(),
1793                   "type attributes on a function are invalid, skipping it");
1794       continue;
1795     }
1796 
1797     StringRef attrName;
1798     if (attr.isStringAttribute())
1799       attrName = attr.getKindAsString();
1800     else
1801       attrName = llvm::Attribute::getNameFromAttrKind(attr.getKindAsEnum());
1802     auto keyAttr = StringAttr::get(context, attrName);
1803 
1804     // Skip attributes that map to an explicit attribute on the LLVMFuncOp.
1805     if (llvm::is_contained(kExplicitAttributes, attrName))
1806       continue;
1807 
1808     if (attr.isStringAttribute()) {
1809       StringRef val = attr.getValueAsString();
1810       if (val.empty()) {
1811         passthroughs.push_back(keyAttr);
1812         continue;
1813       }
1814       passthroughs.push_back(
1815           ArrayAttr::get(context, {keyAttr, StringAttr::get(context, val)}));
1816       continue;
1817     }
1818     if (attr.isIntAttribute()) {
1819       auto val = std::to_string(attr.getValueAsInt());
1820       passthroughs.push_back(
1821           ArrayAttr::get(context, {keyAttr, StringAttr::get(context, val)}));
1822       continue;
1823     }
1824     if (attr.isEnumAttribute()) {
1825       passthroughs.push_back(keyAttr);
1826       continue;
1827     }
1828 
1829     llvm_unreachable("unexpected attribute kind");
1830   }
1831 
1832   if (!passthroughs.empty())
1833     funcOp.setPassthroughAttr(ArrayAttr::get(context, passthroughs));
1834 }
1835 
1836 void ModuleImport::processFunctionAttributes(llvm::Function *func,
1837                                              LLVMFuncOp funcOp) {
1838   processMemoryEffects(func, funcOp);
1839   processPassthroughAttrs(func, funcOp);
1840 
1841   if (func->hasFnAttribute(llvm::Attribute::NoInline))
1842     funcOp.setNoInline(true);
1843   if (func->hasFnAttribute(llvm::Attribute::AlwaysInline))
1844     funcOp.setAlwaysInline(true);
1845   if (func->hasFnAttribute(llvm::Attribute::OptimizeNone))
1846     funcOp.setOptimizeNone(true);
1847   if (func->hasFnAttribute(llvm::Attribute::Convergent))
1848     funcOp.setConvergent(true);
1849   if (func->hasFnAttribute(llvm::Attribute::NoUnwind))
1850     funcOp.setNoUnwind(true);
1851   if (func->hasFnAttribute(llvm::Attribute::WillReturn))
1852     funcOp.setWillReturn(true);
1853 
1854   if (func->hasFnAttribute("aarch64_pstate_sm_enabled"))
1855     funcOp.setArmStreaming(true);
1856   else if (func->hasFnAttribute("aarch64_pstate_sm_body"))
1857     funcOp.setArmLocallyStreaming(true);
1858   else if (func->hasFnAttribute("aarch64_pstate_sm_compatible"))
1859     funcOp.setArmStreamingCompatible(true);
1860 
1861   if (func->hasFnAttribute("aarch64_new_za"))
1862     funcOp.setArmNewZa(true);
1863   else if (func->hasFnAttribute("aarch64_in_za"))
1864     funcOp.setArmInZa(true);
1865   else if (func->hasFnAttribute("aarch64_out_za"))
1866     funcOp.setArmOutZa(true);
1867   else if (func->hasFnAttribute("aarch64_inout_za"))
1868     funcOp.setArmInoutZa(true);
1869   else if (func->hasFnAttribute("aarch64_preserves_za"))
1870     funcOp.setArmPreservesZa(true);
1871 
1872   llvm::Attribute attr = func->getFnAttribute(llvm::Attribute::VScaleRange);
1873   if (attr.isValid()) {
1874     MLIRContext *context = funcOp.getContext();
1875     auto intTy = IntegerType::get(context, 32);
1876     funcOp.setVscaleRangeAttr(LLVM::VScaleRangeAttr::get(
1877         context, IntegerAttr::get(intTy, attr.getVScaleRangeMin()),
1878         IntegerAttr::get(intTy, attr.getVScaleRangeMax().value_or(0))));
1879   }
1880 
1881   // Process frame-pointer attribute.
