xref: /llvm-project/mlir/lib/Dialect/Vector/Transforms/VectorTransferOpTransforms.cpp (revision bf897d5d77e974486e37d33e83f50f5ea95390fa)
1 //===- VectorTransferOpTransforms.cpp - transfer op transforms ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements functions concerned with optimizing transfer_read and
10 // transfer_write ops.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/Affine/IR/AffineOps.h"
15 #include "mlir/Dialect/Arith/IR/Arith.h"
16 #include "mlir/Dialect/MemRef/IR/MemRef.h"
17 #include "mlir/Dialect/Tensor/IR/Tensor.h"
18 #include "mlir/Dialect/Vector/IR/VectorOps.h"
19 #include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
20 #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
21 #include "mlir/Dialect/Vector/Utils/VectorUtils.h"
22 #include "mlir/IR/BuiltinOps.h"
23 #include "mlir/IR/Dominance.h"
24 #include "mlir/Interfaces/SideEffectInterfaces.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Support/Debug.h"
28 
29 #define DEBUG_TYPE "vector-transfer-opt"
30 
31 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
32 
33 using namespace mlir;
34 
35 /// Return the ancestor op in the region or nullptr if the region is not
36 /// an ancestor of the op.
37 static Operation *findAncestorOpInRegion(Region *region, Operation *op) {
38   for (; op != nullptr && op->getParentRegion() != region;
39        op = op->getParentOp())
40     ;
41   return op;
42 }
43 
44 namespace {
45 
46 class TransferOptimization {
47 public:
48   TransferOptimization(RewriterBase &rewriter, Operation *op)
49       : rewriter(rewriter), dominators(op), postDominators(op) {}
50   void deadStoreOp(vector::TransferWriteOp);
51   void storeToLoadForwarding(vector::TransferReadOp);
52   void removeDeadOp() {
53     for (Operation *op : opToErase)
54       rewriter.eraseOp(op);
55     opToErase.clear();
56   }
57 
58 private:
59   RewriterBase &rewriter;
60   bool isReachable(Operation *start, Operation *dest);
61   DominanceInfo dominators;
62   PostDominanceInfo postDominators;
63   std::vector<Operation *> opToErase;
64 };
65 
66 } // namespace
67 /// Return true if there is a path from start operation to dest operation,
68 /// otherwise return false. The operations have to be in the same region.
69 bool TransferOptimization::isReachable(Operation *start, Operation *dest) {
70   assert(start->getParentRegion() == dest->getParentRegion() &&
71          "This function only works for ops i the same region");
72   // Simple case where the start op dominate the destination.
73   if (dominators.dominates(start, dest))
74     return true;
75   Block *startBlock = start->getBlock();
76   Block *destBlock = dest->getBlock();
77   SmallVector<Block *, 32> worklist(startBlock->succ_begin(),
78                                     startBlock->succ_end());
79   SmallPtrSet<Block *, 32> visited;
80   while (!worklist.empty()) {
81     Block *bb = worklist.pop_back_val();
82     if (!visited.insert(bb).second)
83       continue;
84     if (dominators.dominates(bb, destBlock))
85       return true;
86     worklist.append(bb->succ_begin(), bb->succ_end());
87   }
88   return false;
89 }
90 
91 /// For transfer_write to overwrite fully another transfer_write must:
92 /// 1. Access the same memref with the same indices and vector type.
93 /// 2. Post-dominate the other transfer_write operation.
94 /// If several candidates are available, one must be post-dominated by all the
95 /// others since they are all post-dominating the same transfer_write. We only
96 /// consider the transfer_write post-dominated by all the other candidates as
97 /// this will be the first transfer_write executed after the potentially dead
98 /// transfer_write.
99 /// If we found such an overwriting transfer_write we know that the original
100 /// transfer_write is dead if all reads that can be reached from the potentially
101 /// dead transfer_write are dominated by the overwriting transfer_write.
102 void TransferOptimization::deadStoreOp(vector::TransferWriteOp write) {
103   LLVM_DEBUG(DBGS() << "Candidate for dead store: " << *write.getOperation()
104                     << "\n");
105   llvm::SmallVector<Operation *, 8> blockingAccesses;
106   Operation *firstOverwriteCandidate = nullptr;
107   Value source = write.getSource();
108   // Skip subview ops.
109   while (auto subView = source.getDefiningOp<memref::SubViewOp>())
110     source = subView.getSource();
111   llvm::SmallVector<Operation *, 32> users(source.getUsers().begin(),
112                                            source.getUsers().end());
113   llvm::SmallDenseSet<Operation *, 32> processed;
114   while (!users.empty()) {
115     Operation *user = users.pop_back_val();
116     // If the user has already been processed skip.
117     if (!processed.insert(user).second)
118       continue;
119     if (auto subView = dyn_cast<memref::SubViewOp>(user)) {
120       users.append(subView->getUsers().begin(), subView->getUsers().end());
121       continue;
122     }
123     if (isMemoryEffectFree(user))
124       continue;
125     if (user == write.getOperation())
126       continue;
127     if (auto nextWrite = dyn_cast<vector::TransferWriteOp>(user)) {
128       // Check candidate that can override the store.
