1 //===- ModuleImport.cpp - LLVM to MLIR conversion ---------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the import of an LLVM IR module into an LLVM dialect 10 // module. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleImport.h" 15 #include "mlir/IR/BuiltinAttributes.h" 16 #include "mlir/Target/LLVMIR/Import.h" 17 18 #include "AttrKindDetail.h" 19 #include "DataLayoutImporter.h" 20 #include "DebugImporter.h" 21 #include "LoopAnnotationImporter.h" 22 23 #include "mlir/Dialect/DLTI/DLTI.h" 24 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/Matchers.h" 27 #include "mlir/Interfaces/DataLayoutInterfaces.h" 28 #include "mlir/Tools/mlir-translate/Translation.h" 29 30 #include "llvm/ADT/DepthFirstIterator.h" 31 #include "llvm/ADT/PostOrderIterator.h" 32 #include "llvm/ADT/ScopeExit.h" 33 #include "llvm/ADT/StringSet.h" 34 #include "llvm/ADT/TypeSwitch.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/InstIterator.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/Support/ModRef.h" 44 45 using namespace mlir; 46 using namespace mlir::LLVM; 47 using namespace mlir::LLVM::detail; 48 49 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsFromLLVM.inc" 50 51 // Utility to print an LLVM value as a string for passing to emitError(). 52 // FIXME: Diagnostic should be able to natively handle types that have 53 // operator << (raw_ostream&) defined. 54 static std::string diag(const llvm::Value &value) { 55 std::string str; 56 llvm::raw_string_ostream os(str); 57 os << value; 58 return str; 59 } 60 61 // Utility to print an LLVM metadata node as a string for passing 62 // to emitError(). The module argument is needed to print the nodes 63 // canonically numbered. 64 static std::string diagMD(const llvm::Metadata *node, 65 const llvm::Module *module) { 66 std::string str; 67 llvm::raw_string_ostream os(str); 68 node->print(os, module, /*IsForDebug=*/true); 69 return str; 70 } 71 72 /// Returns the name of the global_ctors global variables. 73 static constexpr StringRef getGlobalCtorsVarName() { 74 return "llvm.global_ctors"; 75 } 76 77 /// Prefix used for symbols of nameless llvm globals. 78 static constexpr StringRef getNamelessGlobalPrefix() { 79 return "mlir.llvm.nameless_global"; 80 } 81 82 /// Returns the name of the global_dtors global variables. 83 static constexpr StringRef getGlobalDtorsVarName() { 84 return "llvm.global_dtors"; 85 } 86 87 /// Returns the symbol name for the module-level comdat operation. It must not 88 /// conflict with the user namespace. 89 static constexpr StringRef getGlobalComdatOpName() { 90 return "__llvm_global_comdat"; 91 } 92 93 /// Converts the sync scope identifier of `inst` to the string representation 94 /// necessary to build an atomic LLVM dialect operation. Returns the empty 95 /// string if the operation has either no sync scope or the default system-level 96 /// sync scope attached. The atomic operations only set their sync scope 97 /// attribute if they have a non-default sync scope attached. 98 static StringRef getLLVMSyncScope(llvm::Instruction *inst) { 99 std::optional<llvm::SyncScope::ID> syncScopeID = 100 llvm::getAtomicSyncScopeID(inst); 101 if (!syncScopeID) 102 return ""; 103 104 // Search the sync scope name for the given identifier. The default 105 // system-level sync scope thereby maps to the empty string. 106 SmallVector<StringRef> syncScopeName; 107 llvm::LLVMContext &llvmContext = inst->getContext(); 108 llvmContext.getSyncScopeNames(syncScopeName); 109 auto *it = llvm::find_if(syncScopeName, [&](StringRef name) { 110 return *syncScopeID == llvmContext.getOrInsertSyncScopeID(name); 111 }); 112 if (it != syncScopeName.end()) 113 return *it; 114 llvm_unreachable("incorrect sync scope identifier"); 115 } 116 117 /// Converts an array of unsigned indices to a signed integer position array. 118 static SmallVector<int64_t> getPositionFromIndices(ArrayRef<unsigned> indices) { 119 SmallVector<int64_t> position; 120 llvm::append_range(position, indices); 121 return position; 122 } 123 124 /// Converts the LLVM instructions that have a generated MLIR builder. Using a 125 /// static implementation method called from the module import ensures the 126 /// builders have to use the `moduleImport` argument and cannot directly call 127 /// import methods. As a result, both the intrinsic and the instruction MLIR 128 /// builders have to use the `moduleImport` argument and none of them has direct 129 /// access to the private module import methods. 130 static LogicalResult convertInstructionImpl(OpBuilder &odsBuilder, 131 llvm::Instruction *inst, 132 ModuleImport &moduleImport, 133 LLVMImportInterface &iface) { 134 // Copy the operands to an LLVM operands array reference for conversion. 135 SmallVector<llvm::Value *> operands(inst->operands()); 136 ArrayRef<llvm::Value *> llvmOperands(operands); 137 138 // Convert all instructions that provide an MLIR builder. 139 if (iface.isConvertibleInstruction(inst->getOpcode())) 140 return iface.convertInstruction(odsBuilder, inst, llvmOperands, 141 moduleImport); 142 // TODO: Implement the `convertInstruction` hooks in the 143 // `LLVMDialectLLVMIRImportInterface` and move the following include there. 144 #include "mlir/Dialect/LLVMIR/LLVMOpFromLLVMIRConversions.inc" 145 return failure(); 146 } 147 148 /// Get a topologically sorted list of blocks for the given basic blocks. 149 static SetVector<llvm::BasicBlock *> 150 getTopologicallySortedBlocks(ArrayRef<llvm::BasicBlock *> basicBlocks) { 151 SetVector<llvm::BasicBlock *> blocks; 152 for (llvm::BasicBlock *basicBlock : basicBlocks) { 153 if (!blocks.contains(basicBlock)) { 154 llvm::ReversePostOrderTraversal<llvm::BasicBlock *> traversal(basicBlock); 155 blocks.insert(traversal.begin(), traversal.end()); 156 } 157 } 158 assert(blocks.size() == basicBlocks.size() && "some blocks are not sorted"); 159 return blocks; 160 } 161 162 ModuleImport::ModuleImport(ModuleOp mlirModule, 163 std::unique_ptr<llvm::Module> llvmModule, 164 bool emitExpensiveWarnings, 165 bool importEmptyDICompositeTypes) 166 : builder(mlirModule->getContext()), context(mlirModule->getContext()), 167 mlirModule(mlirModule), llvmModule(std::move(llvmModule)), 168 iface(mlirModule->getContext()), 169 typeTranslator(*mlirModule->getContext()), 170 debugImporter(std::make_unique<DebugImporter>( 171 mlirModule, importEmptyDICompositeTypes)), 172 loopAnnotationImporter( 173 std::make_unique<LoopAnnotationImporter>(*this, builder)), 174 emitExpensiveWarnings(emitExpensiveWarnings) { 175 builder.setInsertionPointToStart(mlirModule.getBody()); 176 } 177 178 ComdatOp ModuleImport::getGlobalComdatOp() { 179 if (globalComdatOp) 180 return globalComdatOp; 181 182 OpBuilder::InsertionGuard guard(builder); 183 builder.setInsertionPointToEnd(mlirModule.getBody()); 184 globalComdatOp = 185 builder.create<ComdatOp>(mlirModule.getLoc(), getGlobalComdatOpName()); 186 globalInsertionOp = globalComdatOp; 187 return globalComdatOp; 188 } 189 190 LogicalResult ModuleImport::processTBAAMetadata(const llvm::MDNode *node) { 191 Location loc = mlirModule.getLoc(); 192 193 // If `node` is a valid TBAA root node, then return its optional identity 194 // string, otherwise return failure. 195 auto getIdentityIfRootNode = 196 [&](const llvm::MDNode *node) -> FailureOr<std::optional<StringRef>> { 197 // Root node, e.g.: 198 // !0 = !{!"Simple C/C++ TBAA"} 199 // !1 = !{} 200 if (node->getNumOperands() > 1) 201 return failure(); 202 // If the operand is MDString, then assume that this is a root node. 203 if (node->getNumOperands() == 1) 204 if (const auto *op0 = dyn_cast<const llvm::MDString>(node->getOperand(0))) 205 return std::optional<StringRef>{op0->getString()}; 206 return std::optional<StringRef>{}; 207 }; 208 209 // If `node` looks like a TBAA type descriptor metadata, 210 // then return true, if it is a valid node, and false otherwise. 211 // If it does not look like a TBAA type descriptor metadata, then 212 // return std::nullopt. 213 // If `identity` and `memberTypes/Offsets` are non-null, then they will 214 // contain the converted metadata operands for a valid TBAA node (i.e. when 215 // true is returned). 216 auto isTypeDescriptorNode = [&](const llvm::MDNode *node, 217 StringRef *identity = nullptr, 218 SmallVectorImpl<TBAAMemberAttr> *members = 219 nullptr) -> std::optional<bool> { 220 unsigned numOperands = node->getNumOperands(); 221 // Type descriptor, e.g.: 222 // !1 = !{!"int", !0, /*optional*/i64 0} /* scalar int type */ 223 // !2 = !{!"agg_t", !1, i64 0} /* struct agg_t { int x; } */ 224 if (numOperands < 2) 225 return std::nullopt; 226 227 // TODO: support "new" format (D41501) for type descriptors, 228 // where the first operand is an MDNode. 229 const auto *identityNode = 230 dyn_cast<const llvm::MDString>(node->getOperand(0)); 231 if (!identityNode) 232 return std::nullopt; 233 234 // This should be a type descriptor node. 235 if (identity) 236 *identity = identityNode->getString(); 237 238 for (unsigned pairNum = 0, e = numOperands / 2; pairNum < e; ++pairNum) { 239 const auto *memberNode = 240 dyn_cast<const llvm::MDNode>(node->getOperand(2 * pairNum + 1)); 241 if (!memberNode) { 242 emitError(loc) << "operand '" << 2 * pairNum + 1 << "' must be MDNode: " 243 << diagMD(node, llvmModule.get()); 244 return false; 245 } 246 int64_t offset = 0; 247 if (2 * pairNum + 2 >= numOperands) { 248 // Allow for optional 0 offset in 2-operand nodes. 249 if (numOperands != 2) { 250 emitError(loc) << "missing member offset: " 251 << diagMD(node, llvmModule.get()); 252 return false; 253 } 254 } else { 255 auto *offsetCI = llvm::mdconst::dyn_extract<llvm::ConstantInt>( 256 node->getOperand(2 * pairNum + 2)); 257 if (!offsetCI) { 258 emitError(loc) << "operand '" << 2 * pairNum + 2 259 << "' must be ConstantInt: " 260 << diagMD(node, llvmModule.get()); 261 return false; 262 } 263 offset = offsetCI->getZExtValue(); 264 } 265 266 if (members) 267 members->push_back(TBAAMemberAttr::get( 268 cast<TBAANodeAttr>(tbaaMapping.lookup(memberNode)), offset)); 269 } 270 271 return true; 272 }; 273 274 // If `node` looks like a TBAA access tag metadata, 275 // then return true, if it is a valid node, and false otherwise. 276 // If it does not look like a TBAA access tag metadata, then 277 // return std::nullopt. 278 // If the other arguments are non-null, then they will contain 279 // the converted metadata operands for a valid TBAA node (i.e. when true is 280 // returned). 281 auto isTagNode = [&](const llvm::MDNode *node, 282 TBAATypeDescriptorAttr *baseAttr = nullptr, 283 TBAATypeDescriptorAttr *accessAttr = nullptr, 284 int64_t *offset = nullptr, 285 bool *isConstant = nullptr) -> std::optional<bool> { 286 // Access tag, e.g.: 287 // !3 = !{!1, !1, i64 0} /* scalar int access */ 288 // !4 = !{!2, !1, i64 0} /* agg_t::x access */ 289 // 290 // Optional 4th argument is ConstantInt 0/1 identifying whether 291 // the location being accessed is "constant" (see for details: 292 // https://llvm.org/docs/LangRef.html#representation). 293 unsigned numOperands = node->getNumOperands(); 294 if (numOperands != 3 && numOperands != 4) 295 return std::nullopt; 296 const auto *baseMD = dyn_cast<const llvm::MDNode>(node->getOperand(0)); 297 const auto *accessMD = dyn_cast<const llvm::MDNode>(node->getOperand(1)); 298 auto *offsetCI = 299 llvm::mdconst::dyn_extract<llvm::ConstantInt>(node->getOperand(2)); 300 if (!baseMD || !accessMD || !offsetCI) 301 return std::nullopt; 302 // TODO: support "new" TBAA format, if needed (see D41501). 