xref: /llvm-project/mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp (revision f22af204edfd1a8f16511b2635ed41c00fc5502f)
1 //===- SparseVectorization.cpp - Vectorization of sparsified loops --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // A pass that converts loops generated by the sparse compiler into a form that
10 // can exploit SIMD instructions of the target architecture. Note that this pass
11 // ensures the sparse compiler can generate efficient SIMD (including ArmSVE
12 // support) with proper separation of concerns as far as sparsification and
13 // vectorization is concerned. However, this pass is not the final abstraction
14 // level we want, and not the general vectorizer we want either. It forms a good
15 // stepping stone for incremental future improvements though.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "CodegenUtils.h"
20 #include "LoopEmitter.h"
21 
22 #include "mlir/Dialect/Affine/IR/AffineOps.h"
23 #include "mlir/Dialect/Arith/IR/Arith.h"
24 #include "mlir/Dialect/Complex/IR/Complex.h"
25 #include "mlir/Dialect/Math/IR/Math.h"
26 #include "mlir/Dialect/MemRef/IR/MemRef.h"
27 #include "mlir/Dialect/SCF/IR/SCF.h"
28 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
29 #include "mlir/Dialect/Vector/IR/VectorOps.h"
30 #include "mlir/IR/Matchers.h"
31 
32 using namespace mlir;
33 using namespace mlir::sparse_tensor;
34 
35 namespace {
36 
37 /// Target SIMD properties:
38 ///   vectorLength: # packed data elements (viz. vector<16xf32> has length 16)
39 ///   enableVLAVectorization: enables scalable vectors (viz. ARMSve)
40 ///   enableSIMDIndex32: uses 32-bit indices in gather/scatter for efficiency
41 struct VL {
42   unsigned vectorLength;
43   bool enableVLAVectorization;
44   bool enableSIMDIndex32;
45 };
46 
47 /// Helper test for invariant value (defined outside given block).
48 static bool isInvariantValue(Value val, Block *block) {
49   return val.getDefiningOp() && val.getDefiningOp()->getBlock() != block;
50 }
51 
52 /// Helper test for invariant argument (defined outside given block).
53 static bool isInvariantArg(BlockArgument arg, Block *block) {
54   return arg.getOwner() != block;
55 }
56 
57 /// Constructs vector type for element type.
58 static VectorType vectorType(VL vl, Type etp) {
59   return VectorType::get(vl.vectorLength, etp, vl.enableVLAVectorization);
60 }
61 
62 /// Constructs vector type from a memref value.
63 static VectorType vectorType(VL vl, Value mem) {
64   return vectorType(vl, getMemRefType(mem).getElementType());
65 }
66 
67 /// Constructs vector iteration mask.
68 static Value genVectorMask(PatternRewriter &rewriter, Location loc, VL vl,
69                            Value iv, Value lo, Value hi, Value step) {
70   VectorType mtp = vectorType(vl, rewriter.getI1Type());
71   // Special case if the vector length evenly divides the trip count (for
72   // example, "for i = 0, 128, 16"). A constant all-true mask is generated
73   // so that all subsequent masked memory operations are immediately folded
74   // into unconditional memory operations.
75   IntegerAttr loInt, hiInt, stepInt;
76   if (matchPattern(lo, m_Constant(&loInt)) &&
77       matchPattern(hi, m_Constant(&hiInt)) &&
78       matchPattern(step, m_Constant(&stepInt))) {
79     if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0) {
80       Value trueVal = constantI1(rewriter, loc, true);
81       return rewriter.create<vector::BroadcastOp>(loc, mtp, trueVal);
82     }
83   }
84   // Otherwise, generate a vector mask that avoids overrunning the upperbound
85   // during vector execution. Here we rely on subsequent loop optimizations to
86   // avoid executing the mask in all iterations, for example, by splitting the
87   // loop into an unconditional vector loop and a scalar cleanup loop.
