xref: /llvm-project/mlir/lib/Dialect/Tensor/IR/TensorTilingInterfaceImpl.cpp (revision 2a47ee070145438424b065a35c4a680ea0cb0c1f)
1 //===- TensorTilingInterface.cpp - Tiling Interface  models *- C++ ------*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Dialect/Tensor/IR/TensorTilingInterfaceImpl.h"
10 #include "mlir/Dialect/Affine/IR/AffineOps.h"
11 #include "mlir/Dialect/Affine/Utils.h"
12 #include "mlir/Dialect/Arith/Utils/Utils.h"
13 #include "mlir/Dialect/Linalg/IR/Linalg.h"
14 #include "mlir/Dialect/Linalg/Utils/Utils.h"
15 #include "mlir/Dialect/SCF/IR/SCF.h"
16 #include "mlir/Dialect/Tensor/IR/Tensor.h"
17 #include "mlir/Dialect/Tensor/Utils/Utils.h"
18 #include "mlir/Dialect/Utils/IndexingUtils.h"
19 #include "mlir/Interfaces/TilingInterface.h"
20 #include "mlir/Interfaces/ValueBoundsOpInterface.h"
21 
22 using namespace mlir;
23 using namespace mlir::tensor;
24 
25 namespace {
26 
27 struct PadOpTiling : public TilingInterface::ExternalModel<PadOpTiling, PadOp> {
28 
29   SmallVector<utils::IteratorType> getLoopIteratorTypes(Operation *op) const {
30     auto padOp = cast<PadOp>(op);
31     SmallVector<utils::IteratorType> iteratorTypes(
32         padOp.getResultType().getRank(), utils::IteratorType::parallel);
33     return iteratorTypes;
34   }
35 
36   SmallVector<Range> getIterationDomain(Operation *op, OpBuilder &b) const {
37     ReifiedRankedShapedTypeDims reifiedShapes;
38     (void)reifyResultShapes(b, op, reifiedShapes);
39     OpFoldResult zero = b.getIndexAttr(0);
40     OpFoldResult one = b.getIndexAttr(1);
41     // Initialize all the ranges to {zero, one, one}. All the `ub`s are
42     // overwritten.
43     SmallVector<Range> loopRanges(reifiedShapes[0].size(), {zero, one, one});
44     for (const auto &ub : enumerate(reifiedShapes[0]))
45       loopRanges[ub.index()].size = ub.value();
46     return loopRanges;
47   }
48 
49   FailureOr<TilingResult>
50   getTiledImplementation(Operation *op, OpBuilder &b,
51                          ArrayRef<OpFoldResult> offsets,
52                          ArrayRef<OpFoldResult> sizes) const {
53     FailureOr<TilingResult> result =
54         tensor::bubbleUpPadSlice(b, cast<PadOp>(op), offsets, sizes);
55     if (failed(result))
56       return failure();
57     return result.value();
58   }
59 
60   LogicalResult
61   getResultTilePosition(Operation *op, OpBuilder &b, unsigned resultNumber,
62                         ArrayRef<OpFoldResult> offsets,
63                         ArrayRef<OpFoldResult> sizes,
64                         SmallVectorImpl<OpFoldResult> &resultOffsets,
65                         SmallVectorImpl<OpFoldResult> &resultSizes) const {
66     resultOffsets.assign(offsets.begin(), offsets.end());
67     resultSizes.assign(sizes.begin(), sizes.end());
68     return success();
69   }
70 };
71 
72 template <typename OpTy>
73 static SmallVector<Range> getPackUnPackIterationDomain(OpTy op,
74                                                        OpBuilder &builder) {
75   static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value,
76                 "applies to only pack or unpack operations");
77   OpBuilder::InsertionGuard g(builder);
78   int64_t rank = (std::is_same<OpTy, PackOp>::value) ? op.getSourceRank()
79                                                      : op.getDestRank();
80   OpFoldResult zero = builder.getIndexAttr(0);
81   OpFoldResult one = builder.getIndexAttr(1);
82   ReifiedRankedShapedTypeDims resultShape;
83   (void)reifyResultShapes(builder, op, resultShape);
84   SmallVector<Range> loopBounds(rank);
85   for (auto dim : llvm::seq<int64_t>(0, rank)) {
86     loopBounds[dim].offset = zero;
87     loopBounds[dim].stride = one;
88     loopBounds[dim].size = resultShape[0][dim];
89   }
90   return loopBounds;
91 }
92 
93 static void applyPermToRange(SmallVector<OpFoldResult> &offsets,
94                              SmallVector<OpFoldResult> &sizes,
95                              ArrayRef<int64_t> permutation) {
96   if (permutation.empty())
97     return;
98   applyPermutationToVector<OpFoldResult>(offsets, permutation);
99   applyPermutationToVector<OpFoldResult>(sizes, permutation);
100 }
101 
102 struct PackOpTiling
103     : public TilingInterface::ExternalModel<PackOpTiling, PackOp> {
104 
105   SmallVector<utils::IteratorType> getLoopIteratorTypes(Operation *op) const {
106     // Note that here we only consider untiled dimensions and outer tiled data
107     // dimensions, the inner tiled data dimensions are materialized when
108     // building the body of the operation.