303 // In the "old" format the first operand of the access type 304 // metadata is MDString. We have to distinguish the formats, 305 // because access tags have the same structure, but different 306 // meaning for the operands. 307 if (accessMD->getNumOperands() < 1 || 308 !isa<llvm::MDString>(accessMD->getOperand(0))) 309 return std::nullopt; 310 bool isConst = false; 311 if (numOperands == 4) { 312 auto *isConstantCI = 313 llvm::mdconst::dyn_extract<llvm::ConstantInt>(node->getOperand(3)); 314 if (!isConstantCI) { 315 emitError(loc) << "operand '3' must be ConstantInt: " 316 << diagMD(node, llvmModule.get()); 317 return false; 318 } 319 isConst = isConstantCI->getValue()[0]; 320 } 321 if (baseAttr) 322 *baseAttr = cast<TBAATypeDescriptorAttr>(tbaaMapping.lookup(baseMD)); 323 if (accessAttr) 324 *accessAttr = cast<TBAATypeDescriptorAttr>(tbaaMapping.lookup(accessMD)); 325 if (offset) 326 *offset = offsetCI->getZExtValue(); 327 if (isConstant) 328 *isConstant = isConst; 329 return true; 330 }; 331 332 // Do a post-order walk over the TBAA Graph. Since a correct TBAA Graph is a 333 // DAG, a post-order walk guarantees that we convert any metadata node we 334 // depend on, prior to converting the current node. 335 DenseSet<const llvm::MDNode *> seen; 336 SmallVector<const llvm::MDNode *> workList; 337 workList.push_back(node); 338 while (!workList.empty()) { 339 const llvm::MDNode *current = workList.back(); 340 if (tbaaMapping.contains(current)) { 341 // Already converted. Just pop from the worklist. 342 workList.pop_back(); 343 continue; 344 } 345 346 // If any child of this node is not yet converted, don't pop the current 347 // node from the worklist but push the not-yet-converted children in the 348 // front of the worklist. 349 bool anyChildNotConverted = false; 350 for (const llvm::MDOperand &operand : current->operands()) 351 if (auto *childNode = dyn_cast_or_null<const llvm::MDNode>(operand.get())) 352 if (!tbaaMapping.contains(childNode)) { 353 workList.push_back(childNode); 354 anyChildNotConverted = true; 355 } 356 357 if (anyChildNotConverted) { 358 // If this is the second time we failed to convert an element in the 359 // worklist it must be because a child is dependent on it being converted 360 // and we have a cycle in the graph. Cycles are not allowed in TBAA 361 // graphs. 362 if (!seen.insert(current).second) 363 return emitError(loc) << "has cycle in TBAA graph: " 364 << diagMD(current, llvmModule.get()); 365 366 continue; 367 } 368 369 // Otherwise simply import the current node. 370 workList.pop_back(); 371 372 FailureOr<std::optional<StringRef>> rootNodeIdentity = 373 getIdentityIfRootNode(current); 374 if (succeeded(rootNodeIdentity)) { 375 StringAttr stringAttr = *rootNodeIdentity 376 ? builder.getStringAttr(**rootNodeIdentity) 377 : nullptr; 378 // The root nodes do not have operands, so we can create 379 // the TBAARootAttr on the first walk. 380 tbaaMapping.insert({current, builder.getAttr<TBAARootAttr>(stringAttr)}); 381 continue; 382 } 383 384 StringRef identity; 385 SmallVector<TBAAMemberAttr> members; 386 if (std::optional<bool> isValid = 387 isTypeDescriptorNode(current, &identity, &members)) { 388 assert(isValid.value() && "type descriptor node must be valid"); 389 390 tbaaMapping.insert({current, builder.getAttr<TBAATypeDescriptorAttr>( 391 identity, members)}); 392 continue; 393 } 394 395 TBAATypeDescriptorAttr baseAttr, accessAttr; 396 int64_t offset; 397 bool isConstant; 398 if (std::optional<bool> isValid = 399 isTagNode(current, &baseAttr, &accessAttr, &offset, &isConstant)) { 400 assert(isValid.value() && "access tag node must be valid"); 401 tbaaMapping.insert( 402 {current, builder.getAttr<TBAATagAttr>(baseAttr, accessAttr, offset, 403 isConstant)}); 404 continue; 405 } 406 407 return emitError(loc) << "unsupported TBAA node format: " 408 << diagMD(current, llvmModule.get()); 409 } 410 return success(); 411 } 412 413 LogicalResult 414 ModuleImport::processAccessGroupMetadata(const llvm::MDNode *node) { 415 Location loc = mlirModule.getLoc(); 416 if (failed(loopAnnotationImporter->translateAccessGroup(node, loc))) 417 return emitError(loc) << "unsupported access group node: " 418 << diagMD(node, llvmModule.get()); 419 return success(); 420 } 421 422 LogicalResult 423 ModuleImport::processAliasScopeMetadata(const llvm::MDNode *node) { 424 Location loc = mlirModule.getLoc(); 425 // Helper that verifies the node has a self reference operand. 426 auto verifySelfRef = [](const llvm::MDNode *node) { 427 return node->getNumOperands() != 0 && 428 node == dyn_cast<llvm::MDNode>(node->getOperand(0)); 429 }; 430 // Helper that verifies the given operand is a string or does not exist. 431 auto verifyDescription = [](const llvm::MDNode *node, unsigned idx) { 432 return idx >= node->getNumOperands() || 433 isa<llvm::MDString>(node->getOperand(idx)); 434 }; 435 // Helper that creates an alias scope domain attribute. 436 auto createAliasScopeDomainOp = [&](const llvm::MDNode *aliasDomain) { 437 StringAttr description = nullptr; 438 if (aliasDomain->getNumOperands() >= 2) 439 if (auto *operand = dyn_cast<llvm::MDString>(aliasDomain->getOperand(1))) 440 description = builder.getStringAttr(operand->getString()); 441 return builder.getAttr<AliasScopeDomainAttr>( 442 DistinctAttr::create(builder.getUnitAttr()), description); 443 }; 444 445 // Collect the alias scopes and domains to translate them. 446 for (const llvm::MDOperand &operand : node->operands()) { 447 if (const auto *scope = dyn_cast<llvm::MDNode>(operand)) { 448 llvm::AliasScopeNode aliasScope(scope); 449 const llvm::MDNode *domain = aliasScope.getDomain(); 450 451 // Verify the scope node points to valid scope metadata which includes 452 // verifying its domain. Perform the verification before looking it up in 453 // the alias scope mapping since it could have been inserted as a domain 454 // node before. 455 if (!verifySelfRef(scope) || !domain || !verifyDescription(scope, 2)) 456 return emitError(loc) << "unsupported alias scope node: " 457 << diagMD(scope, llvmModule.get()); 458 if (!verifySelfRef(domain) || !verifyDescription(domain, 1)) 459 return emitError(loc) << "unsupported alias domain node: " 460 << diagMD(domain, llvmModule.get()); 461 462 if (aliasScopeMapping.contains(scope)) 463 continue; 464 465 // Convert the domain metadata node if it has not been translated before. 466 auto it = aliasScopeMapping.find(aliasScope.getDomain()); 467 if (it == aliasScopeMapping.end()) { 468 auto aliasScopeDomainOp = createAliasScopeDomainOp(domain); 469 it = aliasScopeMapping.try_emplace(domain, aliasScopeDomainOp).first; 470 } 471 472 // Convert the scope metadata node if it has not been converted before. 473 StringAttr description = nullptr; 474 if (!aliasScope.getName().empty()) 475 description = builder.getStringAttr(aliasScope.getName()); 476 auto aliasScopeOp = builder.getAttr<AliasScopeAttr>( 477 DistinctAttr::create(builder.getUnitAttr()), 478 cast<AliasScopeDomainAttr>(it->second), description); 479 aliasScopeMapping.try_emplace(aliasScope.getNode(), aliasScopeOp); 480 } 481 } 482 return success(); 483 } 484 485 FailureOr<SmallVector<AliasScopeAttr>> 486 ModuleImport::lookupAliasScopeAttrs(const llvm::MDNode *node) const { 487 SmallVector<AliasScopeAttr> aliasScopes; 488 aliasScopes.reserve(node->getNumOperands()); 489 for (const llvm::MDOperand &operand : node->operands()) { 490 auto *node = cast<llvm::MDNode>(operand.get()); 491 aliasScopes.push_back( 492 dyn_cast_or_null<AliasScopeAttr>(aliasScopeMapping.lookup(node))); 493 } 494 // Return failure if one of the alias scope lookups failed. 495 if (llvm::is_contained(aliasScopes, nullptr)) 496 return failure(); 497 return aliasScopes; 498 } 499 500 void ModuleImport::addDebugIntrinsic(llvm::CallInst *intrinsic) { 501 debugIntrinsics.insert(intrinsic); 502 } 503 504 LogicalResult ModuleImport::convertLinkerOptionsMetadata() { 505 for (const llvm::NamedMDNode &named : llvmModule->named_metadata()) { 506 if (named.getName() != "llvm.linker.options") 507 continue; 508 // llvm.linker.options operands are lists of strings. 509 for (const llvm::MDNode *node : named.operands()) { 510 SmallVector<StringRef> options; 511 options.reserve(node->getNumOperands()); 512 for (const llvm::MDOperand &option : node->operands()) 513 options.push_back(cast<llvm::MDString>(option)->getString()); 514 builder.create<LLVM::LinkerOptionsOp>(mlirModule.getLoc(), 515 builder.getStrArrayAttr(options)); 516 } 517 } 518 return success(); 519 } 520 521 LogicalResult ModuleImport::convertIdentMetadata() { 522 for (const llvm::NamedMDNode &named : llvmModule->named_metadata()) { 523 // llvm.ident should have a single operand. That operand is itself an 524 // MDNode with a single string operand. 525 if (named.getName() != LLVMDialect::getIdentAttrName()) 526 continue; 527 528 if (named.getNumOperands() == 1) 529 if (auto *md = dyn_cast<llvm::MDNode>(named.getOperand(0))) 530 if (md->getNumOperands() == 1) 531 if (auto *mdStr = dyn_cast<llvm::MDString>(md->getOperand(0))) 532 mlirModule->setAttr(LLVMDialect::getIdentAttrName(), 533 builder.getStringAttr(mdStr->getString())); 534 } 535 return success(); 536 } 537 538 LogicalResult ModuleImport::convertCommandlineMetadata() { 539 for (const llvm::NamedMDNode &nmd : llvmModule->named_metadata()) { 540 // llvm.commandline should have a single operand. That operand is itself an 541 // MDNode with a single string operand. 542 if (nmd.getName() != LLVMDialect::getCommandlineAttrName()) 543 continue; 544 545 if (nmd.getNumOperands() == 1) 546 if (auto *md = dyn_cast<llvm::MDNode>(nmd.getOperand(0))) 547 if (md->getNumOperands() == 1) 548 if (auto *mdStr = dyn_cast<llvm::MDString>(md->getOperand(0))) 549 mlirModule->setAttr(LLVMDialect::getCommandlineAttrName(), 550 builder.getStringAttr(mdStr->getString())); 551 } 552 return success(); 553 } 554 555 LogicalResult ModuleImport::convertMetadata() { 556 OpBuilder::InsertionGuard guard(builder); 557 builder.setInsertionPointToEnd(mlirModule.getBody()); 558 for (const llvm::Function &func : llvmModule->functions()) { 559 for (const llvm::Instruction &inst : llvm::instructions(func)) { 560 // Convert access group metadata nodes. 561 if (llvm::MDNode *node = 562 inst.getMetadata(llvm::LLVMContext::MD_access_group)) 563 if (failed(processAccessGroupMetadata(node))) 564 return failure(); 565 566 // Convert alias analysis metadata nodes. 