88   auto min = AffineMap::get(
89       /*dimCount=*/2, /*symbolCount=*/1,
90       {rewriter.getAffineSymbolExpr(0),
91        rewriter.getAffineDimExpr(0) - rewriter.getAffineDimExpr(1)},
92       rewriter.getContext());
93   Value end = rewriter.createOrFold<affine::AffineMinOp>(
94       loc, min, ValueRange{hi, iv, step});
95   return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
96 }
97 
98 /// Generates a vectorized invariant. Here we rely on subsequent loop
99 /// optimizations to hoist the invariant broadcast out of the vector loop.
100 static Value genVectorInvariantValue(PatternRewriter &rewriter, VL vl,
101                                      Value val) {
102   VectorType vtp = vectorType(vl, val.getType());
103   return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
104 }
105 
106 /// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi],
107 /// where 'lo' denotes the current index and 'hi = lo + vl - 1'. Note
108 /// that the sparse compiler can only generate indirect loads in
109 /// the last index, i.e. back().
110 static Value genVectorLoad(PatternRewriter &rewriter, Location loc, VL vl,
111                            Value mem, ArrayRef<Value> idxs, Value vmask) {
112   VectorType vtp = vectorType(vl, mem);
113   Value pass = constantZero(rewriter, loc, vtp);
114   if (llvm::isa<VectorType>(idxs.back().getType())) {
115     SmallVector<Value> scalarArgs(idxs.begin(), idxs.end());
116     Value indexVec = idxs.back();
117     scalarArgs.back() = constantIndex(rewriter, loc, 0);
118     return rewriter.create<vector::GatherOp>(loc, vtp, mem, scalarArgs,
119                                              indexVec, vmask, pass);
120   }
121   return rewriter.create<vector::MaskedLoadOp>(loc, vtp, mem, idxs, vmask,
122                                                pass);
123 }
124 
125 /// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs
126 /// where 'lo' denotes the current index and 'hi = lo + vl - 1'. Note
127 /// that the sparse compiler can only generate indirect stores in
128 /// the last index, i.e. back().
129 static void genVectorStore(PatternRewriter &rewriter, Location loc, Value mem,
130                            ArrayRef<Value> idxs, Value vmask, Value rhs) {
131   if (llvm::isa<VectorType>(idxs.back().getType())) {
132     SmallVector<Value> scalarArgs(idxs.begin(), idxs.end());
133     Value indexVec = idxs.back();
134     scalarArgs.back() = constantIndex(rewriter, loc, 0);
135     rewriter.create<vector::ScatterOp>(loc, mem, scalarArgs, indexVec, vmask,
136                                        rhs);
137     return;
138   }
139   rewriter.create<vector::MaskedStoreOp>(loc, mem, idxs, vmask, rhs);
140 }
141 
142 /// Detects a vectorizable reduction operations and returns the
143 /// combining kind of reduction on success in `kind`.
144 static bool isVectorizableReduction(Value red, Value iter,
145                                     vector::CombiningKind &kind) {
146   if (auto addf = red.getDefiningOp<arith::AddFOp>()) {
147     kind = vector::CombiningKind::ADD;
148     return addf->getOperand(0) == iter || addf->getOperand(1) == iter;
149   }
150   if (auto addi = red.getDefiningOp<arith::AddIOp>()) {
151     kind = vector::CombiningKind::ADD;
152     return addi->getOperand(0) == iter || addi->getOperand(1) == iter;
153   }
154   if (auto subf = red.getDefiningOp<arith::SubFOp>()) {
155     kind = vector::CombiningKind::ADD;
156     return subf->getOperand(0) == iter;
157   }
158   if (auto subi = red.getDefiningOp<arith::SubIOp>()) {
159     kind = vector::CombiningKind::ADD;
160     return subi->getOperand(0) == iter;
161   }
162   if (auto mulf = red.getDefiningOp<arith::MulFOp>()) {
163     kind = vector::CombiningKind::MUL;
164     return mulf->getOperand(0) == iter || mulf->getOperand(1) == iter;
165   }
166   if (auto muli = red.getDefiningOp<arith::MulIOp>()) {
167     kind = vector::CombiningKind::MUL;
168     return muli->getOperand(0) == iter || muli->getOperand(1) == iter;
169   }
170   if (auto andi = red.getDefiningOp<arith::AndIOp>()) {
171     kind = vector::CombiningKind::AND;
172     return andi->getOperand(0) == iter || andi->getOperand(1) == iter;
173   }
174   if (auto ori = red.getDefiningOp<arith::OrIOp>()) {
175     kind = vector::CombiningKind::OR;
176     return ori->getOperand(0) == iter || ori->getOperand(1) == iter;
177   }
178   if (auto xori = red.getDefiningOp<arith::XOrIOp>()) {
179     kind = vector::CombiningKind::XOR;
180     return xori->getOperand(0) == iter || xori->getOperand(1) == iter;
181   }
182   return false;
183 }
184 
185 /// Generates an initial value for a vector reduction, following the scheme
186 /// given in Chapter 5 of "The Software Vectorization Handbook", where the
187 /// initial scalar value is correctly embedded in the vector reduction value,
188 /// and a straightforward horizontal reduction will complete the operation.
