1 //===- SparseTensorRewriting.cpp - Sparse tensor rewriting rules ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements rewriting rules that are specific to sparse tensors. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "Utils/CodegenUtils.h" 14 #include "Utils/LoopEmitter.h" 15 16 #include "mlir/Dialect/Affine/IR/AffineOps.h" 17 #include "mlir/Dialect/Arith/IR/Arith.h" 18 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 19 #include "mlir/Dialect/Linalg/IR/Linalg.h" 20 #include "mlir/Dialect/Linalg/Utils/Utils.h" 21 #include "mlir/Dialect/MemRef/IR/MemRef.h" 22 #include "mlir/Dialect/SCF/IR/SCF.h" 23 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 24 #include "mlir/Dialect/SparseTensor/IR/SparseTensorStorageLayout.h" 25 #include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h" 26 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 27 #include "mlir/Dialect/Tensor/IR/Tensor.h" 28 #include "mlir/Dialect/Vector/IR/VectorOps.h" 29 #include "mlir/IR/AffineMap.h" 30 #include "mlir/IR/Matchers.h" 31 #include "mlir/Support/LLVM.h" 32 33 using namespace mlir; 34 using namespace mlir::bufferization; 35 using namespace mlir::linalg; 36 using namespace mlir::sparse_tensor; 37 38 //===---------------------------------------------------------------------===// 39 // Helper methods for the actual rewriting rules. 40 //===---------------------------------------------------------------------===// 41 42 // Helper method to match any typed zero. 43 static bool isZeroValue(Value val) { 44 return matchPattern(val, m_Zero()) || matchPattern(val, m_AnyZeroFloat()); 45 } 46 47 // Helper to detect a sparse tensor type operand. 48 static bool isSparseTensor(Value v) { 49 auto enc = getSparseTensorEncoding(v.getType()); 50 return enc && !llvm::all_of(enc.getLvlTypes(), 51 [](auto lt) { return lt == LevelFormat::Dense; }); 52 } 53 static bool isSparseTensor(OpOperand *op) { return isSparseTensor(op->get()); } 54 55 // Helper method to find zero/uninitialized tensor materialization. 56 static bool isMaterializing(OpOperand *op, bool isZero) { 57 Value val = op->get(); 58 // Check allocation, with zero alloc when required. 59 if (auto alloc = val.getDefiningOp<AllocTensorOp>()) { 60 Value copy = alloc.getCopy(); 61 if (isZero) 62 return copy && isZeroValue(copy); 63 return !copy; 64 } 65 // Check for empty tensor materialization. 66 if (auto empty = val.getDefiningOp<tensor::EmptyOp>()) 67 return !isZero; 68 // Last resort for zero alloc: the whole value is zero. 69 return isZero && isZeroValue(val); 70 } 71 72 // Helper to detect sampling operation. 73 static bool isSampling(GenericOp op) { 74 auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator()); 75 if (auto *def = yieldOp.getOperand(0).getDefiningOp()) { 76 if (isa<arith::MulFOp>(def) || isa<arith::MulIOp>(def)) { 77 // Both scalar input arguments used exactly once. 78 Value s1 = op.getBlock()->getArgument(0); 79 Value s2 = op.getBlock()->getArgument(1); 80 return (def->getOperand(0) == s1 && def->getOperand(1) == s2) || 81 (def->getOperand(1) == s1 && def->getOperand(0) == s2); 82 } 83 } 84 return false; 85 } 86 87 // Helper to detect chain of multiplications that do not involve x. 88 static bool isMulChain(Value val, Value x) { 89 if (auto arg = dyn_cast<BlockArgument>(val)) 90 return arg != x; 91 if (auto *def = val.getDefiningOp()) { 92 if (isa<arith::MulFOp>(def) || isa<arith::MulIOp>(def)) 93 return isMulChain(def->getOperand(0), x) && 94 isMulChain(def->getOperand(1), x); 95 } 96 return false; 97 } 98 99 // Helper to detect x = x + <multiplications>. 