1882   if (func->hasFnAttribute("frame-pointer")) {
1883     StringRef stringRefFramePointerKind =
1884         func->getFnAttribute("frame-pointer").getValueAsString();
1885     funcOp.setFramePointerAttr(LLVM::FramePointerKindAttr::get(
1886         funcOp.getContext(), LLVM::framePointerKind::symbolizeFramePointerKind(
1887                                  stringRefFramePointerKind)
1888                                  .value()));
1889   }
1890 
1891   if (llvm::Attribute attr = func->getFnAttribute("target-cpu");
1892       attr.isStringAttribute())
1893     funcOp.setTargetCpuAttr(StringAttr::get(context, attr.getValueAsString()));
1894 
1895   if (llvm::Attribute attr = func->getFnAttribute("tune-cpu");
1896       attr.isStringAttribute())
1897     funcOp.setTuneCpuAttr(StringAttr::get(context, attr.getValueAsString()));
1898 
1899   if (llvm::Attribute attr = func->getFnAttribute("target-features");
1900       attr.isStringAttribute())
1901     funcOp.setTargetFeaturesAttr(
1902         LLVM::TargetFeaturesAttr::get(context, attr.getValueAsString()));
1903 
1904   if (llvm::Attribute attr = func->getFnAttribute("unsafe-fp-math");
1905       attr.isStringAttribute())
1906     funcOp.setUnsafeFpMath(attr.getValueAsBool());
1907 
1908   if (llvm::Attribute attr = func->getFnAttribute("no-infs-fp-math");
1909       attr.isStringAttribute())
1910     funcOp.setNoInfsFpMath(attr.getValueAsBool());
1911 
1912   if (llvm::Attribute attr = func->getFnAttribute("no-nans-fp-math");
1913       attr.isStringAttribute())
1914     funcOp.setNoNansFpMath(attr.getValueAsBool());
1915 
1916   if (llvm::Attribute attr = func->getFnAttribute("approx-func-fp-math");
1917       attr.isStringAttribute())
1918     funcOp.setApproxFuncFpMath(attr.getValueAsBool());
1919 
1920   if (llvm::Attribute attr = func->getFnAttribute("no-signed-zeros-fp-math");
1921       attr.isStringAttribute())
1922     funcOp.setNoSignedZerosFpMath(attr.getValueAsBool());
1923 
1924   if (llvm::Attribute attr = func->getFnAttribute("denormal-fp-math");
1925       attr.isStringAttribute())
1926     funcOp.setDenormalFpMathAttr(
1927         StringAttr::get(context, attr.getValueAsString()));
1928 
1929   if (llvm::Attribute attr = func->getFnAttribute("denormal-fp-math-f32");
1930       attr.isStringAttribute())
1931     funcOp.setDenormalFpMathF32Attr(
1932         StringAttr::get(context, attr.getValueAsString()));
1933 
1934   if (llvm::Attribute attr = func->getFnAttribute("fp-contract");
1935       attr.isStringAttribute())
1936     funcOp.setFpContractAttr(StringAttr::get(context, attr.getValueAsString()));
1937 }
1938 
1939 DictionaryAttr
1940 ModuleImport::convertParameterAttribute(llvm::AttributeSet llvmParamAttrs,
1941                                         OpBuilder &builder) {
1942   SmallVector<NamedAttribute> paramAttrs;
1943   for (auto [llvmKind, mlirName] : getAttrKindToNameMapping()) {
1944     auto llvmAttr = llvmParamAttrs.getAttribute(llvmKind);
1945     // Skip attributes that are not attached.
1946     if (!llvmAttr.isValid())
1947       continue;
1948     Attribute mlirAttr;
1949     if (llvmAttr.isTypeAttribute())
1950       mlirAttr = TypeAttr::get(convertType(llvmAttr.getValueAsType()));
1951     else if (llvmAttr.isIntAttribute())
1952       mlirAttr = builder.getI64IntegerAttr(llvmAttr.getValueAsInt());
1953     else if (llvmAttr.isEnumAttribute())
1954       mlirAttr = builder.getUnitAttr();
1955     else
1956       llvm_unreachable("unexpected parameter attribute kind");
1957     paramAttrs.push_back(builder.getNamedAttr(mlirName, mlirAttr));
1958   }
1959 
1960   return builder.getDictionaryAttr(paramAttrs);
1961 }
1962 
1963 void ModuleImport::convertParameterAttributes(llvm::Function *func,
1964                                               LLVMFuncOp funcOp,
1965                                               OpBuilder &builder) {
1966   auto llvmAttrs = func->getAttributes();
1967   for (size_t i = 0, e = funcOp.getNumArguments(); i < e; ++i) {
1968     llvm::AttributeSet llvmArgAttrs = llvmAttrs.getParamAttrs(i);
1969     funcOp.setArgAttrs(i, convertParameterAttribute(llvmArgAttrs, builder));
1970   }
1971   // Convert the result attributes and attach them wrapped in an ArrayAttribute
1972   // to the funcOp.