189 /// Value 'r' denotes the initial value of the reduction outside the loop.
190 static Value genVectorReducInit(PatternRewriter &rewriter, Location loc,
191                                 Value red, Value iter, Value r,
192                                 VectorType vtp) {
193   vector::CombiningKind kind;
194   if (!isVectorizableReduction(red, iter, kind))
195     llvm_unreachable("unknown reduction");
196   switch (kind) {
197   case vector::CombiningKind::ADD:
198   case vector::CombiningKind::XOR:
199     // Initialize reduction vector to: | 0 | .. | 0 | r |
200     return rewriter.create<vector::InsertElementOp>(
201         loc, r, constantZero(rewriter, loc, vtp),
202         constantIndex(rewriter, loc, 0));
203   case vector::CombiningKind::MUL:
204     // Initialize reduction vector to: | 1 | .. | 1 | r |
205     return rewriter.create<vector::InsertElementOp>(
206         loc, r, constantOne(rewriter, loc, vtp),
207         constantIndex(rewriter, loc, 0));
208   case vector::CombiningKind::AND:
209   case vector::CombiningKind::OR:
210     // Initialize reduction vector to: | r | .. | r | r |
211     return rewriter.create<vector::BroadcastOp>(loc, vtp, r);
212   default:
213     break;
214   }
215   llvm_unreachable("unknown reduction kind");
216 }
217 
218 /// This method is called twice to analyze and rewrite the given subscripts.
219 /// The first call (!codegen) does the analysis. Then, on success, the second
220 /// call (codegen) yields the proper vector form in the output parameter
221 /// vector 'idxs'. This mechanism ensures that analysis and rewriting code
222 /// stay in sync. Note that the analyis part is simple because the sparse
223 /// compiler only generates relatively simple subscript expressions.
224 ///
225 /// See https://llvm.org/docs/GetElementPtr.html for some background on
226 /// the complications described below.
227 ///
228 /// We need to generate a position/coordinate load from the sparse storage
229 /// scheme.  Narrower data types need to be zero extended before casting
230 /// the value into the `index` type used for looping and indexing.
231 ///
232 /// For the scalar case, subscripts simply zero extend narrower indices
233 /// into 64-bit values before casting to an index type without a performance
234 /// penalty. Indices that already are 64-bit, in theory, cannot express the
235 /// full range since the LLVM backend defines addressing in terms of an
236 /// unsigned pointer/signed index pair.
237 static bool vectorizeSubscripts(PatternRewriter &rewriter, scf::ForOp forOp,
238                                 VL vl, ValueRange subs, bool codegen,
239                                 Value vmask, SmallVectorImpl<Value> &idxs) {
240   unsigned d = 0;
241   unsigned dim = subs.size();
242   Block *block = &forOp.getRegion().front();
243   for (auto sub : subs) {
244     bool innermost = ++d == dim;
245     // Invariant subscripts in outer dimensions simply pass through.