109     auto packOp = cast<PackOp>(op);
110     SmallVector<utils::IteratorType> iteratorTypes(
111         packOp.getSourceRank(), utils::IteratorType::parallel);
112     return iteratorTypes;
113   }
114 
115   SmallVector<Range> getIterationDomain(Operation *op, OpBuilder &b) const {
116     return getPackUnPackIterationDomain<PackOp>(cast<PackOp>(op), b);
117   }
118 
119   FailureOr<TilingResult>
120   getTiledImplementation(Operation *op, OpBuilder &b,
121                          ArrayRef<OpFoldResult> offsets,
122                          ArrayRef<OpFoldResult> sizes) const {
123     auto packOp = cast<PackOp>(op);
124     Location loc = packOp.getLoc();
125 
126     // The tiling is applied on interchanged dimensions. We have to undo the
127     // interchange to map sizes and offsets to the original input.
128     int64_t inputRank = packOp.getSourceRank();
129     SmallVector<OpFoldResult> origOffsets(offsets.begin(), offsets.end());
130     SmallVector<OpFoldResult> origSizes(sizes.begin(), sizes.end());
131     applyPermToRange(origOffsets, origSizes,
132                      invertPermutationVector(packOp.getOuterDimsPerm()));
133 
134     DenseMap<int64_t, OpFoldResult> dimAndTileMapping =
135         packOp.getDimAndTileMapping();
136     SmallVector<OpFoldResult> srcDimValues =
137         tensor::getMixedSizes(b, loc, packOp.getSource());
138     SmallVector<OpFoldResult> inputIndices, inputSizes;
139     for (auto dim : llvm::seq<int64_t>(0, inputRank)) {
140       using AV = affine::AffineValueExpr;
141       affine::AffineBuilder ab(b, loc);
142       AffineExpr dim0, dim1, sym;
143       bindDims(b.getContext(), dim0, dim1);
144       bindSymbols(b.getContext(), sym);
145       if (dimAndTileMapping.count(dim)) {
146         // If the data dimension is tiled, the i-th index is the product of
147         // offset_i and tile_i, and the i-th size is the product of sizes_i and
148         // tile_i.
149         auto avOffset = AV(dim0).bind(origOffsets[dim]);
150         auto avSize = AV(dim0).bind(origSizes[dim]);
151         auto avTileSize = AV(sym).bind(dimAndTileMapping[dim]);
152         inputIndices.push_back(ab.mul(avOffset, avTileSize));
153         inputSizes.push_back(ab.mul(avSize, avTileSize));
154       } else {
155         inputIndices.push_back(origOffsets[dim]);
156         inputSizes.push_back(origSizes[dim]);
157       }
158 
159       // Limit the size of the input operand for incomplete tiles.