567 llvm::AAMDNodes aliasAnalysisNodes = inst.getAAMetadata(); 568 if (!aliasAnalysisNodes) 569 continue; 570 if (aliasAnalysisNodes.TBAA) 571 if (failed(processTBAAMetadata(aliasAnalysisNodes.TBAA))) 572 return failure(); 573 if (aliasAnalysisNodes.Scope) 574 if (failed(processAliasScopeMetadata(aliasAnalysisNodes.Scope))) 575 return failure(); 576 if (aliasAnalysisNodes.NoAlias) 577 if (failed(processAliasScopeMetadata(aliasAnalysisNodes.NoAlias))) 578 return failure(); 579 } 580 } 581 if (failed(convertLinkerOptionsMetadata())) 582 return failure(); 583 if (failed(convertIdentMetadata())) 584 return failure(); 585 if (failed(convertCommandlineMetadata())) 586 return failure(); 587 return success(); 588 } 589 590 void ModuleImport::processComdat(const llvm::Comdat *comdat) { 591 if (comdatMapping.contains(comdat)) 592 return; 593 594 ComdatOp comdatOp = getGlobalComdatOp(); 595 OpBuilder::InsertionGuard guard(builder); 596 builder.setInsertionPointToEnd(&comdatOp.getBody().back()); 597 auto selectorOp = builder.create<ComdatSelectorOp>( 598 mlirModule.getLoc(), comdat->getName(), 599 convertComdatFromLLVM(comdat->getSelectionKind())); 600 auto symbolRef = 601 SymbolRefAttr::get(builder.getContext(), getGlobalComdatOpName(), 602 FlatSymbolRefAttr::get(selectorOp.getSymNameAttr())); 603 comdatMapping.try_emplace(comdat, symbolRef); 604 } 605 606 LogicalResult ModuleImport::convertComdats() { 607 for (llvm::GlobalVariable &globalVar : llvmModule->globals()) 608 if (globalVar.hasComdat()) 609 processComdat(globalVar.getComdat()); 610 for (llvm::Function &func : llvmModule->functions()) 611 if (func.hasComdat()) 612 processComdat(func.getComdat()); 613 return success(); 614 } 615 616 LogicalResult ModuleImport::convertGlobals() { 617 for (llvm::GlobalVariable &globalVar : llvmModule->globals()) { 618 if (globalVar.getName() == getGlobalCtorsVarName() || 619 globalVar.getName() == getGlobalDtorsVarName()) { 620 if (failed(convertGlobalCtorsAndDtors(&globalVar))) { 621 return emitError(UnknownLoc::get(context)) 622 << "unhandled global variable: " << diag(globalVar); 623 } 624 continue; 625 } 626 if (failed(convertGlobal(&globalVar))) { 627 return emitError(UnknownLoc::get(context)) 628 << "unhandled global variable: " << diag(globalVar); 629 } 630 } 631 return success(); 632 } 633 634 LogicalResult ModuleImport::convertDataLayout() { 635 Location loc = mlirModule.getLoc(); 636 DataLayoutImporter dataLayoutImporter(context, llvmModule->getDataLayout()); 637 if (!dataLayoutImporter.getDataLayout()) 638 return emitError(loc, "cannot translate data layout: ") 639 << dataLayoutImporter.getLastToken(); 640 641 for (StringRef token : dataLayoutImporter.getUnhandledTokens()) 642 emitWarning(loc, "unhandled data layout token: ") << token; 643 644 mlirModule->setAttr(DLTIDialect::kDataLayoutAttrName, 645 dataLayoutImporter.getDataLayout()); 646 return success(); 647 } 648 649 LogicalResult ModuleImport::convertFunctions() { 650 for (llvm::Function &func : llvmModule->functions()) 651 if (failed(processFunction(&func))) 652 return failure(); 653 return success(); 654 } 655 656 void ModuleImport::setNonDebugMetadataAttrs(llvm::Instruction *inst, 657 Operation *op) { 658 SmallVector<std::pair<unsigned, llvm::MDNode *>> allMetadata; 659 inst->getAllMetadataOtherThanDebugLoc(allMetadata); 660 for (auto &[kind, node] : allMetadata) { 661 if (!iface.isConvertibleMetadata(kind)) 662 continue; 663 if (failed(iface.setMetadataAttrs(builder, kind, node, op, *this))) { 664 if (emitExpensiveWarnings) { 665 Location loc = debugImporter->translateLoc(inst->getDebugLoc()); 666 emitWarning(loc) << "unhandled metadata: " 667 << diagMD(node, llvmModule.get()) << " on " 668 << diag(*inst); 669 } 670 } 671 } 672 } 673 674 void ModuleImport::setIntegerOverflowFlags(llvm::Instruction *inst, 675 Operation *op) const { 676 auto iface = cast<IntegerOverflowFlagsInterface>(op); 677 678 IntegerOverflowFlags value = {}; 679 value = bitEnumSet(value, IntegerOverflowFlags::nsw, inst->hasNoSignedWrap()); 680 value = 681 bitEnumSet(value, IntegerOverflowFlags::nuw, inst->hasNoUnsignedWrap()); 682 683 iface.setOverflowFlags(value); 684 } 685 686 void ModuleImport::setExactFlag(llvm::Instruction *inst, Operation *op) const { 687 auto iface = cast<ExactFlagInterface>(op); 688 689 iface.setIsExact(inst->isExact()); 690 } 691 692 void ModuleImport::setDisjointFlag(llvm::Instruction *inst, 693 Operation *op) const { 694 auto iface = cast<DisjointFlagInterface>(op); 695 auto instDisjoint = cast<llvm::PossiblyDisjointInst>(inst); 696 697 iface.setIsDisjoint(instDisjoint->isDisjoint()); 698 } 699 700 void ModuleImport::setNonNegFlag(llvm::Instruction *inst, Operation *op) const { 701 auto iface = cast<NonNegFlagInterface>(op); 702 703 iface.setNonNeg(inst->hasNonNeg()); 704 } 705 706 void ModuleImport::setFastmathFlagsAttr(llvm::Instruction *inst, 707 Operation *op) const { 708 auto iface = cast<FastmathFlagsInterface>(op); 709 710 // Even if the imported operation implements the fastmath interface, the 711 // original instruction may not have fastmath flags set. Exit if an 712 // instruction, such as a non floating-point function call, does not have 713 // fastmath flags. 714 if (!isa<llvm::FPMathOperator>(inst)) 715 return; 716 llvm::FastMathFlags flags = inst->getFastMathFlags(); 717 718 // Set the fastmath bits flag-by-flag. 719 FastmathFlags value = {}; 720 value = bitEnumSet(value, FastmathFlags::nnan, flags.noNaNs()); 721 value = bitEnumSet(value, FastmathFlags::ninf, flags.noInfs()); 722 value = bitEnumSet(value, FastmathFlags::nsz, flags.noSignedZeros()); 723 value = bitEnumSet(value, FastmathFlags::arcp, flags.allowReciprocal()); 724 value = bitEnumSet(value, FastmathFlags::contract, flags.allowContract()); 725 value = bitEnumSet(value, FastmathFlags::afn, flags.approxFunc()); 726 value = bitEnumSet(value, FastmathFlags::reassoc, flags.allowReassoc()); 727 FastmathFlagsAttr attr = FastmathFlagsAttr::get(builder.getContext(), value); 728 iface->setAttr(iface.getFastmathAttrName(), attr); 729 } 730 731 /// Returns if `type` is a scalar integer or floating-point type. 732 static bool isScalarType(Type type) { 733 return isa<IntegerType, FloatType>(type); 734 } 735 736 /// Returns `type` if it is a builtin integer or floating-point vector type that 737 /// can be used to create an attribute or nullptr otherwise. If provided, 738 /// `arrayShape` is added to the shape of the vector to create an attribute that 739 /// matches an array of vectors. 740 static Type getVectorTypeForAttr(Type type, ArrayRef<int64_t> arrayShape = {}) { 741 if (!LLVM::isCompatibleVectorType(type)) 742 return {}; 743 744 llvm::ElementCount numElements = LLVM::getVectorNumElements(type); 745 if (numElements.isScalable()) { 746 emitError(UnknownLoc::get(type.getContext())) 747 << "scalable vectors not supported"; 748 return {}; 749 } 750 751 // An LLVM dialect vector can only contain scalars. 752 Type elementType = LLVM::getVectorElementType(type); 753 if (!isScalarType(elementType)) 754 return {}; 755 756 SmallVector<int64_t> shape(arrayShape); 757 shape.push_back(numElements.getKnownMinValue()); 758 return VectorType::get(shape, elementType); 759 } 760 761 Type ModuleImport::getBuiltinTypeForAttr(Type type) { 762 if (!type) 763 return {}; 764 765 // Return builtin integer and floating-point types as is. 766 if (isScalarType(type)) 767 return type; 768 769 // Return builtin vectors of integer and floating-point types as is. 770 if (Type vectorType = getVectorTypeForAttr(type)) 771 return vectorType; 772 773 // Multi-dimensional array types are converted to tensors or vectors, 774 // depending on the innermost type being a scalar or a vector. 775 SmallVector<int64_t> arrayShape; 776 while (auto arrayType = dyn_cast<LLVMArrayType>(type)) { 777 arrayShape.push_back(arrayType.getNumElements()); 778 type = arrayType.getElementType(); 779 } 780 if (isScalarType(type)) 781 return RankedTensorType::get(arrayShape, type); 782 return getVectorTypeForAttr(type, arrayShape); 783 } 784 785 /// Returns an integer or float attribute for the provided scalar constant 786 /// `constScalar` or nullptr if the conversion fails. 787 static TypedAttr getScalarConstantAsAttr(OpBuilder &builder, 788 llvm::Constant *constScalar) { 789 MLIRContext *context = builder.getContext(); 790 791 // Convert scalar intergers. 792 if (auto *constInt = dyn_cast<llvm::ConstantInt>(constScalar)) { 793 return builder.getIntegerAttr( 794 IntegerType::get(context, constInt->getBitWidth()), 795 constInt->getValue()); 796 } 797 798 // Convert scalar floats. 799 if (auto *constFloat = dyn_cast<llvm::ConstantFP>(constScalar)) { 800 llvm::Type *type = constFloat->getType(); 801 FloatType floatType = 802 type->isBFloatTy() 803 ? FloatType::getBF16(context) 804 : LLVM::detail::getFloatType(context, type->getScalarSizeInBits()); 805 if (!floatType) { 806 emitError(UnknownLoc::get(builder.getContext())) 807 << "unexpected floating-point type"; 808 return {}; 809 } 810 return builder.getFloatAttr(floatType, constFloat->getValueAPF()); 811 } 812 return {}; 813 } 814 815 /// Returns an integer or float attribute array for the provided constant 816 /// sequence `constSequence` or nullptr if the conversion fails. 817 static SmallVector<Attribute> 818 getSequenceConstantAsAttrs(OpBuilder &builder, 819 llvm::ConstantDataSequential *constSequence) { 820 SmallVector<Attribute> elementAttrs; 821 elementAttrs.reserve(constSequence->getNumElements()); 822 for (auto idx : llvm::seq<int64_t>(0, constSequence->getNumElements())) { 823 llvm::Constant *constElement = constSequence->getElementAsConstant(idx); 824 elementAttrs.push_back(getScalarConstantAsAttr(builder, constElement)); 825 } 826 return elementAttrs; 827 } 828 829 Attribute ModuleImport::getConstantAsAttr(llvm::Constant *constant) { 830 // Convert scalar constants. 831 if (Attribute scalarAttr = getScalarConstantAsAttr(builder, constant)) 832 return scalarAttr; 833 834 // Returns the static shape of the provided type if possible. 835 auto getConstantShape = [&](llvm::Type *type) { 836 return llvm::dyn_cast_if_present<ShapedType>( 837 getBuiltinTypeForAttr(convertType(type))); 838 }; 839 840 // Convert one-dimensional constant arrays or vectors that store 1/2/4/8-byte 841 // integer or half/bfloat/float/double values. 842 if (auto *constArray = dyn_cast<llvm::ConstantDataSequential>(constant)) { 843 if (constArray->isString()) 844 return builder.getStringAttr(constArray->getAsString()); 845 auto shape = getConstantShape(constArray->getType()); 846 if (!shape) 847 return {}; 848 // Convert splat constants to splat elements attributes. 849 auto *constVector = dyn_cast<llvm::ConstantDataVector>(constant); 850 if (constVector && constVector->isSplat()) { 851 // A vector is guaranteed to have at least size one. 852 Attribute splatAttr = getScalarConstantAsAttr( 853 builder, constVector->getElementAsConstant(0)); 854 return SplatElementsAttr::get(shape, splatAttr); 855 } 856 // Convert non-splat constants to dense elements attributes. 857 SmallVector<Attribute> elementAttrs = 858 getSequenceConstantAsAttrs(builder, constArray); 859 return DenseElementsAttr::get(shape, elementAttrs); 860 } 861 862 // Convert multi-dimensional constant aggregates that store all kinds of 863 // integer and floating-point types. 864 if (auto *constAggregate = dyn_cast<llvm::ConstantAggregate>(constant)) { 865 auto shape = getConstantShape(constAggregate->getType()); 866 if (!shape) 867 return {}; 868 // Collect the aggregate elements in depths first order. 869 SmallVector<Attribute> elementAttrs; 870 SmallVector<llvm::Constant *> workList = {constAggregate}; 871 while (!workList.empty()) { 872 llvm::Constant *current = workList.pop_back_val(); 873 // Append any nested aggregates in reverse order to ensure the head 874 // element of the nested aggregates is at the back of the work list. 875 if (auto *constAggregate = dyn_cast<llvm::ConstantAggregate>(current)) { 876 for (auto idx : 877 reverse(llvm::seq<int64_t>(0, constAggregate->getNumOperands()))) 878 workList.push_back(constAggregate->getAggregateElement(idx)); 879 continue; 880 } 881 // Append the elements of nested constant arrays or vectors that store 882 // 1/2/4/8-byte integer or half/bfloat/float/double values. 883 if (auto *constArray = dyn_cast<llvm::ConstantDataSequential>(current)) { 884 SmallVector<Attribute> attrs = 885 getSequenceConstantAsAttrs(builder, constArray); 886 elementAttrs.append(attrs.begin(), attrs.end()); 887 continue; 888 } 889 // Append nested scalar constants that store all kinds of integer and 890 // floating-point types. 891 if (Attribute scalarAttr = getScalarConstantAsAttr(builder, current)) { 892 elementAttrs.push_back(scalarAttr); 893 continue; 894 } 895 // Bail if the aggregate contains a unsupported constant type such as a 896 // constant expression. 