129       if (write.getSource() == nextWrite.getSource() &&
130           checkSameValueWAW(nextWrite, write) &&
131           postDominators.postDominates(nextWrite, write)) {
132         if (firstOverwriteCandidate == nullptr ||
133             postDominators.postDominates(firstOverwriteCandidate, nextWrite))
134           firstOverwriteCandidate = nextWrite;
135         else
136           assert(
137               postDominators.postDominates(nextWrite, firstOverwriteCandidate));
138         continue;
139       }
140     }
141     if (auto transferOp = dyn_cast<VectorTransferOpInterface>(user)) {
142       // Don't need to consider disjoint accesses.
143       if (vector::isDisjointTransferSet(
144               cast<VectorTransferOpInterface>(write.getOperation()),
145               cast<VectorTransferOpInterface>(transferOp.getOperation()),
146               /*testDynamicValueUsingBounds=*/true))
147         continue;
148     }
149     blockingAccesses.push_back(user);
150   }
151   if (firstOverwriteCandidate == nullptr)
152     return;
153   Region *topRegion = firstOverwriteCandidate->getParentRegion();
154   Operation *writeAncestor = findAncestorOpInRegion(topRegion, write);
155   assert(writeAncestor &&
156          "write op should be recursively part of the top region");
157 
158   for (Operation *access : blockingAccesses) {
159     Operation *accessAncestor = findAncestorOpInRegion(topRegion, access);
160     // TODO: if the access and write have the same ancestor we could recurse in
161     // the region to know if the access is reachable with more precision.
162     if (accessAncestor == nullptr ||
163         !isReachable(writeAncestor, accessAncestor))
164       continue;
165     if (!dominators.dominates(firstOverwriteCandidate, accessAncestor)) {
166       LLVM_DEBUG(DBGS() << "Store may not be dead due to op: "
167                         << *accessAncestor << "\n");
168       return;
169     }
170   }
171   LLVM_DEBUG(DBGS() << "Found dead store: " << *write.getOperation()
172                     << " overwritten by: " << *firstOverwriteCandidate << "\n");
173   opToErase.push_back(write.getOperation());
174 }
175 
176 /// A transfer_write candidate to storeToLoad forwarding must:
177 /// 1. Access the same memref with the same indices and vector type as the
178 /// transfer_read.
179 /// 2. Dominate the transfer_read operation.
180 /// If several candidates are available, one must be dominated by all the others
181 /// since they are all dominating the same transfer_read. We only consider the
182 /// transfer_write dominated by all the other candidates as this will be the
183 /// last transfer_write executed before the transfer_read.
184 /// If we found such a candidate we can do the forwarding if all the other
185 /// potentially aliasing ops that may reach the transfer_read are post-dominated
186 /// by the transfer_write.
187 void TransferOptimization::storeToLoadForwarding(vector::TransferReadOp read) {
188   if (read.hasOutOfBoundsDim())
189     return;
190   LLVM_DEBUG(DBGS() << "Candidate for Forwarding: " << *read.getOperation()
191                     << "\n");
192   SmallVector<Operation *, 8> blockingWrites;
193   vector::TransferWriteOp lastwrite = nullptr;
194   Value source = read.getSource();
195   // Skip subview ops.
196   while (auto subView = source.getDefiningOp<memref::SubViewOp>())
197     source = subView.getSource();
198   llvm::SmallVector<Operation *, 32> users(source.getUsers().begin(),
199                                            source.getUsers().end());
200   llvm::SmallDenseSet<Operation *, 32> processed;
201   while (!users.empty()) {
202     Operation *user = users.pop_back_val();
203     // If the user has already been processed skip.
204     if (!processed.insert(user).second)
205       continue;
206     if (auto subView = dyn_cast<memref::SubViewOp>(user)) {
207       users.append(subView->getUsers().begin(), subView->getUsers().end());
208       continue;
209     }
210     if (auto collapsed = dyn_cast<memref::CollapseShapeOp>(user)) {
211       users.append(collapsed->getUsers().begin(), collapsed->getUsers().end());
212       continue;
213     }
214     if (isMemoryEffectFree(user) || isa<vector::TransferReadOp>(user))
215       continue;
216     if (auto write = dyn_cast<vector::TransferWriteOp>(user)) {
217       // If there is a write, but we can prove that it is disjoint we can ignore
218       // the write.
219       if (vector::isDisjointTransferSet(
220               cast<VectorTransferOpInterface>(write.getOperation()),
221               cast<VectorTransferOpInterface>(read.getOperation()),
222               /*testDynamicValueUsingBounds=*/true))
223         continue;
224       if (write.getSource() == read.getSource() &&
225           dominators.dominates(write, read) && checkSameValueRAW(write, read)) {
226         if (lastwrite == nullptr || dominators.dominates(lastwrite, write))
227           lastwrite = write;
228         else
229           assert(dominators.dominates(write, lastwrite));
230         continue;
231       }
232     }
233     blockingWrites.push_back(user);
234   }
235 
236   if (lastwrite == nullptr)
237     return;
238 
239   Region *topRegion = lastwrite->getParentRegion();
240   Operation *readAncestor = findAncestorOpInRegion(topRegion, read);
241   assert(readAncestor &&
242          "read op should be recursively part of the top region");
243 
244   for (Operation *write : blockingWrites) {
245     Operation *writeAncestor = findAncestorOpInRegion(topRegion, write);
246     // TODO: if the store and read have the same ancestor we could recurse in
247     // the region to know if the read is reachable with more precision.