246     // Note that we rely on LICM to hoist loads where all subscripts
247     // are invariant in the innermost loop.
248     // Example:
249     //   a[inv][i] for inv
250     if (isInvariantValue(sub, block)) {
251       if (innermost)
252         return false;
253       if (codegen)
254         idxs.push_back(sub);
255       continue; // success so far
256     }
257     // Invariant block arguments (including outer loop indices) in outer
258     // dimensions simply pass through. Direct loop indices in the
259     // innermost loop simply pass through as well.
260     // Example:
261     //   a[i][j] for both i and j
262     if (auto arg = llvm::dyn_cast<BlockArgument>(sub)) {
263       if (isInvariantArg(arg, block) == innermost)
264         return false;
265       if (codegen)
266         idxs.push_back(sub);
267       continue; // success so far
268     }
269     // Look under the hood of casting.
270     auto cast = sub;
271     while (true) {
272       if (auto icast = cast.getDefiningOp<arith::IndexCastOp>())
273         cast = icast->getOperand(0);
274       else if (auto ecast = cast.getDefiningOp<arith::ExtUIOp>())
275         cast = ecast->getOperand(0);
276       else
277         break;
278     }
279     // Since the index vector is used in a subsequent gather/scatter
280     // operations, which effectively defines an unsigned pointer + signed
281     // index, we must zero extend the vector to an index width. For 8-bit
282     // and 16-bit values, an 32-bit index width suffices. For 32-bit values,
283     // zero extending the elements into 64-bit loses some performance since
284     // the 32-bit indexed gather/scatter is more efficient than the 64-bit
285     // index variant (if the negative 32-bit index space is unused, the
286     // enableSIMDIndex32 flag can preserve this performance). For 64-bit
287     // values, there is no good way to state that the indices are unsigned,
288     // which creates the potential of incorrect address calculations in the
289     // unlikely case we need such extremely large offsets.
290     // Example:
291     //    a[ ind[i] ]
292     if (auto load = cast.getDefiningOp<memref::LoadOp>()) {
293       if (!innermost)
294         return false;
295       if (codegen) {
296         SmallVector<Value> idxs2(load.getIndices()); // no need to analyze
297         Location loc = forOp.getLoc();
298         Value vload =
299             genVectorLoad(rewriter, loc, vl, load.getMemRef(), idxs2, vmask);
300         Type etp = llvm::cast<VectorType>(vload.getType()).getElementType();
301         if (!llvm::isa<IndexType>(etp)) {
302           if (etp.getIntOrFloatBitWidth() < 32)
303             vload = rewriter.create<arith::ExtUIOp>(
304                 loc, vectorType(vl, rewriter.getI32Type()), vload);
305           else if (etp.getIntOrFloatBitWidth() < 64 && !vl.enableSIMDIndex32)
306             vload = rewriter.create<arith::ExtUIOp>(
307                 loc, vectorType(vl, rewriter.getI64Type()), vload);
308         }
309         idxs.push_back(vload);
310       }
311       continue; // success so far
312     }
313     // Address calculation 'i = add inv, idx' (after LICM).
314     // Example:
315     //    a[base + i]
316     if (auto load = cast.getDefiningOp<arith::AddIOp>()) {
317       Value inv = load.getOperand(0);
318       Value idx = load.getOperand(1);
319       if (isInvariantValue(inv, block)) {
320         if (auto arg = llvm::dyn_cast<BlockArgument>(idx)) {
321           if (isInvariantArg(arg, block) || !innermost)
322             return false;
323           if (codegen)
324             idxs.push_back(
325                 rewriter.create<arith::AddIOp>(forOp.getLoc(), inv, idx));
326           continue; // success so far
327         }
328       }
329     }
330     return false;
331   }
332   return true;
333 }
334 
335 #define UNAOP(xxx)                                                             \
336   if (isa<xxx>(def)) {                                                         \
337     if (codegen)                                                               \
338       vexp = rewriter.create<xxx>(loc, vx);                                    \
339     return true;                                                               \
340   }
341 
342 #define TYPEDUNAOP(xxx)                                                        \
343   if (auto x = dyn_cast<xxx>(def)) {                                           \
344     if (codegen) {                                                             \
345       VectorType vtp = vectorType(vl, x.getType());                            \
346       vexp = rewriter.create<xxx>(loc, vtp, vx);                               \
347     }                                                                          \
348     return true;                                                               \
349   }
350 
351 #define BINOP(xxx)                                                             \
352   if (isa<xxx>(def)) {                                                         \
353     if (codegen)                                                               \
354       vexp = rewriter.create<xxx>(loc, vx, vy);                                \
355     return true;                                                               \
356   }
357 
358 /// This method is called twice to analyze and rewrite the given expression.
