1 //===- VectorTransforms.cpp - Conversion within the Vector dialect --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements target-independent rewrites as 1->N patterns. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h" 14 15 #include <cassert> 16 #include <cstdint> 17 #include <functional> 18 #include <optional> 19 #include <type_traits> 20 21 #include "mlir/Dialect/Affine/IR/AffineOps.h" 22 #include "mlir/Dialect/Arith/IR/Arith.h" 23 #include "mlir/Dialect/Arith/Utils/Utils.h" 24 #include "mlir/Dialect/Linalg/IR/Linalg.h" 25 #include "mlir/Dialect/MemRef/IR/MemRef.h" 26 #include "mlir/Dialect/SCF/IR/SCF.h" 27 #include "mlir/Dialect/Tensor/IR/Tensor.h" 28 #include "mlir/Dialect/Utils/IndexingUtils.h" 29 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 30 #include "mlir/Dialect/Vector/IR/VectorOps.h" 31 #include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h" 32 #include "mlir/Dialect/Vector/Utils/VectorUtils.h" 33 #include "mlir/IR/BuiltinAttributeInterfaces.h" 34 #include "mlir/IR/BuiltinTypes.h" 35 #include "mlir/IR/ImplicitLocOpBuilder.h" 36 #include "mlir/IR/Location.h" 37 #include "mlir/IR/Matchers.h" 38 #include "mlir/IR/PatternMatch.h" 39 #include "mlir/IR/TypeUtilities.h" 40 #include "mlir/Interfaces/VectorInterfaces.h" 41 42 #include "llvm/ADT/DenseSet.h" 43 #include "llvm/ADT/MapVector.h" 44 #include "llvm/ADT/STLExtras.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/FormatVariadic.h" 48 #include "llvm/Support/raw_ostream.h" 49 50 #define DEBUG_TYPE "vector-to-vector" 51 52 using namespace mlir; 53 using namespace mlir::vector; 54 55 template <typename IntType> 56 static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) { 57 return llvm::to_vector<4>(llvm::map_range( 58 arrayAttr.getAsRange<IntegerAttr>(), 59 [](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); })); 60 } 61 62 // Helper to find an index in an affine map. 63 static std::optional<int64_t> getResultIndex(AffineMap map, int64_t index) { 64 for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) { 65 int64_t idx = map.getDimPosition(i); 66 if (idx == index) 67 return i; 68 } 69 return std::nullopt; 70 } 71 72 namespace { 73 74 /// ShapeCastOpFolder folds cancelling ShapeCastOps away. 75 // 76 // Example: 77 // 78 // The following MLIR with cancelling ShapeCastOps: 79 // 80 // %0 = source : vector<5x4x2xf32> 81 // %1 = shape_cast %0 : vector<5x4x2xf32> to vector<20x2xf32> 82 // %2 = shape_cast %1 : vector<20x2xf32> to vector<5x4x2xf32> 83 // %3 = user %2 : vector<5x4x2xf32> 84 // 85 // Should canonicalize to the following: 86 // 87 // %0 = source : vector<5x4x2xf32> 88 // %1 = user %0 : vector<5x4x2xf32> 89 // 90 struct ShapeCastOpFolder : public OpRewritePattern<vector::ShapeCastOp> { 91 using OpRewritePattern::OpRewritePattern; 92 93 LogicalResult matchAndRewrite(vector::ShapeCastOp shapeCastOp, 94 PatternRewriter &rewriter) const override { 95 // Check if 'shapeCastOp' has vector source/result type. 96 auto sourceVectorType = 97 dyn_cast_or_null<VectorType>(shapeCastOp.getSource().getType()); 98 auto resultVectorType = 99 dyn_cast_or_null<VectorType>(shapeCastOp.getResult().getType()); 100 if (!sourceVectorType || !resultVectorType) 101 return failure(); 102 103 // Check if shape cast op source operand is also a shape cast op. 104 auto sourceShapeCastOp = dyn_cast_or_null<vector::ShapeCastOp>( 105 shapeCastOp.getSource().getDefiningOp()); 106 if (!sourceShapeCastOp) 107 return failure(); 108 auto operandSourceVectorType = 109 cast<VectorType>(sourceShapeCastOp.getSource().getType()); 110 auto operandResultVectorType = sourceShapeCastOp.getType(); 111 112 // Check if shape cast operations invert each other. 113 if (operandSourceVectorType != resultVectorType || 114 operandResultVectorType != sourceVectorType) 115 return failure(); 116 117 rewriter.replaceOp(shapeCastOp, sourceShapeCastOp.getSource()); 118 return success(); 119 } 120 }; 121 122 /// Convert MulIOp/MulFOp + MultiDimReductionOp<add> into ContractionOp. 123 /// Ex: 124 /// ``` 125 /// %0 = arith.mulf %arg0, %arg1 : vector<8x32x16xf32> 126 /// %1 = vector.multi_reduction add, %0 [1] 127 /// : vector<8x32x16xf32> to vector<8x16xf32> 128 /// ``` 129 /// Gets converted to: 130 /// ``` 131 /// %1 = vector.contract {indexing_maps = [ 132 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 133 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 134 /// affine_map<(d0, d1, d2) -> (d0, d1)>], 135 /// iterator_types = ["parallel", "parallel", "reduction"], 136 /// kind = add} %0, %arg1, %cst_f0 137 /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> 138 /// ``` 139 struct MultiReduceToContract 140 : public OpRewritePattern<vector::MultiDimReductionOp> { 141 using OpRewritePattern::OpRewritePattern; 142 143 LogicalResult matchAndRewrite(vector::MultiDimReductionOp reduceOp, 144 PatternRewriter &rewriter) const override { 145 if (reduceOp.getKind() != vector::CombiningKind::ADD) 146 return failure(); 147 Operation *mulOp = reduceOp.getSource().getDefiningOp(); 148 if (!mulOp || !isa<arith::MulIOp, arith::MulFOp>(mulOp)) 149 return failure(); 150 SmallVector<bool> reductionMask = reduceOp.getReductionMask(); 151 auto srcMap = rewriter.getMultiDimIdentityMap(reductionMask.size()); 152 SmallVector<AffineExpr> exprs; 153 SmallVector<vector::IteratorType> iteratorTypes; 154 for (const auto &isReduceDim : llvm::enumerate(reductionMask)) { 155 if (!isReduceDim.value()) { 156 iteratorTypes.push_back(vector::IteratorType::parallel); 157 exprs.push_back(rewriter.getAffineDimExpr(isReduceDim.index())); 158 } else { 159 iteratorTypes.push_back(vector::IteratorType::reduction); 160 } 161 } 162 auto dstMap = 163 AffineMap::get(/*dimCount=*/reductionMask.size(), 164 /*symbolCount=*/0, exprs, reduceOp.getContext()); 165 rewriter.replaceOpWithNewOp<mlir::vector::ContractionOp>( 166 reduceOp, mulOp->getOperand(0), mulOp->getOperand(1), reduceOp.getAcc(), 167 rewriter.getAffineMapArrayAttr({srcMap, srcMap, dstMap}), 168 rewriter.getArrayAttr(llvm::to_vector(llvm::map_range( 169 iteratorTypes, [&](IteratorType t) -> mlir::Attribute { 170 return IteratorTypeAttr::get(rewriter.getContext(), t); 171 })))); 172 return success(); 173 } 174 }; 175 176 /// Merge LHS/RHS (A/B) TransposeOp into ContractionOp user. 177 /// Ex: 178 /// ``` 179 /// %0 = vector.transpose %arg0, [2, 0, 1] 180 /// : vector<32x16x8xf32> to vector<8x32x16xf32> 181 /// %1 = vector.contract {indexing_maps = [ 182 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 183 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 184 /// affine_map<(d0, d1, d2) -> (d0, d1)>], 185 /// iterator_types = ["parallel", "parallel", "reduction"], 186 /// kind = add} %0, %arg1, %cst_f0 187 /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> 188 /// ``` 189 /// Gets converted to: 190 /// ``` 191 /// %1 = vector.contract {indexing_maps = [ 192 /// affine_map<(d0, d1, d2) -> (d1, d2, d0)>, 193 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 194 /// affine_map<(d0, d1, d2) -> (d0, d1)>], 195 /// iterator_types = ["parallel", "parallel", "reduction"], 196 /// kind = add} %arg0, %arg1, %cst_f0 197 /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> 198 /// ``` 199 struct CombineContractABTranspose final 200 : public OpRewritePattern<vector::ContractionOp> { 201 using OpRewritePattern::OpRewritePattern; 202 203 LogicalResult matchAndRewrite(vector::ContractionOp contractOp, 204 PatternRewriter &rewriter) const override { 205 SmallVector<AffineMap> maps = 206 llvm::to_vector<4>(contractOp.getIndexingMapsArray()); 207 Value lhs = contractOp.getLhs(); 208 Value rhs = contractOp.getRhs(); 209 size_t index = 0; 210 bool changed = false; 211 for (Value *operand : {&lhs, &rhs}) { 212 AffineMap &map = maps[index++]; 213 auto transposeOp = operand->getDefiningOp<vector::TransposeOp>(); 214 if (!transposeOp) 215 continue; 216 AffineMap permutationMap = AffineMap::getPermutationMap( 217 transposeOp.getPermutation(), contractOp.getContext()); 218 map = inversePermutation(permutationMap).compose(map); 219 *operand = transposeOp.getVector(); 220 changed = true; 221 } 222 if (!changed) 223 return failure(); 224 rewriter.replaceOpWithNewOp<vector::ContractionOp>( 225 contractOp, lhs, rhs, contractOp.getAcc(), 226 rewriter.getAffineMapArrayAttr(maps), contractOp.getIteratorTypes()); 227 return success(); 228 } 229 }; 230 231 /// Merges accumulator and result transposes into contract. 232 /// 233 /// For example: 234 /// ```mlir 235 /// %accT = vector.transpose %acc, [0, 2, 1] 236 /// : vector<2x8x4xf32> to vector<2x4x8xf32> 237 /// %contract = vector.contract { 238 /// indexing_maps = [ 239 /// affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>, 240 /// affine_map<(d0, d1, d2, d3) -> (d3, d2)>, 241 /// affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)> 242 /// ], 243 /// iterator_types = ["parallel", "parallel", "parallel", "reduction"], 244 /// kind = #vector.kind<add> 245 /// } %lhs, %rhs, %accT 246 /// : vector<2x4x4xf32>, vector<4x8xf32> into vector<2x4x8xf32> 247 /// %0 = vector.transpose %contract, [0, 2, 1] 248 /// : vector<2x4x8xf32> to vector<2x8x4> 249 /// ``` 250 /// Becomes: 251 /// ```mlir 252 /// %0 = vector.contract { 253 /// indexing_maps = [ 254 /// affine_map<(d0, d1, d2, d3) -> (d0, d3, d1)>, 255 /// affine_map<(d0, d1, d2, d3) -> (d3, d2)>, 256 /// affine_map<(d0, d1, d2, d3) -> (d0, d2, d1)> 257 /// ], 258 /// iterator_types = ["parallel", "parallel", "parallel", "reduction"], 259 /// kind = #vector.kind<add> 260 /// } %lhs, %rhs, %acc 261 /// : vector<2x4x4xf32>, vector<4x8xf32> into vector<2x8x4xf32> 262 /// ``` 263 struct CombineContractResultTranspose final 264 : public OpRewritePattern<vector::TransposeOp> { 265 using OpRewritePattern::OpRewritePattern; 266 267 LogicalResult matchAndRewrite(vector::TransposeOp resTOp, 268 PatternRewriter &rewriter) const override { 269 auto contractOp = resTOp.getVector().getDefiningOp<vector::ContractionOp>(); 270 if (!contractOp || !contractOp->hasOneUse()) 271 return failure(); 272 273 auto accTOp = contractOp.getAcc().getDefiningOp<vector::TransposeOp>(); 274 if (!accTOp) 275 return failure(); 276 277 MLIRContext *context = contractOp.getContext(); 278 auto maps = llvm::to_vector<3>(contractOp.getIndexingMapsArray()); 279 AffineMap contractMap = maps.back(); 280 281 // Accumulator