160       if (packOp.getPaddingValue()) {
161         OpFoldResult dimSize = srcDimValues[dim];
162         auto avDimSize = AV(dim0).bind(dimSize);
163         auto avInputIdx = AV(dim1).bind(inputIndices.back());
164         inputSizes.back() =
165             ab.min({inputSizes.back(), ab.sub(avDimSize, avInputIdx)});
166       }
167     }
168 
169     auto oneAttr = b.getI64IntegerAttr(1);
170     SmallVector<OpFoldResult> strides(inputRank, oneAttr);
171 
172     SmallVector<Value> tiledOperands;
173     tiledOperands.push_back(b.create<ExtractSliceOp>(
174         loc, packOp.getSource(), inputIndices, inputSizes, strides));
175 
176     SmallVector<OpFoldResult> outputOffsets, outputSizes;
177     if (failed(getResultTilePosition(op, b, 0, offsets, sizes, outputOffsets,
178                                      outputSizes)))
179       return {};
180 
181     strides.append(packOp.getDestRank() - inputRank, oneAttr);
182     auto extractSlice = b.create<ExtractSliceOp>(
183         loc, packOp.getDest(), outputOffsets, outputSizes, strides);
184     tiledOperands.push_back(extractSlice);
185 
186     if (auto val = packOp.getPaddingValue())
187       tiledOperands.push_back(val);
188     for (auto tile : packOp.getInnerTiles())
189       tiledOperands.push_back(tile);
190 
191     Operation *tiledPackOp = b.create<PackOp>(
192         loc, TypeRange{extractSlice.getType()}, tiledOperands, op->getAttrs());
193 
194     return TilingResult{{tiledPackOp},
195                         SmallVector<Value>(tiledPackOp->getResults())};
196   }
197 
198   LogicalResult
199   getResultTilePosition(Operation *op, OpBuilder &b, unsigned resultNumber,
200                         ArrayRef<OpFoldResult> offsets,
201                         ArrayRef<OpFoldResult> sizes,
202                         SmallVectorImpl<OpFoldResult> &resultOffsets,
203                         SmallVectorImpl<OpFoldResult> &resultSizes) const {
204     // The iteration domain is over outer dimensions of packed layout. In this
205     // context, the outer dimensions of `resultOffsets` are `offsets`. The
206     // inner dimensions of `resultOffsets` are zeros because tiling is not
207     // applied to them.
208     auto packOp = cast<PackOp>(op);
209     int64_t inputRank = packOp.getSourceRank();
210     int64_t outputRank = packOp.getDestRank();
211     auto zeroAttr = b.getI64IntegerAttr(0);
212     resultOffsets.assign(offsets.begin(), offsets.end());
213     resultOffsets.append(outputRank - inputRank, zeroAttr);
214 
215     ReifiedRankedShapedTypeDims outputShape;
216     (void)reifyResultShapes(b, packOp, outputShape);
217     resultSizes.assign(sizes.begin(), sizes.end());
218     for (auto dataTileDim : llvm::seq<unsigned>(inputRank, outputRank))
219       resultSizes.push_back(outputShape[0][dataTileDim]);
220 
221     return success();
222   }
223 
224   FailureOr<TilingResult>
225   generateResultTileValue(Operation *op, OpBuilder &b, unsigned resultNumber,
226                           ArrayRef<OpFoldResult> offsets,
227                           ArrayRef<OpFoldResult> sizes) const {
228     auto packOp = cast<PackOp>(op);
229     int64_t numTiles = packOp.getInnerDimsPos().size();
230 
231     // tensor.pack op is fusible (as a producer) only if full inner tiles are
232     // iterated or inner dims are not tiled. Otherwise, it will generate a
233     // sequence of non-trivial ops (for partial tiles).
234     for (auto offset : offsets.take_back(numTiles))
235       if (!isConstantIntValue(offset, 0))
236         return failure();
237 
238     for (auto iter :
239          llvm::zip_equal(packOp.getMixedTiles(), sizes.take_back(numTiles)))
240       if (!isEqualConstantIntOrValue(std::get<0>(iter), std::get<1>(iter)))
241         return failure();
242 
243     FailureOr<TilingResult> tilingResult = getTiledImplementation(
244         op, b, offsets.drop_back(numTiles), sizes.drop_back(numTiles));
245     if (failed(tilingResult))
246       return failure();
247     return tilingResult.value();
248   }
249 };
250 
251 struct UnpackTileDimInfo {
252   bool isAlignedToInnerTileSize;
253   OpFoldResult sourceOffset;
254   OpFoldResult sourceSize;
255   OpFoldResult resultOffset;
256   OpFoldResult destExpandedSize;
257 };
258 
259 /// Returns the needed information for tiling unpack op on `tileDim` with given
260 /// `tileOffset` and `tileSize`. For more details, see the comment of the
261 /// `getTiledImplementation`.