897 return {}; 898 } 899 return DenseElementsAttr::get(shape, elementAttrs); 900 } 901 902 // Convert zero aggregates. 903 if (auto *constZero = dyn_cast<llvm::ConstantAggregateZero>(constant)) { 904 auto shape = llvm::dyn_cast_if_present<ShapedType>( 905 getBuiltinTypeForAttr(convertType(constZero->getType()))); 906 if (!shape) 907 return {}; 908 // Convert zero aggregates with a static shape to splat elements attributes. 909 Attribute splatAttr = builder.getZeroAttr(shape.getElementType()); 910 assert(splatAttr && "expected non-null zero attribute for scalar types"); 911 return SplatElementsAttr::get(shape, splatAttr); 912 } 913 return {}; 914 } 915 916 FlatSymbolRefAttr 917 ModuleImport::getOrCreateNamelessSymbolName(llvm::GlobalVariable *globalVar) { 918 assert(globalVar->getName().empty() && 919 "expected to work with a nameless global"); 920 auto [it, success] = namelessGlobals.try_emplace(globalVar); 921 if (!success) 922 return it->second; 923 924 // Make sure the symbol name does not clash with an existing symbol. 925 SmallString<128> globalName = SymbolTable::generateSymbolName<128>( 926 getNamelessGlobalPrefix(), 927 [this](StringRef newName) { return llvmModule->getNamedValue(newName); }, 928 namelessGlobalId); 929 auto symbolRef = FlatSymbolRefAttr::get(context, globalName); 930 it->getSecond() = symbolRef; 931 return symbolRef; 932 } 933 934 LogicalResult ModuleImport::convertGlobal(llvm::GlobalVariable *globalVar) { 935 // Insert the global after the last one or at the start of the module. 936 OpBuilder::InsertionGuard guard(builder); 937 if (!globalInsertionOp) 938 builder.setInsertionPointToStart(mlirModule.getBody()); 939 else 940 builder.setInsertionPointAfter(globalInsertionOp); 941 942 Attribute valueAttr; 943 if (globalVar->hasInitializer()) 944 valueAttr = getConstantAsAttr(globalVar->getInitializer()); 945 Type type = convertType(globalVar->getValueType()); 946 947 uint64_t alignment = 0; 948 llvm::MaybeAlign maybeAlign = globalVar->getAlign(); 949 if (maybeAlign.has_value()) { 950 llvm::Align align = *maybeAlign; 951 alignment = align.value(); 952 } 953 954 // Get the global expression associated with this global variable and convert 955 // it. 956 SmallVector<Attribute> globalExpressionAttrs; 957 SmallVector<llvm::DIGlobalVariableExpression *> globalExpressions; 958 globalVar->getDebugInfo(globalExpressions); 959 960 for (llvm::DIGlobalVariableExpression *expr : globalExpressions) { 961 DIGlobalVariableExpressionAttr globalExpressionAttr = 962 debugImporter->translateGlobalVariableExpression(expr); 963 globalExpressionAttrs.push_back(globalExpressionAttr); 964 } 965 966 // Workaround to support LLVM's nameless globals. MLIR, in contrast to LLVM, 967 // always requires a symbol name. 968 StringRef globalName = globalVar->getName(); 969 if (globalName.empty()) 970 globalName = getOrCreateNamelessSymbolName(globalVar).getValue(); 971 972 GlobalOp globalOp = builder.create<GlobalOp>( 973 mlirModule.getLoc(), type, globalVar->isConstant(), 974 convertLinkageFromLLVM(globalVar->getLinkage()), StringRef(globalName), 975 valueAttr, alignment, /*addr_space=*/globalVar->getAddressSpace(), 976 /*dso_local=*/globalVar->isDSOLocal(), 977 /*thread_local=*/globalVar->isThreadLocal(), /*comdat=*/SymbolRefAttr(), 978 /*attrs=*/ArrayRef<NamedAttribute>(), /*dbgExprs=*/globalExpressionAttrs); 979 globalInsertionOp = globalOp; 980 981 if (globalVar->hasInitializer() && !valueAttr) { 982 clearRegionState(); 983 Block *block = builder.createBlock(&globalOp.getInitializerRegion()); 984 setConstantInsertionPointToStart(block); 985 FailureOr<Value> initializer = 986 convertConstantExpr(globalVar->getInitializer()); 987 if (failed(initializer)) 988 return failure(); 989 builder.create<ReturnOp>(globalOp.getLoc(), *initializer); 990 } 991 if (globalVar->hasAtLeastLocalUnnamedAddr()) { 992 globalOp.setUnnamedAddr( 993 convertUnnamedAddrFromLLVM(globalVar->getUnnamedAddr())); 994 } 995 if (globalVar->hasSection()) 996 globalOp.setSection(globalVar->getSection()); 997 globalOp.setVisibility_( 998 convertVisibilityFromLLVM(globalVar->getVisibility())); 999 1000 if (globalVar->hasComdat()) 1001 globalOp.setComdatAttr(comdatMapping.lookup(globalVar->getComdat())); 1002 1003 return success(); 1004 } 1005 1006 LogicalResult 1007 ModuleImport::convertGlobalCtorsAndDtors(llvm::GlobalVariable *globalVar) { 1008 if (!globalVar->hasInitializer() || !globalVar->hasAppendingLinkage()) 1009 return failure(); 1010 auto *initializer = 1011 dyn_cast<llvm::ConstantArray>(globalVar->getInitializer()); 1012 if (!initializer) 1013 return failure(); 1014 1015 SmallVector<Attribute> funcs; 1016 SmallVector<int32_t> priorities; 1017 for (llvm::Value *operand : initializer->operands()) { 1018 auto *aggregate = dyn_cast<llvm::ConstantAggregate>(operand); 1019 if (!aggregate || aggregate->getNumOperands() != 3) 1020 return failure(); 1021 1022 auto *priority = dyn_cast<llvm::ConstantInt>(aggregate->getOperand(0)); 1023 auto *func = dyn_cast<llvm::Function>(aggregate->getOperand(1)); 1024 auto *data = dyn_cast<llvm::Constant>(aggregate->getOperand(2)); 1025 if (!priority || !func || !data) 1026 return failure(); 1027 1028 // GlobalCtorsOps and GlobalDtorsOps do not support non-null data fields. 1029 if (!data->isNullValue()) 1030 return failure(); 1031 1032 funcs.push_back(FlatSymbolRefAttr::get(context, func->getName())); 1033 priorities.push_back(priority->getValue().getZExtValue()); 1034 } 1035 1036 OpBuilder::InsertionGuard guard(builder); 1037 if (!globalInsertionOp) 1038 builder.setInsertionPointToStart(mlirModule.getBody()); 1039 else 1040 builder.setInsertionPointAfter(globalInsertionOp); 1041 1042 if (globalVar->getName() == getGlobalCtorsVarName()) { 1043 globalInsertionOp = builder.create<LLVM::GlobalCtorsOp>( 1044 mlirModule.getLoc(), builder.getArrayAttr(funcs), 1045 builder.getI32ArrayAttr(priorities)); 1046 return success(); 1047 } 1048 globalInsertionOp = builder.create<LLVM::GlobalDtorsOp>( 1049 mlirModule.getLoc(), builder.getArrayAttr(funcs), 1050 builder.getI32ArrayAttr(priorities)); 1051 return success(); 1052 } 1053 1054 SetVector<llvm::Constant *> 1055 ModuleImport::getConstantsToConvert(llvm::Constant *constant) { 1056 // Return the empty set if the constant has been translated before. 1057 if (valueMapping.contains(constant)) 1058 return {}; 1059 1060 // Traverse the constants in post-order and stop the traversal if a constant 1061 // already has a `valueMapping` from an earlier constant translation or if the 1062 // constant is traversed a second time. 1063 SetVector<llvm::Constant *> orderedSet; 1064 SetVector<llvm::Constant *> workList; 1065 DenseMap<llvm::Constant *, SmallVector<llvm::Constant *>> adjacencyLists; 1066 workList.insert(constant); 1067 while (!workList.empty()) { 1068 llvm::Constant *current = workList.back(); 1069 // References of global objects are just pointers to the object. Avoid 1070 // walking the elements of these here. 1071 if (isa<llvm::GlobalObject>(current)) { 1072 orderedSet.insert(current); 1073 workList.pop_back(); 1074 continue; 1075 } 1076 1077 // Collect all dependencies of the current constant and add them to the 1078 // adjacency list if none has been computed before. 1079 auto [adjacencyIt, inserted] = adjacencyLists.try_emplace(current); 1080 if (inserted) { 1081 // Add all constant operands to the adjacency list and skip any other 1082 // values such as basic block addresses. 1083 for (llvm::Value *operand : current->operands()) 1084 if (auto *constDependency = dyn_cast<llvm::Constant>(operand)) 1085 adjacencyIt->getSecond().push_back(constDependency); 1086 // Use the getElementValue method to add the dependencies of zero 1087 // initialized aggregate constants since they do not take any operands. 1088 if (auto *constAgg = dyn_cast<llvm::ConstantAggregateZero>(current)) { 1089 unsigned numElements = constAgg->getElementCount().getFixedValue(); 1090 for (unsigned i = 0, e = numElements; i != e; ++i) 1091 adjacencyIt->getSecond().push_back(constAgg->getElementValue(i)); 1092 } 1093 } 1094 // Add the current constant to the `orderedSet` of the traversed nodes if 1095 // all its dependencies have been traversed before. Additionally, remove the 1096 // constant from the `workList` and continue the traversal. 1097 if (adjacencyIt->getSecond().empty()) { 1098 orderedSet.insert(current); 1099 workList.pop_back(); 1100 continue; 1101 } 1102 // Add the next dependency from the adjacency list to the `workList` and 1103 // continue the traversal. Remove the dependency from the adjacency list to 1104 // mark that it has been processed. Only enqueue the dependency if it has no 1105 // `valueMapping` from an earlier translation and if it has not been 1106 // enqueued before. 1107 llvm::Constant *dependency = adjacencyIt->getSecond().pop_back_val(); 1108 if (valueMapping.contains(dependency) || workList.contains(dependency) || 1109 orderedSet.contains(dependency)) 1110 continue; 1111 workList.insert(dependency); 1112 } 1113 1114 return orderedSet; 1115 } 1116 1117 FailureOr<Value> ModuleImport::convertConstant(llvm::Constant *constant) { 1118 Location loc = UnknownLoc::get(context); 1119 1120 // Convert constants that can be represented as attributes. 1121 if (Attribute attr = getConstantAsAttr(constant)) { 1122 Type type = convertType(constant->getType()); 1123 if (auto symbolRef = dyn_cast<FlatSymbolRefAttr>(attr)) { 1124 return builder.create<AddressOfOp>(loc, type, symbolRef.getValue()) 1125 .getResult(); 1126 } 1127 return builder.create<ConstantOp>(loc, type, attr).getResult(); 1128 } 1129 1130 // Convert null pointer constants. 1131 if (auto *nullPtr = dyn_cast<llvm::ConstantPointerNull>(constant)) { 1132 Type type = convertType(nullPtr->getType()); 1133 return builder.create<ZeroOp>(loc, type).getResult(); 1134 } 1135 1136 // Convert none token constants. 1137 if (isa<llvm::ConstantTokenNone>(constant)) { 1138 return builder.create<NoneTokenOp>(loc).getResult(); 1139 } 1140 1141 // Convert poison. 1142 if (auto *poisonVal = dyn_cast<llvm::PoisonValue>(constant)) { 1143 Type type = convertType(poisonVal->getType()); 1144 return builder.create<PoisonOp>(loc, type).getResult(); 1145 } 1146 1147 // Convert undef. 1148 if (auto *undefVal = dyn_cast<llvm::UndefValue>(constant)) { 1149 Type type = convertType(undefVal->getType()); 1150 return builder.create<UndefOp>(loc, type).getResult(); 1151 } 1152 1153 // Convert global variable accesses. 1154 if (auto *globalObj = dyn_cast<llvm::GlobalObject>(constant)) { 1155 Type type = convertType(globalObj->getType()); 1156 StringRef globalName = globalObj->getName(); 1157 FlatSymbolRefAttr symbolRef; 1158 // Empty names are only allowed for global variables. 1159 if (globalName.empty()) 1160 symbolRef = 1161 getOrCreateNamelessSymbolName(cast<llvm::GlobalVariable>(globalObj)); 1162 else 1163 symbolRef = FlatSymbolRefAttr::get(context, globalName); 1164 return builder.create<AddressOfOp>(loc, type, symbolRef).getResult(); 1165 } 1166 1167 // Convert constant expressions. 1168 if (auto *constExpr = dyn_cast<llvm::ConstantExpr>(constant)) { 1169 // Convert the constant expression to a temporary LLVM instruction and 1170 // translate it using the `processInstruction` method. Delete the 1171 // instruction after the translation and remove it from `valueMapping`, 1172 // since later calls to `getAsInstruction` may return the same address 1173 // resulting in a conflicting `valueMapping` entry. 