transpose performs f(A) -> B. Contract performs g(C) -> B. 282 // To index into A in contract, we need revert(f)(g(C)) -> A. 283 auto accTMap = 284 AffineMap::getPermutationMap(accTOp.getPermutation(), context); 285 286 // Contract performs g(C) -> D. Result transpose performs h(D) -> E. 287 // To index into E in contract, we need h(g(C)) -> E. 288 auto resTMap = 289 AffineMap::getPermutationMap(resTOp.getPermutation(), context); 290 auto combinedResMap = resTMap.compose(contractMap); 291 292 // The accumulator and result share the same indexing map. So they should be 293 // the same to be able to merge. This means combinedResMap is the same as 294 // inversePermutation(accTMap).compose(contractMap), which means 295 if (inversePermutation(accTMap) != resTMap) 296 return failure(); 297 maps.back() = combinedResMap; 298 299 rewriter.replaceOpWithNewOp<vector::ContractionOp>( 300 resTOp, contractOp.getLhs(), contractOp.getRhs(), accTOp.getVector(), 301 rewriter.getAffineMapArrayAttr(maps), contractOp.getIteratorTypes()); 302 return success(); 303 } 304 }; 305 306 /// Merge BroadcastOp into ContractionOp user. 307 /// Ex: 308 /// ``` 309 /// %0 = vector.broadcast %arg0 : vector<32x16xf32> to vector<8x32x16xf32> 310 /// %1 = vector.contract {indexing_maps = [ 311 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 312 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 313 /// affine_map<(d0, d1, d2) -> (d0, d1)>], 314 /// iterator_types = ["parallel", "parallel", "reduction"], 315 /// kind = add} %0, %arg1, %cst_f0 316 /// : vector<8x32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> 317 /// ``` 318 /// Gets converted to: 319 /// ``` 320 /// %1 = vector.contract {indexing_maps = [ 321 /// affine_map<(d0, d1, d2) -> (d1, d2)>, 322 /// affine_map<(d0, d1, d2) -> (d0, d1, d2)>, 323 /// affine_map<(d0, d1, d2) -> (d0, d1)>], 324 /// iterator_types = ["parallel", "parallel", "reduction"], 325 /// kind = add} %arg0, %arg1, %cst_f0 326 /// : vector<32x16xf32>, vector<8x32x16xf32> into vector<8x32xf32> 327 /// ``` 328 struct CombineContractBroadcast 329 : public OpRewritePattern<vector::ContractionOp> { 330 using OpRewritePattern::OpRewritePattern; 331 332 LogicalResult matchAndRewrite(vector::ContractionOp contractOp, 333 PatternRewriter &rewriter) const override { 334 SmallVector<AffineMap> maps = 335 llvm::to_vector<4>(contractOp.getIndexingMapsArray()); 336 Value lhs = contractOp.getLhs(); 337 Value rhs = contractOp.getRhs(); 338 size_t index = 0; 339 bool changed = false; 340 for (Value *operand : {&lhs, &rhs}) { 341 AffineMap &map = maps[index++]; 342 auto broadcast = operand->getDefiningOp<vector::BroadcastOp>(); 343 if (!broadcast) 344 continue; 345 // contractionOp can only take vector as operands. 346 auto srcType = dyn_cast<VectorType>(broadcast.getSourceType()); 347 if (!srcType || 348 srcType.getRank() == broadcast.getResultVectorType().getRank()) 349 continue; 350 int64_t rankDiff = 351 broadcast.getResultVectorType().getRank() - srcType.getRank(); 352 bool innerDimBroadcast = false; 353 SmallVector<AffineExpr> originalDims; 354 for (const auto &dim : llvm::enumerate(srcType.getShape())) { 355 if (dim.value() != broadcast.getResultVectorType().getDimSize( 356 rankDiff + dim.index())) { 357 innerDimBroadcast = true; 358 break; 359 } 360 originalDims.push_back( 361 rewriter.getAffineDimExpr(dim.index() + rankDiff)); 362 } 363 // Contract doesn't support inner dimension broadcast. Once this is 364 // relaxed we can remove this case. 365 if (innerDimBroadcast) 366 continue; 367 368 // It would be incorrect to fold a broadcast onto a reduction dimension 369 // of non-unit size. 370 bool nonUnitDimReductionBroadcast = false; 371 for (int64_t i = 0; i < rankDiff; ++i) { 372 if (broadcast.getResultVectorType().getDimSize(i) != 1 && 373 isReductionIterator(contractOp.getIteratorTypes() 374 .getValue()[map.getDimPosition(i)])) { 375 nonUnitDimReductionBroadcast = true; 376 break; 377 } 378 } 379 if (nonUnitDimReductionBroadcast) 380 continue; 381 382 AffineMap broadcastMap = 383 AffineMap::get(broadcast.getResultVectorType().getRank(), 0, 384 originalDims, contractOp.getContext()); 385 map = broadcastMap.compose(map); 386 *operand = broadcast.getSource(); 387 changed = true; 388 } 389 390 if (!changed) 391 return failure(); 392 393 // Determine which dims are usused, now that the maps have been composed 394 // with the broadcast maps. 395 llvm::SmallBitVector unusedDimsBitVector = getUnusedDimsBitVector(maps); 396 // Compress unused dims. 397 for (auto &m : maps) 398 m = compressDims(m, unusedDimsBitVector); 399 // Compute the combined iterators. 400 SmallVector<Attribute> iterators; 401 for (unsigned i = 0; i < unusedDimsBitVector.size(); ++i) { 402 if (!unusedDimsBitVector.test(i)) 403 iterators.push_back(contractOp.getIteratorTypes().getValue()[i]); 404 } 405 // Check that compressing unused dims isn't removing all reduction dimension 406 // pairs. For example, if the vector.contract had only one reduction 407 // iterator and that was a unit-dimension created by a broadcast, 408 // then we should bail here, otherwise we would create a contract without 409 // a reduction dimension pair. 410 bool hasReductionIteratorApplyingOnBothSides = false; 411 for (unsigned i = 0; i < iterators.size(); ++i) { 412 if (!isReductionIterator(iterators[i])) 413 continue; 414 if (getResultIndex(maps[0], i) && getResultIndex(maps[1], i)) { 415 hasReductionIteratorApplyingOnBothSides = true; 416 break; 417 } 418 } 419 if (!hasReductionIteratorApplyingOnBothSides) 420 return failure(); 421 422 // If the compressed maps have a dimension that is not used by either LHS or 423 // RHS then the ContractionOp verifier would fail. 424 if (getUnusedDimsBitVector({maps[0], maps[1]}).any()) 425 return failure(); 426 rewriter.replaceOpWithNewOp<vector::ContractionOp>( 427 contractOp, lhs, rhs, contractOp.getAcc(), 428 rewriter.getAffineMapArrayAttr(maps), rewriter.getArrayAttr(iterators)); 429 return success(); 430 } 431 }; 432 433 /// Reorders cast(broadcast) to broadcast(cast). This makes broadcast ops and 434 /// contraction ops closer, which kicks in CombineContractBroadcast pattern when 435 /// casting ops are around these operations. 436 /// Ex: 437 /// ``` 438 /// %0 = vector.broadcast %arg0 : vector<32x16xi8> to vector<8x32x16xi8> 439 /// %1 = arith.extsi %0 : vector<8x32x16xi8> to vector<8x32x16xi32> 440 /// ``` 441 /// Gets converted to: 442 /// ``` 443 /// %0 = arith.extsi %0 : vector<32x16xi8> to vector<32x16xi32> 444 /// %1 = vector.broadcast %arg0 : vector<32x16xi32> to vector<8x32x16xi32> 445 /// ``` 446 struct ReorderCastOpsOnBroadcast 447 : public OpInterfaceRewritePattern<CastOpInterface> { 448 using OpInterfaceRewritePattern<CastOpInterface>::OpInterfaceRewritePattern; 449 450 LogicalResult matchAndRewrite(CastOpInterface op, 451 PatternRewriter &rewriter) const override { 452 if (op->getNumOperands() != 1) 453 return failure(); 454 auto bcastOp = op->getOperand(0).getDefiningOp<vector::BroadcastOp>(); 455 if (!bcastOp) 456 return failure(); 457 458 Type castResTy = getElementTypeOrSelf(op->getResult(0)); 459 if (auto vecTy = dyn_cast<VectorType>(bcastOp.getSourceType())) 460 castResTy = vecTy.clone(castResTy); 461 auto *castOp = 462 rewriter.create(op->getLoc(), op->getName().getIdentifier(), 463 bcastOp.getSource(), castResTy, op->getAttrs()); 464 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 465 op, op->getResult(0).getType(), castOp->getResult(0)); 466 return success(); 467 } 468 }; 469 470 /// Reorders elementwise(transpose) to transpose(elementwise). This makes 471 /// transpose ops and contraction ops closer, which kicks in 472 /// CombineContractABTranspose pattern when elementwise ops are between these 473 /// operations. Ex: 474 /// ``` 475 /// %at = vector.transpose %a, [1, 0]: vector<4x2xf32> to vector<2x4xf32> 476 /// %bt = vector.transpose %b, [1, 0]: vector<4x2xf32> to vector<2x4xf32> 477 /// %r = arith.addf %at, %bt : vector<2x4xf32> 478 /// ``` 479 /// Gets converted to: 480 /// ``` 481 /// %0 = arith.addf %a, %b : vector<4x2xf32> 482 /// %r = vector.transpose %0, [1, 0] : vector<2x4xf32> 483 /// ``` 484 struct ReorderElementwiseOpsOnTranspose final 485 : public OpTraitRewritePattern<OpTrait::Elementwise> { 486 using OpTraitRewritePattern::OpTraitRewritePattern; 487 LogicalResult matchAndRewrite(Operation *op, 488 PatternRewriter &rewriter) const override { 489 if (op->getNumResults() != 1 || op->getNumRegions() != 0) 490 return failure(); 491 492 // Make sure all operands are transpose/constant ops and collect their 493 // transposition maps. 494 SmallVector<ArrayRef<int64_t>> transposeMaps; 495 transposeMaps.reserve(op->getNumOperands()); 496 // Record the initial type before transposition. We'll use its shape later. 497 // Any type will do here as we will check all transpose maps are the same. 498 VectorType srcType; 499 for (Value operand : op->getOperands()) { 500 auto transposeOp = operand.getDefiningOp<vector::TransposeOp>(); 501 if (transposeOp) { 502 transposeMaps.push_back(transposeOp.getPermutation()); 503 srcType = transposeOp.getSourceVectorType(); 504 } else if (!matchPattern(operand, m_Constant())) { 505 return failure(); 506 } 507 } 508 if (transposeMaps.empty()) 509 return failure(); 510 // This is an elementwise op, so all transposed operands should have the 511 // same type. We need to additionally check that all transposes uses the 512 // same map. 513 if (!llvm::all_equal(transposeMaps)) 514 return rewriter.notifyMatchFailure(op, "different transpose map"); 515 516 SmallVector<Value> srcValues; 517 srcValues.reserve(op->getNumOperands()); 518 519 // If there are constant operands, we need to insert inverse transposes for 520 // them. Calculate the inverse order first. 