359 /// The first call (!codegen) does the analysis. Then, on success, the second
360 /// call (codegen) yields the proper vector form in the output parameter 'vexp'.
361 /// This mechanism ensures that analysis and rewriting code stay in sync. Note
362 /// that the analyis part is simple because the sparse compiler only generates
363 /// relatively simple expressions inside the for-loops.
364 static bool vectorizeExpr(PatternRewriter &rewriter, scf::ForOp forOp, VL vl,
365                           Value exp, bool codegen, Value vmask, Value &vexp) {
366   Location loc = forOp.getLoc();
367   // Reject unsupported types.
368   if (!VectorType::isValidElementType(exp.getType()))
369     return false;
370   // A block argument is invariant/reduction/index.
371   if (auto arg = llvm::dyn_cast<BlockArgument>(exp)) {
372     if (arg == forOp.getInductionVar()) {
373       // We encountered a single, innermost index inside the computation,
374       // such as a[i] = i, which must convert to [i, i+1, ...].
375       if (codegen) {
376         VectorType vtp = vectorType(vl, arg.getType());
377         Value veci = rewriter.create<vector::BroadcastOp>(loc, vtp, arg);
378         Value incr;
379         if (vl.enableVLAVectorization) {
380           Type stepvty = vectorType(vl, rewriter.getI64Type());
381           Value stepv = rewriter.create<LLVM::StepVectorOp>(loc, stepvty);
382           incr = rewriter.create<arith::IndexCastOp>(loc, vtp, stepv);
383         } else {
384           SmallVector<APInt> integers;
385           for (unsigned i = 0, l = vl.vectorLength; i < l; i++)
386             integers.push_back(APInt(/*width=*/64, i));
387           auto values = DenseElementsAttr::get(vtp, integers);
388           incr = rewriter.create<arith::ConstantOp>(loc, vtp, values);
389         }
390         vexp = rewriter.create<arith::AddIOp>(loc, veci, incr);
391       }
392       return true;
393     }
394     // An invariant or reduction. In both cases, we treat this as an
395     // invariant value, and rely on later replacing and folding to
396     // construct a proper reduction chain for the latter case.
397     if (codegen)
398       vexp = genVectorInvariantValue(rewriter, vl, exp);
399     return true;
400   }
401   // Something defined outside the loop-body is invariant.
402   Operation *def = exp.getDefiningOp();
403   Block *block = &forOp.getRegion().front();
404   if (def->getBlock() != block) {
405     if (codegen)
406       vexp = genVectorInvariantValue(rewriter, vl, exp);
407     return true;
408   }
409   // Proper load operations. These are either values involved in the
410   // actual computation, such as a[i] = b[i] becomes a[lo:hi] = b[lo:hi],
411   // or coordinate values inside the computation that are now fetched from
412   // the sparse storage coordinates arrays, such as a[i] = i becomes
413   // a[lo:hi] = ind[lo:hi], where 'lo' denotes the current index
414   // and 'hi = lo + vl - 1'.