1174 llvm::Instruction *inst = constExpr->getAsInstruction(); 1175 auto guard = llvm::make_scope_exit([&]() { 1176 assert(!noResultOpMapping.contains(inst) && 1177 "expected constant expression to return a result"); 1178 valueMapping.erase(inst); 1179 inst->deleteValue(); 1180 }); 1181 // Note: `processInstruction` does not call `convertConstant` recursively 1182 // since all constant dependencies have been converted before. 1183 assert(llvm::all_of(inst->operands(), [&](llvm::Value *value) { 1184 return valueMapping.contains(value); 1185 })); 1186 if (failed(processInstruction(inst))) 1187 return failure(); 1188 return lookupValue(inst); 1189 } 1190 1191 // Convert aggregate constants. 1192 if (isa<llvm::ConstantAggregate>(constant) || 1193 isa<llvm::ConstantAggregateZero>(constant)) { 1194 // Lookup the aggregate elements that have been converted before. 1195 SmallVector<Value> elementValues; 1196 if (auto *constAgg = dyn_cast<llvm::ConstantAggregate>(constant)) { 1197 elementValues.reserve(constAgg->getNumOperands()); 1198 for (llvm::Value *operand : constAgg->operands()) 1199 elementValues.push_back(lookupValue(operand)); 1200 } 1201 if (auto *constAgg = dyn_cast<llvm::ConstantAggregateZero>(constant)) { 1202 unsigned numElements = constAgg->getElementCount().getFixedValue(); 1203 elementValues.reserve(numElements); 1204 for (unsigned i = 0, e = numElements; i != e; ++i) 1205 elementValues.push_back(lookupValue(constAgg->getElementValue(i))); 1206 } 1207 assert(llvm::count(elementValues, nullptr) == 0 && 1208 "expected all elements have been converted before"); 1209 1210 // Generate an UndefOp as root value and insert the aggregate elements. 1211 Type rootType = convertType(constant->getType()); 1212 bool isArrayOrStruct = isa<LLVMArrayType, LLVMStructType>(rootType); 1213 assert((isArrayOrStruct || LLVM::isCompatibleVectorType(rootType)) && 1214 "unrecognized aggregate type"); 1215 Value root = builder.create<UndefOp>(loc, rootType); 1216 for (const auto &it : llvm::enumerate(elementValues)) { 1217 if (isArrayOrStruct) { 1218 root = builder.create<InsertValueOp>(loc, root, it.value(), it.index()); 1219 } else { 1220 Attribute indexAttr = builder.getI32IntegerAttr(it.index()); 1221 Value indexValue = 1222 builder.create<ConstantOp>(loc, builder.getI32Type(), indexAttr); 1223 root = builder.create<InsertElementOp>(loc, rootType, root, it.value(), 1224 indexValue); 1225 } 1226 } 1227 return root; 1228 } 1229 1230 if (auto *constTargetNone = dyn_cast<llvm::ConstantTargetNone>(constant)) { 1231 LLVMTargetExtType targetExtType = 1232 cast<LLVMTargetExtType>(convertType(constTargetNone->getType())); 1233 assert(targetExtType.hasProperty(LLVMTargetExtType::HasZeroInit) && 1234 "target extension type does not support zero-initialization"); 1235 // Create llvm.mlir.zero operation to represent zero-initialization of 1236 // target extension type. 1237 return builder.create<LLVM::ZeroOp>(loc, targetExtType).getRes(); 1238 } 1239 1240 StringRef error = ""; 1241 if (isa<llvm::BlockAddress>(constant)) 1242 error = " since blockaddress(...) is unsupported"; 1243 1244 return emitError(loc) << "unhandled constant: " << diag(*constant) << error; 1245 } 1246 1247 FailureOr<Value> ModuleImport::convertConstantExpr(llvm::Constant *constant) { 1248 // Only call the function for constants that have not been translated before 1249 // since it updates the constant insertion point assuming the converted 1250 // constant has been introduced at the end of the constant section. 1251 assert(!valueMapping.contains(constant) && 1252 "expected constant has not been converted before"); 1253 assert(constantInsertionBlock && 1254 "expected the constant insertion block to be non-null"); 1255 1256 // Insert the constant after the last one or at the start of the entry block. 1257 OpBuilder::InsertionGuard guard(builder); 1258 if (!constantInsertionOp) 1259 builder.setInsertionPointToStart(constantInsertionBlock); 1260 else 1261 builder.setInsertionPointAfter(constantInsertionOp); 1262 1263 // Convert all constants of the expression and add them to `valueMapping`. 1264 SetVector<llvm::Constant *> constantsToConvert = 1265 getConstantsToConvert(constant); 1266 for (llvm::Constant *constantToConvert : constantsToConvert) { 1267 FailureOr<Value> converted = convertConstant(constantToConvert); 1268 if (failed(converted)) 1269 return failure(); 1270 mapValue(constantToConvert, *converted); 1271 } 1272 1273 // Update the constant insertion point and return the converted constant. 1274 Value result = lookupValue(constant); 1275 constantInsertionOp = result.getDefiningOp(); 1276 return result; 1277 } 1278 1279 FailureOr<Value> ModuleImport::convertValue(llvm::Value *value) { 1280 assert(!isa<llvm::MetadataAsValue>(value) && 1281 "expected value to not be metadata"); 1282 1283 // Return the mapped value if it has been converted before. 1284 auto it = valueMapping.find(value); 1285 if (it != valueMapping.end()) 1286 return it->getSecond(); 1287 1288 // Convert constants such as immediate values that have no mapping yet. 1289 if (auto *constant = dyn_cast<llvm::Constant>(value)) 1290 return convertConstantExpr(constant); 1291 1292 Location loc = UnknownLoc::get(context); 1293 if (auto *inst = dyn_cast<llvm::Instruction>(value)) 1294 loc = translateLoc(inst->getDebugLoc()); 1295 return emitError(loc) << "unhandled value: " << diag(*value); 1296 } 1297 1298 FailureOr<Value> ModuleImport::convertMetadataValue(llvm::Value *value) { 1299 // A value may be wrapped as metadata, for example, when passed to a debug 1300 // intrinsic. Unwrap these values before the conversion. 1301 auto *nodeAsVal = dyn_cast<llvm::MetadataAsValue>(value); 1302 if (!nodeAsVal) 1303 return failure(); 1304 auto *node = dyn_cast<llvm::ValueAsMetadata>(nodeAsVal->getMetadata()); 1305 if (!node) 1306 return failure(); 1307 value = node->getValue(); 1308 1309 // Return the mapped value if it has been converted before. 1310 auto it = valueMapping.find(value); 1311 if (it != valueMapping.end()) 1312 return it->getSecond(); 1313 1314 // Convert constants such as immediate values that have no mapping yet. 1315 if (auto *constant = dyn_cast<llvm::Constant>(value)) 1316 return convertConstantExpr(constant); 1317 return failure(); 1318 } 1319 1320 FailureOr<SmallVector<Value>> 1321 ModuleImport::convertValues(ArrayRef<llvm::Value *> values) { 1322 SmallVector<Value> remapped; 1323 remapped.reserve(values.size()); 1324 for (llvm::Value *value : values) { 1325 FailureOr<Value> converted = convertValue(value); 1326 if (failed(converted)) 1327 return failure(); 1328 remapped.push_back(*converted); 1329 } 1330 return remapped; 1331 } 1332 1333 LogicalResult ModuleImport::convertIntrinsicArguments( 1334 ArrayRef<llvm::Value *> values, ArrayRef<llvm::OperandBundleUse> opBundles, 1335 bool requiresOpBundles, ArrayRef<unsigned> immArgPositions, 1336 ArrayRef<StringLiteral> immArgAttrNames, SmallVectorImpl<Value> &valuesOut, 1337 SmallVectorImpl<NamedAttribute> &attrsOut) { 1338 assert(immArgPositions.size() == immArgAttrNames.size() && 1339 "LLVM `immArgPositions` and MLIR `immArgAttrNames` should have equal " 1340 "length"); 1341 1342 SmallVector<llvm::Value *> operands(values); 1343 for (auto [immArgPos, immArgName] : 1344 llvm::zip(immArgPositions, immArgAttrNames)) { 1345 auto &value = operands[immArgPos]; 1346 auto *constant = llvm::cast<llvm::Constant>(value); 1347 auto attr = getScalarConstantAsAttr(builder, constant); 1348 assert(attr && attr.getType().isIntOrFloat() && 1349 "expected immarg to be float or integer constant"); 1350 auto nameAttr = StringAttr::get(attr.getContext(), immArgName); 1351 attrsOut.push_back({nameAttr, attr}); 1352 // Mark matched attribute values as null (so they can be removed below). 1353 value = nullptr; 1354 } 1355 1356 for (llvm::Value *value : operands) { 1357 if (!value) 1358 continue; 1359 auto mlirValue = convertValue(value); 1360 if (failed(mlirValue)) 1361 return failure(); 1362 valuesOut.push_back(*mlirValue); 1363 } 1364 1365 SmallVector<int> opBundleSizes; 1366 SmallVector<Attribute> opBundleTagAttrs; 1367 if (requiresOpBundles) { 1368 opBundleSizes.reserve(opBundles.size()); 1369 opBundleTagAttrs.reserve(opBundles.size()); 1370 1371 for (const llvm::OperandBundleUse &bundle : opBundles) { 1372 opBundleSizes.push_back(bundle.Inputs.size()); 1373 opBundleTagAttrs.push_back(StringAttr::get(context, bundle.getTagName())); 1374 1375 for (const llvm::Use &opBundleOperand : bundle.Inputs) { 1376 auto operandMlirValue = convertValue(opBundleOperand.get()); 1377 if (failed(operandMlirValue)) 1378 return failure(); 1379 valuesOut.push_back(*operandMlirValue); 1380 } 1381 } 1382 1383 auto opBundleSizesAttr = DenseI32ArrayAttr::get(context, opBundleSizes); 1384 auto opBundleSizesAttrNameAttr = 1385 StringAttr::get(context, LLVMDialect::getOpBundleSizesAttrName()); 1386 attrsOut.push_back({opBundleSizesAttrNameAttr, opBundleSizesAttr}); 1387 1388 auto opBundleTagsAttr = ArrayAttr::get(context, opBundleTagAttrs); 1389 auto opBundleTagsAttrNameAttr = 1390 StringAttr::get(context, LLVMDialect::getOpBundleTagsAttrName()); 1391 attrsOut.push_back({opBundleTagsAttrNameAttr, opBundleTagsAttr}); 1392 } 1393 1394 return success(); 1395 } 1396 1397 IntegerAttr ModuleImport::matchIntegerAttr(llvm::Value *value) { 1398 IntegerAttr integerAttr; 1399 FailureOr<Value> converted = convertValue(value); 1400 bool success = succeeded(converted) && 1401 matchPattern(*converted, m_Constant(&integerAttr)); 1402 assert(success && "expected a constant integer value"); 1403 (void)success; 1404 return integerAttr; 1405 } 1406 1407 FloatAttr ModuleImport::matchFloatAttr(llvm::Value *value) { 1408 FloatAttr floatAttr; 1409 FailureOr<Value> converted = convertValue(value); 1410 bool success = 1411 succeeded(converted) && matchPattern(*converted, m_Constant(&floatAttr)); 1412 assert(success && "expected a constant float value"); 1413 (void)success; 1414 return floatAttr; 1415 } 1416 1417 DILocalVariableAttr ModuleImport::matchLocalVariableAttr(llvm::Value *value) { 1418 auto *nodeAsVal = cast<llvm::MetadataAsValue>(value); 1419 auto *node = cast<llvm::DILocalVariable>(nodeAsVal->getMetadata()); 1420 return debugImporter->translate(node); 1421 } 1422 1423 DILabelAttr ModuleImport::matchLabelAttr(llvm::Value *value) { 1424 auto *nodeAsVal = cast<llvm::MetadataAsValue>(value); 1425 auto *node = cast<llvm::DILabel>(nodeAsVal->getMetadata()); 1426 return debugImporter->translate(node); 1427 } 1428 1429 FPExceptionBehaviorAttr 1430 ModuleImport::matchFPExceptionBehaviorAttr(llvm::Value *value) { 1431 auto *metadata = cast<llvm::MetadataAsValue>(value); 1432 auto *mdstr = cast<llvm::MDString>(metadata->getMetadata()); 1433 std::optional<llvm::fp::ExceptionBehavior> optLLVM = 1434 llvm::convertStrToExceptionBehavior(mdstr->getString()); 1435 assert(optLLVM && "Expecting FP exception behavior"); 1436 return builder.getAttr<FPExceptionBehaviorAttr>( 1437 convertFPExceptionBehaviorFromLLVM(*optLLVM)); 1438 } 1439 1440 RoundingModeAttr ModuleImport::matchRoundingModeAttr(llvm::Value *value) { 1441 auto *metadata = cast<llvm::MetadataAsValue>(value); 1442 auto *mdstr = cast<llvm::MDString>(metadata->getMetadata()); 1443 std::optional<llvm::RoundingMode> optLLVM = 1444 llvm::convertStrToRoundingMode(mdstr->getString()); 1445 assert(optLLVM && "Expecting rounding mode"); 1446 return builder.getAttr<RoundingModeAttr>( 1447 convertRoundingModeFromLLVM(*optLLVM)); 1448 } 1449 1450 FailureOr<SmallVector<AliasScopeAttr>> 1451 ModuleImport::matchAliasScopeAttrs(llvm::Value *value) { 1452 auto *nodeAsVal = cast<llvm::MetadataAsValue>(value); 1453 auto *node = cast<llvm::MDNode>(nodeAsVal->getMetadata()); 1454 return