521 auto order = transposeMaps.front(); 522 SmallVector<int64_t> invOrder(order.size()); 523 for (int i = 0, e = order.size(); i < e; ++i) 524 invOrder[order[i]] = i; 525 526 for (Value operand : op->getOperands()) { 527 auto transposeOp = operand.getDefiningOp<vector::TransposeOp>(); 528 if (transposeOp) { 529 srcValues.push_back(transposeOp.getVector()); 530 } else { 531 // This is a constant. Create a reverse transpose op for it. 532 auto vectorType = 533 srcType.clone(cast<VectorType>(operand.getType()).getElementType()); 534 srcValues.push_back(rewriter.create<vector::TransposeOp>( 535 operand.getLoc(), vectorType, operand, invOrder)); 536 } 537 } 538 539 auto vectorType = srcType.clone( 540 cast<VectorType>(op->getResultTypes()[0]).getElementType()); 541 Operation *elementwiseOp = 542 rewriter.create(op->getLoc(), op->getName().getIdentifier(), srcValues, 543 vectorType, op->getAttrs()); 544 rewriter.replaceOpWithNewOp<vector::TransposeOp>( 545 op, op->getResultTypes()[0], elementwiseOp->getResult(0), 546 transposeMaps.front()); 547 return success(); 548 } 549 }; 550 551 // Returns the values in `arrayAttr` as an integer vector. 552 static SmallVector<int64_t> getIntValueVector(ArrayAttr arrayAttr) { 553 return llvm::to_vector<4>( 554 llvm::map_range(arrayAttr.getAsRange<IntegerAttr>(), 555 [](IntegerAttr attr) { return attr.getInt(); })); 556 } 557 558 // Shuffles vector.bitcast op after vector.extract op. 559 // 560 // This transforms IR like: 561 // %0 = vector.bitcast %src : vector<4xf32> to vector<8xf16> 562 // %1 = vector.extract %0[3] : f16 from vector<8xf16> 563 // Into: 564 // %0 = vector.extract %src[1] : f32 from vector<4xf32> 565 // %1 = vector.bitcast %0: vector<1xf32> to vector<2xf16> 566 // %2 = vector.extract %1[1] : f16 from vector<2xf16> 567 struct BubbleDownVectorBitCastForExtract 568 : public OpRewritePattern<vector::ExtractOp> { 569 using OpRewritePattern::OpRewritePattern; 570 571 LogicalResult matchAndRewrite(vector::ExtractOp extractOp, 572 PatternRewriter &rewriter) const override { 573 // Only support extracting scalars for now. 574 if (extractOp.getSourceVectorType().getRank() != 1) 575 return failure(); 576 577 auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>(); 578 if (!castOp) 579 return failure(); 580 581 VectorType castSrcType = castOp.getSourceVectorType(); 582 VectorType castDstType = castOp.getResultVectorType(); 583 assert(castSrcType.getRank() == castDstType.getRank()); 584 585 // Fail to match if we only have one element in the cast op source. 586 // This is to avoid infinite loop given that this pattern can generate 587 // such cases. 588 if (castSrcType.getNumElements() == 1) 589 return failure(); 590 591 // Only support casting to a larger number of elements or now. 592 // E.g., vector<4xf32> -> vector<8xf16>. 593 if (castSrcType.getNumElements() > castDstType.getNumElements()) 594 return failure(); 595 596 unsigned expandRatio = 597 castDstType.getNumElements() / castSrcType.getNumElements(); 598 599 auto getFirstIntValue = [](ArrayRef<OpFoldResult> values) -> uint64_t { 600 assert(values[0].is<Attribute>() && "Unexpected non-constant index"); 601 return cast<IntegerAttr>(values[0].get<Attribute>()).getInt(); 602 }; 603 604 uint64_t index = getFirstIntValue(extractOp.getMixedPosition()); 605 606 // Get the single scalar (as a vector) in the source value that packs the 607 // desired scalar. E.g. extract vector<1xf32> from vector<4xf32> 608 Location loc = extractOp.getLoc(); 609 Value packedValue = rewriter.create<vector::ExtractOp>( 610 loc, castOp.getSource(), index / expandRatio); 611 Type packedVecType = VectorType::get(/*shape=*/{1}, packedValue.getType()); 612 Value zero = rewriter.create<arith::ConstantOp>( 613 loc, packedVecType, rewriter.getZeroAttr(packedVecType)); 614 packedValue = rewriter.create<vector::InsertOp>(loc, packedValue, zero, 615 /*position=*/0); 616 617 // Cast it to a vector with the desired scalar's type. 618 // E.g. f32 -> vector<2xf16> 619 VectorType packedType = 620 VectorType::get({expandRatio}, castDstType.getElementType()); 621 Value castedValue = 622 rewriter.create<vector::BitCastOp>(loc, packedType, packedValue); 623 624 // Finally extract the desired scalar. 625 rewriter.replaceOpWithNewOp<vector::ExtractOp>(extractOp, castedValue, 626 index % expandRatio); 627 return success(); 628 } 629 }; 630 631 // Shuffles vector.bitcast op after vector.extract_strided_slice op. 632 // 633 // This transforms IR like: 634 // %cast = vector.bitcast %arg0: vector<4xf32> to vector<8xf16> 635 // %0 = vector.extract_strided_slice %cast { 636 // offsets = [4], sizes = [4], strides = [1] 637 // } : vector<8xf16> to vector<4xf16> 638 // Into: 639 // %0 = vector.extract_strided_slice %src { 640 // offsets = [2], sizes = [2], strides = [1] 641 // } : vector<4xf32> to vector<2xf32> 642 // %1 = vector.bitcast %0 : vector<2xf32> to vector<4xf16> 643 struct BubbleDownBitCastForStridedSliceExtract 644 : public OpRewritePattern<vector::ExtractStridedSliceOp> { 645 using OpRewritePattern::OpRewritePattern; 646 647 LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp, 648 PatternRewriter &rewriter) const override { 649 auto castOp = extractOp.getVector().getDefiningOp<vector::BitCastOp>(); 650 if (!castOp) 651 return failure(); 652 653 VectorType castSrcType = castOp.getSourceVectorType(); 654 VectorType castDstType = castOp.getResultVectorType(); 655 assert(castSrcType.getRank() == castDstType.getRank()); 656 657 int64_t castSrcLastDim = castSrcType.getShape().back(); 658 int64_t castDstLastDim = castDstType.getShape().back(); 659 // Require casting to more elements for now; other cases to be implemented. 660 if (castSrcLastDim > castDstLastDim) 661 return failure(); 662 663 // Only accept all one strides for now. 664 if (llvm::any_of(extractOp.getStrides().getAsValueRange<IntegerAttr>(), 665 [](const APInt &val) { return !val.isOne(); })) 666 return failure(); 667 668 unsigned rank = extractOp.getSourceVectorType().getRank(); 669 assert(castDstLastDim % castSrcLastDim == 0); 670 int64_t expandRatio = castDstLastDim / castSrcLastDim; 671 672 // If we have a less number of offsets than the rank, then implicitly we 673 // are selecting the full range for the last bitcasted dimension; other 674 // dimensions aren't affected. Otherwise, we need to scale down the last 675 // dimension's offset given we are extracting from less elements now. 676 ArrayAttr newOffsets = extractOp.getOffsets(); 677 if (newOffsets.size() == rank) { 678 SmallVector<int64_t> offsets = getIntValueVector(newOffsets); 679 if (offsets.back() % expandRatio != 0) 680 return failure(); 681 offsets.back() = offsets.back() / expandRatio; 682 newOffsets = rewriter.getI64ArrayAttr(offsets); 683 } 684 685 // Similarly for sizes. 686 ArrayAttr newSizes = extractOp.getSizes(); 687 if (newSizes.size() == rank) { 688 SmallVector<int64_t> sizes = getIntValueVector(newSizes); 689 if (sizes.back() % expandRatio != 0) 690 return failure(); 691 sizes.back() = sizes.back() / expandRatio; 692 newSizes = rewriter.getI64ArrayAttr(sizes); 693 } 694 695 SmallVector<int64_t> dims = 696 llvm::to_vector<4>(cast<VectorType>(extractOp.getType()).getShape()); 697 dims.back() = dims.back() / expandRatio; 698 VectorType newExtractType = 699 VectorType::get(dims, castSrcType.getElementType()); 700 701 auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>( 702 extractOp.getLoc(), newExtractType, castOp.getSource(), newOffsets, 703 newSizes, extractOp.getStrides()); 704 705 rewriter.replaceOpWithNewOp<vector::BitCastOp>( 706 extractOp, extractOp.getType(), newExtractOp); 707 708 return success(); 709 } 710 }; 711 712 // Shuffles vector.bitcast op before vector.insert_strided_slice op. 713 // 714 // This transforms IR like: 715 // %0 = vector.insert %val, %dst[4] : vector<32xi4> into vector<8x32xi4> 716 // %1 = vector.bitcast %0 : vector<8x32xi4> to vector<8x16xi8> 717 // Into: 718 // %0 = vector.bitcast %val : vector<32xi4> to vector<16xi8> 719 // %1 = vector.bitcast %dst : vector<8x32xi4> to vector<8x16xi8> 720 // %2 = vector.insert %0, %1 [4] : vector<16xi8> into vector<8x16xi8> 721 // 722 struct BubbleUpBitCastForInsert : public OpRewritePattern<vector::BitCastOp> { 723 using OpRewritePattern::OpRewritePattern; 724 725 LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp, 726 PatternRewriter &rewriter) const override { 727 VectorType castSrcType = bitcastOp.getSourceVectorType(); 728 VectorType castDstType = bitcastOp.getResultVectorType(); 729 730 // 0-D and scalable vectors are not supported yet. 731 if (castSrcType.getRank() == 0 || castSrcType.isScalable() || 732 castDstType.isScalable()) 733 return failure(); 734 735 int64_t castSrcLastDim = castSrcType.getShape().back(); 736 int64_t castDstLastDim = castDstType.getShape().back(); 737 bool isNumElemsShrink = castSrcLastDim >= castDstLastDim; 738 int64_t ratio; 739 if (isNumElemsShrink) { 740 assert(castSrcLastDim % castDstLastDim == 0); 741 ratio = castSrcLastDim / castDstLastDim; 742 } else { 743 assert(castDstLastDim % castSrcLastDim == 0); 744 ratio = castDstLastDim / castSrcLastDim; 745 } 746 747 auto insertOp = bitcastOp.getSource().getDefiningOp<vector::InsertOp>(); 748 if (!insertOp) 749 return failure(); 750 751 // Only vector sources are supported for now. 752 auto insertSrcType = dyn_cast<VectorType>(insertOp.getSourceType()); 753 if (!insertSrcType) 754 return failure(); 755 756 // Bitcast the source. 757 SmallVector<int64_t> srcDims(insertSrcType.getShape()); 758 srcDims.back() = 759 isNumElemsShrink ? srcDims.back() / ratio : srcDims.back() * ratio; 760 VectorType newCastSrcType = 761 VectorType::get(srcDims, castDstType.getElementType()); 762 auto newCastSrcOp = rewriter.create<vector::BitCastOp>( 763 bitcastOp.getLoc(), newCastSrcType, insertOp.getSource()); 764 765 SmallVector<int64_t> dstDims(insertOp.getDestVectorType().getShape()); 766 dstDims.back() = 767 isNumElemsShrink ? dstDims.back() / ratio : dstDims.back() * ratio; 768 VectorType newCastDstType = 769 VectorType::get(dstDims, castDstType.getElementType()); 770 771 // Bitcast the destination. 772 auto newCastDstOp = rewriter.create<vector::BitCastOp>( 773 bitcastOp.getLoc(), newCastDstType, insertOp.getDest()); 774 775 // Generate new insert. 776 rewriter.replaceOpWithNewOp<vector::InsertOp>( 777 bitcastOp, newCastSrcOp, newCastDstOp, insertOp.getMixedPosition()); 778 return success(); 779 } 780 }; 781 782 // Shuffles vector.bitcast op before vector.insert_strided_slice op. 783 // 784 // This transforms IR like: 785 // %0 = vector.insert_strided_slice %src, %dst { 786 // offsets = [0], strides = [1]} : vector<4xf16> into vector<8xf16> 787 // %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32> 788 // Into: 789 // %0 = vector.bitcast %src : vector<4xf16> to vector<2xf32> 790 // %1 = vector.bitcast %dst : vector<8xf16> to vector<4xf32> 791 // %2 = vector.insert_strided_slice %src, %dst { 792 // offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32> 793 struct BubbleUpBitCastForStridedSliceInsert 794 : public OpRewritePattern<vector::BitCastOp> { 795 using OpRewritePattern::OpRewritePattern; 796 797 LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp, 798 PatternRewriter &rewriter) const override { 799 VectorType castSrcType = bitcastOp.getSourceVectorType(); 800 VectorType castDstType = bitcastOp.getResultVectorType(); 801 assert(castSrcType.getRank() == castDstType.getRank()); 802 // Skip 0-D vector which will not from InsertStridedSliceOp. 