248     if (writeAncestor == nullptr || !isReachable(writeAncestor, readAncestor))
249       continue;
250     if (!postDominators.postDominates(lastwrite, write)) {
251       LLVM_DEBUG(DBGS() << "Fail to do write to read forwarding due to op: "
252                         << *write << "\n");
253       return;
254     }
255   }
256 
257   LLVM_DEBUG(DBGS() << "Forward value from " << *lastwrite.getOperation()
258                     << " to: " << *read.getOperation() << "\n");
259   read.replaceAllUsesWith(lastwrite.getVector());
260   opToErase.push_back(read.getOperation());
261 }
262 
263 /// Returns a copy of `shape` without unit dims.
264 static SmallVector<int64_t> getReducedShape(ArrayRef<int64_t> shape) {
265   SmallVector<int64_t> reducedShape;
266   llvm::copy_if(shape, std::back_inserter(reducedShape),
267                 [](int64_t dimSize) { return dimSize != 1; });
268   return reducedShape;
269 }
270 
271 /// Converts OpFoldResults to int64_t shape without unit dims.
272 static SmallVector<int64_t> getReducedShape(ArrayRef<OpFoldResult> mixedSizes) {
273   SmallVector<int64_t> reducedShape;
274   for (const auto size : mixedSizes) {
275     if (llvm::dyn_cast_if_present<Value>(size)) {
276       reducedShape.push_back(ShapedType::kDynamic);
277       continue;
278     }
279 
280     auto value = cast<IntegerAttr>(size.get<Attribute>()).getValue();
281     if (value == 1)
282       continue;
283     reducedShape.push_back(value.getSExtValue());
284   }
285   return reducedShape;
286 }
287 
288 /// Drops unit dimensions from the input MemRefType.
289 static MemRefType dropUnitDims(MemRefType inputType,
290                                ArrayRef<OpFoldResult> offsets,
291                                ArrayRef<OpFoldResult> sizes,
292                                ArrayRef<OpFoldResult> strides) {
293   auto targetShape = getReducedShape(sizes);
294   Type rankReducedType = memref::SubViewOp::inferRankReducedResultType(
295       targetShape, inputType, offsets, sizes, strides);
296   return canonicalizeStridedLayout(cast<MemRefType>(rankReducedType));
297 }
298 
299 /// Creates a rank-reducing memref.subview op that drops unit dims from its
300 /// input. Or just returns the input if it was already without unit dims.
301 static Value rankReducingSubviewDroppingUnitDims(PatternRewriter &rewriter,
302                                                  mlir::Location loc,
303                                                  Value input) {
304   MemRefType inputType = cast<MemRefType>(input.getType());
305   SmallVector<OpFoldResult> offsets(inputType.getRank(),
306                                     rewriter.getIndexAttr(0));
307   SmallVector<OpFoldResult> sizes = memref::getMixedSizes(rewriter, loc, input);
308   SmallVector<OpFoldResult> strides(inputType.getRank(),
309                                     rewriter.getIndexAttr(1));
310   MemRefType resultType = dropUnitDims(inputType, offsets, sizes, strides);
311 
312   if (canonicalizeStridedLayout(resultType) ==
313       canonicalizeStridedLayout(inputType))
314     return input;
315   return rewriter.create<memref::SubViewOp>(loc, resultType, input, offsets,
316                                             sizes, strides);
317 }
318 
319 /// Returns the number of dims that aren't unit dims.
320 static int getReducedRank(ArrayRef<int64_t> shape) {
321   return llvm::count_if(shape, [](int64_t dimSize) { return dimSize != 1; });
322 }
323 
324 /// Trims non-scalable one dimensions from `oldType` and returns the result
325 /// type.
326 static VectorType trimNonScalableUnitDims(VectorType oldType) {
327   SmallVector<int64_t> newShape;
328   SmallVector<bool> newScalableDims;
329   for (auto [dimIdx, dimSize] : llvm::enumerate(oldType.getShape())) {
330     if (dimSize == 1 && !oldType.getScalableDims()[dimIdx])
331       continue;
332     newShape.push_back(dimSize);
333     newScalableDims.push_back(oldType.getScalableDims()[dimIdx]);
334   }
335   return VectorType::get(newShape, oldType.getElementType(), newScalableDims);
336 }
337 
338 // Rewrites vector.create_mask 'op' to drop non-scalable one dimensions.
339 static FailureOr<Value>
340 createMaskDropNonScalableUnitDims(PatternRewriter &rewriter, Location loc,
341                                   vector::CreateMaskOp op) {
342   auto type = op.getType();
343   auto reducedType = trimNonScalableUnitDims(type);
344   if (reducedType.getRank() == type.getRank())
345     return failure();
346 
347   SmallVector<Value> reducedOperands;
348   for (auto [dim, dimIsScalable, operand] : llvm::zip_equal(
349            type.getShape(), type.getScalableDims(), op.getOperands())) {
350     if (dim == 1 && !dimIsScalable) {
351       // If the mask for the unit dim is not a constant of 1, do nothing.
