xref: /llvm-project/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp (revision efe3db21249ccfb9db62929e9e60e8b91484149c)
1 //===- VectorTransforms.cpp - Conversion within the Vector dialect --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements target-independent rewrites as 1->N patterns.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
14 
15 #include <cassert>
16 #include <cstdint>
17 #include <functional>
18 #include <optional>
19 #include <type_traits>
20 
21 #include "mlir/Dialect/Affine/IR/AffineOps.h"
22 #include "mlir/Dialect/Arith/IR/Arith.h"
23 #include "mlir/Dialect/Arith/Utils/Utils.h"
24 #include "mlir/Dialect/Linalg/IR/Linalg.h"
25 #include "mlir/Dialect/MemRef/IR/MemRef.h"
26 #include "mlir/Dialect/SCF/IR/SCF.h"
27 #include "mlir/Dialect/Tensor/IR/Tensor.h"
28 #include "mlir/Dialect/Utils/IndexingUtils.h"
29 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
30 #include "mlir/Dialect/Vector/IR/VectorOps.h"
31 #include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
32 #include "mlir/Dialect/Vector/Utils/VectorUtils.h"
33 #include "mlir/IR/BuiltinAttributeInterfaces.h"
34 #include "mlir/IR/BuiltinTypes.h"
35 #include "mlir/IR/ImplicitLocOpBuilder.h"
36 #include "mlir/IR/Location.h"
37 #include "mlir/IR/Matchers.h"
38 #include "mlir/IR/PatternMatch.h"
39 #include "mlir/IR/TypeUtilities.h"
40 #include "mlir/Interfaces/VectorInterfaces.h"
41 
42 #include "llvm/ADT/DenseSet.h"
43 #include "llvm/ADT/MapVector.h"
44 #include "llvm/ADT/STLExtras.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/FormatVariadic.h"
48 #include "llvm/Support/raw_ostream.h"
49 
50 #define DEBUG_TYPE "vector-to-vector"
51 
52 using namespace mlir;
53 using namespace mlir::vector;
54 
55 template <typename IntType>
56 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) {
57   return llvm::to_vector<4>(llvm::map_range(
58       arrayAttr.getAsRange<IntegerAttr>(),
59       [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
60 }
61 
62 // Helper to find an index in an affine map.
63 static std::optional<int64_t> getResultIndex(AffineMap map, int64_t index) {
64   for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
65     int64_t idx = map.getDimPosition(i);
66     if (idx == index)
67       return i;
68   }
69   return std::nullopt;
70 }
71 
72 namespace {
73 
74 /// ShapeCastOpFolder folds cancelling ShapeCastOps away.
75 //
76 // Example:
77 //
78 //  The following MLIR with cancelling ShapeCastOps:
79 //
80 //   %0 = source : vector<5x4x2xf32>
81 //   %1 = shape_cast %0 : vector<5x4x2xf32> to vector<20x2xf32>
82 //   %2 = shape_cast %1 : vector<20x2xf32> to vector<5x4x2xf32>
83 //   %3 = user %2 : vector<5x4x2xf32>
84 //
85 //  Should canonicalize to the following:
86 //
87 //   %0 = source : vector<5x4x2xf32>
88 //   %1 = user %0 : vector<5x4x2xf32>
89 //
90 struct ShapeCastOpFolder : public OpRewritePattern<vector::ShapeCastOp> {
91   using OpRewritePattern::OpRewritePattern;
92 
93   LogicalResult matchAndRewrite(vector::ShapeCastOp shapeCastOp,
94                                 PatternRewriter &rewriter) const override {
95     // Check if 'shapeCastOp' has vector source/result type.
96     auto sourceVectorType =
97         dyn_cast_or_null<VectorType>(shapeCastOp.getSource().getType());
98     auto resultVectorType =
99         dyn_cast_or_null<VectorType>(shapeCastOp.getResult().getType());
100     if (!sourceVectorType || !resultVectorType)
101       return failure();
102 
103     // Check if shape cast op source operand is also a shape cast op.
104     auto sourceShapeCastOp = dyn_cast_or_null<vector::ShapeCastOp>(
105         shapeCastOp.getSource().getDefiningOp());
106     if (!sourceShapeCastOp)
107       return failure();
108     auto operandSourceVectorType =
109         cast<VectorType>(sourceShapeCastOp.getSource().getType());
110     auto operandResultVectorType = sourceShapeCastOp.getType();
111 
112     // Check if shape cast operations invert each other.
113     if (operandSourceVectorType != resultVectorType ||
114         operandResultVectorType != sourceVectorType)
115       return failure();
116 
117     rewriter.replaceOp(shapeCastOp, sourceShapeCastOp.getSource());
118     return success();
119   }
120 };
121 
122 /// Convert MulIOp/MulFOp + MultiDimReductionOp<add> into ContractionOp.
123 /// Ex:
124 /// ```
125 ///   %0 = arith.mulf %arg0, %arg1 : vector<8x32x16xf32>
126 ///   %1 = vector.multi_reduction add, %0 [1]
127 ///     : vector<8x32x16xf32> to vector<8x16xf32>
128 /// ```
129 /// Gets converted to:
130 /// ```
131 ///   %1 = vector.contract {indexing_maps = [
132 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
133 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
134 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
135 ///    iterator_types = ["parallel", "parallel", "reduction"],
136 ///    kind = add} %0, %arg1, %cst_f0
137 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
138 ///  ```
139 struct MultiReduceToContract
140     : public OpRewritePattern<vector::MultiDimReductionOp> {
141   using OpRewritePattern::OpRewritePattern;
142 
143   LogicalResult matchAndRewrite(vector::MultiDimReductionOp reduceOp,
144                                 PatternRewriter &rewriter) const override {
145     if (reduceOp.getKind() != vector::CombiningKind::ADD)
146       return failure();
147     Operation *mulOp = reduceOp.getSource().getDefiningOp();
148     if (!mulOp || !isa<arith::MulIOp, arith::MulFOp>(mulOp))
149       return failure();
150     SmallVector<bool> reductionMask = reduceOp.getReductionMask();
151     auto srcMap = rewriter.getMultiDimIdentityMap(reductionMask.size());
152     SmallVector<AffineExpr> exprs;
153     SmallVector<vector::IteratorType> iteratorTypes;
154     for (const auto &isReduceDim : llvm::enumerate(reductionMask)) {
155       if (!isReduceDim.value()) {
156         iteratorTypes.push_back(vector::IteratorType::parallel);
157         exprs.push_back(rewriter.getAffineDimExpr(isReduceDim.index()));
158       } else {
159         iteratorTypes.push_back(vector::IteratorType::reduction);
160       }
161     }
162     auto dstMap =
163         AffineMap::get(/*dimCount=*/reductionMask.size(),
164                        /*symbolCount=*/0, exprs, reduceOp.getContext());
165     rewriter.replaceOpWithNewOp<mlir::vector::ContractionOp>(
166         reduceOp, mulOp->getOperand(0), mulOp->getOperand(1), reduceOp.getAcc(),
167         rewriter.getAffineMapArrayAttr({srcMap, srcMap, dstMap}),
168         rewriter.getArrayAttr(llvm::to_vector(llvm::map_range(
169             iteratorTypes, [&](IteratorType t) -> mlir::Attribute {
170               return IteratorTypeAttr::get(rewriter.getContext(), t);
171             }))));
172     return success();
173   }
174 };
175 
176 /// Merge LHS/RHS (A/B) TransposeOp into ContractionOp user.
177 /// Ex:
178 /// ```
179 ///   %0 = vector.transpose %arg0, [2, 0, 1]
180 ///     : vector<32x16x8xf32> to vector<8x32x16xf32>
181 ///   %1 = vector.contract {indexing_maps = [
182 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
183 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
184 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
185 ///    iterator_types = ["parallel", "parallel", "reduction"],
186 ///    kind = add} %0, %arg1, %cst_f0
187 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
188 /// ```
189 /// Gets converted to:
190 /// ```
191 ///   %1 = vector.contract {indexing_maps = [
192 ///         affine_map<(d0, d1, d2) -> (d1, d2, d0)>,
193 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
194 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
195 ///    iterator_types = ["parallel", "parallel", "reduction"],
196 ///    kind = add} %arg0, %arg1, %cst_f0
197 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
198 ///  ```
199 struct CombineContractABTranspose final
200     : public OpRewritePattern<vector::ContractionOp> {
201   using OpRewritePattern::OpRewritePattern;
202 
203   LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
204                                 PatternRewriter &rewriter) const override {
205     SmallVector<AffineMap> maps =
206         llvm::to_vector<4>(contractOp.getIndexingMapsArray());
207     Value lhs = contractOp.getLhs();
208     Value rhs = contractOp.getRhs();
209     size_t index = 0;
210     bool changed = false;
211     for (Value *operand : {&lhs, &rhs}) {
212       AffineMap &map = maps[index++];
213       auto transposeOp = operand->getDefiningOp<vector::TransposeOp>();
214       if (!transposeOp)
215         continue;
216       AffineMap permutationMap = AffineMap::getPermutationMap(
217           transposeOp.getPermutation(), contractOp.getContext());
218       map = inversePermutation(permutationMap).compose(map);
219       *operand = transposeOp.getVector();
220       changed = true;
221     }
222     if (!changed)
223       return failure();
224     rewriter.replaceOpWithNewOp<vector::ContractionOp>(
225         contractOp, lhs, rhs, contractOp.getAcc(),
226         rewriter.getAffineMapArrayAttr(maps), contractOp.getIteratorTypes());
227     return success();
228   }
229 };
230 
231 /// Merges accumulator and result transposes into contract.
232 ///
233 /// For example:
234 /// ```mlir
235 /// %accT = vector.transpose %acc, [0, 2, 1]
236 ///   : vector<2x8x4xf32> to vector<2x4x8xf32>
237 /// %contract = vector.contract {
238 ///   indexing_maps = [
239 ///     affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>,
240 ///     affine_map<(d0, d1, d2, d3) -> (d3, d2)>,
241 ///     affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>
242 ///   ],
243 ///   iterator_types = ["parallel", "parallel", "parallel", "reduction"],
244 ///   kind = #vector.kind<add>
245 /// } %lhs, %rhs, %accT
246 ///   : vector<2x4x4xf32>, vector<4x8xf32> into vector<2x4x8xf32>
247 /// %0 = vector.transpose %contract, [0, 2, 1]
248 ///   : vector<2x4x8xf32> to vector<2x8x4>
249 /// ```
250 /// Becomes:
251 /// ```mlir
252 /// %0 = vector.contract {
253 ///   indexing_maps = [
254 ///     affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>,
255 ///     affine_map<(d0, d1, d2, d3) -> (d3, d2)>,
256 ///     affine_map<(d0, d1, d2, d3) -> (d0, d2, d1)>
257 ///   ],
258 ///   iterator_types = ["parallel", "parallel", "parallel", "reduction"],
259 ///   kind = #vector.kind<add>
260 /// } %lhs, %rhs, %acc
261 ///   : vector<2x4x4xf32>, vector<4x8xf32> into vector<2x8x4xf32>
262 /// ```
263 struct CombineContractResultTranspose final
264     : public OpRewritePattern<vector::TransposeOp> {
265   using OpRewritePattern::OpRewritePattern;
266 
267   LogicalResult matchAndRewrite(vector::TransposeOp resTOp,
268                                 PatternRewriter &rewriter) const override {
269     auto contractOp = resTOp.getVector().getDefiningOp<vector::ContractionOp>();
270     if (!contractOp || !contractOp->hasOneUse())
271       return failure();
272 
273     auto accTOp = contractOp.getAcc().getDefiningOp<vector::TransposeOp>();
274     if (!accTOp)
275       return failure();
276 
277     MLIRContext *context = contractOp.getContext();
278     auto maps = llvm::to_vector<3>(contractOp.getIndexingMapsArray());
279     AffineMap contractMap = maps.back();
280 
281     // Accumulator transpose performs f(A) -> B. Contract performs g(C) -> B.
282     // To index into A in contract, we need revert(f)(g(C)) -> A.
283     auto accTMap =
284         AffineMap::getPermutationMap(accTOp.getPermutation(), context);
285 
286     // Contract performs g(C) -> D. Result transpose performs h(D) -> E.