1973   llvm::AttributeSet llvmResAttr = llvmAttrs.getRetAttrs();
1974   if (!llvmResAttr.hasAttributes())
1975     return;
1976   funcOp.setResAttrsAttr(
1977       builder.getArrayAttr(convertParameterAttribute(llvmResAttr, builder)));
1978 }
1979 
1980 LogicalResult ModuleImport::processFunction(llvm::Function *func) {
1981   clearRegionState();
1982 
1983   auto functionType =
1984       dyn_cast<LLVMFunctionType>(convertType(func->getFunctionType()));
1985   if (func->isIntrinsic() &&
1986       iface.isConvertibleIntrinsic(func->getIntrinsicID()))
1987     return success();
1988 
1989   bool dsoLocal = func->hasLocalLinkage();
1990   CConv cconv = convertCConvFromLLVM(func->getCallingConv());
1991 
1992   // Insert the function at the end of the module.
1993   OpBuilder::InsertionGuard guard(builder);
1994   builder.setInsertionPoint(mlirModule.getBody(), mlirModule.getBody()->end());
1995 
1996   Location loc = debugImporter->translateFuncLocation(func);
1997   LLVMFuncOp funcOp = builder.create<LLVMFuncOp>(
1998       loc, func->getName(), functionType,
1999       convertLinkageFromLLVM(func->getLinkage()), dsoLocal, cconv);
2000 
2001   convertParameterAttributes(func, funcOp, builder);
2002 
2003   if (FlatSymbolRefAttr personality = getPersonalityAsAttr(func))
2004     funcOp.setPersonalityAttr(personality);
2005   else if (func->hasPersonalityFn())
2006     emitWarning(funcOp.getLoc(), "could not deduce personality, skipping it");
2007 
2008   if (func->hasGC())
2009     funcOp.setGarbageCollector(StringRef(func->getGC()));
2010 
2011   if (func->hasAtLeastLocalUnnamedAddr())
2012     funcOp.setUnnamedAddr(convertUnnamedAddrFromLLVM(func->getUnnamedAddr()));
2013 
2014   if (func->hasSection())
2015     funcOp.setSection(StringRef(func->getSection()));
2016 
2017   funcOp.setVisibility_(convertVisibilityFromLLVM(func->getVisibility()));
2018 
2019   if (func->hasComdat())
2020     funcOp.setComdatAttr(comdatMapping.lookup(func->getComdat()));
2021 
2022   if (llvm::MaybeAlign maybeAlign = func->getAlign())
2023     funcOp.setAlignment(maybeAlign->value());
2024 
2025   // Handle Function attributes.
2026   processFunctionAttributes(func, funcOp);
2027 
2028   // Convert non-debug metadata by using the dialect interface.
2029   SmallVector<std::pair<unsigned, llvm::MDNode *>> allMetadata;
2030   func->getAllMetadata(allMetadata);
2031   for (auto &[kind, node] : allMetadata) {
2032     if (!iface.isConvertibleMetadata(kind))
2033       continue;
2034     if (failed(iface.setMetadataAttrs(builder, kind, node, funcOp, *this))) {
2035       emitWarning(funcOp.getLoc())
2036           << "unhandled function metadata: " << diagMD(node, llvmModule.get())
2037           << " on " << diag(*func);
2038     }
2039   }
2040 
2041   if (func->isDeclaration())
2042     return success();
2043 
2044   // Collect the set of basic blocks reachable from the function's entry block.
2045   // This step is crucial as LLVM IR can contain unreachable blocks that
2046   // self-dominate. As a result, an operation might utilize a variable it
2047   // defines, which the import does not support. Given that MLIR lacks block
2048   // label support, we can safely remove unreachable blocks, as there are no
2049   // indirect branch instructions that could potentially target these blocks.
2050   llvm::df_iterator_default_set<llvm::BasicBlock *> reachable;
2051   for (llvm::BasicBlock *basicBlock : llvm::depth_first_ext(func, reachable))
2052     (void)basicBlock;
2053 
2054   // Eagerly create all reachable blocks.
2055   SmallVector<llvm::BasicBlock *> reachableBasicBlocks;
2056   for (llvm::BasicBlock &basicBlock : *func) {
2057     // Skip unreachable blocks.
2058     if (!reachable.contains(&basicBlock))
2059       continue;
2060     Region &body = funcOp.getBody();
2061     Block *block = builder.createBlock(&body, body.end());
2062     mapBlock(&basicBlock, block);
2063     reachableBasicBlocks.push_back(&basicBlock);
2064   }
2065 
2066   // Add function arguments to the entry block.