352       auto constant = operand.getDefiningOp<arith::ConstantIndexOp>();
353       if (!constant || (constant.value() != 1))
354         return failure();
355       continue;
356     }
357     reducedOperands.push_back(operand);
358   }
359   return rewriter
360       .create<vector::CreateMaskOp>(loc, reducedType, reducedOperands)
361       .getResult();
362 }
363 
364 namespace {
365 
366 /// Rewrites `vector.transfer_read` ops where the source has unit dims, by
367 /// inserting a memref.subview dropping those unit dims. The vector shapes are
368 /// also reduced accordingly.
369 class TransferReadDropUnitDimsPattern
370     : public OpRewritePattern<vector::TransferReadOp> {
371   using OpRewritePattern::OpRewritePattern;
372 
373   LogicalResult matchAndRewrite(vector::TransferReadOp transferReadOp,
374                                 PatternRewriter &rewriter) const override {
375     auto loc = transferReadOp.getLoc();
376     Value vector = transferReadOp.getVector();
377     VectorType vectorType = cast<VectorType>(vector.getType());
378     Value source = transferReadOp.getSource();
379     MemRefType sourceType = dyn_cast<MemRefType>(source.getType());
380     // TODO: support tensor types.
381     if (!sourceType)
382       return failure();
383     // TODO: generalize this pattern, relax the requirements here.
384     if (transferReadOp.hasOutOfBoundsDim())
385       return failure();
386     if (!transferReadOp.getPermutationMap().isMinorIdentity())
387       return failure();
388     // Check if the source shape can be further reduced.
389     int reducedRank = getReducedRank(sourceType.getShape());
390     if (reducedRank == sourceType.getRank())
391       return failure();
392     // Check if the reduced vector shape matches the reduced source shape.
393     // Otherwise, this case is not supported yet.
394     auto reducedVectorType = trimNonScalableUnitDims(vectorType);
395     if (reducedRank != reducedVectorType.getRank())
396       return failure();
397     if (llvm::any_of(transferReadOp.getIndices(), [](Value v) {
398           return getConstantIntValue(v) != static_cast<int64_t>(0);
399         }))
400       return failure();
401 
402     Value maskOp = transferReadOp.getMask();
403     if (maskOp) {
404       auto createMaskOp = maskOp.getDefiningOp<vector::CreateMaskOp>();
405       if (!createMaskOp)
406         return rewriter.notifyMatchFailure(
407             transferReadOp, "unsupported mask op, only 'vector.create_mask' is "
408                             "currently supported");
409       FailureOr<Value> rankReducedCreateMask =
410           createMaskDropNonScalableUnitDims(rewriter, loc, createMaskOp);
411       if (failed(rankReducedCreateMask))
412         return failure();
413       maskOp = *rankReducedCreateMask;
414     }
415 
416     Value reducedShapeSource =
417         rankReducingSubviewDroppingUnitDims(rewriter, loc, source);
418     Value c0 = rewriter.create<arith::ConstantIndexOp>(loc, 0);
419     SmallVector<Value> zeros(reducedRank, c0);
420     auto identityMap = rewriter.getMultiDimIdentityMap(reducedRank);
421     SmallVector<bool> inBounds(reducedVectorType.getRank(), true);
422     auto newTransferReadOp = rewriter.create<vector::TransferReadOp>(
423         loc, reducedVectorType, reducedShapeSource, zeros, identityMap,
424         transferReadOp.getPadding(), maskOp,
425         rewriter.getBoolArrayAttr(inBounds));
426     auto shapeCast = rewriter.createOrFold<vector::ShapeCastOp>(
427         loc, vectorType, newTransferReadOp);
428     rewriter.replaceOp(transferReadOp, shapeCast);
429 
430     return success();
431   }
432 };
433 
434 /// Rewrites `vector.transfer_write` ops where the "source" (i.e. destination)
435 /// has unit dims, by inserting a `memref.subview` dropping those unit dims. The
436 /// vector shapes are also reduced accordingly.
437 class TransferWriteDropUnitDimsPattern
438     : public OpRewritePattern<vector::TransferWriteOp> {
439   using OpRewritePattern::OpRewritePattern;
440 
441   LogicalResult matchAndRewrite(vector::TransferWriteOp transferWriteOp,
442                                 PatternRewriter &rewriter) const override {
443     auto loc = transferWriteOp.getLoc();
444     Value vector = transferWriteOp.getVector();
445     VectorType vectorType = cast<VectorType>(vector.getType());
446     Value source = transferWriteOp.getSource();
447     MemRefType sourceType = dyn_cast<MemRefType>(source.getType());
448     // TODO: support tensor type.
449     if (!sourceType || !sourceType.hasStaticShape())
450       return failure();
451     if (sourceType.getNumElements() != vectorType.getNumElements())
452       return failure();
453     // TODO: generalize this pattern, relax the requirements here.
454     if (transferWriteOp.hasOutOfBoundsDim())
455       return failure();
456     if (!transferWriteOp.getPermutationMap().isMinorIdentity())
457       return failure();
458     // Check if the destination shape can be further reduced.