287     // To index into E in contract, we need h(g(C)) -> E.
288     auto resTMap =
289         AffineMap::getPermutationMap(resTOp.getPermutation(), context);
290     auto combinedResMap = resTMap.compose(contractMap);
291 
292     // The accumulator and result share the same indexing map. So they should be
293     // the same to be able to merge. This means combinedResMap is the same as
294     // inversePermutation(accTMap).compose(contractMap), which means
295     if (inversePermutation(accTMap) != resTMap)
296       return failure();
297     maps.back() = combinedResMap;
298 
299     rewriter.replaceOpWithNewOp<vector::ContractionOp>(
300         resTOp, contractOp.getLhs(), contractOp.getRhs(), accTOp.getVector(),
301         rewriter.getAffineMapArrayAttr(maps), contractOp.getIteratorTypes());
302     return success();
303   }
304 };
305 
306 /// Merge BroadcastOp into ContractionOp user.
307 /// Ex:
308 /// ```
309 ///   %0 = vector.broadcast %arg0 : vector<32x16xf32> to vector<8x32x16xf32>
310 ///   %1 = vector.contract {indexing_maps = [
311 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
312 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
313 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
314 ///    iterator_types = ["parallel", "parallel", "reduction"],
315 ///    kind = add} %0, %arg1, %cst_f0
316 ///    : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
317 /// ```
318 /// Gets converted to:
319 /// ```
320 ///   %1 = vector.contract {indexing_maps = [
321 ///         affine_map<(d0, d1, d2) -> (d1, d2)>,
322 ///         affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
323 ///         affine_map<(d0, d1, d2) -> (d0, d1)>],
324 ///    iterator_types = ["parallel", "parallel", "reduction"],
325 ///    kind = add} %arg0, %arg1, %cst_f0
326 ///    : vector<32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32>
327 ///  ```
328 struct CombineContractBroadcast
329     : public OpRewritePattern<vector::ContractionOp> {
330   using OpRewritePattern::OpRewritePattern;
331 
332   LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
333                                 PatternRewriter &rewriter) const override {
334     SmallVector<AffineMap> maps =
335         llvm::to_vector<4>(contractOp.getIndexingMapsArray());
336     Value lhs = contractOp.getLhs();
337     Value rhs = contractOp.getRhs();
338     size_t index = 0;
339     bool changed = false;
340     for (Value *operand : {&lhs, &rhs}) {
341       AffineMap &map = maps[index++];
342       auto broadcast = operand->getDefiningOp<vector::BroadcastOp>();
343       if (!broadcast)
344         continue;
345       // contractionOp can only take vector as operands.
346       auto srcType = dyn_cast<VectorType>(broadcast.getSourceType());
347       if (!srcType ||
348           srcType.getRank() == broadcast.getResultVectorType().getRank())
349         continue;
350       int64_t rankDiff =
351           broadcast.getResultVectorType().getRank() - srcType.getRank();
352       bool innerDimBroadcast = false;
353       SmallVector<AffineExpr> originalDims;
354       for (const auto &dim : llvm::enumerate(srcType.getShape())) {
355         if (dim.value() != broadcast.getResultVectorType().getDimSize(
356                                rankDiff + dim.index())) {
357           innerDimBroadcast = true;
358           break;
359         }
360         originalDims.push_back(
361             rewriter.getAffineDimExpr(dim.index() + rankDiff));
362       }
363       // Contract doesn't support inner dimension broadcast. Once this is
364       // relaxed we can remove this case.
365       if (innerDimBroadcast)
366         continue;
367 
368       // It would be incorrect to fold a broadcast onto a reduction dimension
369       // of non-unit size.
370       bool nonUnitDimReductionBroadcast = false;
371       for (int64_t i = 0; i < rankDiff; ++i) {
372         if (broadcast.getResultVectorType().getDimSize(i) != 1 &&
373             isReductionIterator(contractOp.getIteratorTypes()
374                                     .getValue()[map.getDimPosition(i)])) {
375           nonUnitDimReductionBroadcast = true;
376           break;
377         }
378       }
379       if (nonUnitDimReductionBroadcast)
380         continue;
381 
382       AffineMap broadcastMap =
383           AffineMap::get(broadcast.getResultVectorType().getRank(), 0,
384                          originalDims, contractOp.getContext());
385       map = broadcastMap.compose(map);
386       *operand = broadcast.getSource();
387       changed = true;
388     }
389 
390     if (!changed)
391       return failure();
392 
393     // Determine which dims are usused, now that the maps have been composed
394     // with the broadcast maps.
395     llvm::SmallBitVector unusedDimsBitVector = getUnusedDimsBitVector(maps);
396     // Compress unused dims.
397     for (auto &m : maps)
398       m = compressDims(m, unusedDimsBitVector);
399     // Compute the combined iterators.
400     SmallVector<Attribute> iterators;
401     for (unsigned i = 0; i < unusedDimsBitVector.size(); ++i) {
402       if (!unusedDimsBitVector.test(i))
403         iterators.push_back(contractOp.getIteratorTypes().getValue()[i]);
404     }
405     // Check that compressing unused dims isn't removing all reduction dimension
406     // pairs. For example, if the vector.contract had only one reduction
407     // iterator and that was a unit-dimension created by a broadcast,
408     // then we should bail here, otherwise we would create a contract without
409     // a reduction dimension pair.
410     bool hasReductionIteratorApplyingOnBothSides = false;
411     for (unsigned i = 0; i < iterators.size(); ++i) {
412       if (!isReductionIterator(iterators[i]))
413         continue;
414       if (getResultIndex(maps[0], i) && getResultIndex(maps[1], i)) {
415         hasReductionIteratorApplyingOnBothSides = true;
416         break;
417       }
418     }
419     if (!hasReductionIteratorApplyingOnBothSides)
420       return failure();
421 
422     // If the compressed maps have a dimension that is not used by either LHS or
423     // RHS then the ContractionOp verifier would fail.
424     if (getUnusedDimsBitVector({maps[0], maps[1]}).any())
425       return failure();
426     rewriter.replaceOpWithNewOp<vector::ContractionOp>(
427         contractOp, lhs, rhs, contractOp.getAcc(),
428         rewriter.getAffineMapArrayAttr(maps), rewriter.getArrayAttr(iterators));
429     return success();
430   }
431 };
432 
433 /// Reorders cast(broadcast) to broadcast(cast). This makes broadcast ops and
434 /// contraction ops closer, which kicks in CombineContractBroadcast pattern when
435 /// casting ops are around these operations.
436 /// Ex:
437 /// ```
438 ///   %0 = vector.broadcast %arg0 : vector<32x16xi8> to vector<8x32x16xi8>
439 ///   %1 = arith.extsi %0 : vector<8x32x16xi8> to vector<8x32x16xi32>
440 /// ```
441 /// Gets converted to:
442 /// ```
443 ///   %0 = arith.extsi %0 : vector<32x16xi8> to vector<32x16xi32>
444 ///   %1 = vector.broadcast %arg0 : vector<32x16xi32> to vector<8x32x16xi32>
445 /// ```
446 struct ReorderCastOpsOnBroadcast
447     : public OpInterfaceRewritePattern<CastOpInterface> {
448   using OpInterfaceRewritePattern<CastOpInterface>::OpInterfaceRewritePattern;
449 
450   LogicalResult matchAndRewrite(CastOpInterface op,
451                                 PatternRewriter &rewriter) const override {
452     if (op->getNumOperands() != 1)
453       return failure();
454     auto bcastOp = op->getOperand(0).getDefiningOp<vector::BroadcastOp>();
455     if (!bcastOp)
456       return failure();
457 
458     Type castResTy = getElementTypeOrSelf(op->getResult(0));
459     if (auto vecTy = dyn_cast<VectorType>(bcastOp.getSourceType()))
460       castResTy = vecTy.clone(castResTy);
461     auto *castOp =
462         rewriter.create(op->getLoc(), op->getName().getIdentifier(),
463                         bcastOp.getSource(), castResTy, op->getAttrs());
464     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
465         op, op->getResult(0).getType(), castOp->getResult(0));
466     return success();
467   }
468 };
469 
470 /// Reorders elementwise(transpose) to transpose(elementwise). This makes
471 /// transpose ops and contraction ops closer, which kicks in
472 /// CombineContractABTranspose pattern when elementwise ops are between these
473 /// operations. Ex:
474 /// ```
475 /// %at = vector.transpose %a, [1, 0]: vector<4x2xf32> to vector<2x4xf32>
476 /// %bt = vector.transpose %b, [1, 0]: vector<4x2xf32> to vector<2x4xf32>
477 /// %r = arith.addf %at, %bt : vector<2x4xf32>
478 /// ```
479 /// Gets converted to:
480 /// ```
481 /// %0 = arith.addf %a, %b : vector<4x2xf32>
482 /// %r = vector.transpose %0, [1, 0] : vector<2x4xf32>
483 /// ```
484 struct ReorderElementwiseOpsOnTranspose final
485     : public OpTraitRewritePattern<OpTrait::Elementwise> {
486   using OpTraitRewritePattern::OpTraitRewritePattern;
487   LogicalResult matchAndRewrite(Operation *op,
488                                 PatternRewriter &rewriter) const override {
489     if (op->getNumResults() != 1 || op->getNumRegions() != 0)
490       return failure();
491 
492     // Make sure all operands are transpose/constant ops and collect their
493     // transposition maps.
494     SmallVector<ArrayRef<int64_t>> transposeMaps;
495     transposeMaps.reserve(op->getNumOperands());
496     // Record the initial type before transposition. We'll use its shape later.
497     // Any type will do here as we will check all transpose maps are the same.
498     VectorType srcType;
499     for (Value operand : op->getOperands()) {
500       auto transposeOp = operand.getDefiningOp<vector::TransposeOp>();
501       if (transposeOp) {
502         transposeMaps.push_back(transposeOp.getPermutation());
503         srcType = transposeOp.getSourceVectorType();
504       } else if (!matchPattern(operand, m_Constant())) {
505         return failure();
506       }
507     }
508     if (transposeMaps.empty())
509       return failure();
510     // This is an elementwise op, so all transposed operands should have the
511     // same type. We need to additionally check that all transposes uses the
512     // same map.
513     if (!llvm::all_equal(transposeMaps))
514       return rewriter.notifyMatchFailure(op, "different transpose map");
515 
516     SmallVector<Value> srcValues;
517     srcValues.reserve(op->getNumOperands());
518 
519     // If there are constant operands, we need to insert inverse transposes for
520     // them. Calculate the inverse order first.
521     auto order = transposeMaps.front();
522     SmallVector<int64_t> invOrder(order.size());
523     for (int i = 0, e = order.size(); i < e; ++i)
524       invOrder[order[i]] = i;
525 
526     for (Value operand : op->getOperands()) {
527       auto transposeOp = operand.getDefiningOp<vector::TransposeOp>();
528       if (transposeOp) {
529         srcValues.push_back(transposeOp.getVector());
530       } else {
531         // This is a constant. Create a reverse transpose op for it.
532         auto vectorType =
533             srcType.clone(cast<VectorType>(operand.getType()).getElementType());
534         srcValues.push_back(rewriter.create<vector::TransposeOp>(
535             operand.getLoc(), vectorType, operand, invOrder));
536       }
537     }
538 
539     auto vectorType = srcType.clone(
540         cast<VectorType>(op->getResultTypes()[0]).getElementType());
541     Operation *elementwiseOp =
542         rewriter.create(op->getLoc(), op->getName().getIdentifier(), srcValues,
543                         vectorType, op->getAttrs());
544     rewriter.replaceOpWithNewOp<vector::TransposeOp>(
545         op, op->getResultTypes()[0], elementwiseOp->getResult(0),
546         transposeMaps.front());
547     return success();
548   }
549 };
550 
551 // Returns the values in `arrayAttr` as an integer vector.
552 static SmallVector<int64_t> getIntValueVector(ArrayAttr arrayAttr) {
553   return llvm::to_vector<4>(
554       llvm::map_range(arrayAttr.getAsRange<IntegerAttr>(),
555                       [](IntegerAttr attr) { return attr.getInt(); }));
556 }
557 
558 // Shuffles vector.bitcast op after vector.extract op.