803 if (castSrcType.getRank() == 0) 804 return failure(); 805 806 int64_t castSrcLastDim = castSrcType.getShape().back(); 807 int64_t castDstLastDim = castDstType.getShape().back(); 808 // Require casting to less elements for now; other cases to be implemented. 809 if (castSrcLastDim < castDstLastDim) 810 return failure(); 811 812 assert(castSrcLastDim % castDstLastDim == 0); 813 int64_t shrinkRatio = castSrcLastDim / castDstLastDim; 814 815 auto insertOp = 816 bitcastOp.getSource().getDefiningOp<vector::InsertStridedSliceOp>(); 817 if (!insertOp) 818 return failure(); 819 820 // Only accept all one strides for now. 821 if (llvm::any_of(insertOp.getStrides().getAsValueRange<IntegerAttr>(), 822 [](const APInt &val) { return !val.isOne(); })) 823 return failure(); 824 825 unsigned rank = insertOp.getSourceVectorType().getRank(); 826 // Require insert op to have the same rank for the source and destination 827 // vector; other cases to be implemented. 828 if (rank != insertOp.getDestVectorType().getRank()) 829 return failure(); 830 831 // Requires that shape of insert op src is castable to dstType. 832 unsigned sourceWidth = castSrcType.getElementType().getIntOrFloatBitWidth(); 833 unsigned destinationWidth = 834 castDstType.getElementType().getIntOrFloatBitWidth(); 835 unsigned numElements = destinationWidth / sourceWidth; 836 if (insertOp.getSourceVectorType().getNumElements() % numElements != 0) 837 return failure(); 838 839 ArrayAttr newOffsets = insertOp.getOffsets(); 840 assert(newOffsets.size() == rank); 841 SmallVector<int64_t> offsets = getIntValueVector(newOffsets); 842 if (offsets.back() % shrinkRatio != 0) 843 return failure(); 844 offsets.back() = offsets.back() / shrinkRatio; 845 newOffsets = rewriter.getI64ArrayAttr(offsets); 846 847 SmallVector<int64_t> srcDims = 848 llvm::to_vector<4>(insertOp.getSourceVectorType().getShape()); 849 srcDims.back() = srcDims.back() / shrinkRatio; 850 VectorType newCastSrcType = 851 VectorType::get(srcDims, castDstType.getElementType()); 852 853 auto newCastSrcOp = rewriter.create<vector::BitCastOp>( 854 bitcastOp.getLoc(), newCastSrcType, insertOp.getSource()); 855 856 SmallVector<int64_t> dstDims = 857 llvm::to_vector<4>(insertOp.getDestVectorType().getShape()); 858 dstDims.back() = dstDims.back() / shrinkRatio; 859 VectorType newCastDstType = 860 VectorType::get(dstDims, castDstType.getElementType()); 861 862 auto newCastDstOp = rewriter.create<vector::BitCastOp>( 863 bitcastOp.getLoc(), newCastDstType, insertOp.getDest()); 864 865 rewriter.replaceOpWithNewOp<vector::InsertStridedSliceOp>( 866 bitcastOp, bitcastOp.getType(), newCastSrcOp, newCastDstOp, newOffsets, 867 insertOp.getStrides()); 868 869 return success(); 870 } 871 }; 872 873 // Breaks down vector.bitcast op 874 // 875 // This transforms IR like: 876 // %1 = vector.bitcast %0: vector<8xf16> to vector<4xf32> 877 // Into: 878 // %cst = vector.splat %c0_f32 : vector<4xf32> 879 // %1 = vector.extract_strided_slice %0 { 880 // offsets = [0], sizes = [4], strides = [1] 881 // } : vector<8xf16> to vector<4xf16> 882 // %2 = vector.bitcast %1 : vector<4xf16> to vector<2xf32> 883 // %4 = vector.insert_strided_slice %2, %cst { 884 // offsets = [0], strides = [1]} : vector<2xf32> into vector<4xf32> 885 // %5 = vector.extract_strided_slice %0 { 886 // offsets = [4], sizes = [4], strides = [1] 887 // } : vector<8xf16> to vector<4xf16> 888 // %6 = vector.bitcast %5 : vector<4xf16> to vector<2xf32> 889 // %7 = vector.insert_strided_slice %6, %cst { 890 // offsets = [2], strides = [1]} : vector<2xf32> into vector<4xf32> 891 struct BreakDownVectorBitCast : public OpRewritePattern<vector::BitCastOp> { 892 using OpRewritePattern::OpRewritePattern; 893 894 public: 895 BreakDownVectorBitCast(MLIRContext *context, 896 std::function<bool(vector::BitCastOp)> controlFn, 897 PatternBenefit benefit) 898 : OpRewritePattern(context, benefit), controlFn(std::move(controlFn)) {} 899 900 LogicalResult matchAndRewrite(vector::BitCastOp bitcastOp, 901 PatternRewriter &rewriter) const override { 902 903 if (controlFn && !controlFn(bitcastOp)) 904 return failure(); 905 906 VectorType castSrcType = bitcastOp.getSourceVectorType(); 907 VectorType castDstType = bitcastOp.getResultVectorType(); 908 assert(castSrcType.getRank() == castDstType.getRank()); 909 910 // Only support rank 1 case for now. 911 if (castSrcType.getRank() != 1) 912 return failure(); 913 914 int64_t castSrcLastDim = castSrcType.getShape().back(); 915 int64_t castDstLastDim = castDstType.getShape().back(); 916 // Require casting to less elements for now; other cases to be implemented. 917 if (castSrcLastDim < castDstLastDim) 918 return failure(); 919 920 assert(castSrcLastDim % castDstLastDim == 0); 921 int64_t shrinkRatio = castSrcLastDim / castDstLastDim; 922 // Nothing to do if it is already bitcasting to a single element. 923 if (castSrcLastDim == shrinkRatio) 924 return failure(); 925 926 Location loc = bitcastOp.getLoc(); 927 Type elemType = castDstType.getElementType(); 928 assert(elemType.isSignlessIntOrIndexOrFloat()); 929 930 Value zero = rewriter.create<arith::ConstantOp>( 931 loc, elemType, rewriter.getZeroAttr(elemType)); 932 Value res = rewriter.create<SplatOp>(loc, castDstType, zero); 933 934 SmallVector<int64_t> sliceShape{castDstLastDim}; 935 SmallVector<int64_t> strides{1}; 936 VectorType newCastDstType = 937 VectorType::get(SmallVector<int64_t>{castDstLastDim / shrinkRatio}, 938 castDstType.getElementType()); 939 940 for (int i = 0, e = shrinkRatio; i < e; ++i) { 941 Value extracted = rewriter.create<ExtractStridedSliceOp>( 942 loc, bitcastOp.getSource(), ArrayRef<int64_t>{i * castDstLastDim}, 943 sliceShape, strides); 944 Value bitcast = 945 rewriter.create<BitCastOp>(loc, newCastDstType, extracted); 946 res = rewriter.create<InsertStridedSliceOp>( 947 loc, bitcast, res, 948 ArrayRef<int64_t>{i * castDstLastDim / shrinkRatio}, strides); 949 } 950 rewriter.replaceOp(bitcastOp, res); 951 return success(); 952 } 953 954 private: 955 std::function<bool(BitCastOp)> controlFn; 956 }; 957 958 /// Reorders elementwise(broadcast/splat) to broadcast(elementwise). Ex: 959 /// ``` 960 /// %a = vector.broadcast %arg1 : index to vector<1x4xindex> 961 /// %b = vector.broadcast %arg2 : index to vector<1x4xindex> 962 /// %r = arith.addi %a, %b : vector<1x4xindex> 963 /// ``` 964 /// Gets converted to: 965 /// ``` 966 /// %r = arith.addi %arg0, %arg1 : index 967 /// %b = vector.broadcast %r : index to vector<1x4xindex> 968 /// ``` 969 /// 970 /// Both `vector.broadcast` and `vector.splat` are supported as broadcasting 971 /// ops. 972 struct ReorderElementwiseOpsOnBroadcast final 973 : public OpTraitRewritePattern<OpTrait::Elementwise> { 974 using OpTraitRewritePattern::OpTraitRewritePattern; 975 LogicalResult matchAndRewrite(Operation *op, 976 PatternRewriter &rewriter) const override { 977 if (op->getNumResults() != 1) 978 return failure(); 979 if (!llvm::isa<ShapedType>(op->getResults()[0].getType())) 980 return failure(); 981 if (!OpTrait::hasElementwiseMappableTraits(op)) 982 return rewriter.notifyMatchFailure( 983 op, "Op doesn't have ElementwiseMappableTraits"); 984 if (op->getNumOperands() == 0) 985 return failure(); 986 if (op->getResults()[0].getType() != op->getOperand(0).getType()) 987 return rewriter.notifyMatchFailure(op, 988 "result and operand type mismatch"); 989 if (isa<vector::FMAOp>(op)) { 990 return rewriter.notifyMatchFailure( 991 op, 992 "Op only accepts vector types - not supported as broadcast source " 993 "might be a scalar"); 994 } 995 996 // Get the type of the lhs operand 997 auto *lhsBcastOrSplat = op->getOperand(0).getDefiningOp(); 998 if (!lhsBcastOrSplat || 999 !isa<vector::BroadcastOp, vector::SplatOp>(*lhsBcastOrSplat)) 1000 return failure(); 1001 auto lhsBcastOrSplatType = lhsBcastOrSplat->getOperand(0).getType(); 1002 1003 // Make sure that all operands are broadcast from identical types: 1004 // * scalar (`vector.broadcast` + `vector.splat`), or 1005 // * vector (`vector.broadcast`). 1006 // Otherwise the re-ordering wouldn't be safe. 1007 if (!llvm::all_of(op->getOperands(), [&lhsBcastOrSplatType](Value val) { 1008 auto bcast = val.getDefiningOp<vector::BroadcastOp>(); 1009 if (bcast) 1010 return (bcast.getOperand().getType() == lhsBcastOrSplatType); 1011 auto splat = val.getDefiningOp<vector::SplatOp>(); 1012 if (splat) 1013 return (splat.getOperand().getType() == lhsBcastOrSplatType); 1014 return false; 1015 })) { 1016 return failure(); 1017 } 1018 1019 // Collect the source values before broadcasting 1020 SmallVector<Value> srcValues; 1021 srcValues.reserve(op->getNumOperands()); 1022 for (Value operand : op->getOperands()) { 1023 srcValues.push_back(operand.getDefiningOp()->getOperand(0)); 1024 } 1025 1026 // Create the "elementwise" Op 1027 Operation *elementwiseOp = 1028 rewriter.create(op->getLoc(), op->getName().getIdentifier(), srcValues, 1029 lhsBcastOrSplatType, op->getAttrs()); 1030 1031 // Replace the original Op with the elementwise Op 1032 auto vectorType = op->getResultTypes()[0]; 1033 rewriter.replaceOpWithNewOp<vector::BroadcastOp>( 1034 op, vectorType, elementwiseOp->getResults()); 1035 1036 return success(); 1037 } 1038 }; 1039 1040 // Helper that returns a vector comparison that constructs a mask: 1041 // mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b] 1042 // 1043 // If `dim == 0` then the result will be a 0-D vector. 1044 // 1045 // NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative, 1046 // much more compact, IR for this operation, but LLVM eventually 1047 // generates more elaborate instructions for this intrinsic since it 1048 // is very conservative on the boundary conditions. 