415   if (auto load = dyn_cast<memref::LoadOp>(def)) {
416     auto subs = load.getIndices();
417     SmallVector<Value> idxs;
418     if (vectorizeSubscripts(rewriter, forOp, vl, subs, codegen, vmask, idxs)) {
419       if (codegen)
420         vexp = genVectorLoad(rewriter, loc, vl, load.getMemRef(), idxs, vmask);
421       return true;
422     }
423     return false;
424   }
425   // Inside loop-body unary and binary operations. Note that it would be
426   // nicer if we could somehow test and build the operations in a more
427   // concise manner than just listing them all (although this way we know
428   // for certain that they can vectorize).
429   //
430   // TODO: avoid visiting CSEs multiple times
431   //
432   if (def->getNumOperands() == 1) {
433     Value vx;
434     if (vectorizeExpr(rewriter, forOp, vl, def->getOperand(0), codegen, vmask,
435                       vx)) {
436       UNAOP(math::AbsFOp)
437       UNAOP(math::AbsIOp)
438       UNAOP(math::CeilOp)
439       UNAOP(math::FloorOp)
440       UNAOP(math::SqrtOp)
441       UNAOP(math::ExpM1Op)
442       UNAOP(math::Log1pOp)
443       UNAOP(math::SinOp)
444       UNAOP(math::TanhOp)
445       UNAOP(arith::NegFOp)
446       TYPEDUNAOP(arith::TruncFOp)
447       TYPEDUNAOP(arith::ExtFOp)
448       TYPEDUNAOP(arith::FPToSIOp)
449       TYPEDUNAOP(arith::FPToUIOp)
450       TYPEDUNAOP(arith::SIToFPOp)
451       TYPEDUNAOP(arith::UIToFPOp)
452       TYPEDUNAOP(arith::ExtSIOp)
453       TYPEDUNAOP(arith::ExtUIOp)
454       TYPEDUNAOP(arith::IndexCastOp)
455       TYPEDUNAOP(arith::TruncIOp)
456       TYPEDUNAOP(arith::BitcastOp)
457       // TODO: complex?
458     }
459   } else if (def->getNumOperands() == 2) {
460     Value vx, vy;
461     if (vectorizeExpr(rewriter, forOp, vl, def->getOperand(0), codegen, vmask,
462                       vx) &&
463         vectorizeExpr(rewriter, forOp, vl, def->getOperand(1), codegen, vmask,
464                       vy)) {
465       // We only accept shift-by-invariant (where the same shift factor applies
466       // to all packed elements). In the vector dialect, this is still
467       // represented with an expanded vector at the right-hand-side, however,
468       // so that we do not have to special case the code generation.
469       if (isa<arith::ShLIOp>(def) || isa<arith::ShRUIOp>(def) ||
470           isa<arith::ShRSIOp>(def)) {
471         Value shiftFactor = def->getOperand(1);
472         if (!isInvariantValue(shiftFactor, block))
473           return false;
474       }
475       // Generate code.
476       BINOP(arith::MulFOp)
477       BINOP(arith::MulIOp)
478       BINOP(arith::DivFOp)
479       BINOP(arith::DivSIOp)
480       BINOP(arith::DivUIOp)
481       BINOP(arith::AddFOp)
482       BINOP(arith::AddIOp)
483       BINOP(arith::SubFOp)
484       BINOP(arith::SubIOp)
485       BINOP(arith::AndIOp)
486       BINOP(arith::OrIOp)
487       BINOP(arith::XOrIOp)
488       BINOP(arith::ShLIOp)
489       BINOP(arith::ShRUIOp)
490       BINOP(arith::ShRSIOp)
491       // TODO: complex?
492     }
493   }
494   return false;
495 }
496 
497 #undef UNAOP
498 #undef TYPEDUNAOP
499 #undef BINOP
500 
501 /// This method is called twice to analyze and rewrite the given for-loop.
502 /// The first call (!codegen) does the analysis. Then, on success, the second
503 /// call (codegen) rewriters the IR into vector form. This mechanism ensures
504 /// that analysis and rewriting code stay in sync.
505 static bool vectorizeStmt(PatternRewriter &rewriter, scf::ForOp forOp, VL vl,
506                           bool codegen) {
507   Block &block = forOp.getRegion().front();
508   // For loops with single yield statement (as below) could be generated
509   // when custom reduce is used with unary operation.