559 //
560 // This transforms IR like:
561 //   %0 = vector.bitcast %src : vector<4xf32> to vector<8xf16>
562 //   %1 = vector.extract %0[3] : f16 from vector<8xf16>
563 // Into:
564 //   %0 = vector.extract %src[1] : f32 from vector<4xf32>
565 //   %1 = vector.bitcast %0: vector<1xf32> to vector<2xf16>
566 //   %2 = vector.extract %1[1] : f16 from vector<2xf16>
567 struct BubbleDownVectorBitCastForExtract
568     : public OpRewritePattern<vector::ExtractOp> {
569   using OpRewritePattern::OpRewritePattern;
570 
571   LogicalResult matchAndRewrite(vector::ExtractOp extractOp,
572                                 PatternRewriter &rewriter) const override {
573     // Only support extracting scalars for now.
574     if (extractOp.getSourceVectorType().getRank() != 1)
575       return failure();
576 
577     auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>();
578     if (!castOp)
579       return failure();
580 
581     VectorType castSrcType = castOp.getSourceVectorType();
582     VectorType castDstType = castOp.getResultVectorType();
583     assert(castSrcType.getRank() == castDstType.getRank());
584 
585     // Fail to match if we only have one element in the cast op source.
586     // This is to avoid infinite loop given that this pattern can generate
587     // such cases.
588     if (castSrcType.getNumElements() == 1)
589       return failure();
590 
591     // Only support casting to a larger number of elements or now.
592     // E.g., vector<4xf32> -> vector<8xf16>.
593     if (castSrcType.getNumElements() > castDstType.getNumElements())
594       return failure();
595 
596     unsigned expandRatio =
597         castDstType.getNumElements() / castSrcType.getNumElements();
598 
599     auto getFirstIntValue = [](ArrayRef<OpFoldResult> values) -> uint64_t {
600       assert(values[0].is<Attribute>() && "Unexpected non-constant index");
601       return cast<IntegerAttr>(values[0].get<Attribute>()).getInt();
602     };
603 
604     uint64_t index = getFirstIntValue(extractOp.getMixedPosition());
605 
606     // Get the single scalar (as a vector) in the source value that packs the
607     // desired scalar. E.g. extract vector<1xf32> from vector<4xf32>
608     Location loc = extractOp.getLoc();
609     Value packedValue = rewriter.create<vector::ExtractOp>(
610         loc, castOp.getSource(), index / expandRatio);
611     Type packedVecType = VectorType::get(/*shape=*/{1}, packedValue.getType());
612     Value zero = rewriter.create<arith::ConstantOp>(
613         loc, packedVecType, rewriter.getZeroAttr(packedVecType));
614     packedValue = rewriter.create<vector::InsertOp>(loc, packedValue, zero,
615                                                     /*position=*/0);
616 
617     // Cast it to a vector with the desired scalar's type.
618     // E.g. f32 -> vector<2xf16>
619     VectorType packedType =
620         VectorType::get({expandRatio}, castDstType.getElementType());
621     Value castedValue =
622         rewriter.create<vector::BitCastOp>(loc, packedType, packedValue);
623 
624     // Finally extract the desired scalar.
625     rewriter.replaceOpWithNewOp<vector::ExtractOp>(extractOp, castedValue,
626                                                    index % expandRatio);
627     return success();
628   }
629 };
630 
631 // Shuffles vector.bitcast op after vector.extract_strided_slice op.
632 //
633 // This transforms IR like:
634 //    %cast = vector.bitcast %arg0: vector<4xf32> to vector<8xf16>
635 //     %0 = vector.extract_strided_slice %cast {
636 //            offsets = [4], sizes = [4], strides = [1]
637 //          } : vector<8xf16> to vector<4xf16>
638 // Into:
639 //   %0 = vector.extract_strided_slice %src {
640 //          offsets = [2], sizes = [2], strides = [1]
641 //        } : vector<4xf32> to vector<2xf32>
642 //   %1 = vector.bitcast %0 : vector<2xf32> to vector<4xf16>
643 struct BubbleDownBitCastForStridedSliceExtract
644     : public OpRewritePattern<vector::ExtractStridedSliceOp> {
645   using OpRewritePattern::OpRewritePattern;
646 
647   LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp,
648                                 PatternRewriter &rewriter) const override {
649     auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>();
650     if (!castOp)
651       return failure();
652 
653     VectorType castSrcType = castOp.getSourceVectorType();
654     VectorType castDstType = castOp.getResultVectorType();
655     assert(castSrcType.getRank() == castDstType.getRank());
656 
657     int64_t castSrcLastDim = castSrcType.getShape().back();
658     int64_t castDstLastDim = castDstType.getShape().back();
659     // Require casting to more elements for now; other cases to be implemented.
660     if (castSrcLastDim > castDstLastDim)
661       return failure();
662 
663     // Only accept all one strides for now.
664     if (llvm::any_of(extractOp.getStrides().getAsValueRange<IntegerAttr>(),
665                      [](const APInt &val) { return !val.isOne(); }))
666       return failure();
667 
668     unsigned rank = extractOp.getSourceVectorType().getRank();
669     assert(castDstLastDim % castSrcLastDim == 0);
670     int64_t expandRatio = castDstLastDim / castSrcLastDim;
671 
672     // If we have a less number of offsets than the rank, then implicitly we
673     // are selecting the full range for the last bitcasted dimension; other
674     // dimensions aren't affected. Otherwise, we need to scale down the last
675     // dimension's offset given we are extracting from less elements now.
676     ArrayAttr newOffsets = extractOp.getOffsets();
677     if (newOffsets.size() == rank) {
678       SmallVector<int64_t> offsets = getIntValueVector(newOffsets);
679       if (offsets.back() % expandRatio != 0)
680         return failure();
681       offsets.back() = offsets.back() / expandRatio;
682       newOffsets = rewriter.getI64ArrayAttr(offsets);
683     }
684 
685     // Similarly for sizes.
686     ArrayAttr newSizes = extractOp.getSizes();
687     if (newSizes.size() == rank) {
688       SmallVector<int64_t> sizes = getIntValueVector(newSizes);
689       if (sizes.back() % expandRatio != 0)
690         return failure();
691       sizes.back() = sizes.back() / expandRatio;
692       newSizes = rewriter.getI64ArrayAttr(sizes);
693     }
694 
695     SmallVector<int64_t> dims =
696         llvm::to_vector<4>(cast<VectorType>(extractOp.getType()).getShape());
697     dims.back() = dims.back() / expandRatio;
698     VectorType newExtractType =
699         VectorType::get(dims, castSrcType.getElementType());
700 
701     auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>(
702         extractOp.getLoc(), newExtractType, castOp.getSource(), newOffsets,
703         newSizes, extractOp.getStrides());
704 
705     rewriter.replaceOpWithNewOp<vector::BitCastOp>(
706         extractOp, extractOp.getType(), newExtractOp);
707 
708     return success();
709   }
710 };
711 
712 // Shuffles vector.bitcast op before vector.insert_strided_slice op.
713 //
714 // This transforms IR like:
715 //   %0 = vector.insert %val, %dst[4] : vector<32xi4> into vector<8x32xi4>
716 //   %1 = vector.bitcast %0 : vector<8x32xi4> to vector<8x16xi8>
717 // Into:
718 //   %0 = vector.bitcast %val : vector<32xi4> to vector<16xi8>
719 //   %1 = vector.bitcast %dst : vector<8x32xi4> to vector<8x16xi8>
720 //   %2 = vector.insert %0, %1 [4] : vector<16xi8> into vector<8x16xi8>
721 //
722 struct BubbleUpBitCastForInsert : public OpRewritePattern<vector::BitCastOp> {
723   using OpRewritePattern::OpRewritePattern;
724 
725   LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp,
726                                 PatternRewriter &rewriter) const override {
727     VectorType castSrcType = bitcastOp.getSourceVectorType();
728     VectorType castDstType = bitcastOp.getResultVectorType();
729 
730     // 0-D and scalable vectors are not supported yet.
731     if (castSrcType.getRank() == 0 || castSrcType.isScalable() ||
732         castDstType.isScalable())
733       return failure();
734 
735     int64_t castSrcLastDim = castSrcType.getShape().back();
736     int64_t castDstLastDim = castDstType.getShape().back();
737     bool isNumElemsShrink = castSrcLastDim >= castDstLastDim;
738     int64_t ratio;
739     if (isNumElemsShrink) {
740       assert(castSrcLastDim % castDstLastDim == 0);
741       ratio = castSrcLastDim / castDstLastDim;
742     } else {
743       assert(castDstLastDim % castSrcLastDim == 0);
744       ratio = castDstLastDim / castSrcLastDim;
745     }
746 
747     auto insertOp = bitcastOp.getSource().getDefiningOp<vector::InsertOp>();
748     if (!insertOp)
749       return failure();
750 
751     // Only vector sources are supported for now.
752     auto insertSrcType = dyn_cast<VectorType>(insertOp.getSourceType());
753     if (!insertSrcType)
754       return failure();
755 
756     // Bitcast the source.
757     SmallVector<int64_t> srcDims(insertSrcType.getShape());
758     srcDims.back() =
759         isNumElemsShrink ? srcDims.back() / ratio : srcDims.back() * ratio;
760     VectorType newCastSrcType =
761         VectorType::get(srcDims, castDstType.getElementType());
762     auto newCastSrcOp = rewriter.create<vector::BitCastOp>(
763         bitcastOp.getLoc(), newCastSrcType, insertOp.getSource());
764 
765     SmallVector<int64_t> dstDims(insertOp.getDestVectorType().getShape());
766     dstDims.back() =
767         isNumElemsShrink ? dstDims.back() / ratio : dstDims.back() * ratio;
768     VectorType newCastDstType =
769         VectorType::get(dstDims, castDstType.getElementType());
770 
771     // Bitcast the destination.
772     auto newCastDstOp = rewriter.create<vector::BitCastOp>(
773         bitcastOp.getLoc(), newCastDstType, insertOp.getDest());
774 
775     // Generate new insert.
776     rewriter.replaceOpWithNewOp<vector::InsertOp>(
777         bitcastOp, newCastSrcOp, newCastDstOp, insertOp.getMixedPosition());
778     return success();
779   }
780 };
781 
782 // Shuffles vector.bitcast op before vector.insert_strided_slice op.
783 //
784 // This transforms IR like:
785 //   %0 = vector.insert_strided_slice %src, %dst {
786 //          offsets = [0], strides = [1]} : vector<4xf16> into vector<8xf16>
787 //   %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32>
788 // Into:
789 //   %0 = vector.bitcast %src : vector<4xf16> to vector<2xf32>
790 //   %1 = vector.bitcast %dst : vector<8xf16> to vector<4xf32>
791 //   %2 = vector.insert_strided_slice %src, %dst {
792 //          offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32>
793 struct BubbleUpBitCastForStridedSliceInsert
794     : public OpRewritePattern<vector::BitCastOp> {
795   using OpRewritePattern::OpRewritePattern;
796 
797   LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp,
798                                 PatternRewriter &rewriter) const override {
799     VectorType castSrcType = bitcastOp.getSourceVectorType();
800     VectorType castDstType = bitcastOp.getResultVectorType();
801     assert(castSrcType.getRank() == castDstType.getRank());
802     // Skip 0-D vector which will not from InsertStridedSliceOp.
803     if (castSrcType.getRank() == 0)
804       return failure();
805 
806     int64_t castSrcLastDim = castSrcType.getShape().back();
807     int64_t castDstLastDim = castDstType.getShape().back();
808     // Require casting to less elements for now; other cases to be implemented.
809     if (castSrcLastDim < castDstLastDim)
810       return failure();
811 
812     assert(castSrcLastDim % castDstLastDim == 0);
813     int64_t shrinkRatio = castSrcLastDim / castDstLastDim;
814 
815     auto insertOp =
816         bitcastOp.getSource().getDefiningOp<vector::InsertStridedSliceOp>();
817     if (!insertOp)
818       return failure();
819 
820     // Only accept all one strides for now.