100 static bool isSumOfMul(GenericOp op) { 101 auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator()); 102 if (auto *def = yieldOp.getOperand(0).getDefiningOp()) { 103 if (isa<arith::AddFOp>(def) || isa<arith::AddIOp>(def)) { 104 Value x = op.getBlock()->getArguments().back(); 105 return (def->getOperand(0) == x && isMulChain(def->getOperand(1), x)) || 106 (def->getOperand(1) == x && isMulChain(def->getOperand(0), x)); 107 } 108 } 109 return false; 110 } 111 112 // Helper to detect direct yield of a zero value. 113 static bool isZeroYield(GenericOp op) { 114 auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator()); 115 if (auto arg = dyn_cast<BlockArgument>(yieldOp.getOperand(0))) { 116 if (arg.getOwner()->getParentOp() == op) { 117 return isZeroValue(op->getOperand(arg.getArgNumber())); 118 } 119 } 120 return isZeroValue(yieldOp.getOperand(0)); 121 } 122 123 /// Populates given sizes array from type (for static sizes) and from 124 /// the tensor (for dynamic sizes). 125 static void sizesForTensor(OpBuilder &builder, SmallVectorImpl<Value> &sizes, 126 Location loc, ShapedType stp, Value tensor) { 127 for (const auto &d : enumerate(stp.getShape())) { 128 Value dim; 129 if (d.value() == ShapedType::kDynamic) 130 dim = builder.create<tensor::DimOp>(loc, tensor, d.index()); 131 else 132 dim = constantIndex(builder, loc, d.value()); 133 sizes.push_back(dim); 134 } 135 } 136 137 static RankedTensorType getBufferType(const SparseTensorType &stt, 138 bool needTmpCOO) { 139 return needTmpCOO ? stt.getCOOType(/*ordered=*/false) 140 : stt.getRankedTensorType(); 141 } 142 143 /// Collects the dynamic dimension sizes for `tp` with the assumption that 144 /// `sizes` are the dimension sizes for the type. Stores the dynamic dimension 145 /// sizes to dynSizes. 146 static void getDynamicSizes(RankedTensorType tp, ValueRange sizes, 147 SmallVectorImpl<Value> &dynSizes) { 148 for (const auto &d : enumerate(tp.getShape())) { 149 if (d.value() == ShapedType::kDynamic) 150 dynSizes.push_back(sizes[d.index()]); 151 } 152 } 153 154 static LogicalResult genForeachOnSparseConstant(ForeachOp op, 155 RewriterBase &rewriter, 156 SparseElementsAttr attr) { 157 auto loc = op.getLoc(); 158 SmallVector<Value> reduc = op.getInitArgs(); 159 160 // Foreach on constant. 161 foreachInSparseConstant( 162 rewriter, loc, attr, op.getOrder().value_or(AffineMap()), 163 [&reduc, &rewriter, op](ArrayRef<Value> cvs, Value v) mutable { 164 SmallVector<Value> args; 165 args.append(cvs.begin(), cvs.end()); 166 args.push_back(v); 167 args.append(reduc); 168 // Clones the foreach op to get a copy of the loop body. 169 auto cloned = cast<ForeachOp>(rewriter.clone(*op.getOperation())); 170 assert(args.size() == cloned.getBody()->getNumArguments()); 171 Operation *yield = cloned.getBody()->getTerminator(); 172 rewriter.inlineBlockBefore(cloned.getBody(), op, args); 173 // clean up 174 rewriter.eraseOp(cloned); 175 reduc = yield->getOperands(); 176 rewriter.eraseOp(yield); 177 }); 178 179 rewriter.replaceOp(op, reduc); 180 return success(); 181 } 182 183 /// Populates the given sizes array for concatenation from types (for static 184 /// sizes) and from the source tensors (for dynamic sizes). 