1 //===- ReductionNode.cpp - Reduction Node Implementation -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the reduction nodes which are used to track of the 10 // metadata for a specific generated variant within a reduction pass and are the 11 // building blocks of the reduction tree structure. A reduction tree is used to 12 // keep track of the different generated variants throughout a reduction pass in 13 // the MLIR Reduce tool. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "mlir/Reducer/ReductionNode.h" 18 #include "mlir/IR/BlockAndValueMapping.h" 19 #include "llvm/ADT/STLExtras.h" 20 21 #include <algorithm> 22 #include <limits> 23 24 using namespace mlir; 25 26 ReductionNode::ReductionNode( 27 ReductionNode *parentNode, std::vector<Range> ranges, 28 llvm::SpecificBumpPtrAllocator<ReductionNode> &allocator) 29 /// Root node will have the parent pointer point to themselves. 30 : parent(parentNode == nullptr ? this : parentNode), 31 size(std::numeric_limits<size_t>::max()), 32 interesting(Tester::Interestingness::Untested), ranges(ranges), 33 startRanges(ranges), allocator(allocator) { 34 if (parent != this) 35 if (failed(initialize(parent->getModule(), parent->getRegion()))) 36 llvm_unreachable("unexpected initialization failure"); 37 } 38 39 LogicalResult ReductionNode::initialize(ModuleOp parentModule, 40 Region &targetRegion) { 41 // Use the mapper help us find the corresponding region after module clone. 42 BlockAndValueMapping mapper; 43 module = cast<ModuleOp>(parentModule->clone(mapper)); 44 // Use the first block of targetRegion to locate the cloned region. 45 Block *block = mapper.lookup(&*targetRegion.begin()); 46 region = block->getParent(); 47 return success(); 48 } 49 50 /// If we haven't explored any variants from this node, we will create N 51 /// variants, N is the length of `ranges` if N > 1. Otherwise, we will split the 52 /// max element in `ranges` and create 2 new variants for each call. 53 ArrayRef<ReductionNode *> ReductionNode::generateNewVariants() { 54 int oldNumVariant = getVariants().size(); 55 56 auto createNewNode = [this](std::vector<Range> ranges) { 57 return new (allocator.Allocate()) 58 ReductionNode(this, std::move(ranges), allocator); 59 }; 60 61 // If we haven't created new variant, then we can create varients by removing 62 // each of them respectively. For example, given {{1, 3}, {4, 9}}, we can 63 // produce variants with range {{1, 3}} and {{4, 9}}. 64 if (variants.size() == 0 && getRanges().size() > 1) { 65 for (const Range &range : getRanges()) { 66 std::vector<Range> subRanges = getRanges(); 67 llvm::erase_value(subRanges, range); 68 variants.push_back(createNewNode(std::move(subRanges))); 69 } 70 71 return getVariants().drop_front(oldNumVariant); 72 } 73 74 // At here, we have created the type of variants mentioned above. We would 75 // like to split the max range into 2 to create 2 new variants. Continue on 76 // the above example, we split the range {4, 9} into {4, 6}, {6, 9}, and 77 // create two variants with range {{1, 3}, {4, 6}} and {{1, 3}, {6, 9}}. The 78 // final ranges vector will be {{1, 3}, {4, 6}, {6, 9}}. 79 auto maxElement = std::max_element( 80 ranges.begin(), ranges.end(), [](const Range &lhs, const Range &rhs) { 81 return (lhs.second - lhs.first) > (rhs.second - rhs.first); 82 }); 83 84 // The length of range is less than 1, we can't split it to create new 85 // variant. 86 if (maxElement->second - maxElement->first <= 1) 87 return {}; 88 89 Range maxRange = *maxElement; 90 std::vector<Range> subRanges = getRanges(); 91 auto subRangesIter = subRanges.begin() + (maxElement - ranges.begin()); 92 int half = (maxRange.first + maxRange.second) / 2; 93 *subRangesIter = std::make_pair(maxRange.first, half); 94 variants.push_back(createNewNode(subRanges)); 95 *subRangesIter = std::make_pair(half, maxRange.second); 96 variants.push_back(createNewNode(std::move(subRanges))); 97 98 auto it = ranges.insert(maxElement, std::make_pair(half, maxRange.second)); 99 it = ranges.insert(it, std::make_pair(maxRange.first, half)); 100 // Remove the range that has been split. 101 ranges.erase(it + 2); 102 103 return getVariants().drop_front(oldNumVariant); 104 } 105 106 void ReductionNode::update(std::pair<Tester::Interestingness, size_t> result) { 107 std::tie(interesting, size) = result; 108 // After applying reduction, the number of operation in the region may have 109 // changed. Non-interesting case won't be explored thus it's safe to keep it 110 // in a stale status. 111 if (interesting == Tester::Interestingness::True) { 112 // This module may has been updated. Reset the range. 113 ranges.clear(); 114 ranges.push_back({0, std::distance(region->op_begin(), region->op_end())}); 115 } 116 } 117 118 ArrayRef<ReductionNode *> 119 ReductionNode::iterator<SinglePath>::getNeighbors(ReductionNode *node) { 120 // Single Path: Traverses the smallest successful variant at each level until 121 // no new successful variants can be created at that level. 122 ArrayRef<ReductionNode *> variantsFromParent = 123 node->getParent()->getVariants(); 124 125 // The parent node created several variants and they may be waiting for 126 // examing interestingness. In Single Path approach, we will select the 127 // smallest variant to continue our exploration. Thus we should wait until the 128 // last variant to be examed then do the following traversal decision. 129 if (!llvm::all_of(variantsFromParent, [](ReductionNode *node) { 130 return node->isInteresting() != Tester::Interestingness::Untested; 131 })) { 132 return {}; 133 } 134 135 ReductionNode *smallest = nullptr; 136 for (ReductionNode *node : variantsFromParent) { 137 if (node->isInteresting() != Tester::Interestingness::True) 138 continue; 139 if (smallest == nullptr || node->getSize() < smallest->getSize()) 140 smallest = node; 141 } 142 143 if (smallest != nullptr && 144 smallest->getSize() < node->getParent()->getSize()) { 145 // We got a smallest one, keep traversing from this node. 146 node = smallest; 147 } else { 148 // None of these variants is interesting, let the parent node to generate 149 // more variants. 150 node = node->getParent(); 151 } 152 153 return node->generateNewVariants(); 154 } 155