821     if (llvm::any_of(insertOp.getStrides().getAsValueRange<IntegerAttr>(),
822                      [](const APInt &val) { return !val.isOne(); }))
823       return failure();
824 
825     unsigned rank = insertOp.getSourceVectorType().getRank();
826     // Require insert op to have the same rank for the source and destination
827     // vector; other cases to be implemented.
828     if (rank != insertOp.getDestVectorType().getRank())
829       return failure();
830 
831     // Requires that shape of insert op src is castable to dstType.
832     unsigned sourceWidth = castSrcType.getElementType().getIntOrFloatBitWidth();
833     unsigned destinationWidth =
834         castDstType.getElementType().getIntOrFloatBitWidth();
835     unsigned numElements = destinationWidth / sourceWidth;
836     if (insertOp.getSourceVectorType().getNumElements() % numElements != 0)
837       return failure();
838 
839     ArrayAttr newOffsets = insertOp.getOffsets();
840     assert(newOffsets.size() == rank);
841     SmallVector<int64_t> offsets = getIntValueVector(newOffsets);
842     if (offsets.back() % shrinkRatio != 0)
843       return failure();
844     offsets.back() = offsets.back() / shrinkRatio;
845     newOffsets = rewriter.getI64ArrayAttr(offsets);
846 
847     SmallVector<int64_t> srcDims =
848         llvm::to_vector<4>(insertOp.getSourceVectorType().getShape());
849     srcDims.back() = srcDims.back() / shrinkRatio;
850     VectorType newCastSrcType =
851         VectorType::get(srcDims, castDstType.getElementType());
852 
853     auto newCastSrcOp = rewriter.create<vector::BitCastOp>(
854         bitcastOp.getLoc(), newCastSrcType, insertOp.getSource());
855 
856     SmallVector<int64_t> dstDims =
857         llvm::to_vector<4>(insertOp.getDestVectorType().getShape());
858     dstDims.back() = dstDims.back() / shrinkRatio;
859     VectorType newCastDstType =
860         VectorType::get(dstDims, castDstType.getElementType());
861 
862     auto newCastDstOp = rewriter.create<vector::BitCastOp>(
863         bitcastOp.getLoc(), newCastDstType, insertOp.getDest());
864 
865     rewriter.replaceOpWithNewOp<vector::InsertStridedSliceOp>(
866         bitcastOp, bitcastOp.getType(), newCastSrcOp, newCastDstOp, newOffsets,
867         insertOp.getStrides());
868 
869     return success();
870   }
871 };
872 
873 // Breaks down vector.bitcast op
874 //
875 // This transforms IR like:
876 //   %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32>
877 // Into:
878 //   %cst = vector.splat %c0_f32 : vector<4xf32>
879 //   %1 = vector.extract_strided_slice %0 {
880 //          offsets = [0], sizes = [4], strides = [1]
881 //        } : vector<8xf16> to vector<4xf16>
882 //   %2 = vector.bitcast %1 : vector<4xf16> to vector<2xf32>
883 //   %4 = vector.insert_strided_slice %2, %cst {
884 //          offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32>
885 //   %5 = vector.extract_strided_slice %0 {
886 //          offsets = [4], sizes = [4], strides = [1]
887 //        } : vector<8xf16> to vector<4xf16>
888 //   %6 = vector.bitcast %5 : vector<4xf16> to vector<2xf32>
889 //   %7 = vector.insert_strided_slice %6, %cst {
890 //          offsets = [2], strides = [1]} : vector<2xf32> into vector<4xf32>
891 struct BreakDownVectorBitCast : public OpRewritePattern<vector::BitCastOp> {
892   using OpRewritePattern::OpRewritePattern;
893 
894 public:
895   BreakDownVectorBitCast(MLIRContext *context,
896                          std::function<bool(vector::BitCastOp)> controlFn,
897                          PatternBenefit benefit)
898       : OpRewritePattern(context, benefit), controlFn(std::move(controlFn)) {}
899 
900   LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp,
901                                 PatternRewriter &rewriter) const override {
902 
903     if (controlFn && !controlFn(bitcastOp))
904       return failure();
905 
906     VectorType castSrcType = bitcastOp.getSourceVectorType();
907     VectorType castDstType = bitcastOp.getResultVectorType();
908     assert(castSrcType.getRank() == castDstType.getRank());
909 
910     // Only support rank 1 case for now.
911     if (castSrcType.getRank() != 1)
912       return failure();
913 
914     int64_t castSrcLastDim = castSrcType.getShape().back();
915     int64_t castDstLastDim = castDstType.getShape().back();
916     // Require casting to less elements for now; other cases to be implemented.
917     if (castSrcLastDim < castDstLastDim)
918       return failure();
919 
920     assert(castSrcLastDim % castDstLastDim == 0);
921     int64_t shrinkRatio = castSrcLastDim / castDstLastDim;
922     // Nothing to do if it is already bitcasting to a single element.
923     if (castSrcLastDim == shrinkRatio)
924       return failure();
925 
926     Location loc = bitcastOp.getLoc();
927     Type elemType = castDstType.getElementType();
928     assert(elemType.isSignlessIntOrIndexOrFloat());
929 
930     Value zero = rewriter.create<arith::ConstantOp>(
931         loc, elemType, rewriter.getZeroAttr(elemType));
932     Value res = rewriter.create<SplatOp>(loc, castDstType, zero);
933 
934     SmallVector<int64_t> sliceShape{castDstLastDim};
935     SmallVector<int64_t> strides{1};
936     VectorType newCastDstType =
937         VectorType::get(SmallVector<int64_t>{castDstLastDim / shrinkRatio},
938                         castDstType.getElementType());
939 
940     for (int i = 0, e = shrinkRatio; i < e; ++i) {
941       Value extracted = rewriter.create<ExtractStridedSliceOp>(
942           loc, bitcastOp.getSource(), ArrayRef<int64_t>{i * castDstLastDim},
943           sliceShape, strides);
944       Value bitcast =
945           rewriter.create<BitCastOp>(loc, newCastDstType, extracted);
946       res = rewriter.create<InsertStridedSliceOp>(
947           loc, bitcast, res,
948           ArrayRef<int64_t>{i * castDstLastDim / shrinkRatio}, strides);
949     }
950     rewriter.replaceOp(bitcastOp, res);
951     return success();
952   }
953 
954 private:
955   std::function<bool(BitCastOp)> controlFn;
956 };
957 
958 /// Reorders elementwise(broadcast/splat) to broadcast(elementwise). Ex:
959 /// ```
960 /// %a = vector.broadcast %arg1 : index to vector<1x4xindex>
961 /// %b = vector.broadcast %arg2 : index to vector<1x4xindex>
962 /// %r = arith.addi %a, %b : vector<1x4xindex>
963 /// ```
964 /// Gets converted to:
965 /// ```
966 /// %r = arith.addi %arg0, %arg1 : index
967 /// %b = vector.broadcast %r : index to vector<1x4xindex>
968 /// ```
969 ///
970 /// Both `vector.broadcast` and `vector.splat` are supported as broadcasting
971 /// ops.
972 struct ReorderElementwiseOpsOnBroadcast final
973     : public OpTraitRewritePattern<OpTrait::Elementwise> {
974   using OpTraitRewritePattern::OpTraitRewritePattern;
975   LogicalResult matchAndRewrite(Operation *op,
976                                 PatternRewriter &rewriter) const override {
977     if (op->getNumResults() != 1)
978       return failure();
979     if (!llvm::isa<ShapedType>(op->getResults()[0].getType()))
980       return failure();
981     if (!OpTrait::hasElementwiseMappableTraits(op))
982       return rewriter.notifyMatchFailure(
983           op, "Op doesn't have ElementwiseMappableTraits");
984     if (op->getNumOperands() == 0)
985       return failure();
986     if (op->getResults()[0].getType() != op->getOperand(0).getType())
987       return rewriter.notifyMatchFailure(op,
988                                          "result and operand type mismatch");
989     if (isa<vector::FMAOp>(op)) {
990       return rewriter.notifyMatchFailure(
991           op,
992           "Op only accepts vector types - not supported as broadcast source "
993           "might be a scalar");
994     }
995 
996     // Get the type of the lhs operand
997     auto *lhsBcastOrSplat = op->getOperand(0).getDefiningOp();
998     if (!lhsBcastOrSplat ||
999         !isa<vector::BroadcastOp, vector::SplatOp>(*lhsBcastOrSplat))
1000       return failure();
1001     auto lhsBcastOrSplatType = lhsBcastOrSplat->getOperand(0).getType();
1002 
1003     // Make sure that all operands are broadcast from identical types:
1004     //  * scalar (`vector.broadcast` + `vector.splat`), or
1005     //  * vector (`vector.broadcast`).
1006     // Otherwise the re-ordering wouldn't be safe.
1007     if (!llvm::all_of(op->getOperands(), [&lhsBcastOrSplatType](Value val) {
1008           auto bcast = val.getDefiningOp<vector::BroadcastOp>();
1009           if (bcast)
1010             return (bcast.getOperand().getType() == lhsBcastOrSplatType);
1011           auto splat = val.getDefiningOp<vector::SplatOp>();
1012           if (splat)
1013             return (splat.getOperand().getType() == lhsBcastOrSplatType);
1014           return false;
1015         })) {
1016       return failure();
1017     }
1018 
1019     // Collect the source values before broadcasting
1020     SmallVector<Value> srcValues;
1021     srcValues.reserve(op->getNumOperands());
1022     for (Value operand : op->getOperands()) {
1023       srcValues.push_back(operand.getDefiningOp()->getOperand(0));
1024     }
1025 
1026     // Create the "elementwise" Op
1027     Operation *elementwiseOp =
1028         rewriter.create(op->getLoc(), op->getName().getIdentifier(), srcValues,
1029                         lhsBcastOrSplatType, op->getAttrs());
1030 
1031     // Replace the original Op with the elementwise Op
1032     auto vectorType = op->getResultTypes()[0];
1033     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
1034         op, vectorType, elementwiseOp->getResults());
1035 
1036     return success();
1037   }
1038 };
1039 
1040 // Helper that returns a vector comparison that constructs a mask:
1041 //     mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b]
1042 //
1043 // If `dim == 0` then the result will be a 0-D vector.
1044 //
1045 // NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative,
1046 //       much more compact, IR for this operation, but LLVM eventually
1047 //       generates more elaborate instructions for this intrinsic since it
1048 //       is very conservative on the boundary conditions.
1049 static Value buildVectorComparison(PatternRewriter &rewriter, Operation *op,
1050                                    bool force32BitVectorIndices, int64_t dim,
1051                                    Value b, Value *off = nullptr) {
1052   auto loc = op->getLoc();
1053   // If we can assume all indices fit in 32-bit, we perform the vector
1054   // comparison in 32-bit to get a higher degree of SIMD parallelism.
1055   // Otherwise we perform the vector comparison using 64-bit indices.
1056   Type idxType =
1057       force32BitVectorIndices ? rewriter.getI32Type() : rewriter.getI64Type();
1058   DenseIntElementsAttr indicesAttr;
1059   if (dim == 0 && force32BitVectorIndices) {
1060     indicesAttr = DenseIntElementsAttr::get(
1061         VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int32_t>{0});
1062   } else if (dim == 0) {
1063     indicesAttr = DenseIntElementsAttr::get(
1064         VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int64_t>{0});
1065   } else if (force32BitVectorIndices) {
1066     indicesAttr = rewriter.getI32VectorAttr(
1067         llvm::to_vector<4>(llvm::seq<int32_t>(0, dim)));
1068   } else {
1069     indicesAttr = rewriter.getI64VectorAttr(
1070         llvm::to_vector<4>(llvm::seq<int64_t>(0, dim)));
1071   }
1072   Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr);
1073   // Add in an offset if requested.
1074   if (off) {
1075     Value o = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, *off);
1076     Value ov = rewriter.create<vector::SplatOp>(loc, indices.getType(), o);
1077     indices = rewriter.create<arith::AddIOp>(loc, ov, indices);
1078   }
1079   // Construct the vector comparison.