262 static UnpackTileDimInfo getUnpackTileDimInfo(OpBuilder &b, UnPackOp unpackOp,
263                                               int64_t tileDim,
264                                               OpFoldResult tileOffset,
265                                               OpFoldResult tileSize) {
266   UnpackTileDimInfo info;
267   Attribute zeroAttr = b.getIndexAttr(0);
268   Attribute oneAttr = b.getIndexAttr(1);
269   DenseMap<int64_t, OpFoldResult> dimAndTileMapping =
270       unpackOp.getDimAndTileMapping();
271   // The dimension is not one of packed data dimension.
272   if (!dimAndTileMapping.count(tileDim)) {
273     info.isAlignedToInnerTileSize = true;
274     info.sourceOffset = tileOffset;
275     info.sourceSize = tileSize;
276     info.resultOffset = zeroAttr;
277     info.destExpandedSize = tileSize;
278     return info;
279   }
280 
281   Location loc = unpackOp.getLoc();
282   using AV = affine::AffineValueExpr;
283   affine::AffineBuilder ab(b, loc);
284   AffineExpr dim0, dim1, sym0;
285   bindDims(b.getContext(), dim0, dim1);
286   bindSymbols(b.getContext(), sym0);
287 
288   OpFoldResult innerTileSize = dimAndTileMapping[tileDim];
289 
290   info.isAlignedToInnerTileSize = false;
291   FailureOr<int64_t> cstSize = ValueBoundsConstraintSet::computeConstantBound(
292       presburger::BoundType::UB, tileSize,
293       /*stopCondition=*/nullptr, /*closedUB=*/true);
294   std::optional<int64_t> cstInnerSize = getConstantIntValue(innerTileSize);
295   if (!failed(cstSize) && cstInnerSize) {
296     if (*cstSize % *cstInnerSize == 0)
297       info.isAlignedToInnerTileSize = true;
298 
299     // If the tiling size equals to the inner tiling size, the outer dims are
300     // always 1.
301     if (*cstInnerSize == *cstSize) {
302       auto lhs = AV(dim0).bind(tileOffset);
303       auto rhs = AV(dim1).bind(innerTileSize);
304       info.sourceOffset = ab.floor(lhs, rhs);
305       info.sourceSize = oneAttr;
306       info.resultOffset = zeroAttr;
307       info.destExpandedSize = tileSize;
308       return info;
309     }
310   }
311 
312   if (info.isAlignedToInnerTileSize) {
313     info.sourceOffset =
314         ab.floor(AV(dim0).bind(tileOffset), AV(dim1).bind(innerTileSize));
315     info.resultOffset = zeroAttr;
316     info.destExpandedSize = tileSize;
317 
318     // The ceilDiv is needed here because there could be incomplete tile even
319     // it is perfect tiling cases. E.g.,
320     //   %0 = unpack tensor<33x2xf32> into tensor<64xf32>
321     // If the tiling size is 32, there will be 3 tiles. Two of them have
322     // size=32; one of them have size=2. The size is represented using
323     // affine_min op; we need ceilDiv.
324     info.sourceSize =
325         ab.ceil(AV(dim0).bind(tileSize), AV(dim1).bind(innerTileSize));
326     return info;
327   }
328 
329   affine::DivModValue firstCoord = affine::getDivMod(
330       b, loc, getValueOrCreateConstantIndexOp(b, loc, tileOffset),
331       getValueOrCreateConstantIndexOp(b, loc, innerTileSize));
332   OpFoldResult tileExclusiveBound =
333       ab.add(AV(dim0).bind(tileOffset), AV(dim1).bind(tileSize));
334   affine::DivModValue lastCoord = affine::getDivMod(
335       b, loc,
336       getValueOrCreateConstantIndexOp(
337           b, loc,
338           ab.sub(AV(dim0).bind(tileExclusiveBound), AV(dim1).bind(oneAttr))),
339       getValueOrCreateConstantIndexOp(b, loc, innerTileSize));
340 
341   OpFoldResult lengthMinusOne = ab.sub(AV(dim0).bind(lastCoord.quotient),
342                                        AV(dim1).bind(firstCoord.quotient));
343   info.sourceSize =
344       ab.add(AV(dim0).bind(lengthMinusOne), AV(dim1).bind(oneAttr));
345   info.sourceOffset = firstCoord.quotient;
346   info.resultOffset = firstCoord.remainder;
347   // Do not create an Affine ops for expanded size because the affine op is too
348   // complicated which would trigger an issue in affine ops simplification.