1049 static Value buildVectorComparison(PatternRewriter &rewriter, Operation *op, 1050 bool force32BitVectorIndices, int64_t dim, 1051 Value b, Value *off = nullptr) { 1052 auto loc = op->getLoc(); 1053 // If we can assume all indices fit in 32-bit, we perform the vector 1054 // comparison in 32-bit to get a higher degree of SIMD parallelism. 1055 // Otherwise we perform the vector comparison using 64-bit indices. 1056 Type idxType = 1057 force32BitVectorIndices ? rewriter.getI32Type() : rewriter.getI64Type(); 1058 DenseIntElementsAttr indicesAttr; 1059 if (dim == 0 && force32BitVectorIndices) { 1060 indicesAttr = DenseIntElementsAttr::get( 1061 VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int32_t>{0}); 1062 } else if (dim == 0) { 1063 indicesAttr = DenseIntElementsAttr::get( 1064 VectorType::get(ArrayRef<int64_t>{}, idxType), ArrayRef<int64_t>{0}); 1065 } else if (force32BitVectorIndices) { 1066 indicesAttr = rewriter.getI32VectorAttr( 1067 llvm::to_vector<4>(llvm::seq<int32_t>(0, dim))); 1068 } else { 1069 indicesAttr = rewriter.getI64VectorAttr( 1070 llvm::to_vector<4>(llvm::seq<int64_t>(0, dim))); 1071 } 1072 Value indices = rewriter.create<arith::ConstantOp>(loc, indicesAttr); 1073 // Add in an offset if requested. 1074 if (off) { 1075 Value o = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, *off); 1076 Value ov = rewriter.create<vector::SplatOp>(loc, indices.getType(), o); 1077 indices = rewriter.create<arith::AddIOp>(loc, ov, indices); 1078 } 1079 // Construct the vector comparison. 1080 Value bound = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, b); 1081 Value bounds = 1082 rewriter.create<vector::SplatOp>(loc, indices.getType(), bound); 1083 return rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, indices, 1084 bounds); 1085 } 1086 1087 template <typename ConcreteOp> 1088 struct MaterializeTransferMask : public OpRewritePattern<ConcreteOp> { 1089 public: 1090 explicit MaterializeTransferMask(MLIRContext *context, bool enableIndexOpt, 1091 PatternBenefit benefit = 1) 1092 : mlir::OpRewritePattern<ConcreteOp>(context, benefit), 1093 force32BitVectorIndices(enableIndexOpt) {} 1094 1095 LogicalResult matchAndRewrite(ConcreteOp xferOp, 1096 PatternRewriter &rewriter) const override { 1097 if (!xferOp.hasOutOfBoundsDim()) 1098 return failure(); 1099 1100 if (xferOp.getVectorType().getRank() > 1 || xferOp.getIndices().empty()) 1101 return failure(); 1102 1103 Location loc = xferOp->getLoc(); 1104 VectorType vtp = xferOp.getVectorType(); 1105 1106 // Create the in-bounds mask with all elements between [0 .. dim - offset) 1107 // set and [dim - offset .. vector_length) unset. 1108 // 1109 // TODO: when the leaf transfer rank is k > 1, we need the last `k` 1110 // dimensions here. 1111 unsigned lastIndex = llvm::size(xferOp.getIndices()) - 1; 1112 Value off = xferOp.getIndices()[lastIndex]; 1113 Value dim = 1114 vector::createOrFoldDimOp(rewriter, loc, xferOp.getSource(), lastIndex); 1115 Value b = rewriter.create<arith::SubIOp>(loc, dim.getType(), dim, off); 1116 Value mask = rewriter.create<vector::CreateMaskOp>( 1117 loc, 1118 VectorType::get(vtp.getShape(), rewriter.getI1Type(), 1119 vtp.getScalableDims()), 1120 b); 1121 if (xferOp.getMask()) { 1122 // Intersect the in-bounds with the mask specified as an op parameter. 1123 mask = rewriter.create<arith::AndIOp>(loc, mask, xferOp.getMask()); 1124 } 1125 1126 rewriter.modifyOpInPlace(xferOp, [&]() { 1127 xferOp.getMaskMutable().assign(mask); 1128 xferOp.setInBoundsAttr(rewriter.getBoolArrayAttr({true})); 1129 }); 1130 1131 return success(); 1132 } 1133 1134 private: 1135 const bool force32BitVectorIndices; 1136 }; 1137 1138 /// Conversion pattern for a `vector.create_mask` (0-D and 1-D only). 1139 class VectorCreateMaskOpConversion 1140 : public OpRewritePattern<vector::CreateMaskOp> { 1141 public: 1142 explicit VectorCreateMaskOpConversion(MLIRContext *context, 1143 bool enableIndexOpt, 1144 PatternBenefit benefit = 1) 1145 : mlir::OpRewritePattern<vector::CreateMaskOp>(context, benefit), 1146 force32BitVectorIndices(enableIndexOpt) {} 1147 1148 LogicalResult matchAndRewrite(vector::CreateMaskOp op, 1149 PatternRewriter &rewriter) const override { 1150 auto dstType = op.getType(); 1151 if (cast<VectorType>(dstType).isScalable()) 1152 return failure(); 1153 int64_t rank = dstType.getRank(); 1154 if (rank > 1) 1155 return failure(); 1156 rewriter.replaceOp( 1157 op, buildVectorComparison(rewriter, op, force32BitVectorIndices, 1158 rank == 0 ? 0 : dstType.getDimSize(0), 1159 op.getOperand(0))); 1160 return success(); 1161 } 1162 1163 private: 1164 const bool force32BitVectorIndices; 1165 }; 1166 1167 /// Returns true if all the `i1` elements of `constantOp` are set to `value`. 1168 static bool allI1ConstantValuesSetTo(arith::ConstantOp constantOp, bool value) { 1169 auto denseAttr = dyn_cast<DenseIntElementsAttr>(constantOp.getValue()); 1170 // TODO: Support non-dense constant. 1171 if (!denseAttr) 1172 return false; 1173 1174 assert(denseAttr.getElementType().isInteger(1) && "Unexpected type"); 1175 return denseAttr.isSplat() && denseAttr.getSplatValue<bool>() == value; 1176 } 1177 1178 /// Folds a select operation between an all-true and all-false vector. For now, 1179 /// only single element vectors (i.e., vector<1xi1>) are supported. That is: 1180 /// 1181 /// %true = arith.constant dense<true> : vector<1xi1> 1182 /// %false = arith.constant dense<false> : vector<1xi1> 1183 /// %result = arith.select %cond, %true, %false : i1, vector<1xi1> 1184 /// => 1185 /// %result = vector.broadcast %cond : i1 to vector<1xi1> 1186 /// 1187 /// InstCombine seems to handle vectors with multiple elements but not the 1188 /// single element ones. 1189 struct FoldI1Select : public OpRewritePattern<arith::SelectOp> { 1190 using OpRewritePattern<arith::SelectOp>::OpRewritePattern; 1191 1192 LogicalResult matchAndRewrite(arith::SelectOp selectOp, 1193 PatternRewriter &rewriter) const override { 1194 auto vecType = dyn_cast<VectorType>(selectOp.getType()); 1195 if (!vecType || !vecType.getElementType().isInteger(1)) 1196 return failure(); 1197 1198 // Only scalar conditions can be folded. 1199 Value cond = selectOp.getCondition(); 1200 if (isa<VectorType>(cond.getType())) 1201 return failure(); 1202 1203 // TODO: Support n-D and scalable vectors. 1204 if (vecType.getRank() != 1 || vecType.isScalable()) 1205 return failure(); 1206 1207 // TODO: Support vectors with multiple elements. 1208 if (vecType.getShape()[0] != 1) 1209 return failure(); 1210 1211 auto trueConst = selectOp.getTrueValue().getDefiningOp<arith::ConstantOp>(); 1212 if (!trueConst || !allI1ConstantValuesSetTo(trueConst, true)) 1213 return failure(); 1214 1215 auto falseConst = 1216 selectOp.getFalseValue().getDefiningOp<arith::ConstantOp>(); 1217 if (!falseConst || !allI1ConstantValuesSetTo(falseConst, false)) 1218 return failure(); 1219 1220 // Replace select with its condition broadcasted to single element vector. 1221 auto elemType = rewriter.getIntegerType(vecType.getNumElements()); 1222 auto bcastType = VectorType::get(/*shape=*/{1}, elemType); 1223 rewriter.replaceOpWithNewOp<vector::BroadcastOp>(selectOp, bcastType, cond); 1224 return success(); 1225 } 1226 }; 1227 1228 /// Returns the number of dims can be folded away from transfer ops. It returns 1229 /// a failure if it can not determine the number of dims to be folded. 1230 /// 1231 /// Ex 1: returns "2" if `srcType` is memref<512x16x1x1xf32> and 1232 /// `vectorType` is vector<16x16x1x1xf32> 1233 /// (there two inner most dims can be dropped by memref.subview ops) 1234 /// 1235 /// Ex 2: returns "1" if `srcType` is memref<512x16x1x1xf32> with 1236 /// [8192, 16, 8, 1] strides and `vectorType` is vector<16x16x1x1xf32> 1237 /// (only the inner most unit dim of `srcType` can be dropped) 1238 /// 1239 /// Ex 3: return "0" if `srcType` is memref<512x16x1x1xf32> and 1240 /// `vectorType` is vector<16x16x1x[1]xf32> 1241 /// (the most inner dim in `vectorType` is not a unit dim (it's a "scalable 1242 /// unit") 1243 static FailureOr<size_t> 1244 getTransferFoldableInnerUnitDims(MemRefType srcType, VectorType vectorType) { 1245 SmallVector<int64_t> srcStrides; 1246 int64_t srcOffset; 1247 if (failed(getStridesAndOffset(srcType, srcStrides, srcOffset))) 1248 return failure(); 1249 1250 auto isUnitDim = [](VectorType type, int dim) { 1251 return type.getDimSize(dim) == 1 && !type.getScalableDims()[dim]; 1252 }; 1253 1254 // According to vector.transfer_read/write semantics, the vector can be a 1255 // slice. Thus, we have to offset the check index with `rankDiff` in 1256 // `srcStrides` and source dim sizes. 1257 size_t result = 0; 1258 int rankDiff = srcType.getRank() - vectorType.getRank(); 1259 for (int64_t i = 0, e = vectorType.getRank(); i < e; ++i) { 1260 // Check that the inner dim size is 1 for both memref type and vector slice. 1261 // It can be folded only if they are 1 and the stride is 1. 1262 int dim = vectorType.getRank() - i - 1; 1263 if (srcStrides[dim + rankDiff] != 1 || 1264 srcType.getDimSize(dim + rankDiff) != 1 || !isUnitDim(vectorType, dim)) 1265 break; 1266 result++; 1267 } 1268 return result; 1269 } 1270 1271 /// Drop inner most contiguous unit dimensions from transfer_read operand. 