1080   Value bound = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, b);
1081   Value bounds =
1082       rewriter.create<vector::SplatOp>(loc, indices.getType(), bound);
1083   return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, indices,
1084                                         bounds);
1085 }
1086 
1087 template <typename ConcreteOp>
1088 struct MaterializeTransferMask : public OpRewritePattern<ConcreteOp> {
1089 public:
1090   explicit MaterializeTransferMask(MLIRContext *context, bool enableIndexOpt,
1091                                    PatternBenefit benefit = 1)
1092       : mlir::OpRewritePattern<ConcreteOp>(context, benefit),
1093         force32BitVectorIndices(enableIndexOpt) {}
1094 
1095   LogicalResult matchAndRewrite(ConcreteOp xferOp,
1096                                 PatternRewriter &rewriter) const override {
1097     if (!xferOp.hasOutOfBoundsDim())
1098       return failure();
1099 
1100     if (xferOp.getVectorType().getRank() > 1 || xferOp.getIndices().empty())
1101       return failure();
1102 
1103     Location loc = xferOp->getLoc();
1104     VectorType vtp = xferOp.getVectorType();
1105 
1106     // Create the in-bounds mask with all elements between [0 .. dim - offset)
1107     // set and [dim - offset .. vector_length) unset.
1108     //
1109     // TODO: when the leaf transfer rank is k > 1, we need the last `k`
1110     //       dimensions here.
1111     unsigned lastIndex = llvm::size(xferOp.getIndices()) - 1;
1112     Value off = xferOp.getIndices()[lastIndex];
1113     Value dim =
1114         vector::createOrFoldDimOp(rewriter, loc, xferOp.getSource(), lastIndex);
1115     Value b = rewriter.create<arith::SubIOp>(loc, dim.getType(), dim, off);
1116     Value mask = rewriter.create<vector::CreateMaskOp>(
1117         loc,
1118         VectorType::get(vtp.getShape(), rewriter.getI1Type(),
1119                         vtp.getScalableDims()),
1120         b);
1121     if (xferOp.getMask()) {
1122       // Intersect the in-bounds with the mask specified as an op parameter.
1123       mask = rewriter.create<arith::AndIOp>(loc, mask, xferOp.getMask());
1124     }
1125 
1126     rewriter.modifyOpInPlace(xferOp, [&]() {
1127       xferOp.getMaskMutable().assign(mask);
1128       xferOp.setInBoundsAttr(rewriter.getBoolArrayAttr({true}));
1129     });
1130 
1131     return success();
1132   }
1133 
1134 private:
1135   const bool force32BitVectorIndices;
1136 };
1137 
1138 /// Conversion pattern for a `vector.create_mask` (0-D and 1-D only).
1139 class VectorCreateMaskOpConversion
1140     : public OpRewritePattern<vector::CreateMaskOp> {
1141 public:
1142   explicit VectorCreateMaskOpConversion(MLIRContext *context,
1143                                         bool enableIndexOpt,
1144                                         PatternBenefit benefit = 1)
1145       : mlir::OpRewritePattern<vector::CreateMaskOp>(context, benefit),
1146         force32BitVectorIndices(enableIndexOpt) {}
1147 
1148   LogicalResult matchAndRewrite(vector::CreateMaskOp op,
1149                                 PatternRewriter &rewriter) const override {
1150     auto dstType = op.getType();
1151     if (cast<VectorType>(dstType).isScalable())
1152       return failure();
1153     int64_t rank = dstType.getRank();
1154     if (rank > 1)
1155       return failure();
1156     rewriter.replaceOp(
1157         op, buildVectorComparison(rewriter, op, force32BitVectorIndices,
1158                                   rank == 0 ? 0 : dstType.getDimSize(0),
1159                                   op.getOperand(0)));
1160     return success();
1161   }
1162 
1163 private:
1164   const bool force32BitVectorIndices;
1165 };
1166 
1167 /// Returns true if all the `i1` elements of `constantOp` are set to `value`.
1168 static bool allI1ConstantValuesSetTo(arith::ConstantOp constantOp, bool value) {
1169   auto denseAttr = dyn_cast<DenseIntElementsAttr>(constantOp.getValue());
1170   // TODO: Support non-dense constant.
1171   if (!denseAttr)
1172     return false;
1173 
1174   assert(denseAttr.getElementType().isInteger(1) && "Unexpected type");
1175   return denseAttr.isSplat() && denseAttr.getSplatValue<bool>() == value;
1176 }
1177 
1178 /// Folds a select operation between an all-true and all-false vector. For now,
1179 /// only single element vectors (i.e., vector<1xi1>) are supported. That is:
1180 ///
1181 ///   %true = arith.constant dense<true> : vector<1xi1>
1182 ///   %false = arith.constant dense<false> : vector<1xi1>
1183 ///   %result = arith.select %cond, %true, %false : i1, vector<1xi1>
1184 ///   =>
1185 ///   %result = vector.broadcast %cond : i1 to vector<1xi1>
1186 ///
1187 /// InstCombine seems to handle vectors with multiple elements but not the
1188 /// single element ones.
1189 struct FoldI1Select : public OpRewritePattern<arith::SelectOp> {
1190   using OpRewritePattern<arith::SelectOp>::OpRewritePattern;
1191 
1192   LogicalResult matchAndRewrite(arith::SelectOp selectOp,
1193                                 PatternRewriter &rewriter) const override {
1194     auto vecType = dyn_cast<VectorType>(selectOp.getType());
1195     if (!vecType || !vecType.getElementType().isInteger(1))
1196       return failure();
1197 
1198     // Only scalar conditions can be folded.
1199     Value cond = selectOp.getCondition();
1200     if (isa<VectorType>(cond.getType()))
1201       return failure();
1202 
1203     // TODO: Support n-D and scalable vectors.
1204     if (vecType.getRank() != 1 || vecType.isScalable())
1205       return failure();
1206 
1207     // TODO: Support vectors with multiple elements.
1208     if (vecType.getShape()[0] != 1)
1209       return failure();
1210 
1211     auto trueConst = selectOp.getTrueValue().getDefiningOp<arith::ConstantOp>();
1212     if (!trueConst || !allI1ConstantValuesSetTo(trueConst, true))
1213       return failure();
1214 
1215     auto falseConst =
1216         selectOp.getFalseValue().getDefiningOp<arith::ConstantOp>();
1217     if (!falseConst || !allI1ConstantValuesSetTo(falseConst, false))
1218       return failure();
1219 
1220     // Replace select with its condition broadcasted to single element vector.
1221     auto elemType = rewriter.getIntegerType(vecType.getNumElements());
1222     auto bcastType = VectorType::get(/*shape=*/{1}, elemType);
1223     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(selectOp, bcastType, cond);
1224     return success();
1225   }
1226 };
1227 
1228 /// Returns the number of dims can be folded away from transfer ops. It returns
1229 /// a failure if it can not determine the number of dims to be folded.
1230 ///
1231 /// Ex 1: returns "2" if `srcType` is memref<512x16x1x1xf32> and
1232 /// `vectorType` is vector<16x16x1x1xf32>
1233 /// (there two inner most dims can be dropped by memref.subview ops)
1234 ///
1235 /// Ex 2: returns "1" if `srcType` is memref<512x16x1x1xf32> with
1236 /// [8192, 16, 8, 1] strides and `vectorType` is vector<16x16x1x1xf32>
1237 /// (only the inner most unit dim of `srcType` can be dropped)
1238 ///
1239 /// Ex 3: return "0" if `srcType` is memref<512x16x1x1xf32> and
1240 /// `vectorType` is vector<16x16x1x[1]xf32>
1241 /// (the most inner dim in `vectorType` is not a unit dim (it's a "scalable
1242 /// unit")
1243 static FailureOr<size_t>
1244 getTransferFoldableInnerUnitDims(MemRefType srcType, VectorType vectorType) {
1245   SmallVector<int64_t> srcStrides;
1246   int64_t srcOffset;
1247   if (failed(getStridesAndOffset(srcType, srcStrides, srcOffset)))
1248     return failure();
1249 
1250   auto isUnitDim = [](VectorType type, int dim) {
1251     return type.getDimSize(dim) == 1 && !type.getScalableDims()[dim];
1252   };
1253 
1254   // According to vector.transfer_read/write semantics, the vector can be a
1255   // slice. Thus, we have to offset the check index with `rankDiff` in
1256   // `srcStrides` and source dim sizes.
1257   size_t result = 0;
1258   int rankDiff = srcType.getRank() - vectorType.getRank();
1259   for (int64_t i = 0, e = vectorType.getRank(); i < e; ++i) {
1260     // Check that the inner dim size is 1 for both memref type and vector slice.
1261     // It can be folded only if they are 1 and the stride is 1.
1262     int dim = vectorType.getRank() - i - 1;
1263     if (srcStrides[dim + rankDiff] != 1 ||
1264         srcType.getDimSize(dim + rankDiff) != 1 || !isUnitDim(vectorType, dim))
1265       break;
1266     result++;
1267   }
1268   return result;
1269 }
1270 
1271 /// Drop inner most contiguous unit dimensions from transfer_read operand.
1272 class DropInnerMostUnitDimsTransferRead
1273     : public OpRewritePattern<vector::TransferReadOp> {
1274   using OpRewritePattern::OpRewritePattern;
1275 
1276   LogicalResult matchAndRewrite(vector::TransferReadOp readOp,
1277                                 PatternRewriter &rewriter) const override {
1278     // TODO: support 0-d corner case.
1279     if (readOp.getTransferRank() == 0)
1280       return failure();
1281 
1282     // TODO: support mask.
1283     if (readOp.getMask())
1284       return failure();
1285 
1286     auto srcType = dyn_cast<MemRefType>(readOp.getSource().getType());
1287     if (!srcType)
1288       return failure();
1289 
1290     if (!readOp.getPermutationMap().isMinorIdentity())
1291       return failure();
1292 
1293     auto targetType = readOp.getVectorType();
1294     if (targetType.getRank() <= 1)
1295       return failure();
1296 
1297     FailureOr<size_t> maybeDimsToDrop =
1298         getTransferFoldableInnerUnitDims(srcType, targetType);
1299     if (failed(maybeDimsToDrop))
1300       return failure();
1301 
1302     size_t dimsToDrop = maybeDimsToDrop.value();
1303     if (dimsToDrop == 0)
1304       return failure();
1305 
1306     auto inBounds = readOp.getInBoundsValues();
1307     auto droppedInBounds = ArrayRef<bool>(inBounds).take_back(dimsToDrop);
1308     if (llvm::is_contained(droppedInBounds, false))
1309       return failure();
1310 
1311     auto resultTargetVecType =
1312         VectorType::get(targetType.getShape().drop_back(dimsToDrop),
1313                         targetType.getElementType(),
1314                         targetType.getScalableDims().drop_back(dimsToDrop));
1315 
1316     auto loc = readOp.getLoc();
1317     SmallVector<OpFoldResult> sizes =
1318         memref::getMixedSizes(rewriter, loc, readOp.getSource());
1319     SmallVector<OpFoldResult> offsets(srcType.getRank(),
1320                                       rewriter.getIndexAttr(0));
1321     SmallVector<OpFoldResult> strides(srcType.getRank(),
1322                                       rewriter.getIndexAttr(1));
1323     auto resultMemrefType =
1324         cast<MemRefType>(memref::SubViewOp::inferRankReducedResultType(
1325             srcType.getShape().drop_back(dimsToDrop), srcType, offsets, sizes,
1326             strides));
1327     ArrayAttr inBoundsAttr = rewriter.getArrayAttr(
1328         readOp.getInBoundsAttr().getValue().drop_back(dimsToDrop));
1329     Value rankedReducedView = rewriter.create<memref::SubViewOp>(
1330         loc, resultMemrefType, readOp.getSource(), offsets, sizes, strides);
1331     auto permMap = getTransferMinorIdentityMap(
1332         cast<ShapedType>(rankedReducedView.getType()), resultTargetVecType);
1333     Value result = rewriter.create<vector::TransferReadOp>(
1334         loc, resultTargetVecType, rankedReducedView,
1335         readOp.getIndices().drop_back(dimsToDrop), AffineMapAttr::get(permMap),
1336         readOp.getPadding(),
1337         // TODO: support mask.
1338         /*mask=*/Value(), inBoundsAttr);
1339     rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(readOp, targetType,
1340                                                      result);
1341     return success();
1342   }
1343 };
1344 
1345 /// Drop inner most contiguous unit dimensions from transfer_write operand.