349   info.destExpandedSize = b.createOrFold<arith::MulIOp>(
350       loc, getValueOrCreateConstantIndexOp(b, loc, info.sourceSize),
351       getValueOrCreateConstantIndexOp(b, loc, innerTileSize));
352   return info;
353 }
354 
355 struct UnPackOpTiling
356     : public TilingInterface::ExternalModel<UnPackOpTiling, UnPackOp> {
357 
358   SmallVector<utils::IteratorType> getLoopIteratorTypes(Operation *op) const {
359     auto unpackOp = cast<UnPackOp>(op);
360     SmallVector<utils::IteratorType> iteratorTypes(
361         unpackOp.getDestRank(), utils::IteratorType::parallel);
362     return iteratorTypes;
363   }
364 
365   SmallVector<Range> getIterationDomain(Operation *op, OpBuilder &b) const {
366     return getPackUnPackIterationDomain<UnPackOp>(cast<UnPackOp>(op), b);
367   }
368 
369   /// There are two cases in tiling unpack ops. If the tiling size is aligned to
370   /// the inner tile size, the corresponding tiles of source are all complete.
371   /// Otherwise, there are in-complete tiles. We will need to expand the slice
372   /// of source for getting complete tiles. The tiled unpack op unpacks more
373   /// data from source, so We'll need an extract_slice op to shift and truncate
374   /// the output.
375   /// Take Nn_to_N as an example. Say that N=32, n=8, and tiling_size=15. The
376   /// coordinates of second tile (i.e., result[15..31]) are
377   /// [(1, 7), (2, 0,), (2, 1) ... (3, 6), (3, 7)]. The first row and the last
378   /// row are incomplete tiles. To represent the unpack op, we have to complete
379   /// the rows. I.e., the input coordinates would start with (1, 0); end with
380   /// (3, 7). In this context, the tiled unpack produces a (3 * n) elements
381   /// because there are 3 rows in total. Follow by a tensor.extract_slice op, we
382   /// can get the actual result.
383   FailureOr<TilingResult>
384   getTiledImplementation(Operation *op, OpBuilder &b,
385                          ArrayRef<OpFoldResult> offsets,
386                          ArrayRef<OpFoldResult> sizes) const {
387     auto unpackOp = cast<UnPackOp>(op);
388     int64_t srcRank = unpackOp.getSourceRank();
389     int64_t destRank = unpackOp.getDestRank();
390     int64_t numInnerTiles = srcRank - destRank;
391     Location loc = unpackOp.getLoc();
392 
393     // The perfect tiling case indicates that the tiling sizes are multiple of
394     // inner_tile_size. In this context, no extra data is needed when
395     // representing the tiled unpack op.
396     bool isPerfectTilingCase = true;
397     Attribute oneAttr = b.getIndexAttr(1);
398     SmallVector<OpFoldResult> sliceSrcStrides(destRank, oneAttr);
399     SmallVector<OpFoldResult> sliceSrcIndices, sliceSrcSizes;
400     SmallVector<OpFoldResult> destExpandedSizes, resultOffsetsFromDest;
401     for (auto dim : llvm::seq<int64_t>(0, destRank)) {
402       UnpackTileDimInfo info =
403           getUnpackTileDimInfo(b, unpackOp, dim, offsets[dim], sizes[dim]);
404       if (!info.isAlignedToInnerTileSize)
405         isPerfectTilingCase = false;
406       sliceSrcIndices.push_back(info.sourceOffset);
407       sliceSrcSizes.push_back(info.sourceSize);
408       destExpandedSizes.push_back(info.destExpandedSize);
409       resultOffsetsFromDest.push_back(info.resultOffset);
410     }
411 
412     // The tiling is applied on destination dimensions. We have to apply the
413     // interchange on source dimensions if outer_dims_perm is set.