459     int reducedRank = getReducedRank(sourceType.getShape());
460     if (reducedRank == sourceType.getRank())
461       return failure();
462     // Check if the reduced vector shape matches the reduced destination shape.
463     // Otherwise, this case is not supported yet.
464     int vectorReducedRank = getReducedRank(vectorType.getShape());
465     if (reducedRank != vectorReducedRank)
466       return failure();
467     if (llvm::any_of(transferWriteOp.getIndices(), [](Value v) {
468           return getConstantIntValue(v) != static_cast<int64_t>(0);
469         }))
470       return failure();
471     Value reducedShapeSource =
472         rankReducingSubviewDroppingUnitDims(rewriter, loc, source);
473     Value c0 = rewriter.create<arith::ConstantIndexOp>(loc, 0);
474     SmallVector<Value> zeros(reducedRank, c0);
475     auto identityMap = rewriter.getMultiDimIdentityMap(reducedRank);
476     VectorType reducedVectorType = VectorType::get(
477         getReducedShape(vectorType.getShape()), vectorType.getElementType());
478 
479     auto shapeCast = rewriter.createOrFold<vector::ShapeCastOp>(
480         loc, reducedVectorType, vector);
481     rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
482         transferWriteOp, shapeCast, reducedShapeSource, zeros, identityMap);
483 
484     return success();
485   }
486 };
487 
488 } // namespace
489 
490 /// Return true if the memref type has its inner dimension matching the given
491 /// shape. Otherwise return false.
492 static int64_t hasMatchingInnerContigousShape(MemRefType memrefType,
493                                               ArrayRef<int64_t> targetShape) {
494   auto shape = memrefType.getShape();
495   SmallVector<int64_t> strides;
496   int64_t offset;
497   if (!succeeded(getStridesAndOffset(memrefType, strides, offset)))
498     return false;
499   if (strides.back() != 1)
500     return false;
501   strides.pop_back();
502   int64_t flatDim = 1;
503   for (auto [targetDim, memrefDim, memrefStride] :
504        llvm::reverse(llvm::zip(targetShape, shape, strides))) {
505     flatDim *= memrefDim;
506     if (flatDim != memrefStride || targetDim != memrefDim)
507       return false;
508   }
509   return true;
510 }
511 
512 /// Creates a memref.collapse_shape collapsing all inner dimensions of the
513 /// input starting at `firstDimToCollapse`.
514 static Value collapseInnerDims(PatternRewriter &rewriter, mlir::Location loc,
515                                Value input, int64_t firstDimToCollapse) {
516   ShapedType inputType = cast<ShapedType>(input.getType());
517   if (inputType.getRank() == 1)
518     return input;
519   SmallVector<ReassociationIndices> reassociation;
520   for (int64_t i = 0; i < firstDimToCollapse; ++i)
521     reassociation.push_back(ReassociationIndices{i});
522   ReassociationIndices collapsedIndices;
523   for (int64_t i = firstDimToCollapse; i < inputType.getRank(); ++i)
524     collapsedIndices.push_back(i);
525   reassociation.push_back(collapsedIndices);
526   return rewriter.create<memref::CollapseShapeOp>(loc, input, reassociation);
527 }
528 
529 /// Checks that the indices corresponding to dimensions starting at
530 /// `firstDimToCollapse` are constant 0, and writes to `outIndices`
531 /// the truncated indices where `firstDimToCollapse` is now the innermost dim.
532 static LogicalResult
533 checkAndCollapseInnerZeroIndices(ValueRange indices, int64_t firstDimToCollapse,
534                                  SmallVector<Value> &outIndices) {
535   int64_t rank = indices.size();
536   if (firstDimToCollapse >= rank)
537     return failure();
538   for (int64_t i = firstDimToCollapse; i < rank; ++i) {
539     std::optional<int64_t> cst = getConstantIntValue(indices[i]);
540     if (!cst || cst.value() != 0)
541       return failure();
542   }
543   outIndices = indices;
544   outIndices.resize(firstDimToCollapse + 1);
545   return success();
546 }
547 
548 namespace {
549 
550 /// Rewrites contiguous row-major vector.transfer_read ops by inserting
551 /// memref.collapse_shape on the source so that the resulting
552 /// vector.transfer_read has a 1D source. Requires the source shape to be
553 /// already reduced i.e. without unit dims.
554 class FlattenContiguousRowMajorTransferReadPattern
555     : public OpRewritePattern<vector::TransferReadOp> {
556   using OpRewritePattern::OpRewritePattern;
557 
558   LogicalResult matchAndRewrite(vector::TransferReadOp transferReadOp,
559                                 PatternRewriter &rewriter) const override {
560     auto loc = transferReadOp.getLoc();
561     Value vector = transferReadOp.getVector();
562     VectorType vectorType = cast<VectorType>(vector.getType());
563     Value source = transferReadOp.getSource();
564     MemRefType sourceType = dyn_cast<MemRefType>(source.getType());
565     // Contiguity check is valid on tensors only.
566     if (!sourceType)
567       return failure();
568     if (vectorType.getRank() <= 1)
569       // Already 0D/1D, nothing to do.