1346 /// E.g.,
1347 ///    vector.transfer_write %arg1, %arg0[%c0, %arg2, %c0, %c0, %c0]
1348 ///      {in_bounds = [true, true, true, true, true]}
1349 ///      : vector<1x16x16x1x1xf32>, memref<1x512x16x1x1xf32>
1350 ///
1351 /// will be replaced with
1352 ///
1353 ///    %subview = memref.subview %arg0
1354 ///      [0, 0, 0, 0, 0] [1, 512, 16, 1, 1] [1, 1, 1, 1, 1]
1355 ///      : memref<1x512x16x1x1xf32> to memref<1x512x16xf32>
1356 ///    %0 = vector.shape_cast %arg1 : vector<1x16x16x1x1xf32>
1357 ///      to vector<1x16x16xf32>
1358 ///    vector.transfer_write %0, %subview[%c0, %arg2, %c0]
1359 ///      {in_bounds = [true, true, true]}
1360 ///      : vector<1x16x16xf32>, memref<1x512x16xf32>
1361 ///
1362 /// Note, this pattern will not collapse "scalable unit" dims (i.e. `[1]`).
1363 class DropInnerMostUnitDimsTransferWrite
1364     : public OpRewritePattern<vector::TransferWriteOp> {
1365   using OpRewritePattern::OpRewritePattern;
1366 
1367   LogicalResult matchAndRewrite(vector::TransferWriteOp writeOp,
1368                                 PatternRewriter &rewriter) const override {
1369     // TODO: support 0-d corner case.
1370     if (writeOp.getTransferRank() == 0)
1371       return failure();
1372 
1373     // TODO: support mask.
1374     if (writeOp.getMask())
1375       return failure();
1376 
1377     auto srcType = dyn_cast<MemRefType>(writeOp.getSource().getType());
1378     if (!srcType)
1379       return failure();
1380 
1381     if (!writeOp.getPermutationMap().isMinorIdentity())
1382       return failure();
1383 
1384     auto targetType = writeOp.getVectorType();
1385     if (targetType.getRank() <= 1)
1386       return failure();
1387 
1388     FailureOr<size_t> maybeDimsToDrop =
1389         getTransferFoldableInnerUnitDims(srcType, targetType);
1390     if (failed(maybeDimsToDrop))
1391       return failure();
1392 
1393     size_t dimsToDrop = maybeDimsToDrop.value();
1394     if (dimsToDrop == 0)
1395       return failure();
1396 
1397     auto inBounds = writeOp.getInBoundsValues();
1398     auto droppedInBounds = ArrayRef<bool>(inBounds).take_back(dimsToDrop);
1399     if (llvm::is_contained(droppedInBounds, false))
1400       return failure();
1401 
1402     auto resultTargetVecType =
1403         VectorType::get(targetType.getShape().drop_back(dimsToDrop),
1404                         targetType.getElementType(),
1405                         targetType.getScalableDims().drop_back(dimsToDrop));
1406 
1407     Location loc = writeOp.getLoc();
1408     SmallVector<OpFoldResult> sizes =
1409         memref::getMixedSizes(rewriter, loc, writeOp.getSource());
1410     SmallVector<OpFoldResult> offsets(srcType.getRank(),
1411                                       rewriter.getIndexAttr(0));
1412     SmallVector<OpFoldResult> strides(srcType.getRank(),
1413                                       rewriter.getIndexAttr(1));
1414     auto resultMemrefType =
1415         cast<MemRefType>(memref::SubViewOp::inferRankReducedResultType(
1416             srcType.getShape().drop_back(dimsToDrop), srcType, offsets, sizes,
1417             strides));
1418     ArrayAttr inBoundsAttr = rewriter.getArrayAttr(
1419         writeOp.getInBoundsAttr().getValue().drop_back(dimsToDrop));
1420 
1421     Value rankedReducedView = rewriter.create<memref::SubViewOp>(
1422         loc, resultMemrefType, writeOp.getSource(), offsets, sizes, strides);
1423     auto permMap = getTransferMinorIdentityMap(
1424         cast<ShapedType>(rankedReducedView.getType()), resultTargetVecType);
1425 
1426     auto shapeCast = rewriter.createOrFold<vector::ShapeCastOp>(
1427         loc, resultTargetVecType, writeOp.getVector());
1428     rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
1429         writeOp, shapeCast, rankedReducedView,
1430         writeOp.getIndices().drop_back(dimsToDrop), AffineMapAttr::get(permMap),
1431         // TODO: support mask.
1432         /*mask=*/Value(), inBoundsAttr);
1433     return success();
1434   }
1435 };
1436 
1437 /// Canonicalization of a `vector.contraction %a, %b, %c` with row-major matmul
1438 /// semantics to a contraction suitable for MMT (matrix matrix multiplication
1439 /// with the RHS transposed) lowering.
1440 struct CanonicalizeContractMatmulToMMT final
1441     : OpRewritePattern<vector::ContractionOp> {
1442   using OpRewritePattern::OpRewritePattern;
1443 
1444   using FilterConstraintType =
1445       std::function<LogicalResult(vector::ContractionOp op)>;
1446 
1447   CanonicalizeContractMatmulToMMT(MLIRContext *context, PatternBenefit benefit,
1448                                   FilterConstraintType constraint)
1449       : OpRewritePattern<vector::ContractionOp>(context, benefit),
1450         filter(std::move(constraint)) {}
1451 
1452   LogicalResult matchAndRewrite(vector::ContractionOp op,
1453                                 PatternRewriter &rewriter) const override {
1454     if (failed(filter(op)))
1455       return failure();
1456 
1457     Location loc = op.getLoc();
1458     Value lhs = op.getLhs();
1459     Value rhs = op.getRhs();
1460     Value res = op.getAcc();
1461 
1462     // Set up the parallel/reduction structure in right form.
1463     using MapList = ArrayRef<ArrayRef<AffineExpr>>;
1464     auto infer = [&](MapList m) {
1465       return AffineMap::inferFromExprList(m, op.getContext());
1466     };
1467     AffineExpr m;
1468     AffineExpr n;
1469     AffineExpr k;
1470     bindDims(rewriter.getContext(), m, n, k);
1471     static constexpr std::array<int64_t, 2> perm = {1, 0};
1472     auto iteratorTypes = op.getIteratorTypes().getValue();
1473     SmallVector<AffineMap, 4> maps = op.getIndexingMapsArray();
1474     if (iteratorTypes.size() != 3 ||
1475         !vector::isParallelIterator(iteratorTypes[0]) ||
1476         !vector::isParallelIterator(iteratorTypes[1]) ||
1477         !vector::isReductionIterator(iteratorTypes[2]))
1478       return rewriter.notifyMatchFailure(op, "contraction is not a gemm");
1479 
1480     // The canonical form is "TNT" = A row-major, B col-major, C row-major.
1481     const auto canonicalForm = infer({{m, k}, {n, k}, {m, n}});
1482     if (maps == canonicalForm)
1483       return rewriter.notifyMatchFailure(op, "already in the canonical form");
1484 
1485     // Create a vector transpose making sure to emit zero/sign-extend at the
1486     // end.
1487     auto createTranspose = [&rewriter, loc](Value mat) -> Value {
1488       if (auto sext = mat.getDefiningOp<arith::ExtSIOp>()) {
1489         Value trans =
1490             rewriter.create<vector::TransposeOp>(loc, sext.getIn(), perm);
1491         VectorType newType =
1492             cast<VectorType>(trans.getType())
1493                 .clone(cast<VectorType>(mat.getType()).getElementType());
1494         return rewriter.create<arith::ExtSIOp>(loc, newType, trans);
1495       }
1496       if (auto zext = mat.getDefiningOp<arith::ExtUIOp>()) {
1497         Value trans =
1498             rewriter.create<vector::TransposeOp>(loc, zext.getIn(), perm);
1499         VectorType newType =
1500             VectorType::get(cast<VectorType>(trans.getType()).getShape(),
1501                             cast<VectorType>(mat.getType()).getElementType());
1502         return rewriter.create<arith::ExtUIOp>(loc, newType, trans);
1503       }
1504       return rewriter.create<vector::TransposeOp>(loc, mat, perm);
1505     };
1506 
1507     if (maps == infer({{m, k}, {k, n}, {m, n}})) {
1508       rhs = createTranspose(rhs);
1509     } else if (maps == infer({{k, m}, {n, k}, {m, n}})) {
1510       lhs = createTranspose(lhs);
1511     } else if (maps == infer({{k, m}, {k, n}, {m, n}})) {
1512       rhs = createTranspose(rhs);
1513       lhs = createTranspose(lhs);
1514     } else if (maps == infer({{k, m}, {k, n}, {n, m}})) {
1515       std::swap(rhs, lhs);
1516       rhs = createTranspose(rhs);
1517       lhs = createTranspose(lhs);
1518     } else if (maps == infer({{k, m}, {n, k}, {n, m}})) {
1519       std::swap(rhs, lhs);
1520       rhs = createTranspose(rhs);
1521     } else if (maps == infer({{m, k}, {k, n}, {n, m}})) {
1522       std::swap(lhs, rhs);
1523       lhs = createTranspose(lhs);
1524     } else if (maps == infer({{m, k}, {n, k}, {n, m}})) {
1525       std::swap(lhs, rhs);
1526     } else {
1527       return rewriter.notifyMatchFailure(op, "unhandled contraction form");
1528     }
1529     rewriter.replaceOpWithNewOp<vector::ContractionOp>(
1530         op, lhs, rhs, res, rewriter.getAffineMapArrayAttr(canonicalForm),
1531         op.getIteratorTypes());
1532     return success();
1533   };
1534 
1535 private:
1536   FilterConstraintType filter;
1537 };
1538 
1539 /// Pattern to fold arithmetic extensions on floating point data types into
1540 /// vector contraction operations. linalg.matmul introduces arithmetic
1541 /// extensions on its operands. Please mlir snippets below for more details.
1542 /// ```mlir
1543 ///   "linalg.matmul"(%lhs, %rhs, %acc) ({
1544 ///      ^bb0(%arg1: f16, %arg2: f16, %arg3: f32):
1545 ///        %lhs_f32 = "arith.extf"(%arg1) : (f16) -> f32
1546 ///        %rhs_f32 = "arith.extf"(%arg2) : (f16) -> f32
1547 ///        %mul = "arith.mulf"(%lhs_f32, %rhs_f32) : (f32, f32) -> f32
1548 ///        %acc = "arith.addf"(%arg3, %mul) : (f32, f32) -> f32
1549 ///        "linalg.yield"(%acc) : (f32) -> ()
1550 ///     })
1551 /// ```
1552 /// This restricts the native usage of mixed precision NVIDIA Ampere Tensor
1553 /// Cores, i.e, `mma.sync.*.f32.f16.f16.f32` and `mma.sync.*.f32.bf16.bf16.f32`.
1554 /// This pattern folds the arithmetic extensions into the vector contraction and
1555 /// enables the usage of native mixed precision Tensor Core instructions.
1556 template <typename ExtOp>
1557 struct FoldArithExtIntoContractionOp
1558     : public OpRewritePattern<vector::ContractionOp> {
1559   using OpRewritePattern::OpRewritePattern;
1560 
1561   LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
1562                                 PatternRewriter &rewriter) const override {
1563 
1564     auto lhsDefOp = contractOp.getLhs().getDefiningOp<ExtOp>();
1565     auto rhsDefOp = contractOp.getRhs().getDefiningOp<ExtOp>();
1566 
1567     if (!lhsDefOp || !rhsDefOp) {
1568       return rewriter.notifyMatchFailure(contractOp,
1569                                          "no defining op on contract operands");
1570     }
1571 
1572     rewriter.replaceOpWithNewOp<vector::ContractionOp>(
1573         contractOp, lhsDefOp->getOperand(0), rhsDefOp->getOperand(0),
1574         contractOp.getAcc(), contractOp.getIndexingMapsAttr(),
1575         contractOp.getIteratorTypesAttr());
1576 
1577     return success();
1578   }
1579 };
1580 
1581 /// Pattern to fold chained reduction to a series of vector additions and a
1582 /// final reduction. This form should require fewer subgroup operations.