414     applyPermToRange(sliceSrcIndices, sliceSrcSizes,
415                      unpackOp.getOuterDimsPerm());
416     Attribute zeroAttr = b.getIndexAttr(0);
417     sliceSrcIndices.append(numInnerTiles, zeroAttr);
418     sliceSrcSizes.append(unpackOp.getMixedTiles());
419     sliceSrcStrides.append(numInnerTiles, oneAttr);
420     Value sliceSource =
421         b.create<ExtractSliceOp>(loc, unpackOp.getSource(), sliceSrcIndices,
422                                  sliceSrcSizes, sliceSrcStrides);
423 
424     SmallVector<OpFoldResult> destStrides(destRank, oneAttr);
425     Value sliceDest;
426     if (isPerfectTilingCase) {
427       sliceDest = b.create<ExtractSliceOp>(loc, unpackOp.getDest(), offsets,
428                                            sizes, destStrides);
429     } else {
430       sliceDest = b.create<EmptyOp>(loc, destExpandedSizes,
431                                     unpackOp.getDestType().getElementType());
432     }
433 
434     SmallVector<Value> tiledOperands = {sliceSource, sliceDest};
435     for (auto tile : unpackOp.getInnerTiles())
436       tiledOperands.push_back(tile);
437 
438     Operation *tiledUnpackOp = b.create<UnPackOp>(
439         loc, TypeRange{sliceDest.getType()}, tiledOperands, op->getAttrs());
440 
441     if (isPerfectTilingCase)
442       return TilingResult{{tiledUnpackOp},
443                           SmallVector<Value>(tiledUnpackOp->getResults())};
444 
445     auto extractSlice =
446         b.create<ExtractSliceOp>(loc, tiledUnpackOp->getResult(0),
447                                  resultOffsetsFromDest, sizes, destStrides);
448     return TilingResult{{tiledUnpackOp}, {extractSlice.getResult()}};
449   }
450 
451   LogicalResult
452   getResultTilePosition(Operation *op, OpBuilder &b, unsigned resultNumber,
453                         ArrayRef<OpFoldResult> offsets,
454                         ArrayRef<OpFoldResult> sizes,
455                         SmallVectorImpl<OpFoldResult> &resultOffsets,
456                         SmallVectorImpl<OpFoldResult> &resultSizes) const {
457     resultOffsets = llvm::to_vector(offsets);
458     resultSizes = llvm::to_vector(sizes);
459     return success();
460   }
461 
462   FailureOr<TilingResult>
463   generateResultTileValue(Operation *op, OpBuilder &b, unsigned resultNumber,
464                           ArrayRef<OpFoldResult> offsets,
465                           ArrayRef<OpFoldResult> sizes) const {
466     FailureOr<TilingResult> tilingResult =
467         getTiledImplementation(op, b, offsets, sizes);
468     if (failed(tilingResult))
469       return failure();
470     return tilingResult.value();
471   }
472 };
473 
474 } // namespace
475 
476 FailureOr<TilingResult> tensor::bubbleUpPadSlice(OpBuilder &b,
477                                                  tensor::PadOp padOp,
478                                                  ArrayRef<OpFoldResult> offsets,
479                                                  ArrayRef<OpFoldResult> sizes,
480                                                  bool generateZeroSliceGuard) {
481   // Only constant padding value supported.
482   Value padValue = padOp.getConstantPaddingValue();
483   if (!padValue)
484     return failure();
485 
486   // Helper variables and functions for various arithmetic operations. These
487   // are used extensively for computing new offset/length and padding values.
488   Location loc = padOp->getLoc();
489   AffineExpr dim0, dim1;
490   bindDims(b.getContext(), dim0, dim1);
491   // Add two integers.
492   auto addMap = AffineMap::get(2, 0, {dim0 + dim1});
493   auto add = [&](OpFoldResult v1, OpFoldResult v2) {
494     return affine::makeComposedFoldedAffineApply(b, loc, addMap, {v1, v2});
495   };
496   // Subtract two integers.
497   auto subMap = AffineMap::get(2, 0, {dim0 - dim1});
498   auto sub = [&](OpFoldResult v1, OpFoldResult v2) {
499     return affine::makeComposedFoldedAffineApply(b, loc, subMap, {v1, v2});
500   };
501   // Take the minimum of two integers.
502   auto idMap = AffineMap::getMultiDimIdentityMap(2, b.getContext());
503   auto min = [&](OpFoldResult v1, OpFoldResult v2) {
504     return affine::makeComposedFoldedAffineMin(b, loc, idMap, {v1, v2});
505   };
506   // Take the maximum of two integers.
507   auto max = [&](OpFoldResult v1, OpFoldResult v2) {
508     return affine::makeComposedFoldedAffineMax(b, loc, idMap, {v1, v2});
509   };
510   // Zero index-typed integer.
511   OpFoldResult zero = b.getIndexAttr(0);
512 
513   // Compute new offsets, lengths, low padding, high padding.