2067   for (const auto &it : llvm::enumerate(func->args())) {
2068     BlockArgument blockArg = funcOp.getFunctionBody().addArgument(
2069         functionType.getParamType(it.index()), funcOp.getLoc());
2070     mapValue(&it.value(), blockArg);
2071   }
2072 
2073   // Process the blocks in topological order. The ordered traversal ensures
2074   // operands defined in a dominating block have a valid mapping to an MLIR
2075   // value once a block is translated.
2076   SetVector<llvm::BasicBlock *> blocks =
2077       getTopologicallySortedBlocks(reachableBasicBlocks);
2078   setConstantInsertionPointToStart(lookupBlock(blocks.front()));
2079   for (llvm::BasicBlock *basicBlock : blocks)
2080     if (failed(processBasicBlock(basicBlock, lookupBlock(basicBlock))))
2081       return failure();
2082 
2083   // Process the debug intrinsics that require a delayed conversion after
2084   // everything else was converted.
2085   if (failed(processDebugIntrinsics()))
2086     return failure();
2087 
2088   return success();
2089 }
2090 
2091 /// Checks if `dbgIntr` is a kill location that holds metadata instead of an SSA
2092 /// value.
2093 static bool isMetadataKillLocation(llvm::DbgVariableIntrinsic *dbgIntr) {
2094   if (!dbgIntr->isKillLocation())
2095     return false;
2096   llvm::Value *value = dbgIntr->getArgOperand(0);
2097   auto *nodeAsVal = dyn_cast<llvm::MetadataAsValue>(value);
2098   if (!nodeAsVal)
2099     return false;
2100   return !isa<llvm::ValueAsMetadata>(nodeAsVal->getMetadata());
2101 }
2102 
2103 LogicalResult
2104 ModuleImport::processDebugIntrinsic(llvm::DbgVariableIntrinsic *dbgIntr,
2105                                     DominanceInfo &domInfo) {
2106   Location loc = translateLoc(dbgIntr->getDebugLoc());
2107   auto emitUnsupportedWarning = [&]() {
2108     if (emitExpensiveWarnings)
2109       emitWarning(loc) << "dropped intrinsic: " << diag(*dbgIntr);
2110     return success();
2111   };
2112   // Drop debug intrinsics with arg lists.
2113   // TODO: Support debug intrinsics that have arg lists.
2114   if (dbgIntr->hasArgList())
2115     return emitUnsupportedWarning();
2116   // Kill locations can have metadata nodes as location operand. This
2117   // cannot be converted to poison as the type cannot be reconstructed.
2118   // TODO: find a way to support this case.
2119   if (isMetadataKillLocation(dbgIntr))
2120     return emitUnsupportedWarning();
2121   // Drop debug intrinsics if the associated variable information cannot be
2122   // translated due to cyclic debug metadata.
2123   // TODO: Support cyclic debug metadata.
2124   DILocalVariableAttr localVariableAttr =
2125       matchLocalVariableAttr(dbgIntr->getArgOperand(1));
2126   if (!localVariableAttr)
2127     return emitUnsupportedWarning();
2128   FailureOr<Value> argOperand = convertMetadataValue(dbgIntr->getArgOperand(0));
2129   if (failed(argOperand))
2130     return emitError(loc) << "failed to convert a debug intrinsic operand: "
2131                           << diag(*dbgIntr);
2132 
2133   // Ensure that the debug instrinsic is inserted right after its operand is
2134   // defined. Otherwise, the operand might not necessarily dominate the
2135   // intrinsic. If the defining operation is a terminator, insert the intrinsic
2136   // into a dominated block.
2137   OpBuilder::InsertionGuard guard(builder);
2138   if (Operation *op = argOperand->getDefiningOp();
2139       op && op->hasTrait<OpTrait::IsTerminator>()) {
2140     // Find a dominated block that can hold the debug intrinsic.
2141     auto dominatedBlocks = domInfo.getNode(op->getBlock())->children();
2142     // If no block is dominated by the terminator, this intrinisc cannot be
2143     // converted.
2144     if (dominatedBlocks.empty())
2145       return emitUnsupportedWarning();
2146     // Set insertion point before the terminator, to avoid inserting something
2147     // before landingpads.