1272 class DropInnerMostUnitDimsTransferRead 1273 : public OpRewritePattern<vector::TransferReadOp> { 1274 using OpRewritePattern::OpRewritePattern; 1275 1276 LogicalResult matchAndRewrite(vector::TransferReadOp readOp, 1277 PatternRewriter &rewriter) const override { 1278 // TODO: support 0-d corner case. 1279 if (readOp.getTransferRank() == 0) 1280 return failure(); 1281 1282 // TODO: support mask. 1283 if (readOp.getMask()) 1284 return failure(); 1285 1286 auto srcType = dyn_cast<MemRefType>(readOp.getSource().getType()); 1287 if (!srcType) 1288 return failure(); 1289 1290 if (!readOp.getPermutationMap().isMinorIdentity()) 1291 return failure(); 1292 1293 auto targetType = readOp.getVectorType(); 1294 if (targetType.getRank() <= 1) 1295 return failure(); 1296 1297 FailureOr<size_t> maybeDimsToDrop = 1298 getTransferFoldableInnerUnitDims(srcType, targetType); 1299 if (failed(maybeDimsToDrop)) 1300 return failure(); 1301 1302 size_t dimsToDrop = maybeDimsToDrop.value(); 1303 if (dimsToDrop == 0) 1304 return failure(); 1305 1306 auto inBounds = readOp.getInBoundsValues(); 1307 auto droppedInBounds = ArrayRef<bool>(inBounds).take_back(dimsToDrop); 1308 if (llvm::is_contained(droppedInBounds, false)) 1309 return failure(); 1310 1311 auto resultTargetVecType = 1312 VectorType::get(targetType.getShape().drop_back(dimsToDrop), 1313 targetType.getElementType(), 1314 targetType.getScalableDims().drop_back(dimsToDrop)); 1315 1316 auto loc = readOp.getLoc(); 1317 SmallVector<OpFoldResult> sizes = 1318 memref::getMixedSizes(rewriter, loc, readOp.getSource()); 1319 SmallVector<OpFoldResult> offsets(srcType.getRank(), 1320 rewriter.getIndexAttr(0)); 1321 SmallVector<OpFoldResult> strides(srcType.getRank(), 1322 rewriter.getIndexAttr(1)); 1323 auto resultMemrefType = 1324 cast<MemRefType>(memref::SubViewOp::inferRankReducedResultType( 1325 srcType.getShape().drop_back(dimsToDrop), srcType, offsets, sizes, 1326 strides)); 1327 ArrayAttr inBoundsAttr = rewriter.getArrayAttr( 1328 readOp.getInBoundsAttr().getValue().drop_back(dimsToDrop)); 1329 Value rankedReducedView = rewriter.create<memref::SubViewOp>( 1330 loc, resultMemrefType, readOp.getSource(), offsets, sizes, strides); 1331 auto permMap = getTransferMinorIdentityMap( 1332 cast<ShapedType>(rankedReducedView.getType()), resultTargetVecType); 1333 Value result = rewriter.create<vector::TransferReadOp>( 1334 loc, resultTargetVecType, rankedReducedView, 1335 readOp.getIndices().drop_back(dimsToDrop), AffineMapAttr::get(permMap), 1336 readOp.getPadding(), 1337 // TODO: support mask. 1338 /*mask=*/Value(), inBoundsAttr); 1339 rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(readOp, targetType, 1340 result); 1341 return success(); 1342 } 1343 }; 1344 1345 /// Drop inner most contiguous unit dimensions from transfer_write operand. 1346 /// E.g., 1347 /// vector.transfer_write %arg1, %arg0[%c0, %arg2, %c0, %c0, %c0] 1348 /// {in_bounds = [true, true, true, true, true]} 1349 /// : vector<1x16x16x1x1xf32>, memref<1x512x16x1x1xf32> 1350 /// 1351 /// will be replaced with 1352 /// 1353 /// %subview = memref.subview %arg0 1354 /// [0, 0, 0, 0, 0] [1, 512, 16, 1, 1] [1, 1, 1, 1, 1] 1355 /// : memref<1x512x16x1x1xf32> to memref<1x512x16xf32> 1356 /// %0 = vector.shape_cast %arg1 : vector<1x16x16x1x1xf32> 1357 /// to vector<1x16x16xf32> 1358 /// vector.transfer_write %0, %subview[%c0, %arg2, %c0] 1359 /// {in_bounds = [true, true, true]} 1360 /// : vector<1x16x16xf32>, memref<1x512x16xf32> 1361 /// 1362 /// Note, this pattern will not collapse "scalable unit" dims (i.e. `[1]`). 1363 class DropInnerMostUnitDimsTransferWrite 1364 : public OpRewritePattern<vector::TransferWriteOp> { 1365 using OpRewritePattern::OpRewritePattern; 1366 1367 LogicalResult matchAndRewrite(vector::TransferWriteOp writeOp, 1368 PatternRewriter &rewriter) const override { 1369 // TODO: support 0-d corner case. 1370 if (writeOp.getTransferRank() == 0) 1371 return failure(); 1372 1373 // TODO: support mask. 1374 if (writeOp.getMask()) 1375 return failure(); 1376 1377 auto srcType = dyn_cast<MemRefType>(writeOp.getSource().getType()); 1378 if (!srcType) 1379 return failure(); 1380 1381 if (!writeOp.getPermutationMap().isMinorIdentity()) 1382 return failure(); 1383 1384 auto targetType = writeOp.getVectorType(); 1385 if (targetType.getRank() <= 1) 1386 return failure(); 1387 1388 FailureOr<size_t> maybeDimsToDrop = 1389 getTransferFoldableInnerUnitDims(srcType, targetType); 1390 if (failed(maybeDimsToDrop)) 1391 return failure(); 1392 1393 size_t dimsToDrop = maybeDimsToDrop.value(); 1394 if (dimsToDrop == 0) 1395 return failure(); 1396 1397 auto inBounds = writeOp.getInBoundsValues(); 1398 auto droppedInBounds = ArrayRef<bool>(inBounds).take_back(dimsToDrop); 1399 if (llvm::is_contained(droppedInBounds, false)) 1400 return failure(); 1401 1402 auto resultTargetVecType = 1403 VectorType::get(targetType.getShape().drop_back(dimsToDrop), 1404 targetType.getElementType(), 1405 targetType.getScalableDims().drop_back(dimsToDrop)); 1406 1407 Location loc = writeOp.getLoc(); 1408 SmallVector<OpFoldResult> sizes = 1409 memref::getMixedSizes(rewriter, loc, writeOp.getSource()); 1410 SmallVector<OpFoldResult> offsets(srcType.getRank(), 1411 rewriter.getIndexAttr(0)); 1412 SmallVector<OpFoldResult> strides(srcType.getRank(), 1413 rewriter.getIndexAttr(1)); 1414 auto resultMemrefType = 1415 cast<MemRefType>(memref::SubViewOp::inferRankReducedResultType( 1416 srcType.getShape().drop_back(dimsToDrop), srcType, offsets, sizes, 1417 strides)); 1418 ArrayAttr inBoundsAttr = rewriter.getArrayAttr( 1419 writeOp.getInBoundsAttr().getValue().drop_back(dimsToDrop)); 1420 1421 Value rankedReducedView = rewriter.create<memref::SubViewOp>( 1422 loc, resultMemrefType, writeOp.getSource(), offsets, sizes, strides); 1423 auto permMap = getTransferMinorIdentityMap( 1424 cast<ShapedType>(rankedReducedView.getType()), resultTargetVecType); 1425 1426 auto shapeCast = rewriter.createOrFold<vector::ShapeCastOp>( 1427 loc, resultTargetVecType, writeOp.getVector()); 1428 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 1429 writeOp, shapeCast, rankedReducedView, 1430 writeOp.getIndices().drop_back(dimsToDrop), AffineMapAttr::get(permMap), 1431 // TODO: support mask. 1432 /*mask=*/Value(), inBoundsAttr); 1433 return success(); 1434 } 1435 }; 1436 1437 /// Canonicalization of a `vector.contraction %a, %b, %c` with row-major matmul 1438 /// semantics to a contraction suitable for MMT (matrix matrix multiplication 1439 /// with the RHS transposed) lowering. 1440 struct CanonicalizeContractMatmulToMMT final 1441 : OpRewritePattern<vector::ContractionOp> { 1442 using OpRewritePattern::OpRewritePattern; 1443 1444 using FilterConstraintType = 1445 std::function<LogicalResult(vector::ContractionOp op)>; 1446 1447 CanonicalizeContractMatmulToMMT(MLIRContext *context, PatternBenefit benefit, 1448 FilterConstraintType constraint) 1449 : OpRewritePattern<vector::ContractionOp>(context, benefit), 1450 filter(std::move(constraint)) {} 1451 1452 LogicalResult matchAndRewrite(vector::ContractionOp op, 1453 PatternRewriter &rewriter) const override { 1454 if (failed(filter(op))) 1455 return failure(); 1456 1457 Location loc = op.getLoc(); 1458 Value lhs = op.getLhs(); 1459 Value rhs = op.getRhs(); 1460 Value res = op.getAcc(); 1461 1462 // Set up the parallel/reduction structure in right form. 1463 using MapList = ArrayRef<ArrayRef<AffineExpr>>; 1464 auto infer = [&](MapList m) { 1465 return AffineMap::inferFromExprList(m, op.getContext()); 1466 }; 1467 AffineExpr m; 1468 AffineExpr n; 1469 AffineExpr k; 1470 bindDims(rewriter.getContext(), m, n, k); 1471 static constexpr std::array<int64_t, 2> perm = {1, 0}; 1472 auto iteratorTypes = op.getIteratorTypes().getValue(); 1473 SmallVector<AffineMap, 4> maps = op.getIndexingMapsArray(); 1474 if (iteratorTypes.size() != 3 || 1475 !vector::isParallelIterator(iteratorTypes[0]) || 1476 !vector::isParallelIterator(iteratorTypes[1]) || 1477 !vector::isReductionIterator(iteratorTypes[2])) 1478 return rewriter.notifyMatchFailure(op, "contraction is not a gemm"); 1479 1480 // The canonical form is "TNT" = A row-major, B col-major, C row-major. 1481 const auto canonicalForm = infer({{m, k}, {n, k}, {m, n}}); 1482 if (maps == canonicalForm) 1483 return rewriter.notifyMatchFailure(op, "already in the canonical form"); 1484 1485 // Create a vector transpose making sure to emit zero/sign-extend at the 1486 // end. 1487 auto createTranspose = [&rewriter, loc](Value mat) -> Value { 1488 if (auto sext = mat.getDefiningOp<arith::ExtSIOp>()) { 1489 Value trans = 1490 rewriter.create<vector::TransposeOp>(loc, sext.getIn(), perm); 1491 VectorType newType = 1492 cast<VectorType>(trans.getType()) 1493 .clone(cast<VectorType>(mat.getType()).getElementType()); 1494 return rewriter.create<arith::ExtSIOp>(loc, newType, trans); 1495 } 1496 if (auto zext = mat.getDefiningOp<arith::ExtUIOp>()) { 1497 Value trans = 1498 rewriter.create<vector::TransposeOp>(loc, zext.getIn(), perm); 1499 VectorType newType = 1500 VectorType::get(cast<VectorType>(trans.getType()).getShape(), 1501 cast<VectorType>(mat.getType()).getElementType()); 1502 return rewriter.create<arith::ExtUIOp>(loc, newType, trans); 1503 } 1504 return rewriter.create<vector::TransposeOp>(loc, mat, perm); 1505 }; 1506 1507 if (maps == infer({{m, k}, {k, n}, {m, n}})) { 1508 rhs = createTranspose(rhs); 1509 } else if (maps == infer({{k, m}, {n, k}, {m, n}})) { 1510 lhs = createTranspose(lhs); 1511 } else if (maps == infer({{k, m}, {k, n}, {m, n}})) { 1512 rhs = createTranspose(rhs); 1513 lhs = createTranspose(lhs); 1514 } else if (maps == infer({{k, m}, {k, n}, {n, m}})) { 1515 std::swap(rhs, lhs); 1516 rhs = createTranspose(rhs); 1517 lhs = createTranspose(lhs); 1518 } else if (maps == infer({{k, m}, {n, k}, {n, m}})) { 1519 std::swap(rhs, lhs); 1520 rhs = createTranspose(rhs); 1521 } else if (maps == infer({{m, k}, {k, n}, {n, m}})) { 1522 std::swap(lhs, rhs); 1523 lhs = createTranspose(lhs); 1524 } else if (maps == infer({{m, k}, {n, k}, {n, m}})) { 1525 std::swap(lhs, rhs); 1526 } else { 1527 return rewriter.notifyMatchFailure(op, "unhandled contraction form"); 1528 } 1529 rewriter.replaceOpWithNewOp<vector::ContractionOp>( 1530 op, lhs, rhs, res, rewriter.getAffineMapArrayAttr(canonicalForm), 1531 op.getIteratorTypes()); 1532 return success(); 1533 }; 1534 1535 private: 1536 FilterConstraintType filter; 1537 }; 1538 1539 /// Pattern to fold arithmetic extensions on floating point data types into 1540 /// vector contraction operations. linalg.matmul introduces arithmetic 1541 /// extensions on its operands. Please mlir snippets below for more details. 1542 /// ```mlir 1543 /// "linalg.matmul"(%lhs, %rhs, %acc) ({ 1544 /// ^bb0(%arg1: f16, %arg2: f16, %arg3: f32): 1545 /// %lhs_f32 = "arith.extf"(%arg1) : (f16) -> f32 1546 /// %rhs_f32 = "arith.extf"(%arg2) : (f16) -> f32 1547 /// %mul = "arith.mulf"(%lhs_f32, %rhs_f32) : (f32, f32) -> f32 1548 /// %acc = "arith.addf"(%arg3, %mul) : (f32, f32) -> f32 1549 /// "linalg.yield"(%acc) : (f32) -> () 1550 /// }) 1551 /// ``` 1552 /// This restricts the native usage of mixed precision NVIDIA Ampere Tensor 1553 /// Cores, i.e, `mma.sync.*.f32.f16.f16.f32` and `mma.sync.*.f32.bf16.bf16.f32`. 1554 /// This pattern folds the arithmetic extensions into the vector contraction and 1555 /// enables the usage of native mixed precision Tensor Core instructions. 