lookupAliasScopeAttrs(node); 1455 } 1456 1457 Location ModuleImport::translateLoc(llvm::DILocation *loc) { 1458 return debugImporter->translateLoc(loc); 1459 } 1460 1461 LogicalResult 1462 ModuleImport::convertBranchArgs(llvm::Instruction *branch, 1463 llvm::BasicBlock *target, 1464 SmallVectorImpl<Value> &blockArguments) { 1465 for (auto inst = target->begin(); isa<llvm::PHINode>(inst); ++inst) { 1466 auto *phiInst = cast<llvm::PHINode>(&*inst); 1467 llvm::Value *value = phiInst->getIncomingValueForBlock(branch->getParent()); 1468 FailureOr<Value> converted = convertValue(value); 1469 if (failed(converted)) 1470 return failure(); 1471 blockArguments.push_back(*converted); 1472 } 1473 return success(); 1474 } 1475 1476 LogicalResult 1477 ModuleImport::convertCallTypeAndOperands(llvm::CallBase *callInst, 1478 SmallVectorImpl<Type> &types, 1479 SmallVectorImpl<Value> &operands) { 1480 if (!callInst->getType()->isVoidTy()) 1481 types.push_back(convertType(callInst->getType())); 1482 1483 if (!callInst->getCalledFunction()) { 1484 FailureOr<Value> called = convertValue(callInst->getCalledOperand()); 1485 if (failed(called)) 1486 return failure(); 1487 operands.push_back(*called); 1488 } 1489 SmallVector<llvm::Value *> args(callInst->args()); 1490 FailureOr<SmallVector<Value>> arguments = convertValues(args); 1491 if (failed(arguments)) 1492 return failure(); 1493 llvm::append_range(operands, *arguments); 1494 return success(); 1495 } 1496 1497 LogicalResult ModuleImport::convertIntrinsic(llvm::CallInst *inst) { 1498 if (succeeded(iface.convertIntrinsic(builder, inst, *this))) 1499 return success(); 1500 1501 Location loc = translateLoc(inst->getDebugLoc()); 1502 return emitError(loc) << "unhandled intrinsic: " << diag(*inst); 1503 } 1504 1505 LogicalResult ModuleImport::convertInstruction(llvm::Instruction *inst) { 1506 // Convert all instructions that do not provide an MLIR builder. 1507 Location loc = translateLoc(inst->getDebugLoc()); 1508 if (inst->getOpcode() == llvm::Instruction::Br) { 1509 auto *brInst = cast<llvm::BranchInst>(inst); 1510 1511 SmallVector<Block *> succBlocks; 1512 SmallVector<SmallVector<Value>> succBlockArgs; 1513 for (auto i : llvm::seq<unsigned>(0, brInst->getNumSuccessors())) { 1514 llvm::BasicBlock *succ = brInst->getSuccessor(i); 1515 SmallVector<Value> blockArgs; 1516 if (failed(convertBranchArgs(brInst, succ, blockArgs))) 1517 return failure(); 1518 succBlocks.push_back(lookupBlock(succ)); 1519 succBlockArgs.push_back(blockArgs); 1520 } 1521 1522 if (!brInst->isConditional()) { 1523 auto brOp = builder.create<LLVM::BrOp>(loc, succBlockArgs.front(), 1524 succBlocks.front()); 1525 mapNoResultOp(inst, brOp); 1526 return success(); 1527 } 1528 FailureOr<Value> condition = convertValue(brInst->getCondition()); 1529 if (failed(condition)) 1530 return failure(); 1531 auto condBrOp = builder.create<LLVM::CondBrOp>( 1532 loc, *condition, succBlocks.front(), succBlockArgs.front(), 1533 succBlocks.back(), succBlockArgs.back()); 1534 mapNoResultOp(inst, condBrOp); 1535 return success(); 1536 } 1537 if (inst->getOpcode() == llvm::Instruction::Switch) { 1538 auto *swInst = cast<llvm::SwitchInst>(inst); 1539 // Process the condition value. 1540 FailureOr<Value> condition = convertValue(swInst->getCondition()); 1541 if (failed(condition)) 1542 return failure(); 1543 SmallVector<Value> defaultBlockArgs; 1544 // Process the default case. 1545 llvm::BasicBlock *defaultBB = swInst->getDefaultDest(); 1546 if (failed(convertBranchArgs(swInst, defaultBB, defaultBlockArgs))) 1547 return failure(); 1548 1549 // Process the cases. 1550 unsigned numCases = swInst->getNumCases(); 1551 SmallVector<SmallVector<Value>> caseOperands(numCases); 1552 SmallVector<ValueRange> caseOperandRefs(numCases); 1553 SmallVector<APInt> caseValues(numCases); 1554 SmallVector<Block *> caseBlocks(numCases); 1555 for (const auto &it : llvm::enumerate(swInst->cases())) { 1556 const llvm::SwitchInst::CaseHandle &caseHandle = it.value(); 1557 llvm::BasicBlock *succBB = caseHandle.getCaseSuccessor(); 1558 if (failed(convertBranchArgs(swInst, succBB, caseOperands[it.index()]))) 1559 return failure(); 1560 caseOperandRefs[it.index()] = caseOperands[it.index()]; 1561 caseValues[it.index()] = caseHandle.getCaseValue()->getValue(); 1562 caseBlocks[it.index()] = lookupBlock(succBB); 1563 } 1564 1565 auto switchOp = builder.create<SwitchOp>( 1566 loc, *condition, lookupBlock(defaultBB), defaultBlockArgs, caseValues, 1567 caseBlocks, caseOperandRefs); 1568 mapNoResultOp(inst, switchOp); 1569 return success(); 1570 } 1571 if (inst->getOpcode() == llvm::Instruction::PHI) { 1572 Type type = convertType(inst->getType()); 1573 mapValue(inst, builder.getInsertionBlock()->addArgument( 1574 type, translateLoc(inst->getDebugLoc()))); 1575 return success(); 1576 } 1577 if (inst->getOpcode() == llvm::Instruction::Call) { 1578 auto *callInst = cast<llvm::CallInst>(inst); 1579 1580 SmallVector<Type> types; 1581 SmallVector<Value> operands; 1582 if (failed(convertCallTypeAndOperands(callInst, types, operands))) 1583 return failure(); 1584 1585 auto funcTy = 1586 dyn_cast<LLVMFunctionType>(convertType(callInst->getFunctionType())); 1587 if (!funcTy) 1588 return failure(); 1589 1590 CallOp callOp; 1591 1592 if (llvm::Function *callee = callInst->getCalledFunction()) { 1593 callOp = builder.create<CallOp>( 1594 loc, funcTy, SymbolRefAttr::get(context, callee->getName()), 1595 operands); 1596 } else { 1597 callOp = builder.create<CallOp>(loc, funcTy, operands); 1598 } 1599 callOp.setCConv(convertCConvFromLLVM(callInst->getCallingConv())); 1600 callOp.setTailCallKind( 1601 convertTailCallKindFromLLVM(callInst->getTailCallKind())); 1602 setFastmathFlagsAttr(inst, callOp); 1603 1604 // Handle function attributes. 1605 if (callInst->hasFnAttr(llvm::Attribute::Convergent)) 1606 callOp.setConvergent(true); 1607 if (callInst->hasFnAttr(llvm::Attribute::NoUnwind)) 1608 callOp.setNoUnwind(true); 1609 if (callInst->hasFnAttr(llvm::Attribute::WillReturn)) 1610 callOp.setWillReturn(true); 1611 1612 llvm::MemoryEffects memEffects = callInst->getMemoryEffects(); 1613 ModRefInfo othermem = convertModRefInfoFromLLVM( 1614 memEffects.getModRef(llvm::MemoryEffects::Location::Other)); 1615 ModRefInfo argMem = convertModRefInfoFromLLVM( 1616 memEffects.getModRef(llvm::MemoryEffects::Location::ArgMem)); 1617 ModRefInfo inaccessibleMem = convertModRefInfoFromLLVM( 1618 memEffects.getModRef(llvm::MemoryEffects::Location::InaccessibleMem)); 1619 auto memAttr = MemoryEffectsAttr::get(callOp.getContext(), othermem, argMem, 1620 inaccessibleMem); 1621 // Only set the attribute when it does not match the default value. 1622 if (!memAttr.isReadWrite()) 1623 callOp.setMemoryEffectsAttr(memAttr); 1624 1625 if (!callInst->getType()->isVoidTy()) 1626 mapValue(inst, callOp.getResult()); 1627 else 1628 mapNoResultOp(inst, callOp); 1629 return success(); 1630 } 1631 if (inst->getOpcode() == llvm::Instruction::LandingPad) { 1632 auto *lpInst = cast<llvm::LandingPadInst>(inst); 1633 1634 SmallVector<Value> operands; 1635 operands.reserve(lpInst->getNumClauses()); 1636 for (auto i : llvm::seq<unsigned>(0, lpInst->getNumClauses())) { 1637 FailureOr<Value> operand = convertValue(lpInst->getClause(i)); 1638 if (failed(operand)) 1639 return failure(); 1640 operands.push_back(*operand); 1641 } 1642 1643 Type type = convertType(lpInst->getType()); 1644 auto lpOp = 1645 builder.create<LandingpadOp>(loc, type, lpInst->isCleanup(), operands); 1646 mapValue(inst, lpOp); 1647 return success(); 1648 } 1649 if (inst->getOpcode() == llvm::Instruction::Invoke) { 1650 auto *invokeInst = cast<llvm::InvokeInst>(inst); 1651 1652 SmallVector<Type> types; 1653 SmallVector<Value> operands; 1654 if (failed(convertCallTypeAndOperands(invokeInst, types, operands))) 1655 return failure(); 1656 1657 // Check whether the invoke result is an argument to the normal destination 1658 // block. 1659 bool invokeResultUsedInPhi = llvm::any_of( 1660 invokeInst->getNormalDest()->phis(), [&](const llvm::PHINode &phi) { 1661 return phi.getIncomingValueForBlock(invokeInst->getParent()) == 1662 invokeInst; 1663 }); 1664 1665 Block *normalDest = lookupBlock(invokeInst->getNormalDest()); 1666 Block *directNormalDest = normalDest; 1667 if (invokeResultUsedInPhi) { 1668 // The invoke result cannot be an argument to the normal destination 1669 // block, as that would imply using the invoke operation result in its 1670 // definition, so we need to create a dummy block to serve as an 1671 // intermediate destination. 1672 OpBuilder::InsertionGuard g(builder); 1673 directNormalDest = builder.createBlock(normalDest); 1674 } 1675 1676 SmallVector<Value> unwindArgs; 1677 if (failed(convertBranchArgs(invokeInst, invokeInst->getUnwindDest(), 1678 unwindArgs))) 1679 return failure(); 1680 1681 auto funcTy = 1682 dyn_cast<LLVMFunctionType>(convertType(invokeInst->getFunctionType())); 1683 if (!funcTy) 1684 return failure(); 1685 1686 // Create the invoke operation. Normal destination block arguments will be 1687 // added later on to handle the case in which the operation result is 1688 // included in this list. 1689 InvokeOp invokeOp; 1690 if (llvm::Function *callee = invokeInst->getCalledFunction()) { 1691 invokeOp = builder.create<InvokeOp>( 1692 loc, funcTy, 1693 SymbolRefAttr::get(builder.getContext(), callee->getName()), operands, 1694 directNormalDest, ValueRange(), 1695 lookupBlock(invokeInst->getUnwindDest()), unwindArgs); 1696 } else { 1697 invokeOp = builder.create<InvokeOp>( 1698 loc, funcTy, /*callee=*/nullptr, operands, directNormalDest, 1699 ValueRange(), lookupBlock(invokeInst->getUnwindDest()), unwindArgs); 1700 } 1701 invokeOp.setCConv(convertCConvFromLLVM(invokeInst->getCallingConv())); 1702 if (!invokeInst->getType()->isVoidTy()) 1703 mapValue(inst, invokeOp.getResults().front()); 1704 else 1705 mapNoResultOp(inst, invokeOp); 1706 1707 SmallVector<Value> normalArgs; 1708 if (failed(convertBranchArgs(invokeInst, invokeInst->getNormalDest(), 1709 normalArgs))) 1710 return failure(); 1711 1712 if (invokeResultUsedInPhi) { 1713 // The dummy normal dest block will just host an unconditional branch 1714 // instruction to the normal destination block passing the required block 1715 // arguments (including the invoke operation's result). 1716 OpBuilder::InsertionGuard g(builder); 1717 builder.setInsertionPointToStart(directNormalDest); 1718 builder.create<LLVM::BrOp>(loc, normalArgs, normalDest); 1719 } else { 1720 // If the invoke operation's result is not a block argument to the normal 1721 // destination block, just add the block arguments as usual. 1722 assert(llvm::none_of( 1723 normalArgs, 1724 [&](Value val) { return val.getDefiningOp() == invokeOp; }) && 1725 "An llvm.invoke operation cannot pass its result as a block " 1726 "argument."); 1727 invokeOp.getNormalDestOperandsMutable().append(normalArgs); 1728 } 1729 1730 return success(); 1731 } 1732 if (inst->getOpcode() == llvm::Instruction::GetElementPtr) { 1733 auto *gepInst = cast<llvm::GetElementPtrInst>(inst); 1734 Type sourceElementType = convertType(gepInst->getSourceElementType()); 1735 FailureOr<Value> basePtr = convertValue(gepInst->getOperand(0)); 1736 if (failed(basePtr)) 1737 return failure(); 1738 1739 // Treat every indices as dynamic since GEPOp::build will refine those 1740 // indices into static attributes later. One small downside of this 1741 // approach is that many unused `llvm.mlir.constant` would be emitted 1742 // at first place. 