185 static void concatSizesFromInputs(OpBuilder &builder, 186 SmallVectorImpl<Value> &sizes, Location loc, 187 ShapedType dstTp, ValueRange srcs, 188 unsigned dim) { 189 auto dstShape = dstTp.getShape(); 190 sizesFromSrc(builder, sizes, loc, srcs[0]); 191 192 // Sum up on the `dim` if the dimension is dynamic. 193 if (dstShape[dim] != ShapedType::kDynamic) { 194 // Faithfully take the static size. 195 sizes[dim] = constantIndex(builder, loc, dstShape[dim]); 196 } else { 197 // Else, compute the shape dynamically. 198 for (const auto &src : srcs.drop_front()) { 199 Value srcSz = linalg::createOrFoldDimOp(builder, loc, src, dim); 200 // Sum up all the sizes. 201 sizes[dim] = builder.create<arith::AddIOp>(loc, sizes[dim], srcSz); 202 } 203 } 204 } 205 206 //===---------------------------------------------------------------------===// 207 // The actual sparse tensor rewriting rules. 208 //===---------------------------------------------------------------------===// 209 210 namespace { 211 212 /// Rewriting rule that converts direct yield of zero with initial allocation. 213 struct FoldInvariantYield : public OpRewritePattern<GenericOp> { 214 public: 215 using OpRewritePattern<GenericOp>::OpRewritePattern; 216 217 LogicalResult matchAndRewrite(GenericOp op, 218 PatternRewriter &rewriter) const override { 219 if (!op.hasPureTensorSemantics() || op.getNumResults() != 1 || 220 !isMaterializing(op.getDpsInitOperand(0), /*isZero=*/false) || 221 !isZeroYield(op) || !op.getDpsInitOperand(0)->get().hasOneUse()) 222 return failure(); 223 auto outputType = getRankedTensorType(op.getResult(0)); 224 // Yielding zero on newly materialized sparse tensor can be 225 // optimized directly (regardless of dynamic or static size). 226 if (getSparseTensorEncoding(outputType)) { 227 rewriter.replaceOp(op, op.getDpsInitOperand(0)->get()); 228 return success(); 229 } 230 // Use static zero value directly instead of materialization. 231 if (!outputType.hasStaticShape()) 232 return failure(); 233 Operation *def = op.getDpsInitOperand(0)->get().getDefiningOp(); 234 rewriter.replaceOp(op, constantZero(rewriter, op.getLoc(), outputType)); 235 rewriter.eraseOp(def); 236 return success(); 237 } 238 }; 239 240 /// Rewriting rule that converts two kernels: 241 /// 242 /// T(i,j) = SUM(k, A(i,j,k) * B(i,j,k) * ... ) 243 /// X(i,j) = S(i,j) * T(i,j) 244 /// 245 /// into a single kernel, using distributive law: 246 /// 247 /// X(i,j) = SUM(k, S(i,j) * A(i,j,k) * B(i,j,k) * ... ) 248 /// 249 /// This kind of fusion (merging two ops into one but using arithmetic 250 /// equalities that may not hold for floating-point computations) would 251 /// be undesirable in the dense case, since we distribute the multiplication 252 /// into the reduction loop. However, for sparse sampling tensor S, such 253 /// a fusion may actually reduce the asymptotic complexity of the kernel, 254 /// since intermediate results may be nullified. 255 struct FuseSparseMultiplyOverAdd : public OpRewritePattern<GenericOp> { 256 public: 257 using OpRewritePattern<GenericOp>::OpRewritePattern; 258 259 LogicalResult matchAndRewrite(GenericOp op, 260 PatternRewriter &rewriter) const override { 261 // Check consumer. 262 if (!op.hasPureTensorSemantics() || op.getNumDpsInputs() != 2 || 263 op.getNumResults() != 1 || 264 op.getNumParallelLoops() != op.getNumLoops() || 265 !op.getMatchingIndexingMap(op.getDpsInitOperand(0)).isIdentity() || 266 !op.getMatchingIndexingMap(op.getDpsInputOperand(0)).isIdentity() || 267 !op.getMatchingIndexingMap(op.getDpsInputOperand(1)).isIdentity()) 268 return failure(); 269 // Find consuming OP2(sparse, other) or OP2(other, sparse). The other 270 // operand can be sparse or dense, since the point of this rewriting rule 271 // is detecting a situation in which *more* sparsity is introduced into 272 // a computation, be it already sparse or still dense. 