1556 template <typename ExtOp> 1557 struct FoldArithExtIntoContractionOp 1558 : public OpRewritePattern<vector::ContractionOp> { 1559 using OpRewritePattern::OpRewritePattern; 1560 1561 LogicalResult matchAndRewrite(vector::ContractionOp contractOp, 1562 PatternRewriter &rewriter) const override { 1563 1564 auto lhsDefOp = contractOp.getLhs().getDefiningOp<ExtOp>(); 1565 auto rhsDefOp = contractOp.getRhs().getDefiningOp<ExtOp>(); 1566 1567 if (!lhsDefOp || !rhsDefOp) { 1568 return rewriter.notifyMatchFailure(contractOp, 1569 "no defining op on contract operands"); 1570 } 1571 1572 rewriter.replaceOpWithNewOp<vector::ContractionOp>( 1573 contractOp, lhsDefOp->getOperand(0), rhsDefOp->getOperand(0), 1574 contractOp.getAcc(), contractOp.getIndexingMapsAttr(), 1575 contractOp.getIteratorTypesAttr()); 1576 1577 return success(); 1578 } 1579 }; 1580 1581 /// Pattern to fold chained reduction to a series of vector additions and a 1582 /// final reduction. This form should require fewer subgroup operations. 1583 /// 1584 /// ```mlir 1585 /// %a = vector.reduction <add> %x, %acc 1586 /// %b = vector.reduction <add> %y, %a 1587 /// ==> 1588 /// %a = arith.addf %x, %y 1589 /// %b = vector.reduction <add> %a, %acc 1590 /// ``` 1591 struct ChainedReduction final : OpRewritePattern<vector::ReductionOp> { 1592 using OpRewritePattern::OpRewritePattern; 1593 1594 LogicalResult matchAndRewrite(vector::ReductionOp op, 1595 PatternRewriter &rewriter) const override { 1596 // TODO: Handle other combining kinds. 1597 if (op.getKind() != vector::CombiningKind::ADD) 1598 return failure(); 1599 1600 // Accumulator is optional. 1601 Value acc = op.getAcc(); 1602 if (!acc) 1603 return failure(); 1604 1605 if (!acc.getType().isIntOrFloat()) 1606 return failure(); 1607 1608 auto parentReduction = acc.getDefiningOp<vector::ReductionOp>(); 1609 if (!parentReduction) 1610 return failure(); 1611 1612 Location loc = op.getLoc(); 1613 Value vAdd; 1614 if (isa<IntegerType>(acc.getType())) { 1615 vAdd = rewriter.createOrFold<arith::AddIOp>( 1616 loc, parentReduction.getVector(), op.getVector()); 1617 } else { 1618 vAdd = rewriter.create<arith::AddFOp>(loc, parentReduction.getVector(), 1619 op.getVector()); 1620 } 1621 rewriter.replaceOpWithNewOp<vector::ReductionOp>(op, op.getKind(), vAdd, 1622 parentReduction.getAcc()); 1623 return success(); 1624 } 1625 }; 1626 1627 // Helper function dropping unit non-scalable dimension from a VectorType 1628 // keeping at least 1 dimension to avoid generating 0-D vectors. Scalable unit 1629 // dimensions are not dropped. Folding such dimensions would require "shifting" 1630 // the scalable flag onto some other fixed-width dim (e.g. vector<[1]x4xf32> -> 1631 // vector<[4]xf32>). This could be implemented in the future. 1632 static VectorType dropNonScalableUnitDimFromType(VectorType inVecTy) { 1633 auto inVecShape = inVecTy.getShape(); 1634 SmallVector<int64_t> newShape; 1635 SmallVector<bool> newScalableDims; 1636 for (auto [dim, isScalable] : 1637 llvm::zip_equal(inVecShape, inVecTy.getScalableDims())) { 1638 if (dim == 1 && !isScalable) 1639 continue; 1640 1641 newShape.push_back(dim); 1642 newScalableDims.push_back(isScalable); 1643 } 1644 // All dims have been dropped, return vector<1xeType>. 1645 if (newShape.empty()) { 1646 newShape.push_back(1); 1647 newScalableDims.push_back(false); 1648 } 1649 1650 return VectorType::get(newShape, inVecTy.getElementType(), newScalableDims); 1651 } 1652 1653 /// For vectors with at least one unit dim, replaces: 1654 /// elementwise(a, b) 1655 /// with: 1656 /// sc_a = shape_cast(a) 1657 /// sc_b = shape_cast(b) 1658 /// res = elementwise(sc_a, sc_b) 1659 /// return shape_cast(res) 1660 /// The newly inserted shape_cast Ops fold (before elementwise Op) and then 1661 /// restore (after elementwise Op) the unit dim. Vectors `a` and `b` are 1662 /// required to be rank > 1. 1663 /// 1664 /// Ex: 1665 /// %mul = arith.mulf %B_row, %A_row : vector<1x[4]xf32> 1666 /// %cast = vector.shape_cast %mul : vector<1x[4]xf32> to vector<[4]xf32> 1667 /// 1668 /// gets converted to: 1669 /// 1670 /// %B_row_sc = vector.shape_cast %B_row : vector<1x[4]xf32> to vector<[4]xf32> 1671 /// %A_row_sc = vector.shape_cast %A_row : vector<1x[4]xf32> to vector<[4]xf32> 1672 /// %mul = arith.mulf %B_row_sc, %A_row_sc : vector<[4]xf32> 1673 /// %cast_new = vector.shape_cast %mul : vector<[4]xf32> to vector<1x[4]xf32> 1674 /// %cast = vector.shape_cast %cast_new : vector<1x[4]xf32> to vector<[4]xf32> 1675 /// 1676 /// Patterns for folding shape_casts should instantly eliminate `%cast_new` and 1677 /// `%cast`. 1678 struct DropUnitDimFromElementwiseOps final 1679 : public OpTraitRewritePattern<OpTrait::Elementwise> { 1680 using OpTraitRewritePattern::OpTraitRewritePattern; 1681 LogicalResult matchAndRewrite(Operation *op, 1682 PatternRewriter &rewriter) const override { 1683 if (op->getNumResults() != 1 || op->getNumRegions() != 0) 1684 return failure(); 1685 1686 auto resultVectorType = dyn_cast<VectorType>(op->getResult(0).getType()); 1687 if (!resultVectorType) 1688 return failure(); 1689 1690 // Check the operand pre-conditions. For `Elementwise` ops all operands are 1691 // guaranteed to have identical shapes (with some exceptions such as 1692 // `arith.select`) and it suffices to only check one of them. 1693 auto sourceVectorType = dyn_cast<VectorType>(op->getOperand(0).getType()); 1694 if (!sourceVectorType) 1695 return failure(); 1696 if (sourceVectorType.getRank() < 2) 1697 return failure(); 1698 1699 SmallVector<Value> newOperands; 1700 auto loc = op->getLoc(); 1701 for (auto operand : op->getOperands()) { 1702 auto opVectorType = cast<VectorType>(operand.getType()); 1703 auto newVType = dropNonScalableUnitDimFromType(opVectorType); 1704 if (newVType == opVectorType) 1705 return rewriter.notifyMatchFailure(op, "No unit dimension to remove."); 1706 1707 auto opSC = rewriter.create<vector::ShapeCastOp>(loc, newVType, operand); 1708 newOperands.push_back(opSC); 1709 } 1710 1711 VectorType newResultVectorType = 1712 dropNonScalableUnitDimFromType(resultVectorType); 1713 // Create an updated elementwise Op without unit dim. 1714 Operation *elementwiseOp = 1715 rewriter.create(loc, op->getName().getIdentifier(), newOperands, 1716 newResultVectorType, op->getAttrs()); 1717 1718 // Restore the unit dim by applying vector.shape_cast to the result. 1719 rewriter.replaceOpWithNewOp<ShapeCastOp>(op, resultVectorType, 1720 elementwiseOp->getResult(0)); 1721 1722 return success(); 1723 } 1724 }; 1725 1726 /// A pattern to drop unit dims from vector.transpose. 1727 /// 1728 /// Example: 1729 /// 1730 /// BEFORE: 1731 /// ```mlir 1732 /// %transpose = vector.transpose %vector, [3, 0, 1, 2] 1733 /// : vector<1x1x4x[4]xf32> to vector<[4]x1x1x4xf32> 1734 /// ``` 1735 /// 1736 /// AFTER: 1737 /// ```mlir 1738 /// %dropDims = vector.shape_cast %vector 1739 /// : vector<1x1x4x[4]xf32> to vector<4x[4]xf32> 1740 /// %transpose = vector.transpose %0, [1, 0] 1741 /// : vector<4x[4]xf32> to vector<[4]x4xf32> 1742 /// %restoreDims = vector.shape_cast %transpose 1743 /// : vector<[4]x4xf32> to vector<[4]x1x1x4xf32> 1744 /// ``` 1745 struct DropUnitDimsFromTransposeOp final 1746 : OpRewritePattern<vector::TransposeOp> { 1747 using OpRewritePattern::OpRewritePattern; 1748 1749 LogicalResult matchAndRewrite(vector::TransposeOp op, 1750 PatternRewriter &rewriter) const override { 1751 VectorType sourceType = op.getSourceVectorType(); 1752 VectorType sourceTypeWithoutUnitDims = 1753 dropNonScalableUnitDimFromType(sourceType); 1754 1755 if (sourceType == sourceTypeWithoutUnitDims) 1756 return failure(); 1757 1758 // Construct a map from dimIdx -> number of dims dropped before dimIdx. 1759 auto sourceDims = llvm::to_vector(vector::getDims(sourceType)); 1760 SmallVector<int64_t> droppedDimsBefore(sourceType.getRank()); 1761 int64_t droppedDims = 0; 1762 for (auto [i, dim] : llvm::enumerate(sourceDims)) { 1763 droppedDimsBefore[i] = droppedDims; 1764 if (dim == std::make_tuple(1, false)) 1765 ++droppedDims; 1766 } 1767 1768 // Drop unit dims from transpose permutation. 1769 ArrayRef<int64_t> perm = op.getPermutation(); 1770 SmallVector<int64_t> newPerm; 1771 for (int64_t idx : perm) { 1772 if (sourceDims[idx] == std::make_tuple(1, false)) 1773 continue; 1774 newPerm.push_back(idx - droppedDimsBefore[idx]); 1775 } 1776 1777 // Fixup for `newPerm`. The `sourceTypeWithoutUnitDims` could be vector<1xT> 1778 // type when the dimensions are unit dimensions. In this case, the newPerm 1779 // should be [0]. 1780 if (newPerm.empty()) { 1781 newPerm.push_back(0); 1782 } 1783 1784 Location loc = op.getLoc(); 1785 // Drop the unit dims via shape_cast. 1786 auto dropDimsShapeCast = rewriter.create<vector::ShapeCastOp>( 1787 loc, sourceTypeWithoutUnitDims, op.getVector()); 1788 // Create the new transpose. 1789 auto tranposeWithoutUnitDims = 1790 rewriter.create<vector::TransposeOp>(loc, dropDimsShapeCast, newPerm); 1791 // Restore the unit dims via shape cast. 1792 rewriter.replaceOpWithNewOp<vector::ShapeCastOp>( 1793 op, op.getResultVectorType(), tranposeWithoutUnitDims); 1794 1795 return success(); 1796 } 1797 }; 1798 1799 /// Pattern to eliminate redundant zero-constants added to reduction operands. 1800 /// It's enough for there to be one initial zero value, so we can eliminate the 1801 /// extra ones that feed into `vector.reduction <add>`. These get created by the 1802 /// `ChainedReduction` pattern. 1803 /// 1804 /// ```mlir 1805 /// %a = arith.addf %x, %zero 1806 /// %b = arith.addf %a, %y 1807 /// %c = vector.reduction <add> %b, %acc 1808 /// ==> 1809 /// %b = arith.addf %a, %y 1810 /// %c = vector.reduction <add> %b, %acc 1811 /// ``` 1812 struct ReduceRedundantZero final : OpRewritePattern<vector::ReductionOp> { 1813 using OpRewritePattern::OpRewritePattern; 1814 1815 LogicalResult matchAndRewrite(vector::ReductionOp op, 1816 PatternRewriter &rewriter) const override { 1817 // TODO: Handle other reduction kinds and their identity values. 