1743 SmallVector<GEPArg> indices; 1744 for (llvm::Value *operand : llvm::drop_begin(gepInst->operand_values())) { 1745 FailureOr<Value> index = convertValue(operand); 1746 if (failed(index)) 1747 return failure(); 1748 indices.push_back(*index); 1749 } 1750 1751 Type type = convertType(inst->getType()); 1752 auto gepOp = builder.create<GEPOp>(loc, type, sourceElementType, *basePtr, 1753 indices, gepInst->isInBounds()); 1754 mapValue(inst, gepOp); 1755 return success(); 1756 } 1757 1758 // Convert all instructions that have an mlirBuilder. 1759 if (succeeded(convertInstructionImpl(builder, inst, *this, iface))) 1760 return success(); 1761 1762 return emitError(loc) << "unhandled instruction: " << diag(*inst); 1763 } 1764 1765 LogicalResult ModuleImport::processInstruction(llvm::Instruction *inst) { 1766 // FIXME: Support uses of SubtargetData. 1767 // FIXME: Add support for call / operand attributes. 1768 // FIXME: Add support for the indirectbr, cleanupret, catchret, catchswitch, 1769 // callbr, vaarg, catchpad, cleanuppad instructions. 1770 1771 // Convert LLVM intrinsics calls to MLIR intrinsics. 1772 if (auto *intrinsic = dyn_cast<llvm::IntrinsicInst>(inst)) 1773 return convertIntrinsic(intrinsic); 1774 1775 // Convert all remaining LLVM instructions to MLIR operations. 1776 return convertInstruction(inst); 1777 } 1778 1779 FlatSymbolRefAttr ModuleImport::getPersonalityAsAttr(llvm::Function *f) { 1780 if (!f->hasPersonalityFn()) 1781 return nullptr; 1782 1783 llvm::Constant *pf = f->getPersonalityFn(); 1784 1785 // If it directly has a name, we can use it. 1786 if (pf->hasName()) 1787 return SymbolRefAttr::get(builder.getContext(), pf->getName()); 1788 1789 // If it doesn't have a name, currently, only function pointers that are 1790 // bitcast to i8* are parsed. 1791 if (auto *ce = dyn_cast<llvm::ConstantExpr>(pf)) { 1792 if (ce->getOpcode() == llvm::Instruction::BitCast && 1793 ce->getType() == llvm::PointerType::getUnqual(f->getContext())) { 1794 if (auto *func = dyn_cast<llvm::Function>(ce->getOperand(0))) 1795 return SymbolRefAttr::get(builder.getContext(), func->getName()); 1796 } 1797 } 1798 return FlatSymbolRefAttr(); 1799 } 1800 1801 static void processMemoryEffects(llvm::Function *func, LLVMFuncOp funcOp) { 1802 llvm::MemoryEffects memEffects = func->getMemoryEffects(); 1803 1804 auto othermem = convertModRefInfoFromLLVM( 1805 memEffects.getModRef(llvm::MemoryEffects::Location::Other)); 1806 auto argMem = convertModRefInfoFromLLVM( 1807 memEffects.getModRef(llvm::MemoryEffects::Location::ArgMem)); 1808 auto inaccessibleMem = convertModRefInfoFromLLVM( 1809 memEffects.getModRef(llvm::MemoryEffects::Location::InaccessibleMem)); 1810 auto memAttr = MemoryEffectsAttr::get(funcOp.getContext(), othermem, argMem, 1811 inaccessibleMem); 1812 // Only set the attr when it does not match the default value. 1813 if (memAttr.isReadWrite()) 1814 return; 1815 funcOp.setMemoryEffectsAttr(memAttr); 1816 } 1817 1818 // List of LLVM IR attributes that map to an explicit attribute on the MLIR 1819 // LLVMFuncOp. 1820 static constexpr std::array kExplicitAttributes{ 1821 StringLiteral("aarch64_in_za"), 1822 StringLiteral("aarch64_inout_za"), 1823 StringLiteral("aarch64_new_za"), 1824 StringLiteral("aarch64_out_za"), 1825 StringLiteral("aarch64_preserves_za"), 1826 StringLiteral("aarch64_pstate_sm_body"), 1827 StringLiteral("aarch64_pstate_sm_compatible"), 1828 StringLiteral("aarch64_pstate_sm_enabled"), 1829 StringLiteral("alwaysinline"), 1830 StringLiteral("approx-func-fp-math"), 1831 StringLiteral("convergent"), 1832 StringLiteral("denormal-fp-math"), 1833 StringLiteral("denormal-fp-math-f32"), 1834 StringLiteral("fp-contract"), 1835 StringLiteral("frame-pointer"), 1836 StringLiteral("no-infs-fp-math"), 1837 StringLiteral("no-nans-fp-math"), 1838 StringLiteral("no-signed-zeros-fp-math"), 1839 StringLiteral("noinline"), 1840 StringLiteral("nounwind"), 1841 StringLiteral("optnone"), 1842 StringLiteral("target-features"), 1843 StringLiteral("tune-cpu"), 1844 StringLiteral("unsafe-fp-math"), 1845 StringLiteral("vscale_range"), 1846 StringLiteral("willreturn"), 1847 }; 1848 1849 static void processPassthroughAttrs(llvm::Function *func, LLVMFuncOp funcOp) { 1850 MLIRContext *context = funcOp.getContext(); 1851 SmallVector<Attribute> passthroughs; 1852 llvm::AttributeSet funcAttrs = func->getAttributes().getAttributes( 1853 llvm::AttributeList::AttrIndex::FunctionIndex); 1854 for (llvm::Attribute attr : funcAttrs) { 1855 // Skip the memory attribute since the LLVMFuncOp has an explicit memory 1856 // attribute. 1857 if (attr.hasAttribute(llvm::Attribute::Memory)) 1858 continue; 1859 1860 // Skip invalid type attributes. 1861 if (attr.isTypeAttribute()) { 1862 emitWarning(funcOp.getLoc(), 1863 "type attributes on a function are invalid, skipping it"); 1864 continue; 1865 } 1866 1867 StringRef attrName; 1868 if (attr.isStringAttribute()) 1869 attrName = attr.getKindAsString(); 1870 else 1871 attrName = llvm::Attribute::getNameFromAttrKind(attr.getKindAsEnum()); 1872 auto keyAttr = StringAttr::get(context, attrName); 1873 1874 // Skip attributes that map to an explicit attribute on the LLVMFuncOp. 1875 if (llvm::is_contained(kExplicitAttributes, attrName)) 1876 continue; 1877 1878 if (attr.isStringAttribute()) { 1879 StringRef val = attr.getValueAsString(); 1880 if (val.empty()) { 1881 passthroughs.push_back(keyAttr); 1882 continue; 1883 } 1884 passthroughs.push_back( 1885 ArrayAttr::get(context, {keyAttr, StringAttr::get(context, val)})); 1886 continue; 1887 } 1888 if (attr.isIntAttribute()) { 1889 auto val = std::to_string(attr.getValueAsInt()); 1890 passthroughs.push_back( 1891 ArrayAttr::get(context, {keyAttr, StringAttr::get(context, val)})); 1892 continue; 1893 } 1894 if (attr.isEnumAttribute()) { 1895 passthroughs.push_back(keyAttr); 1896 continue; 1897 } 1898 1899 llvm_unreachable("unexpected attribute kind"); 1900 } 1901 1902 if (!passthroughs.empty()) 1903 funcOp.setPassthroughAttr(ArrayAttr::get(context, passthroughs)); 1904 } 1905 1906 void ModuleImport::processFunctionAttributes(llvm::Function *func, 1907 LLVMFuncOp funcOp) { 1908 processMemoryEffects(func, funcOp); 1909 processPassthroughAttrs(func, funcOp); 1910 1911 if (func->hasFnAttribute(llvm::Attribute::NoInline)) 1912 funcOp.setNoInline(true); 1913 if (func->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1914 funcOp.setAlwaysInline(true); 1915 if (func->hasFnAttribute(llvm::Attribute::OptimizeNone)) 1916 funcOp.setOptimizeNone(true); 1917 if (func->hasFnAttribute(llvm::Attribute::Convergent)) 1918 funcOp.setConvergent(true); 1919 if (func->hasFnAttribute(llvm::Attribute::NoUnwind)) 1920 funcOp.setNoUnwind(true); 1921 if (func->hasFnAttribute(llvm::Attribute::WillReturn)) 1922 funcOp.setWillReturn(true); 1923 1924 if (func->hasFnAttribute("aarch64_pstate_sm_enabled")) 1925 funcOp.setArmStreaming(true); 1926 else if (func->hasFnAttribute("aarch64_pstate_sm_body")) 1927 funcOp.setArmLocallyStreaming(true); 1928 else if (func->hasFnAttribute("aarch64_pstate_sm_compatible")) 1929 funcOp.setArmStreamingCompatible(true); 1930 1931 if (func->hasFnAttribute("aarch64_new_za")) 1932 funcOp.setArmNewZa(true); 1933 else if (func->hasFnAttribute("aarch64_in_za")) 1934 funcOp.setArmInZa(true); 1935 else if (func->hasFnAttribute("aarch64_out_za")) 1936 funcOp.setArmOutZa(true); 1937 else if (func->hasFnAttribute("aarch64_inout_za")) 1938 funcOp.setArmInoutZa(true); 1939 else if (func->hasFnAttribute("aarch64_preserves_za")) 1940 funcOp.setArmPreservesZa(true); 1941 1942 llvm::Attribute attr = func->getFnAttribute(llvm::Attribute::VScaleRange); 1943 if (attr.isValid()) { 1944 MLIRContext *context = funcOp.getContext(); 1945 auto intTy = IntegerType::get(context, 32); 1946 funcOp.setVscaleRangeAttr(LLVM::VScaleRangeAttr::get( 1947 context, IntegerAttr::get(intTy, attr.getVScaleRangeMin()), 1948 IntegerAttr::get(intTy, attr.getVScaleRangeMax().value_or(0)))); 1949 } 1950 1951 // Process frame-pointer attribute. 1952 if (func->hasFnAttribute("frame-pointer")) { 1953 StringRef stringRefFramePointerKind = 1954 func->getFnAttribute("frame-pointer").getValueAsString(); 1955 funcOp.setFramePointerAttr(LLVM::FramePointerKindAttr::get( 1956 funcOp.getContext(), LLVM::framePointerKind::symbolizeFramePointerKind( 1957 stringRefFramePointerKind) 1958 .value())); 1959 } 1960 1961 if (llvm::Attribute attr = func->getFnAttribute("target-cpu"); 1962 attr.isStringAttribute()) 1963 funcOp.setTargetCpuAttr(StringAttr::get(context, attr.getValueAsString())); 1964 1965 if (llvm::Attribute attr = func->getFnAttribute("tune-cpu"); 1966 attr.isStringAttribute()) 1967 funcOp.setTuneCpuAttr(StringAttr::get(context, attr.getValueAsString())); 1968 1969 if (llvm::Attribute attr = func->getFnAttribute("target-features"); 1970 attr.isStringAttribute()) 1971 funcOp.setTargetFeaturesAttr( 1972 LLVM::TargetFeaturesAttr::get(context, attr.getValueAsString())); 1973 1974 if (llvm::Attribute attr = func->getFnAttribute("unsafe-fp-math"); 1975 attr.isStringAttribute()) 1976 funcOp.setUnsafeFpMath(attr.getValueAsBool()); 1977 1978 if (llvm::Attribute attr = func->getFnAttribute("no-infs-fp-math"); 1979 attr.isStringAttribute()) 1980 funcOp.setNoInfsFpMath(attr.getValueAsBool()); 1981 1982 if (llvm::Attribute attr = func->getFnAttribute("no-nans-fp-math"); 1983 attr.isStringAttribute()) 1984 funcOp.setNoNansFpMath(attr.getValueAsBool()); 1985 1986 if (llvm::Attribute attr = func->getFnAttribute("approx-func-fp-math"); 1987 attr.isStringAttribute()) 1988 funcOp.setApproxFuncFpMath(attr.getValueAsBool()); 1989 1990 if (llvm::Attribute attr = func->getFnAttribute("no-signed-zeros-fp-math"); 1991 attr.isStringAttribute()) 1992 funcOp.setNoSignedZerosFpMath(attr.getValueAsBool()); 1993 1994 if (llvm::Attribute attr = func->getFnAttribute("denormal-fp-math"); 1995 attr.isStringAttribute()) 1996 funcOp.setDenormalFpMathAttr( 1997 StringAttr::get(context, attr.getValueAsString())); 1998 1999 if (llvm::Attribute attr = func->getFnAttribute("denormal-fp-math-f32"); 2000 attr.isStringAttribute()) 2001 funcOp.setDenormalFpMathF32Attr( 2002 StringAttr::get(context, attr.getValueAsString())); 2003 2004 if (llvm::Attribute attr = func->getFnAttribute("fp-contract"); 2005 attr.isStringAttribute()) 2006 funcOp.setFpContractAttr(StringAttr::get(context, attr.getValueAsString())); 2007 } 2008 2009 DictionaryAttr 2010 ModuleImport::convertParameterAttribute(llvm::AttributeSet llvmParamAttrs, 2011 OpBuilder &builder) { 2012 SmallVector<NamedAttribute> paramAttrs; 2013 for (auto [llvmKind, mlirName] : getAttrKindToNameMapping()) { 2014 auto llvmAttr = llvmParamAttrs.getAttribute(llvmKind); 2015 // Skip attributes that are not attached. 2016 if (!llvmAttr.isValid()) 2017 continue; 2018 Attribute mlirAttr; 2019 if (llvmAttr.isTypeAttribute()) 2020 mlirAttr = TypeAttr::get(convertType(llvmAttr.getValueAsType())); 2021 else if (llvmAttr.isIntAttribute()) 2022 mlirAttr = builder.getI64IntegerAttr(llvmAttr.getValueAsInt()); 2023 else if (llvmAttr.isEnumAttribute()) 2024 mlirAttr = builder.getUnitAttr(); 2025 else 2026 llvm_unreachable("unexpected parameter attribute kind"); 2027 paramAttrs.push_back(builder.getNamedAttr(mlirName, mlirAttr)); 2028 } 2029 2030 return builder.getDictionaryAttr(paramAttrs); 2031 } 2032 2033 void ModuleImport::convertParameterAttributes(llvm::Function *func, 2034 LLVMFuncOp funcOp, 2035 OpBuilder &builder) { 2036 auto llvmAttrs = func->getAttributes(); 2037 for (size_t i = 0, e = funcOp.getNumArguments(); i < e; ++i) { 2038 llvm::AttributeSet llvmArgAttrs = llvmAttrs.getParamAttrs(i); 2039 funcOp.setArgAttrs(i, convertParameterAttribute(llvmArgAttrs, builder)); 2040 } 2041 // Convert the result attributes and attach them wrapped in an ArrayAttribute 2042 // to the funcOp. 