514   SmallVector<OpFoldResult> newOffsets, newLengths, newStrides;
515   SmallVector<OpFoldResult> newLows, newHighs;
516   // Set to true if the original data source is not read at all.
517   bool hasZeroLen = false;
518   // Same as hasZeroLen, but for dynamic dimension sizes. This condition
519   // is true if the original data source turns out to be unused at runtime.
520   Value dynHasZeroLenCond;
521 
522   int64_t rank = padOp.getSourceType().getRank();
523   for (unsigned dim = 0; dim < rank; ++dim) {
524     auto low = padOp.getMixedLowPad()[dim];
525     bool hasLowPad = !isConstantIntValue(low, 0);
526     auto high = padOp.getMixedHighPad()[dim];
527     bool hasHighPad = !isConstantIntValue(high, 0);
528     auto offset = offsets[dim];
529     auto length = sizes[dim];
530     auto srcSize = tensor::getMixedSize(b, loc, padOp.getSource(), dim);
531 
532     // The new amount of low padding is `low - offset`. Except for the case
533     // where none of the low padding is read. In that case, the new amount of
534     // low padding is zero.
535     //
536     // Optimization: If low = 0, then newLow = 0.
537     OpFoldResult newLow = hasLowPad ? max(zero, sub(low, offset)) : zero;
538     newLows.push_back(newLow);
539 
540     // Start reading the data from position `offset - low`. Since the original
541     // read may have started in the low padding zone, this value could be
542     // negative. Therefore, start reading from:
543     //
544     // max(offset - low, 0)
545     //
546     // The original read could also have started in the high padding zone.
547     // In that case, set the offset to the end of source tensor. The new
548     // ExtractSliceOp length will be zero in that case. (Effectively reading
549     // no data from the source.)
550     //
551     // Optimization: If low = 0, then the formula can be simplified.
552     OpFoldResult newOffset = hasLowPad
553                                  ? min(max(sub(offset, low), zero), srcSize)
554                                  : min(offset, srcSize);
555     newOffsets.push_back(newOffset);
556 
557     // The original ExtractSliceOp was reading until position `offset +
558     // length`. Therefore, the corresponding position within the source tensor
559     // is:
560     //
561     // offset + length - low
562     //
563     // In case the original ExtractSliceOp stopped reading within the low
564     // padding zone, this value can be negative. In that case, the end
565     // position of the read should be zero. (Similar to newOffset.)
566     //
567     // The original read could also have stopped in the high padding zone.
568     // In that case, set the end positition of the read should be the end of
569     // the source tensor. (Similar to newOffset.)
570     //
571     // endLoc = min(max(offset - low + length, 0), srcSize)
572     //
573     // The new ExtractSliceOp length is `endLoc - newOffset`.
574     //
575     // Optimization: If low = 0, then the formula can be simplified.
576     OpFoldResult endLoc =
577         hasLowPad ? min(max(add(sub(offset, low), length), zero), srcSize)
578                   : min(add(offset, length), srcSize);
579     OpFoldResult newLength = sub(endLoc, newOffset);
580     newLengths.push_back(newLength);
581 
582     // Check if newLength is zero. In that case, no SubTensorOp should be
583     // executed.
584     if (isConstantIntValue(newLength, 0)) {
585       hasZeroLen = true;
586     } else if (!hasZeroLen) {
587       Value check = b.create<arith::CmpIOp>(
588           loc, arith::CmpIPredicate::eq,
589           getValueOrCreateConstantIndexOp(b, loc, newLength),
590           getValueOrCreateConstantIndexOp(b, loc, zero));
591       dynHasZeroLenCond =
592           dynHasZeroLenCond
593               ? b.create<arith::OrIOp>(loc, check, dynHasZeroLenCond)
594               : check;
595     }
596 
597     // The amount of high padding is simply the number of elements remaining,
598     // so that the result has the same length as the original ExtractSliceOp.
599     // As an optimization, if the original high padding is zero, then the new
600     // high padding must also be zero.
601     OpFoldResult newHigh =
602         hasHighPad ? sub(sub(length, newLength), newLow) : zero;
603     newHighs.push_back(newHigh);
604 
605     // Only unit stride supported.
606     newStrides.push_back(b.getIndexAttr(1));
607   }
608 
609   // The shape of the result can be obtained from the sizes passed in.