1583 ///
1584 /// ```mlir
1585 /// %a = vector.reduction <add> %x, %acc
1586 /// %b = vector.reduction <add> %y, %a
1587 ///  ==>
1588 /// %a = arith.addf %x, %y
1589 /// %b = vector.reduction <add> %a, %acc
1590 /// ```
1591 struct ChainedReduction final : OpRewritePattern<vector::ReductionOp> {
1592   using OpRewritePattern::OpRewritePattern;
1593 
1594   LogicalResult matchAndRewrite(vector::ReductionOp op,
1595                                 PatternRewriter &rewriter) const override {
1596     // TODO: Handle other combining kinds.
1597     if (op.getKind() != vector::CombiningKind::ADD)
1598       return failure();
1599 
1600     // Accumulator is optional.
1601     Value acc = op.getAcc();
1602     if (!acc)
1603       return failure();
1604 
1605     if (!acc.getType().isIntOrFloat())
1606       return failure();
1607 
1608     auto parentReduction = acc.getDefiningOp<vector::ReductionOp>();
1609     if (!parentReduction)
1610       return failure();
1611 
1612     Location loc = op.getLoc();
1613     Value vAdd;
1614     if (isa<IntegerType>(acc.getType())) {
1615       vAdd = rewriter.createOrFold<arith::AddIOp>(
1616           loc, parentReduction.getVector(), op.getVector());
1617     } else {
1618       vAdd = rewriter.create<arith::AddFOp>(loc, parentReduction.getVector(),
1619                                             op.getVector());
1620     }
1621     rewriter.replaceOpWithNewOp<vector::ReductionOp>(op, op.getKind(), vAdd,
1622                                                      parentReduction.getAcc());
1623     return success();
1624   }
1625 };
1626 
1627 // Helper function dropping unit non-scalable dimension from a VectorType
1628 // keeping at least 1 dimension to avoid generating 0-D vectors. Scalable unit
1629 // dimensions are not dropped. Folding such dimensions would require "shifting"
1630 // the scalable flag onto some other fixed-width dim (e.g. vector<[1]x4xf32> ->
1631 // vector<[4]xf32>). This could be implemented in the future.
1632 static VectorType dropNonScalableUnitDimFromType(VectorType inVecTy) {
1633   auto inVecShape = inVecTy.getShape();
1634   SmallVector<int64_t> newShape;
1635   SmallVector<bool> newScalableDims;
1636   for (auto [dim, isScalable] :
1637        llvm::zip_equal(inVecShape, inVecTy.getScalableDims())) {
1638     if (dim == 1 && !isScalable)
1639       continue;
1640 
1641     newShape.push_back(dim);
1642     newScalableDims.push_back(isScalable);
1643   }
1644   // All dims have been dropped, return vector<1xeType>.
1645   if (newShape.empty()) {
1646     newShape.push_back(1);
1647     newScalableDims.push_back(false);
1648   }
1649 
1650   return VectorType::get(newShape, inVecTy.getElementType(), newScalableDims);
1651 }
1652 
1653 /// For vectors with at least one unit dim, replaces:
1654 ///   elementwise(a, b)
1655 /// with:
1656 ///   sc_a = shape_cast(a)
1657 ///   sc_b = shape_cast(b)
1658 ///   res = elementwise(sc_a, sc_b)
1659 ///   return shape_cast(res)
1660 /// The newly inserted shape_cast Ops fold (before elementwise Op) and then
1661 /// restore (after elementwise Op) the unit dim. Vectors `a` and `b` are
1662 /// required to be rank > 1.
1663 ///
1664 /// Ex:
1665 ///  %mul = arith.mulf %B_row, %A_row : vector<1x[4]xf32>
1666 ///  %cast = vector.shape_cast %mul : vector<1x[4]xf32> to vector<[4]xf32>
1667 ///
1668 /// gets converted to:
1669 ///
1670 ///  %B_row_sc = vector.shape_cast %B_row : vector<1x[4]xf32> to vector<[4]xf32>
1671 ///  %A_row_sc = vector.shape_cast %A_row : vector<1x[4]xf32> to vector<[4]xf32>
1672 ///  %mul = arith.mulf %B_row_sc, %A_row_sc : vector<[4]xf32>
1673 ///  %cast_new = vector.shape_cast %mul : vector<[4]xf32> to vector<1x[4]xf32>
1674 ///  %cast = vector.shape_cast %cast_new : vector<1x[4]xf32> to vector<[4]xf32>
1675 ///
1676 /// Patterns for folding shape_casts should instantly eliminate `%cast_new` and
1677 /// `%cast`.
1678 struct DropUnitDimFromElementwiseOps final
1679     : public OpTraitRewritePattern<OpTrait::Elementwise> {
1680   using OpTraitRewritePattern::OpTraitRewritePattern;
1681   LogicalResult matchAndRewrite(Operation *op,
1682                                 PatternRewriter &rewriter) const override {
1683     if (op->getNumResults() != 1 || op->getNumRegions() != 0)
1684       return failure();
1685 
1686     auto resultVectorType = dyn_cast<VectorType>(op->getResult(0).getType());
1687     if (!resultVectorType)
1688       return failure();
1689 
1690     // Check the operand pre-conditions. For `Elementwise` ops all operands are
1691     // guaranteed to have identical shapes (with some exceptions such as
1692     // `arith.select`) and it suffices to only check one of them.
1693     auto sourceVectorType = dyn_cast<VectorType>(op->getOperand(0).getType());
1694     if (!sourceVectorType)
1695       return failure();
1696     if (sourceVectorType.getRank() < 2)
1697       return failure();
1698 
1699     SmallVector<Value> newOperands;
1700     auto loc = op->getLoc();
1701     for (auto operand : op->getOperands()) {
1702       auto opVectorType = cast<VectorType>(operand.getType());
1703       auto newVType = dropNonScalableUnitDimFromType(opVectorType);
1704       if (newVType == opVectorType)
1705         return rewriter.notifyMatchFailure(op, "No unit dimension to remove.");
1706 
1707       auto opSC = rewriter.create<vector::ShapeCastOp>(loc, newVType, operand);
1708       newOperands.push_back(opSC);
1709     }
1710 
1711     VectorType newResultVectorType =
1712         dropNonScalableUnitDimFromType(resultVectorType);
1713     // Create an updated elementwise Op without unit dim.
1714     Operation *elementwiseOp =
1715         rewriter.create(loc, op->getName().getIdentifier(), newOperands,
1716                         newResultVectorType, op->getAttrs());
1717 
1718     // Restore the unit dim by applying vector.shape_cast to the result.
1719     rewriter.replaceOpWithNewOp<ShapeCastOp>(op, resultVectorType,
1720                                              elementwiseOp->getResult(0));
1721 
1722     return success();
1723   }
1724 };
1725 
1726 /// A pattern to drop unit dims from vector.transpose.
1727 ///
1728 /// Example:
1729 ///
1730 ///  BEFORE:
1731 ///  ```mlir
1732 ///  %transpose = vector.transpose %vector, [3, 0, 1, 2]
1733 ///    : vector<1x1x4x[4]xf32> to vector<[4]x1x1x4xf32>
1734 ///  ```
1735 ///
1736 ///  AFTER:
1737 ///  ```mlir
1738 ///  %dropDims = vector.shape_cast %vector
1739 ///    : vector<1x1x4x[4]xf32> to vector<4x[4]xf32>
1740 ///  %transpose = vector.transpose %0, [1, 0]
1741 ///    : vector<4x[4]xf32> to vector<[4]x4xf32>
1742 ///  %restoreDims = vector.shape_cast %transpose
1743 ///    : vector<[4]x4xf32> to vector<[4]x1x1x4xf32>
1744 ///  ```
1745 struct DropUnitDimsFromTransposeOp final
1746     : OpRewritePattern<vector::TransposeOp> {
1747   using OpRewritePattern::OpRewritePattern;
1748 
1749   LogicalResult matchAndRewrite(vector::TransposeOp op,
1750                                 PatternRewriter &rewriter) const override {
1751     VectorType sourceType = op.getSourceVectorType();
1752     VectorType sourceTypeWithoutUnitDims =
1753         dropNonScalableUnitDimFromType(sourceType);
1754 
1755     if (sourceType == sourceTypeWithoutUnitDims)
1756       return failure();
1757 
1758     // Construct a map from dimIdx -> number of dims dropped before dimIdx.
1759     auto sourceDims = llvm::to_vector(vector::getDims(sourceType));
1760     SmallVector<int64_t> droppedDimsBefore(sourceType.getRank());
1761     int64_t droppedDims = 0;
1762     for (auto [i, dim] : llvm::enumerate(sourceDims)) {
1763       droppedDimsBefore[i] = droppedDims;
1764       if (dim == std::make_tuple(1, false))
1765         ++droppedDims;
1766     }
1767 
1768     // Drop unit dims from transpose permutation.
1769     ArrayRef<int64_t> perm = op.getPermutation();
1770     SmallVector<int64_t> newPerm;
1771     for (int64_t idx : perm) {
1772       if (sourceDims[idx] == std::make_tuple(1, false))
1773         continue;
1774       newPerm.push_back(idx - droppedDimsBefore[idx]);
1775     }
1776 
1777     // Fixup for `newPerm`. The `sourceTypeWithoutUnitDims` could be vector<1xT>
1778     // type when the dimensions are unit dimensions. In this case, the newPerm
1779     // should be [0].
1780     if (newPerm.empty()) {
1781       newPerm.push_back(0);
1782     }
1783 
1784     Location loc = op.getLoc();
1785     // Drop the unit dims via shape_cast.
1786     auto dropDimsShapeCast = rewriter.create<vector::ShapeCastOp>(
1787         loc, sourceTypeWithoutUnitDims, op.getVector());
1788     // Create the new transpose.
1789     auto tranposeWithoutUnitDims =
1790         rewriter.create<vector::TransposeOp>(loc, dropDimsShapeCast, newPerm);
1791     // Restore the unit dims via shape cast.
1792     rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(
1793         op, op.getResultVectorType(), tranposeWithoutUnitDims);
1794 
1795     return success();
1796   }
1797 };
1798 
1799 /// Pattern to eliminate redundant zero-constants added to reduction operands.
1800 /// It's enough for there to be one initial zero value, so we can eliminate the
1801 /// extra ones that feed into `vector.reduction <add>`. These get created by the
1802 /// `ChainedReduction` pattern.
1803 ///
1804 /// ```mlir
1805 /// %a = arith.addf %x, %zero
1806 /// %b = arith.addf %a, %y
1807 /// %c = vector.reduction <add> %b, %acc
1808 ///  ==>
1809 /// %b = arith.addf %a, %y
1810 /// %c = vector.reduction <add> %b, %acc
1811 /// ```
1812 struct ReduceRedundantZero final : OpRewritePattern<vector::ReductionOp> {
1813   using OpRewritePattern::OpRewritePattern;
1814 
1815   LogicalResult matchAndRewrite(vector::ReductionOp op,
1816                                 PatternRewriter &rewriter) const override {
1817     // TODO: Handle other reduction kinds and their identity values.
1818     if (op.getKind() != vector::CombiningKind::ADD)
1819       return failure();
1820 
1821     Type elemType = op.getSourceVectorType().getElementType();
1822     // The integer case should be handled by `arith.addi` folders, only check
1823     // for floats here.