2148     Block *dominatedBlock = (*dominatedBlocks.begin())->getBlock();
2149     builder.setInsertionPoint(dominatedBlock->getTerminator());
2150   } else {
2151     builder.setInsertionPointAfterValue(*argOperand);
2152   }
2153   auto locationExprAttr =
2154       debugImporter->translateExpression(dbgIntr->getExpression());
2155   Operation *op =
2156       llvm::TypeSwitch<llvm::DbgVariableIntrinsic *, Operation *>(dbgIntr)
2157           .Case([&](llvm::DbgDeclareInst *) {
2158             return builder.create<LLVM::DbgDeclareOp>(
2159                 loc, *argOperand, localVariableAttr, locationExprAttr);
2160           })
2161           .Case([&](llvm::DbgValueInst *) {
2162             return builder.create<LLVM::DbgValueOp>(
2163                 loc, *argOperand, localVariableAttr, locationExprAttr);
2164           });
2165   mapNoResultOp(dbgIntr, op);
2166   setNonDebugMetadataAttrs(dbgIntr, op);
2167   return success();
2168 }
2169 
2170 LogicalResult ModuleImport::processDebugIntrinsics() {
2171   DominanceInfo domInfo;
2172   for (llvm::Instruction *inst : debugIntrinsics) {
2173     auto *intrCall = cast<llvm::DbgVariableIntrinsic>(inst);
2174     if (failed(processDebugIntrinsic(intrCall, domInfo)))
2175       return failure();
2176   }
2177   return success();
2178 }
2179 
2180 LogicalResult ModuleImport::processBasicBlock(llvm::BasicBlock *bb,
2181                                               Block *block) {
2182   builder.setInsertionPointToStart(block);
2183   for (llvm::Instruction &inst : *bb) {
2184     if (failed(processInstruction(&inst)))
2185       return failure();
2186 
2187     // Skip additional processing when the instructions is a debug intrinsics
2188     // that was not yet converted.
2189     if (debugIntrinsics.contains(&inst))
2190       continue;
2191 
2192     // Set the non-debug metadata attributes on the imported operation and emit
2193     // a warning if an instruction other than a phi instruction is dropped
2194     // during the import.
2195     if (Operation *op = lookupOperation(&inst)) {
2196       setNonDebugMetadataAttrs(&inst, op);
2197     } else if (inst.getOpcode() != llvm::Instruction::PHI) {
2198       if (emitExpensiveWarnings) {
2199         Location loc = debugImporter->translateLoc(inst.getDebugLoc());
2200         emitWarning(loc) << "dropped instruction: " << diag(inst);
2201       }
2202     }
2203   }
2204   return success();
2205 }
2206 
2207 FailureOr<SmallVector<AccessGroupAttr>>
2208 ModuleImport::lookupAccessGroupAttrs(const llvm::MDNode *node) const {
2209   return loopAnnotationImporter->lookupAccessGroupAttrs(node);
2210 }
2211 
2212 LoopAnnotationAttr
2213 ModuleImport::translateLoopAnnotationAttr(const llvm::MDNode *node,
2214                                           Location loc) const {
2215   return loopAnnotationImporter->translateLoopAnnotation(node, loc);
2216 }
2217 
2218 OwningOpRef<ModuleOp>
2219 mlir::translateLLVMIRToModule(std::unique_ptr<llvm::Module> llvmModule,
2220                               MLIRContext *context, bool emitExpensiveWarnings,
2221                               bool dropDICompositeTypeElements) {
2222   // Preload all registered dialects to allow the import to iterate the
2223   // registered LLVMImportDialectInterface implementations and query the
2224   // supported LLVM IR constructs before starting the translation. Assumes the
2225   // LLVM and DLTI dialects that convert the core LLVM IR constructs have been
2226   // registered before.
2227   assert(llvm::is_contained(context->getAvailableDialects(),
2228                             LLVMDialect::getDialectNamespace()));
2229   assert(llvm::is_contained(context->getAvailableDialects(),
2230                             DLTIDialect::getDialectNamespace()));
2231   context->loadAllAvailableDialects();
2232   OwningOpRef<ModuleOp> module(ModuleOp::create(FileLineColLoc::get(
2233       StringAttr::get(context, llvmModule->getSourceFileName()), /*line=*/0,
2234       /*column=*/0)));
2235 
2236   ModuleImport moduleImport(module.get(), std::move(llvmModule),
2237                             emitExpensiveWarnings, dropDICompositeTypeElements);
2238   if (failed(moduleImport.initializeImportInterface()))
2239     return {};
2240   if (failed(moduleImport.convertDataLayout()))
2241     return {};
2242   if (failed(moduleImport.convertComdats()))
2243     return {};
2244   if (failed(moduleImport.convertMetadata()))
2245     return {};
2246   if (failed(moduleImport.convertGlobals()))
2247     return {};
2248   if (failed(moduleImport.convertFunctions()))
2249     return {};
2250 
2251   return module;
2252 }
2253