570       return failure();
571     if (!hasMatchingInnerContigousShape(
572             sourceType,
573             vectorType.getShape().take_back(vectorType.getRank() - 1)))
574       return failure();
575     int64_t firstContiguousInnerDim =
576         sourceType.getRank() - vectorType.getRank();
577     // TODO: generalize this pattern, relax the requirements here.
578     if (transferReadOp.hasOutOfBoundsDim())
579       return failure();
580     if (!transferReadOp.getPermutationMap().isMinorIdentity())
581       return failure();
582     if (transferReadOp.getMask())
583       return failure();
584     SmallVector<Value> collapsedIndices;
585     if (failed(checkAndCollapseInnerZeroIndices(transferReadOp.getIndices(),
586                                                 firstContiguousInnerDim,
587                                                 collapsedIndices)))
588       return failure();
589     Value collapsedSource =
590         collapseInnerDims(rewriter, loc, source, firstContiguousInnerDim);
591     MemRefType collapsedSourceType =
592         dyn_cast<MemRefType>(collapsedSource.getType());
593     int64_t collapsedRank = collapsedSourceType.getRank();
594     assert(collapsedRank == firstContiguousInnerDim + 1);
595     SmallVector<AffineExpr, 1> dimExprs{
596         getAffineDimExpr(firstContiguousInnerDim, rewriter.getContext())};
597     auto collapsedMap =
598         AffineMap::get(collapsedRank, 0, dimExprs, rewriter.getContext());
599     VectorType flatVectorType = VectorType::get({vectorType.getNumElements()},
600                                                 vectorType.getElementType());
601     vector::TransferReadOp flatRead = rewriter.create<vector::TransferReadOp>(
602         loc, flatVectorType, collapsedSource, collapsedIndices, collapsedMap);
603     flatRead.setInBoundsAttr(rewriter.getBoolArrayAttr({true}));
604     rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(
605         transferReadOp, cast<VectorType>(vector.getType()), flatRead);
606     return success();
607   }
608 };
609 
610 /// Rewrites contiguous row-major vector.transfer_write ops by inserting
611 /// memref.collapse_shape on the source so that the resulting
612 /// vector.transfer_write has a 1D source. Requires the source shape to be
613 /// already reduced i.e. without unit dims.
614 class FlattenContiguousRowMajorTransferWritePattern
615     : public OpRewritePattern<vector::TransferWriteOp> {
616   using OpRewritePattern::OpRewritePattern;
617 
618   LogicalResult matchAndRewrite(vector::TransferWriteOp transferWriteOp,
619                                 PatternRewriter &rewriter) const override {
620     auto loc = transferWriteOp.getLoc();
621     Value vector = transferWriteOp.getVector();
622     VectorType vectorType = cast<VectorType>(vector.getType());
623     Value source = transferWriteOp.getSource();
624     MemRefType sourceType = dyn_cast<MemRefType>(source.getType());
625     // Contiguity check is valid on tensors only.
626     if (!sourceType)
627       return failure();
628     if (vectorType.getRank() <= 1)
629       // Already 0D/1D, nothing to do.
630       return failure();
631     if (!hasMatchingInnerContigousShape(
632             sourceType,
633             vectorType.getShape().take_back(vectorType.getRank() - 1)))
634       return failure();
635     int64_t firstContiguousInnerDim =
636         sourceType.getRank() - vectorType.getRank();
637     // TODO: generalize this pattern, relax the requirements here.
638     if (transferWriteOp.hasOutOfBoundsDim())
639       return failure();
640     if (!transferWriteOp.getPermutationMap().isMinorIdentity())
641       return failure();
642     if (transferWriteOp.getMask())
643       return failure();
644     SmallVector<Value> collapsedIndices;
645     if (failed(checkAndCollapseInnerZeroIndices(transferWriteOp.getIndices(),
646                                                 firstContiguousInnerDim,
647                                                 collapsedIndices)))
648       return failure();
649     Value collapsedSource =
650         collapseInnerDims(rewriter, loc, source, firstContiguousInnerDim);
651     MemRefType collapsedSourceType =
652         cast<MemRefType>(collapsedSource.getType());
653     int64_t collapsedRank = collapsedSourceType.getRank();
654     assert(collapsedRank == firstContiguousInnerDim + 1);
655     SmallVector<AffineExpr, 1> dimExprs{
656         getAffineDimExpr(firstContiguousInnerDim, rewriter.getContext())};
657     auto collapsedMap =
658         AffineMap::get(collapsedRank, 0, dimExprs, rewriter.getContext());
659     VectorType flatVectorType = VectorType::get({vectorType.getNumElements()},
660                                                 vectorType.getElementType());
661     Value flatVector =
662         rewriter.create<vector::ShapeCastOp>(loc, flatVectorType, vector);
663     vector::TransferWriteOp flatWrite =
664         rewriter.create<vector::TransferWriteOp>(
665             loc, flatVector, collapsedSource, collapsedIndices, collapsedMap);
666     flatWrite.setInBoundsAttr(rewriter.getBoolArrayAttr({true}));
667     rewriter.eraseOp(transferWriteOp);
668     return success();
669   }
670 };
671 
672 /// Base class for `vector.extract/vector.extract_element(vector.transfer_read)`
673 /// to `memref.load` patterns. The `match` method is shared for both
674 /// `vector.extract` and `vector.extract_element`.