510   // for (...)
511   //   yield c_0
512   if (block.getOperations().size() <= 1)
513     return false;
514 
515   Location loc = forOp.getLoc();
516   scf::YieldOp yield = cast<scf::YieldOp>(block.getTerminator());
517   auto &last = *++block.rbegin();
518   scf::ForOp forOpNew;
519 
520   // Perform initial set up during codegen (we know that the first analysis
521   // pass was successful). For reductions, we need to construct a completely
522   // new for-loop, since the incoming and outgoing reduction type
523   // changes into SIMD form. For stores, we can simply adjust the stride
524   // and insert in the existing for-loop. In both cases, we set up a vector
525   // mask for all operations which takes care of confining vectors to
526   // the original iteration space (later cleanup loops or other
527   // optimizations can take care of those).
528   Value vmask;
529   if (codegen) {
530     Value step = constantIndex(rewriter, loc, vl.vectorLength);
531     if (vl.enableVLAVectorization) {
532       Value vscale =
533           rewriter.create<vector::VectorScaleOp>(loc, rewriter.getIndexType());
534       step = rewriter.create<arith::MulIOp>(loc, vscale, step);
535     }
536     if (!yield.getResults().empty()) {
537       Value init = forOp.getInitArgs()[0];
538       VectorType vtp = vectorType(vl, init.getType());
539       Value vinit = genVectorReducInit(rewriter, loc, yield->getOperand(0),
540                                        forOp.getRegionIterArg(0), init, vtp);
541       forOpNew = rewriter.create<scf::ForOp>(
542           loc, forOp.getLowerBound(), forOp.getUpperBound(), step, vinit);
543       forOpNew->setAttr(
544           LoopEmitter::getLoopEmitterLoopAttrName(),
545           forOp->getAttr(LoopEmitter::getLoopEmitterLoopAttrName()));
546       rewriter.setInsertionPointToStart(forOpNew.getBody());
547     } else {
548       rewriter.updateRootInPlace(forOp, [&]() { forOp.setStep(step); });
549       rewriter.setInsertionPoint(yield);
550     }
551     vmask = genVectorMask(rewriter, loc, vl, forOp.getInductionVar(),
552                           forOp.getLowerBound(), forOp.getUpperBound(), step);
553   }
554 
555   // Sparse for-loops either are terminated by a non-empty yield operation
556   // (reduction loop) or otherwise by a store operation (pararallel loop).
557   if (!yield.getResults().empty()) {
558     // Analyze/vectorize reduction.
559     if (yield->getNumOperands() != 1)
560       return false;
561     Value red = yield->getOperand(0);
562     Value iter = forOp.getRegionIterArg(0);
563     vector::CombiningKind kind;
564     Value vrhs;
565     if (isVectorizableReduction(red, iter, kind) &&
566         vectorizeExpr(rewriter, forOp, vl, red, codegen, vmask, vrhs)) {
567       if (codegen) {
568         Value partial = forOpNew.getResult(0);
569         Value vpass = genVectorInvariantValue(rewriter, vl, iter);
570         Value vred = rewriter.create<arith::SelectOp>(loc, vmask, vrhs, vpass);
571         rewriter.create<scf::YieldOp>(loc, vred);
572         rewriter.setInsertionPointAfter(forOpNew);
573         Value vres = rewriter.create<vector::ReductionOp>(loc, kind, partial);
574         // Now do some relinking (last one is not completely type safe
575         // but all bad ones are removed right away). This also folds away
576         // nop broadcast operations.
577         rewriter.replaceAllUsesWith(forOp.getResult(0), vres);
578         rewriter.replaceAllUsesWith(forOp.getInductionVar(),
579                                     forOpNew.getInductionVar());
580         rewriter.replaceAllUsesWith(forOp.getRegionIterArg(0),
581                                     forOpNew.getRegionIterArg(0));
582         rewriter.eraseOp(forOp);
583       }
584       return true;
585     }
586   } else if (auto store = dyn_cast<memref::StoreOp>(last)) {
587     // Analyze/vectorize store operation.