2043 llvm::AttributeSet llvmResAttr = llvmAttrs.getRetAttrs(); 2044 if (!llvmResAttr.hasAttributes()) 2045 return; 2046 funcOp.setResAttrsAttr( 2047 builder.getArrayAttr(convertParameterAttribute(llvmResAttr, builder))); 2048 } 2049 2050 LogicalResult ModuleImport::processFunction(llvm::Function *func) { 2051 clearRegionState(); 2052 2053 auto functionType = 2054 dyn_cast<LLVMFunctionType>(convertType(func->getFunctionType())); 2055 if (func->isIntrinsic() && 2056 iface.isConvertibleIntrinsic(func->getIntrinsicID())) 2057 return success(); 2058 2059 bool dsoLocal = func->hasLocalLinkage(); 2060 CConv cconv = convertCConvFromLLVM(func->getCallingConv()); 2061 2062 // Insert the function at the end of the module. 2063 OpBuilder::InsertionGuard guard(builder); 2064 builder.setInsertionPointToEnd(mlirModule.getBody()); 2065 2066 Location loc = debugImporter->translateFuncLocation(func); 2067 LLVMFuncOp funcOp = builder.create<LLVMFuncOp>( 2068 loc, func->getName(), functionType, 2069 convertLinkageFromLLVM(func->getLinkage()), dsoLocal, cconv); 2070 2071 convertParameterAttributes(func, funcOp, builder); 2072 2073 if (FlatSymbolRefAttr personality = getPersonalityAsAttr(func)) 2074 funcOp.setPersonalityAttr(personality); 2075 else if (func->hasPersonalityFn()) 2076 emitWarning(funcOp.getLoc(), "could not deduce personality, skipping it"); 2077 2078 if (func->hasGC()) 2079 funcOp.setGarbageCollector(StringRef(func->getGC())); 2080 2081 if (func->hasAtLeastLocalUnnamedAddr()) 2082 funcOp.setUnnamedAddr(convertUnnamedAddrFromLLVM(func->getUnnamedAddr())); 2083 2084 if (func->hasSection()) 2085 funcOp.setSection(StringRef(func->getSection())); 2086 2087 funcOp.setVisibility_(convertVisibilityFromLLVM(func->getVisibility())); 2088 2089 if (func->hasComdat()) 2090 funcOp.setComdatAttr(comdatMapping.lookup(func->getComdat())); 2091 2092 if (llvm::MaybeAlign maybeAlign = func->getAlign()) 2093 funcOp.setAlignment(maybeAlign->value()); 2094 2095 // Handle Function attributes. 2096 processFunctionAttributes(func, funcOp); 2097 2098 // Convert non-debug metadata by using the dialect interface. 2099 SmallVector<std::pair<unsigned, llvm::MDNode *>> allMetadata; 2100 func->getAllMetadata(allMetadata); 2101 for (auto &[kind, node] : allMetadata) { 2102 if (!iface.isConvertibleMetadata(kind)) 2103 continue; 2104 if (failed(iface.setMetadataAttrs(builder, kind, node, funcOp, *this))) { 2105 emitWarning(funcOp.getLoc()) 2106 << "unhandled function metadata: " << diagMD(node, llvmModule.get()) 2107 << " on " << diag(*func); 2108 } 2109 } 2110 2111 if (func->isDeclaration()) 2112 return success(); 2113 2114 // Collect the set of basic blocks reachable from the function's entry block. 2115 // This step is crucial as LLVM IR can contain unreachable blocks that 2116 // self-dominate. As a result, an operation might utilize a variable it 2117 // defines, which the import does not support. Given that MLIR lacks block 2118 // label support, we can safely remove unreachable blocks, as there are no 2119 // indirect branch instructions that could potentially target these blocks. 2120 llvm::df_iterator_default_set<llvm::BasicBlock *> reachable; 2121 for (llvm::BasicBlock *basicBlock : llvm::depth_first_ext(func, reachable)) 2122 (void)basicBlock; 2123 2124 // Eagerly create all reachable blocks. 2125 SmallVector<llvm::BasicBlock *> reachableBasicBlocks; 2126 for (llvm::BasicBlock &basicBlock : *func) { 2127 // Skip unreachable blocks. 2128 if (!reachable.contains(&basicBlock)) 2129 continue; 2130 Region &body = funcOp.getBody(); 2131 Block *block = builder.createBlock(&body, body.end()); 2132 mapBlock(&basicBlock, block); 2133 reachableBasicBlocks.push_back(&basicBlock); 2134 } 2135 2136 // Add function arguments to the entry block. 2137 for (const auto &it : llvm::enumerate(func->args())) { 2138 BlockArgument blockArg = funcOp.getFunctionBody().addArgument( 2139 functionType.getParamType(it.index()), funcOp.getLoc()); 2140 mapValue(&it.value(), blockArg); 2141 } 2142 2143 // Process the blocks in topological order. The ordered traversal ensures 2144 // operands defined in a dominating block have a valid mapping to an MLIR 2145 // value once a block is translated. 2146 SetVector<llvm::BasicBlock *> blocks = 2147 getTopologicallySortedBlocks(reachableBasicBlocks); 2148 setConstantInsertionPointToStart(lookupBlock(blocks.front())); 2149 for (llvm::BasicBlock *basicBlock : blocks) 2150 if (failed(processBasicBlock(basicBlock, lookupBlock(basicBlock)))) 2151 return failure(); 2152 2153 // Process the debug intrinsics that require a delayed conversion after 2154 // everything else was converted. 2155 if (failed(processDebugIntrinsics())) 2156 return failure(); 2157 2158 return success(); 2159 } 2160 2161 /// Checks if `dbgIntr` is a kill location that holds metadata instead of an SSA 2162 /// value. 2163 static bool isMetadataKillLocation(llvm::DbgVariableIntrinsic *dbgIntr) { 2164 if (!dbgIntr->isKillLocation()) 2165 return false; 2166 llvm::Value *value = dbgIntr->getArgOperand(0); 2167 auto *nodeAsVal = dyn_cast<llvm::MetadataAsValue>(value); 2168 if (!nodeAsVal) 2169 return false; 2170 return !isa<llvm::ValueAsMetadata>(nodeAsVal->getMetadata()); 2171 } 2172 2173 LogicalResult 2174 ModuleImport::processDebugIntrinsic(llvm::DbgVariableIntrinsic *dbgIntr, 2175 DominanceInfo &domInfo) { 2176 Location loc = translateLoc(dbgIntr->getDebugLoc()); 2177 auto emitUnsupportedWarning = [&]() { 2178 if (emitExpensiveWarnings) 2179 emitWarning(loc) << "dropped intrinsic: " << diag(*dbgIntr); 2180 return success(); 2181 }; 2182 // Drop debug intrinsics with arg lists. 2183 // TODO: Support debug intrinsics that have arg lists. 2184 if (dbgIntr->hasArgList()) 2185 return emitUnsupportedWarning(); 2186 // Kill locations can have metadata nodes as location operand. This 2187 // cannot be converted to poison as the type cannot be reconstructed. 2188 // TODO: find a way to support this case. 2189 if (isMetadataKillLocation(dbgIntr)) 2190 return emitUnsupportedWarning(); 2191 // Drop debug intrinsics if the associated variable information cannot be 2192 // translated due to cyclic debug metadata. 2193 // TODO: Support cyclic debug metadata. 2194 DILocalVariableAttr localVariableAttr = 2195 matchLocalVariableAttr(dbgIntr->getArgOperand(1)); 2196 if (!localVariableAttr) 2197 return emitUnsupportedWarning(); 2198 FailureOr<Value> argOperand = convertMetadataValue(dbgIntr->getArgOperand(0)); 2199 if (failed(argOperand)) 2200 return emitError(loc) << "failed to convert a debug intrinsic operand: " 2201 << diag(*dbgIntr); 2202 2203 // Ensure that the debug intrinsic is inserted right after its operand is 2204 // defined. Otherwise, the operand might not necessarily dominate the 2205 // intrinsic. If the defining operation is a terminator, insert the intrinsic 2206 // into a dominated block. 2207 OpBuilder::InsertionGuard guard(builder); 2208 if (Operation *op = argOperand->getDefiningOp(); 2209 op && op->hasTrait<OpTrait::IsTerminator>()) { 2210 // Find a dominated block that can hold the debug intrinsic. 2211 auto dominatedBlocks = domInfo.getNode(op->getBlock())->children(); 2212 // If no block is dominated by the terminator, this intrinisc cannot be 2213 // converted. 2214 if (dominatedBlocks.empty()) 2215 return emitUnsupportedWarning(); 2216 // Set insertion point before the terminator, to avoid inserting something 2217 // before landingpads. 2218 Block *dominatedBlock = (*dominatedBlocks.begin())->getBlock(); 2219 builder.setInsertionPoint(dominatedBlock->getTerminator()); 2220 } else { 2221 builder.setInsertionPointAfterValue(*argOperand); 2222 } 2223 auto locationExprAttr = 2224 debugImporter->translateExpression(dbgIntr->getExpression()); 2225 Operation *op = 2226 llvm::TypeSwitch<llvm::DbgVariableIntrinsic *, Operation *>(dbgIntr) 2227 .Case([&](llvm::DbgDeclareInst *) { 2228 return builder.create<LLVM::DbgDeclareOp>( 2229 loc, *argOperand, localVariableAttr, locationExprAttr); 2230 }) 2231 .Case([&](llvm::DbgValueInst *) { 2232 return builder.create<LLVM::DbgValueOp>( 2233 loc, *argOperand, localVariableAttr, locationExprAttr); 2234 }); 2235 mapNoResultOp(dbgIntr, op); 2236 setNonDebugMetadataAttrs(dbgIntr, op); 2237 return success(); 2238 } 2239 2240 LogicalResult ModuleImport::processDebugIntrinsics() { 2241 DominanceInfo domInfo; 2242 for (llvm::Instruction *inst : debugIntrinsics) { 2243 auto *intrCall = cast<llvm::DbgVariableIntrinsic>(inst); 2244 if (failed(processDebugIntrinsic(intrCall, domInfo))) 2245 return failure(); 2246 } 2247 return success(); 2248 } 2249 2250 LogicalResult ModuleImport::processBasicBlock(llvm::BasicBlock *bb, 2251 Block *block) { 2252 builder.setInsertionPointToStart(block); 2253 for (llvm::Instruction &inst : *bb) { 2254 if (failed(processInstruction(&inst))) 2255 return failure(); 2256 2257 // Skip additional processing when the instructions is a debug intrinsics 2258 // that was not yet converted. 2259 if (debugIntrinsics.contains(&inst)) 2260 continue; 2261 2262 // Set the non-debug metadata attributes on the imported operation and emit 2263 // a warning if an instruction other than a phi instruction is dropped 2264 // during the import. 2265 if (Operation *op = lookupOperation(&inst)) { 2266 setNonDebugMetadataAttrs(&inst, op); 2267 } else if (inst.getOpcode() != llvm::Instruction::PHI) { 2268 if (emitExpensiveWarnings) { 2269 Location loc = debugImporter->translateLoc(inst.getDebugLoc()); 2270 emitWarning(loc) << "dropped instruction: " << diag(inst); 2271 } 2272 } 2273 } 2274 return success(); 2275 } 2276 2277 FailureOr<SmallVector<AccessGroupAttr>> 2278 ModuleImport::lookupAccessGroupAttrs(const llvm::MDNode *node) const { 2279 return loopAnnotationImporter->lookupAccessGroupAttrs(node); 2280 } 2281 2282 LoopAnnotationAttr 2283 ModuleImport::translateLoopAnnotationAttr(const llvm::MDNode *node, 2284 Location loc) const { 2285 return loopAnnotationImporter->translateLoopAnnotation(node, loc); 2286 } 2287 2288 OwningOpRef<ModuleOp> 2289 mlir::translateLLVMIRToModule(std::unique_ptr<llvm::Module> llvmModule, 2290 MLIRContext *context, bool emitExpensiveWarnings, 2291 bool dropDICompositeTypeElements) { 2292 // Preload all registered dialects to allow the import to iterate the 2293 // registered LLVMImportDialectInterface implementations and query the 2294 // supported LLVM IR constructs before starting the translation. Assumes the 2295 // LLVM and DLTI dialects that convert the core LLVM IR constructs have been 2296 // registered before. 2297 assert(llvm::is_contained(context->getAvailableDialects(), 2298 LLVMDialect::getDialectNamespace())); 2299 assert(llvm::is_contained(context->getAvailableDialects(), 2300 DLTIDialect::getDialectNamespace())); 2301 context->loadAllAvailableDialects(); 2302 OwningOpRef<ModuleOp> module(ModuleOp::create(FileLineColLoc::get( 2303 StringAttr::get(context, llvmModule->getSourceFileName()), /*line=*/0, 2304 /*column=*/0))); 2305 2306 ModuleImport moduleImport(module.get(), std::move(llvmModule), 2307 emitExpensiveWarnings, dropDICompositeTypeElements); 2308 if (failed(moduleImport.initializeImportInterface())) 2309 return {}; 2310 if (failed(moduleImport.convertDataLayout())) 2311 return {}; 2312 if (failed(moduleImport.convertComdats())) 2313 return {}; 2314 if (failed(moduleImport.convertMetadata())) 2315 return {}; 2316 if (failed(moduleImport.convertGlobals())) 2317 return {}; 2318 if (failed(moduleImport.convertFunctions())) 2319 return {}; 2320 2321 return module; 2322 } 2323