675 template <class VectorExtractOp>
676 class RewriteScalarExtractOfTransferReadBase
677     : public OpRewritePattern<VectorExtractOp> {
678   using Base = OpRewritePattern<VectorExtractOp>;
679 
680 public:
681   RewriteScalarExtractOfTransferReadBase(MLIRContext *context,
682                                          PatternBenefit benefit,
683                                          bool allowMultipleUses)
684       : Base::OpRewritePattern(context, benefit),
685         allowMultipleUses(allowMultipleUses) {}
686 
687   LogicalResult match(VectorExtractOp extractOp) const override {
688     auto xferOp =
689         extractOp.getVector().template getDefiningOp<vector::TransferReadOp>();
690     if (!xferOp)
691       return failure();
692     // Check that we are extracting a scalar and not a sub-vector.
693     if (isa<VectorType>(extractOp.getResult().getType()))
694       return failure();
695     // If multiple uses are not allowed, check if xfer has a single use.
696     if (!allowMultipleUses && !xferOp.getResult().hasOneUse())
697       return failure();
698     // If multiple uses are allowed, check if all the xfer uses are extract ops.
699     if (allowMultipleUses &&
700         !llvm::all_of(xferOp->getUses(), [](OpOperand &use) {
701           return isa<vector::ExtractOp, vector::ExtractElementOp>(
702               use.getOwner());
703         }))
704       return failure();
705     // Mask not supported.
706     if (xferOp.getMask())
707       return failure();
708     // Map not supported.
709     if (!xferOp.getPermutationMap().isMinorIdentity())
710       return failure();
711     // Cannot rewrite if the indices may be out of bounds.
712     if (xferOp.hasOutOfBoundsDim())
713       return failure();
714     return success();
715   }
716 
717 private:
718   bool allowMultipleUses;
719 };
720 
721 /// Rewrite `vector.extractelement(vector.transfer_read)` to `memref.load`.
722 ///
723 /// All the users of the transfer op must be either `vector.extractelement` or
724 /// `vector.extract` ops. If `allowMultipleUses` is set to true, rewrite
725 /// transfer ops with any number of users. Otherwise, rewrite only if the
726 /// extract op is the single user of the transfer op. Rewriting a single
727 /// vector load with multiple scalar loads may negatively affect performance.
728 class RewriteScalarExtractElementOfTransferRead
729     : public RewriteScalarExtractOfTransferReadBase<vector::ExtractElementOp> {
730   using RewriteScalarExtractOfTransferReadBase::
731       RewriteScalarExtractOfTransferReadBase;
732 
733   void rewrite(vector::ExtractElementOp extractOp,
734                PatternRewriter &rewriter) const override {
735     // Construct scalar load.
736     auto loc = extractOp.getLoc();
737     auto xferOp = extractOp.getVector().getDefiningOp<vector::TransferReadOp>();
738     SmallVector<Value> newIndices(xferOp.getIndices().begin(),
739                                   xferOp.getIndices().end());
740     if (extractOp.getPosition()) {
741       AffineExpr sym0, sym1;
742       bindSymbols(extractOp.getContext(), sym0, sym1);
743       OpFoldResult ofr = affine::makeComposedFoldedAffineApply(
744           rewriter, loc, sym0 + sym1,
745           {newIndices[newIndices.size() - 1], extractOp.getPosition()});
746       if (ofr.is<Value>()) {
747         newIndices[newIndices.size() - 1] = ofr.get<Value>();
748       } else {
749         newIndices[newIndices.size() - 1] =
750             rewriter.create<arith::ConstantIndexOp>(loc,
751                                                     *getConstantIntValue(ofr));
752       }
753     }
754     if (isa<MemRefType>(xferOp.getSource().getType())) {
755       rewriter.replaceOpWithNewOp<memref::LoadOp>(extractOp, xferOp.getSource(),
756                                                   newIndices);
757     } else {
758       rewriter.replaceOpWithNewOp<tensor::ExtractOp>(
759           extractOp, xferOp.getSource(), newIndices);
760     }
761   }
762 };
763 
764 /// Rewrite `vector.extractelement(vector.transfer_read)` to `memref.load`.
765 /// Rewrite `vector.extract(vector.transfer_read)` to `memref.load`.
766 ///
767 /// All the users of the transfer op must be either `vector.extractelement` or
768 /// `vector.extract` ops. If `allowMultipleUses` is set to true, rewrite
769 /// transfer ops with any number of users. Otherwise, rewrite only if the
770 /// extract op is the single user of the transfer op. Rewriting a single
771 /// vector load with multiple scalar loads may negatively affect performance.
772 class RewriteScalarExtractOfTransferRead
773     : public RewriteScalarExtractOfTransferReadBase<vector::ExtractOp> {
774   using RewriteScalarExtractOfTransferReadBase::
775       RewriteScalarExtractOfTransferReadBase;
776 
777   void rewrite(vector::ExtractOp extractOp,
778                PatternRewriter &rewriter) const override {
779     // Construct scalar load.