1824     if (!isa<FloatType>(elemType))
1825       return failure();
1826 
1827     auto vAdd = op.getVector().getDefiningOp<arith::AddFOp>();
1828     if (!vAdd)
1829       return failure();
1830     auto addLhs = vAdd.getLhs().getDefiningOp<arith::AddFOp>();
1831     if (!addLhs)
1832       return failure();
1833 
1834     if (!matchPattern(addLhs.getRhs(), m_AnyZeroFloat()))
1835       return failure();
1836 
1837     auto newAdd = rewriter.create<arith::AddFOp>(vAdd.getLoc(), addLhs.getLhs(),
1838                                                  vAdd.getRhs());
1839     rewriter.replaceOpWithNewOp<vector::ReductionOp>(op, op.getKind(), newAdd,
1840                                                      op.getAcc());
1841     return success();
1842   }
1843 };
1844 
1845 /// Example:
1846 /// ```
1847 /// %a = vector.reduction <add> %x : vector<2xf32> into f32
1848 /// ```
1849 /// is transformed into:
1850 /// ```
1851 /// %y = vector.extract %x[0] : f32 from vector<2xf32>
1852 /// %z = vector.extract %x[1] : f32 from vector<2xf32>
1853 /// %a = arith.addf %y, %z : f32
1854 /// ```
1855 struct BreakDownVectorReduction final : OpRewritePattern<vector::ReductionOp> {
1856   BreakDownVectorReduction(MLIRContext *context,
1857                            unsigned maxNumElementsToExtract,
1858                            PatternBenefit benefit)
1859       : OpRewritePattern(context, benefit),
1860         maxNumElementsToExtract(maxNumElementsToExtract) {}
1861 
1862   LogicalResult matchAndRewrite(vector::ReductionOp op,
1863                                 PatternRewriter &rewriter) const override {
1864     VectorType type = op.getSourceVectorType();
1865     if (type.isScalable() || op.isMasked())
1866       return failure();
1867     assert(type.getRank() == 1 && "Expected a 1-d vector");
1868 
1869     int64_t numElems = type.getNumElements();
1870     if (numElems > maxNumElementsToExtract) {
1871       return rewriter.notifyMatchFailure(
1872           op, llvm::formatv("has too many vector elements ({0}) to break down "
1873                             "(max allowed: {1})",
1874                             numElems, maxNumElementsToExtract));
1875     }
1876 
1877     Location loc = op.getLoc();
1878     SmallVector<Value> extracted(numElems, nullptr);
1879     for (auto [idx, extractedElem] : llvm::enumerate(extracted))
1880       extractedElem = rewriter.create<vector::ExtractOp>(
1881           loc, op.getVector(), static_cast<int64_t>(idx));
1882 
1883     Value res = extracted.front();
1884     for (auto extractedElem : llvm::drop_begin(extracted))
1885       res = vector::makeArithReduction(rewriter, loc, op.getKind(), res,
1886                                        extractedElem, op.getFastmathAttr());
1887     if (Value acc = op.getAcc())
1888       res = vector::makeArithReduction(rewriter, loc, op.getKind(), res, acc,
1889                                        op.getFastmathAttr());
1890 
1891     rewriter.replaceOp(op, res);
1892     return success();
1893   }
1894 
1895 private:
1896   unsigned maxNumElementsToExtract = 0;
1897 };
1898 
1899 /// Fold `mulf(tr(broadcast(A)), broadcast(B))` into `vector.outerproduct(A,
1900 /// B)`.
1901 /// Example:
1902 ///  %lhsBcast = vector.broadcast %lhs : vector<4xi32> to vector<4x4xi32>
1903 ///  %lhsT = vector.transpose %lhsBcast, [1, 0] : vector<4x4xi32> to
1904 ///  vector<4x4xi32> %rhsBcast = vector.broadcast %rhs : vector<4xi32> to
1905 ///  vector<4x4xi32> %mul = arith.muli %lhsT, %rhsBcast : vector<4x4xi32>
1906 ///
1907 /// Becomes :
1908 ///
1909 ///  %res = vector.outerproduct %lhs, %rhs : vector<4xi32>, vector<4xi32>
1910 ///
1911 /// Supports only 1D-to-2D broadcasts. The following cases are not supported.
1912 /// %ex1 = vector.broadcast %lhsCast : vector<1x4xf32> to vector<4x4xf32>
1913 /// %ex2 = vector.broadcast %lhsCast : f32 to vector<4x4xf32>
1914 /// %ex3 = vector.broadcast %lhsCast : vector<1x1xf32> to vector<4x4xf32>
1915 template <typename MulOpType>
1916 struct FoldArithToVectorOuterProduct : public OpRewritePattern<MulOpType> {
1917   using OpRewritePattern<MulOpType>::OpRewritePattern;
1918   // Returns whether a vector.broadcast matches requirements for an outerproduct
1919   // pattern. aka a 1D-to-2D broadcastOp without broadcasted unit dimension.
1920   bool isValidBroadcastSource(vector::BroadcastOp broadcastOp) const {
1921     // Fail if it is not a 1-to-2 dimension to broadcast to avoid generating
1922     // shape_casts/broadcasts which does not belong in this pattern.
1923     if (!broadcastOp.computeBroadcastedUnitDims().empty())
1924       return false;
1925     // Avoid broadcast like f32 or vector<f32> -> ResType
1926     auto srcType = dyn_cast<VectorType>(broadcastOp.getSourceType());
1927     return srcType && srcType.getRank() != 2;
1928   }
1929 
1930   LogicalResult matchAndRewrite(MulOpType mulOp,
1931                                 PatternRewriter &rewriter) const override {
1932     auto resType = llvm::cast<VectorType>(mulOp.getResult().getType());
1933     if (!resType)
1934       return failure();
1935     if (resType.getRank() != 2)
1936       return failure();
1937     /// If operandA can be written as tr(broadcast(A)) and operandB as
1938     /// broadcast(B) where broadcasts are 1D-to-2D, create and return
1939     /// vector.outerproduct(A, B). Returns failure() otherwise.
1940     auto matchOuterProduct =
1941         [&](Value operandA,
1942             Value operandB) -> FailureOr<vector::OuterProductOp> {
1943       auto transposedLhs = operandA.getDefiningOp<vector::TransposeOp>();
1944       if (!transposedLhs)
1945         return failure();
1946       // Fail unless this is a true 2-D matrix transpose.
1947       ArrayRef<int64_t> permutation = transposedLhs.getPermutation();
1948       if (permutation.size() != 2 || permutation[0] != 1 || permutation[1] != 0)
1949         return failure();
1950 
1951       auto broadcastedLhs =
1952           transposedLhs.getVector().getDefiningOp<vector::BroadcastOp>();
1953       if (!broadcastedLhs || !isValidBroadcastSource(broadcastedLhs))
1954         return failure();
1955 
1956       auto broadcastedRhs = operandB.getDefiningOp<vector::BroadcastOp>();
1957       if (!broadcastedRhs || !isValidBroadcastSource(broadcastedRhs))
1958         return failure();
1959 
1960       return rewriter.create<vector::OuterProductOp>(
1961           mulOp->getLoc(), resType, broadcastedLhs.getSource(),
1962           broadcastedRhs.getSource(), Value(), vector::CombiningKind::ADD);
1963     };
1964 
1965     Value lhs = mulOp->getOperand(0), rhs = mulOp->getOperand(1);
1966     auto maybeOuterP = matchOuterProduct(lhs, rhs);
1967     // Handle commutativity, the transposed op is the outerproduct LHS.
1968     if (failed(maybeOuterP))
1969       maybeOuterP = matchOuterProduct(rhs, lhs);
1970     if (failed(maybeOuterP))
1971       return failure();
1972     rewriter.replaceOp(mulOp, maybeOuterP->getResult());
1973     return success();
1974   }
1975 };
1976 
1977 } // namespace
1978 
1979 void mlir::vector::populateFoldArithExtensionPatterns(
1980     RewritePatternSet &patterns) {
1981   patterns.add<FoldArithExtIntoContractionOp<arith::ExtFOp>,
1982                FoldArithExtIntoContractionOp<arith::ExtSIOp>>(
1983       patterns.getContext());
1984 }
1985 
1986 void mlir::vector::populateVectorMaskMaterializationPatterns(
1987     RewritePatternSet &patterns, bool force32BitVectorIndices,
1988     PatternBenefit benefit) {
1989   patterns.add<VectorCreateMaskOpConversion,
1990                MaterializeTransferMask<vector::TransferReadOp>,
1991                MaterializeTransferMask<vector::TransferWriteOp>>(
1992       patterns.getContext(), force32BitVectorIndices, benefit);
1993   patterns.add<FoldI1Select>(patterns.getContext(), benefit);
1994 }
1995 
1996 void mlir::vector::populateShapeCastFoldingPatterns(RewritePatternSet &patterns,
1997                                                     PatternBenefit benefit) {
1998   patterns.add<ShapeCastOpFolder>(patterns.getContext(), benefit);
1999 }
2000 
2001 void mlir::vector::populateDropUnitDimWithShapeCastPatterns(
2002     RewritePatternSet &patterns, PatternBenefit benefit) {
2003   patterns.add<DropUnitDimFromElementwiseOps, DropUnitDimsFromTransposeOp,
2004                ShapeCastOpFolder>(patterns.getContext(), benefit);
2005 }
2006 
2007 void mlir::vector::populateBubbleVectorBitCastOpPatterns(
2008     RewritePatternSet &patterns, PatternBenefit benefit) {
2009   patterns.add<BubbleDownVectorBitCastForExtract,
2010                BubbleDownBitCastForStridedSliceExtract,
2011                BubbleUpBitCastForInsert, BubbleUpBitCastForStridedSliceInsert>(
2012       patterns.getContext(), benefit);
2013 }
2014 
2015 void mlir::vector::populateBreakDownVectorBitCastOpPatterns(
2016     RewritePatternSet &patterns,
2017     std::function<bool(vector::BitCastOp)> controlFn, PatternBenefit benefit) {
2018   patterns.add<BreakDownVectorBitCast>(patterns.getContext(),
2019                                        std::move(controlFn), benefit);
2020 }
2021 
2022 void mlir::vector::populateVectorContractCanonicalizeMatmulToMMT(
2023     RewritePatternSet &patterns,
2024     std::function<LogicalResult(vector::ContractionOp)> constraint,
2025     PatternBenefit benefit) {
2026   patterns.add<CanonicalizeContractMatmulToMMT>(patterns.getContext(), benefit,
2027                                                 std::move(constraint));
2028 }
2029 
2030 void mlir::vector::populateVectorReductionToContractPatterns(
2031     RewritePatternSet &patterns, PatternBenefit benefit) {
2032   patterns.add<MultiReduceToContract, CombineContractBroadcast,
2033                CombineContractABTranspose, CombineContractResultTranspose,
2034                ReorderCastOpsOnBroadcast, ReorderElementwiseOpsOnTranspose>(
2035       patterns.getContext(), benefit);
2036 }
2037 
2038 void mlir::vector::
2039     populateVectorTransferCollapseInnerMostContiguousDimsPatterns(
2040         RewritePatternSet &patterns, PatternBenefit benefit) {
2041   patterns.add<DropInnerMostUnitDimsTransferRead,
2042                DropInnerMostUnitDimsTransferWrite>(patterns.getContext(),
2043                                                    benefit);
2044 }
2045 
2046 void mlir::vector::populateSinkVectorBroadcastPatterns(
2047     RewritePatternSet &patterns, PatternBenefit benefit) {
2048   patterns.add<ReorderCastOpsOnBroadcast, ReorderElementwiseOpsOnBroadcast>(
2049       patterns.getContext(), benefit);
2050 }
2051 
2052 void mlir::vector::populateChainedVectorReductionFoldingPatterns(
2053     RewritePatternSet &patterns, PatternBenefit benefit) {
2054   patterns.add<ChainedReduction>(patterns.getContext(), benefit);
2055   patterns.add<ReduceRedundantZero>(patterns.getContext(),
2056                                     PatternBenefit(benefit.getBenefit() + 1));
2057 }
2058 
2059 void mlir::vector::populateBreakDownVectorReductionPatterns(
2060     RewritePatternSet &patterns, unsigned maxNumElementsToExtract,
2061     PatternBenefit benefit) {
2062   patterns.add<BreakDownVectorReduction>(patterns.getContext(),
2063                                          maxNumElementsToExtract, benefit);
2064 }
2065 
2066 void mlir::vector::populateElementwiseToVectorOpsPatterns(
2067     RewritePatternSet &patterns) {
2068   patterns.add<FoldArithToVectorOuterProduct<arith::MulFOp>,
2069                FoldArithToVectorOuterProduct<arith::MulIOp>>(
2070       patterns.getContext());
2071 }
2072 
2073 //===----------------------------------------------------------------------===//
2074 // TableGen'd enum attribute definitions
2075 //===----------------------------------------------------------------------===//
2076 
2077 #include "mlir/Dialect/Vector/Transforms/VectorTransformsEnums.cpp.inc"
2078