1818 if (op.getKind() != vector::CombiningKind::ADD) 1819 return failure(); 1820 1821 Type elemType = op.getSourceVectorType().getElementType(); 1822 // The integer case should be handled by `arith.addi` folders, only check 1823 // for floats here. 1824 if (!isa<FloatType>(elemType)) 1825 return failure(); 1826 1827 auto vAdd = op.getVector().getDefiningOp<arith::AddFOp>(); 1828 if (!vAdd) 1829 return failure(); 1830 auto addLhs = vAdd.getLhs().getDefiningOp<arith::AddFOp>(); 1831 if (!addLhs) 1832 return failure(); 1833 1834 if (!matchPattern(addLhs.getRhs(), m_AnyZeroFloat())) 1835 return failure(); 1836 1837 auto newAdd = rewriter.create<arith::AddFOp>(vAdd.getLoc(), addLhs.getLhs(), 1838 vAdd.getRhs()); 1839 rewriter.replaceOpWithNewOp<vector::ReductionOp>(op, op.getKind(), newAdd, 1840 op.getAcc()); 1841 return success(); 1842 } 1843 }; 1844 1845 /// Example: 1846 /// ``` 1847 /// %a = vector.reduction <add> %x : vector<2xf32> into f32 1848 /// ``` 1849 /// is transformed into: 1850 /// ``` 1851 /// %y = vector.extract %x[0] : f32 from vector<2xf32> 1852 /// %z = vector.extract %x[1] : f32 from vector<2xf32> 1853 /// %a = arith.addf %y, %z : f32 1854 /// ``` 1855 struct BreakDownVectorReduction final : OpRewritePattern<vector::ReductionOp> { 1856 BreakDownVectorReduction(MLIRContext *context, 1857 unsigned maxNumElementsToExtract, 1858 PatternBenefit benefit) 1859 : OpRewritePattern(context, benefit), 1860 maxNumElementsToExtract(maxNumElementsToExtract) {} 1861 1862 LogicalResult matchAndRewrite(vector::ReductionOp op, 1863 PatternRewriter &rewriter) const override { 1864 VectorType type = op.getSourceVectorType(); 1865 if (type.isScalable() || op.isMasked()) 1866 return failure(); 1867 assert(type.getRank() == 1 && "Expected a 1-d vector"); 1868 1869 int64_t numElems = type.getNumElements(); 1870 if (numElems > maxNumElementsToExtract) { 1871 return rewriter.notifyMatchFailure( 1872 op, llvm::formatv("has too many vector elements ({0}) to break down " 1873 "(max allowed: {1})", 1874 numElems, maxNumElementsToExtract)); 1875 } 1876 1877 Location loc = op.getLoc(); 1878 SmallVector<Value> extracted(numElems, nullptr); 1879 for (auto [idx, extractedElem] : llvm::enumerate(extracted)) 1880 extractedElem = rewriter.create<vector::ExtractOp>( 1881 loc, op.getVector(), static_cast<int64_t>(idx)); 1882 1883 Value res = extracted.front(); 1884 for (auto extractedElem : llvm::drop_begin(extracted)) 1885 res = vector::makeArithReduction(rewriter, loc, op.getKind(), res, 1886 extractedElem, op.getFastmathAttr()); 1887 if (Value acc = op.getAcc()) 1888 res = vector::makeArithReduction(rewriter, loc, op.getKind(), res, acc, 1889 op.getFastmathAttr()); 1890 1891 rewriter.replaceOp(op, res); 1892 return success(); 1893 } 1894 1895 private: 1896 unsigned maxNumElementsToExtract = 0; 1897 }; 1898 1899 /// Fold `mulf(tr(broadcast(A)), broadcast(B))` into `vector.outerproduct(A, 1900 /// B)`. 1901 /// Example: 1902 /// %lhsBcast = vector.broadcast %lhs : vector<4xi32> to vector<4x4xi32> 1903 /// %lhsT = vector.transpose %lhsBcast, [1, 0] : vector<4x4xi32> to 1904 /// vector<4x4xi32> %rhsBcast = vector.broadcast %rhs : vector<4xi32> to 1905 /// vector<4x4xi32> %mul = arith.muli %lhsT, %rhsBcast : vector<4x4xi32> 1906 /// 1907 /// Becomes : 1908 /// 1909 /// %res = vector.outerproduct %lhs, %rhs : vector<4xi32>, vector<4xi32> 1910 /// 1911 /// Supports only 1D-to-2D broadcasts. The following cases are not supported. 1912 /// %ex1 = vector.broadcast %lhsCast : vector<1x4xf32> to vector<4x4xf32> 1913 /// %ex2 = vector.broadcast %lhsCast : f32 to vector<4x4xf32> 1914 /// %ex3 = vector.broadcast %lhsCast : vector<1x1xf32> to vector<4x4xf32> 1915 template <typename MulOpType> 1916 struct FoldArithToVectorOuterProduct : public OpRewritePattern<MulOpType> { 1917 using OpRewritePattern<MulOpType>::OpRewritePattern; 1918 // Returns whether a vector.broadcast matches requirements for an outerproduct 1919 // pattern. aka a 1D-to-2D broadcastOp without broadcasted unit dimension. 1920 bool isValidBroadcastSource(vector::BroadcastOp broadcastOp) const { 1921 // Fail if it is not a 1-to-2 dimension to broadcast to avoid generating 1922 // shape_casts/broadcasts which does not belong in this pattern. 1923 if (!broadcastOp.computeBroadcastedUnitDims().empty()) 1924 return false; 1925 // Avoid broadcast like f32 or vector<f32> -> ResType 1926 auto srcType = dyn_cast<VectorType>(broadcastOp.getSourceType()); 1927 return srcType && srcType.getRank() != 2; 1928 } 1929 1930 LogicalResult matchAndRewrite(MulOpType mulOp, 1931 PatternRewriter &rewriter) const override { 1932 auto resType = llvm::cast<VectorType>(mulOp.getResult().getType()); 1933 if (!resType) 1934 return failure(); 1935 if (resType.getRank() != 2) 1936 return failure(); 1937 /// If operandA can be written as tr(broadcast(A)) and operandB as 1938 /// broadcast(B) where broadcasts are 1D-to-2D, create and return 1939 /// vector.outerproduct(A, B). Returns failure() otherwise. 1940 auto matchOuterProduct = 1941 [&](Value operandA, 1942 Value operandB) -> FailureOr<vector::OuterProductOp> { 1943 auto transposedLhs = operandA.getDefiningOp<vector::TransposeOp>(); 1944 if (!transposedLhs) 1945 return failure(); 1946 // Fail unless this is a true 2-D matrix transpose. 1947 ArrayRef<int64_t> permutation = transposedLhs.getPermutation(); 1948 if (permutation.size() != 2 || permutation[0] != 1 || permutation[1] != 0) 1949 return failure(); 1950 1951 auto broadcastedLhs = 1952 transposedLhs.getVector().getDefiningOp<vector::BroadcastOp>(); 1953 if (!broadcastedLhs || !isValidBroadcastSource(broadcastedLhs)) 1954 return failure(); 1955 1956 auto broadcastedRhs = operandB.getDefiningOp<vector::BroadcastOp>(); 1957 if (!broadcastedRhs || !isValidBroadcastSource(broadcastedRhs)) 1958 return failure(); 1959 1960 return rewriter.create<vector::OuterProductOp>( 1961 mulOp->getLoc(), resType, broadcastedLhs.getSource(), 1962 broadcastedRhs.getSource(), Value(), vector::CombiningKind::ADD); 1963 }; 1964 1965 Value lhs = mulOp->getOperand(0), rhs = mulOp->getOperand(1); 1966 auto maybeOuterP = matchOuterProduct(lhs, rhs); 1967 // Handle commutativity, the transposed op is the outerproduct LHS. 1968 if (failed(maybeOuterP)) 1969 maybeOuterP = matchOuterProduct(rhs, lhs); 1970 if (failed(maybeOuterP)) 1971 return failure(); 1972 rewriter.replaceOp(mulOp, maybeOuterP->getResult()); 1973 return success(); 1974 } 1975 }; 1976 1977 } // namespace 1978 1979 void mlir::vector::populateFoldArithExtensionPatterns( 1980 RewritePatternSet &patterns) { 1981 patterns.add<FoldArithExtIntoContractionOp<arith::ExtFOp>, 1982 FoldArithExtIntoContractionOp<arith::ExtSIOp>>( 1983 patterns.getContext()); 1984 } 1985 1986 void mlir::vector::populateVectorMaskMaterializationPatterns( 1987 RewritePatternSet &patterns, bool force32BitVectorIndices, 1988 PatternBenefit benefit) { 1989 patterns.add<VectorCreateMaskOpConversion, 1990 MaterializeTransferMask<vector::TransferReadOp>, 1991 MaterializeTransferMask<vector::TransferWriteOp>>( 1992 patterns.getContext(), force32BitVectorIndices, benefit); 1993 patterns.add<FoldI1Select>(patterns.getContext(), benefit); 1994 } 1995 1996 void mlir::vector::populateShapeCastFoldingPatterns(RewritePatternSet &patterns, 1997 PatternBenefit benefit) { 1998 patterns.add<ShapeCastOpFolder>(patterns.getContext(), benefit); 1999 } 2000 2001 void mlir::vector::populateDropUnitDimWithShapeCastPatterns( 2002 RewritePatternSet &patterns, PatternBenefit benefit) { 2003 patterns.add<DropUnitDimFromElementwiseOps, DropUnitDimsFromTransposeOp, 2004 ShapeCastOpFolder>(patterns.getContext(), benefit); 2005 } 2006 2007 void mlir::vector::populateBubbleVectorBitCastOpPatterns( 2008 RewritePatternSet &patterns, PatternBenefit benefit) { 2009 patterns.add<BubbleDownVectorBitCastForExtract, 2010 BubbleDownBitCastForStridedSliceExtract, 2011 BubbleUpBitCastForInsert, BubbleUpBitCastForStridedSliceInsert>( 2012 patterns.getContext(), benefit); 2013 } 2014 2015 void mlir::vector::populateBreakDownVectorBitCastOpPatterns( 2016 RewritePatternSet &patterns, 2017 std::function<bool(vector::BitCastOp)> controlFn, PatternBenefit benefit) { 2018 patterns.add<BreakDownVectorBitCast>(patterns.getContext(), 2019 std::move(controlFn), benefit); 2020 } 2021 2022 void mlir::vector::populateVectorContractCanonicalizeMatmulToMMT( 2023 RewritePatternSet &patterns, 2024 std::function<LogicalResult(vector::ContractionOp)> constraint, 2025 PatternBenefit benefit) { 2026 patterns.add<CanonicalizeContractMatmulToMMT>(patterns.getContext(), benefit, 2027 std::move(constraint)); 2028 } 2029 2030 void mlir::vector::populateVectorReductionToContractPatterns( 2031 RewritePatternSet &patterns, PatternBenefit benefit) { 2032 patterns.add<MultiReduceToContract, CombineContractBroadcast, 2033 CombineContractABTranspose, CombineContractResultTranspose, 2034 ReorderCastOpsOnBroadcast, ReorderElementwiseOpsOnTranspose>( 2035 patterns.getContext(), benefit); 2036 } 2037 2038 void mlir::vector:: 2039 populateVectorTransferCollapseInnerMostContiguousDimsPatterns( 2040 RewritePatternSet &patterns, PatternBenefit benefit) { 2041 patterns.add<DropInnerMostUnitDimsTransferRead, 2042 DropInnerMostUnitDimsTransferWrite>(patterns.getContext(), 2043 benefit); 2044 } 2045 2046 void mlir::vector::populateSinkVectorBroadcastPatterns( 2047 RewritePatternSet &patterns, PatternBenefit benefit) { 2048 patterns.add<ReorderCastOpsOnBroadcast, ReorderElementwiseOpsOnBroadcast>( 2049 patterns.getContext(), benefit); 2050 } 2051 2052 void mlir::vector::populateChainedVectorReductionFoldingPatterns( 2053 RewritePatternSet &patterns, PatternBenefit benefit) { 2054 patterns.add<ChainedReduction>(patterns.getContext(), benefit); 2055 patterns.add<ReduceRedundantZero>(patterns.getContext(), 2056 PatternBenefit(benefit.getBenefit() + 1)); 2057 } 2058 2059 void mlir::vector::populateBreakDownVectorReductionPatterns( 2060 RewritePatternSet &patterns, unsigned maxNumElementsToExtract, 2061 PatternBenefit benefit) { 2062 patterns.add<BreakDownVectorReduction>(patterns.getContext(), 2063 maxNumElementsToExtract, benefit); 2064 } 2065 2066 void mlir::vector::populateElementwiseToVectorOpsPatterns( 2067 RewritePatternSet &patterns) { 2068 patterns.add<FoldArithToVectorOuterProduct<arith::MulFOp>, 2069 FoldArithToVectorOuterProduct<arith::MulIOp>>( 2070 patterns.getContext()); 2071 } 2072 2073 //===----------------------------------------------------------------------===// 2074 // TableGen'd enum attribute definitions 2075 //===----------------------------------------------------------------------===// 2076 2077 #include "mlir/Dialect/Vector/Transforms/VectorTransformsEnums.cpp.inc" 2078