780     auto xferOp = extractOp.getVector().getDefiningOp<vector::TransferReadOp>();
781     SmallVector<Value> newIndices(xferOp.getIndices().begin(),
782                                   xferOp.getIndices().end());
783     for (auto [i, pos] : llvm::enumerate(extractOp.getMixedPosition())) {
784       assert(pos.is<Attribute>() && "Unexpected non-constant index");
785       int64_t offset = cast<IntegerAttr>(pos.get<Attribute>()).getInt();
786       int64_t idx = newIndices.size() - extractOp.getNumIndices() + i;
787       OpFoldResult ofr = affine::makeComposedFoldedAffineApply(
788           rewriter, extractOp.getLoc(),
789           rewriter.getAffineSymbolExpr(0) + offset, {newIndices[idx]});
790       if (ofr.is<Value>()) {
791         newIndices[idx] = ofr.get<Value>();
792       } else {
793         newIndices[idx] = rewriter.create<arith::ConstantIndexOp>(
794             extractOp.getLoc(), *getConstantIntValue(ofr));
795       }
796     }
797     if (isa<MemRefType>(xferOp.getSource().getType())) {
798       rewriter.replaceOpWithNewOp<memref::LoadOp>(extractOp, xferOp.getSource(),
799                                                   newIndices);
800     } else {
801       rewriter.replaceOpWithNewOp<tensor::ExtractOp>(
802           extractOp, xferOp.getSource(), newIndices);
803     }
804   }
805 };
806 
807 /// Rewrite transfer_writes of vectors of size 1 (e.g., vector<1x1xf32>)
808 /// to memref.store.
809 class RewriteScalarWrite : public OpRewritePattern<vector::TransferWriteOp> {
810   using OpRewritePattern::OpRewritePattern;
811 
812   LogicalResult matchAndRewrite(vector::TransferWriteOp xferOp,
813                                 PatternRewriter &rewriter) const override {
814     // Must be a scalar write.
815     auto vecType = xferOp.getVectorType();
816     if (!llvm::all_of(vecType.getShape(), [](int64_t sz) { return sz == 1; }))
817       return failure();
818     // Mask not supported.
819     if (xferOp.getMask())
820       return failure();
821     // Map not supported.
822     if (!xferOp.getPermutationMap().isMinorIdentity())
823       return failure();
824     // Only float and integer element types are supported.
825     Value scalar;
826     if (vecType.getRank() == 0) {
827       // vector.extract does not support vector<f32> etc., so use
828       // vector.extractelement instead.
829       scalar = rewriter.create<vector::ExtractElementOp>(xferOp.getLoc(),
830                                                          xferOp.getVector());
831     } else {
832       SmallVector<int64_t> pos(vecType.getRank(), 0);
833       scalar = rewriter.create<vector::ExtractOp>(xferOp.getLoc(),
834                                                   xferOp.getVector(), pos);
835     }
836     // Construct a scalar store.
837     if (isa<MemRefType>(xferOp.getSource().getType())) {
838       rewriter.replaceOpWithNewOp<memref::StoreOp>(
839           xferOp, scalar, xferOp.getSource(), xferOp.getIndices());
840     } else {
841       rewriter.replaceOpWithNewOp<tensor::InsertOp>(
842           xferOp, scalar, xferOp.getSource(), xferOp.getIndices());
843     }
844     return success();
845   }
846 };
847 
848 } // namespace
849 
850 void mlir::vector::transferOpflowOpt(RewriterBase &rewriter,
851                                      Operation *rootOp) {
852   TransferOptimization opt(rewriter, rootOp);
853   // Run store to load forwarding first since it can expose more dead store
854   // opportunity.
855   rootOp->walk([&](vector::TransferReadOp read) {
856     if (isa<MemRefType>(read.getShapedType()))
857       opt.storeToLoadForwarding(read);
858   });
859   opt.removeDeadOp();
860   rootOp->walk([&](vector::TransferWriteOp write) {
861     if (isa<MemRefType>(write.getShapedType()))
862       opt.deadStoreOp(write);
863   });
864   opt.removeDeadOp();
865 }
866 
867 void mlir::vector::populateScalarVectorTransferLoweringPatterns(
868     RewritePatternSet &patterns, PatternBenefit benefit,
869     bool allowMultipleUses) {
870   patterns.add<RewriteScalarExtractElementOfTransferRead,
871                RewriteScalarExtractOfTransferRead>(patterns.getContext(),
872                                                    benefit, allowMultipleUses);
873   patterns.add<RewriteScalarWrite>(patterns.getContext(), benefit);
874 }
875 
876 void mlir::vector::populateVectorTransferDropUnitDimsPatterns(
877     RewritePatternSet &patterns, PatternBenefit benefit) {
878   patterns
879       .add<TransferReadDropUnitDimsPattern, TransferWriteDropUnitDimsPattern>(
880           patterns.getContext(), benefit);
881   populateShapeCastFoldingPatterns(patterns);
882 }
883 
884 void mlir::vector::populateFlattenVectorTransferPatterns(
885     RewritePatternSet &patterns, PatternBenefit benefit) {
886   patterns.add<FlattenContiguousRowMajorTransferReadPattern,
887                FlattenContiguousRowMajorTransferWritePattern>(
888       patterns.getContext(), benefit);
889   populateShapeCastFoldingPatterns(patterns, benefit);
890 }
891