588     auto subs = store.getIndices();
589     SmallVector<Value> idxs;
590     Value rhs = store.getValue();
591     Value vrhs;
592     if (vectorizeSubscripts(rewriter, forOp, vl, subs, codegen, vmask, idxs) &&
593         vectorizeExpr(rewriter, forOp, vl, rhs, codegen, vmask, vrhs)) {
594       if (codegen) {
595         genVectorStore(rewriter, loc, store.getMemRef(), idxs, vmask, vrhs);
596         rewriter.eraseOp(store);
597       }
598       return true;
599     }
600   }
601 
602   assert(!codegen && "cannot call codegen when analysis failed");
603   return false;
604 }
605 
606 /// Basic for-loop vectorizer.
607 struct ForOpRewriter : public OpRewritePattern<scf::ForOp> {
608 public:
609   using OpRewritePattern<scf::ForOp>::OpRewritePattern;
610 
611   ForOpRewriter(MLIRContext *context, unsigned vectorLength,
612                 bool enableVLAVectorization, bool enableSIMDIndex32)
613       : OpRewritePattern(context), vl{vectorLength, enableVLAVectorization,
614                                       enableSIMDIndex32} {}
615 
616   LogicalResult matchAndRewrite(scf::ForOp op,
617                                 PatternRewriter &rewriter) const override {
618     // Check for single block, unit-stride for-loop that is generated by
619     // sparse compiler, which means no data dependence analysis is required,
620     // and its loop-body is very restricted in form.
621     if (!op.getRegion().hasOneBlock() || !isConstantIntValue(op.getStep(), 1) ||
622         !op->hasAttr(LoopEmitter::getLoopEmitterLoopAttrName()))
623       return failure();
624     // Analyze (!codegen) and rewrite (codegen) loop-body.
625     if (vectorizeStmt(rewriter, op, vl, /*codegen=*/false) &&
626         vectorizeStmt(rewriter, op, vl, /*codegen=*/true))
627       return success();
628     return failure();
629   }
630 
631 private:
632   const VL vl;
633 };
634 
635 /// Reduction chain cleanup.
636 ///   v = for { }
637 ///   s = vsum(v)               v = for { }
638 ///   u = expand(s)       ->    for (v) { }
639 ///   for (u) { }
640 template <typename VectorOp>
641 struct ReducChainRewriter : public OpRewritePattern<VectorOp> {
642 public:
643   using OpRewritePattern<VectorOp>::OpRewritePattern;
644 
645   LogicalResult matchAndRewrite(VectorOp op,
646                                 PatternRewriter &rewriter) const override {
647     Value inp = op.getSource();
648     if (auto redOp = inp.getDefiningOp<vector::ReductionOp>()) {
649       if (auto forOp = redOp.getVector().getDefiningOp<scf::ForOp>()) {
650         if (forOp->hasAttr(LoopEmitter::getLoopEmitterLoopAttrName())) {
651           rewriter.replaceOp(op, redOp.getVector());
652           return success();
653         }
654       }
655     }
656     return failure();
657   }
658 };
659 
660 } // namespace
661 
662 //===----------------------------------------------------------------------===//
663 // Public method for populating vectorization rules.
664 //===----------------------------------------------------------------------===//
665 
666 /// Populates the given patterns list with vectorization rules.
667 void mlir::populateSparseVectorizationPatterns(RewritePatternSet &patterns,
668                                                unsigned vectorLength,
669                                                bool enableVLAVectorization,
670                                                bool enableSIMDIndex32) {
671   assert(vectorLength > 0);
672   patterns.add<ForOpRewriter>(patterns.getContext(), vectorLength,
673                               enableVLAVectorization, enableSIMDIndex32);
674   patterns.add<ReducChainRewriter<vector::InsertElementOp>,
675                ReducChainRewriter<vector::BroadcastOp>>(patterns.getContext());
676 }
677