610   SmallVector<Value> dynDims;
611   SmallVector<int64_t> shape;
612   dispatchIndexOpFoldResults(sizes, dynDims, shape);
613   RankedTensorType resultType =
614       RankedTensorType::get(shape, padOp.getResultType().getElementType());
615 
616   // Insert cast to ensure that types match. (May be folded away.)
617   auto castResult = [&](Value val) -> Value {
618     if (resultType == val.getType())
619       return val;
620     return b.create<tensor::CastOp>(loc, resultType, val);
621   };
622 
623   // In cases where the original data source is unused: Emit a GenerateOp and
624   // do not generate a SliceOp. (The result shape of the SliceOp would
625   // have a dimension of size 0, the semantics of which is unclear.)
626   auto createGenerateOp = [&]() {
627     // Create GenerateOp.
628     auto generateOp = b.create<tensor::GenerateOp>(
629         loc, resultType, dynDims,
630         [&](OpBuilder &builder, Location gLoc, ValueRange indices) {
631           builder.create<tensor::YieldOp>(gLoc, padValue);
632         });
633     return generateOp;
634   };
635 
636   // Emit a SliceOp and a PadOp. Should not be used in cases where
637   // the result shape of the new SliceOp has a zero dimension.
638   auto createPadOfExtractSlice = [&]() {
639     // Create pad(extract_slice(x)).
640     Value newSliceOp = b.create<tensor::ExtractSliceOp>(
641         loc, padOp.getSource(), newOffsets, newLengths, newStrides);
642     auto newPadOp = b.create<PadOp>(
643         loc, Type(), newSliceOp, newLows, newHighs,
644         /*nofold=*/padOp.getNofold(),
645         getPrunedAttributeList(padOp, PadOp::getAttributeNames()));
646 
647     // Copy region to new PadOp.
648     IRMapping bvm;
649     padOp.getRegion().cloneInto(&newPadOp.getRegion(), bvm);
650 
651     // Cast result and return.
652     return newPadOp;
653   };
654 
655   // Rewrite extract_slice(pad(x)) into a GenerateOp it is statically known that
656   // the original data source x is not used.
657   if (hasZeroLen) {
658     Operation *generateOp = createGenerateOp();
659     return TilingResult{{generateOp}, {castResult(generateOp->getResult(0))}};
660   }
661 
662   // If there are dynamic dimensions: Generate an scf.if check to avoid
663   // creating SliceOps with result dimensions of size 0 at runtime.
664   if (generateZeroSliceGuard && dynHasZeroLenCond) {
665     Operation *thenOp;
666     Operation *elseOp;
667     auto result = b.create<scf::IfOp>(
668         loc, dynHasZeroLenCond,
669         /*thenBuilder=*/
670         [&](OpBuilder &b, Location loc) {
671           thenOp = createGenerateOp();
672           b.create<scf::YieldOp>(loc, castResult(thenOp->getResult(0)));
673         },
674         /*elseBuilder=*/
675         [&](OpBuilder &b, Location loc) {
676           elseOp = createPadOfExtractSlice();
677           b.create<scf::YieldOp>(loc, castResult(elseOp->getResult(0)));
678         });
679     return TilingResult{{elseOp}, SmallVector<Value>(result->getResults())};
680   }
681 
682   Operation *newPadOp = createPadOfExtractSlice();
683   return TilingResult{{newPadOp}, {castResult(newPadOp->getResult(0))}};
684 }
685 
686 void mlir::tensor::registerTilingInterfaceExternalModels(
687     DialectRegistry &registry) {
688   registry.addExtension(+[](MLIRContext *ctx, TensorDialect *dialect) {
689     tensor::PadOp::attachInterface<PadOpTiling>(*ctx);
690     tensor::PackOp::attachInterface<PackOpTiling>(*ctx);
691     tensor::UnPackOp::attachInterface<UnPackOpTiling>(*ctx);
692   });
693 }
694 
695 void mlir::tensor::registerTilingInterfaceExternalModelsForPackUnPackOps(
696     DialectRegistry &registry) {
697   registry.addExtension(+[](MLIRContext *ctx, TensorDialect *dialect) {
698     tensor::PackOp::attachInterface<PackOpTiling>(*ctx);
699     tensor::UnPackOp::attachInterface<UnPackOpTiling>(*ctx);
700   });
701 }
702