273 unsigned other = 0; 274 if (isSparseTensor(op.getDpsInputOperand(0))) 275 other = 1; 276 else if (!isSparseTensor(op.getDpsInputOperand(1))) 277 return failure(); 278 // Check producer. 279 auto prod = dyn_cast_or_null<GenericOp>( 280 op.getDpsInputOperand(other)->get().getDefiningOp()); 281 if (!prod || !prod.hasPureTensorSemantics() || prod.getNumResults() != 1 || 282 !prod.getResult(0).hasOneUse()) 283 return failure(); 284 // Sampling consumer and sum of multiplication chain producer. 285 if (!isMaterializing(op.getDpsInitOperand(0), /*isZero=*/false) || 286 !isMaterializing(prod.getDpsInitOperand(0), /*isZero=*/true) || 287 !isSampling(op) || !isSumOfMul(prod)) 288 return failure(); 289 // Modify operand structure of producer and consumer. 290 Location loc = prod.getLoc(); 291 SmallVector<Value> inputOps = prod.getInputs(); 292 SmallVector<Value> outputOps = op.getOutputs(); 293 SmallVector<AffineMap> fusedIndexMaps = prod.getIndexingMapsArray(); 294 inputOps.push_back(op.getDpsInputOperand(1 - other)->get()); 295 fusedIndexMaps.push_back(fusedIndexMaps.back()); // mimic other 296 // Fuse producer and consumer into a new generic op. 297 auto fusedOp = rewriter.create<GenericOp>( 298 loc, op.getResult(0).getType(), inputOps, outputOps, 299 rewriter.getAffineMapArrayAttr(fusedIndexMaps), prod.getIteratorTypes(), 300 /*doc=*/nullptr, /*library_call=*/nullptr); 301 Block &prodBlock = prod.getRegion().front(); 302 Block &consBlock = op.getRegion().front(); 303 IRMapping mapper; 304 Block *fusedBlock = rewriter.createBlock(&fusedOp.getRegion()); 305 unsigned num = prodBlock.getNumArguments(); 306 for (unsigned i = 0; i < num - 1; i++) 307 addArg(mapper, fusedBlock, prodBlock.getArgument(i)); 308 addArg(mapper, fusedBlock, consBlock.getArgument(1 - other)); 309 addArg(mapper, fusedBlock, prodBlock.getArgument(num - 1)); 310 // Clone bodies of the producer and consumer in new evaluation order. 311 auto *acc = prodBlock.getTerminator()->getOperand(0).getDefiningOp(); 312 auto *sampler = consBlock.getTerminator()->getOperand(0).getDefiningOp(); 313 Value last; 314 for (auto &op : prodBlock.without_terminator()) 315 if (&op != acc) { 316 last = op.getResult(0); 317 rewriter.clone(op, mapper); 318 } 319 mapper.map(consBlock.getArgument(other), fusedBlock->back().getResult(0)); 320 mapper.map(last, rewriter.clone(*sampler, mapper)->getResult(0)); 321 last = rewriter.clone(*acc, mapper)->getResult(0); 322 rewriter.create<linalg::YieldOp>(loc, last); 323 // Force initial value on merged allocation for dense outputs. 324 // TODO: deal with non alloc tensor here one day 325 if (!getSparseTensorEncoding(op.getResult(0).getType())) { 326 Value init = prod.getDpsInitOperand(0) 327 ->get() 328 .getDefiningOp<AllocTensorOp>() 329 .getCopy(); 330 AllocTensorOp a = 331 op.getDpsInitOperand(0)->get().getDefiningOp<AllocTensorOp>(); 332 rewriter.modifyOpInPlace(a, [&]() { a.getCopyMutable().assign(init); }); 333 } 334 // Replace consumer with fused operation. Old producer 335 // and consumer ops will be removed by DCE. 336 rewriter.replaceOp(op, fusedOp->getResults()); 337 return success(); 338 } 339 340 private: 341 // Helper to add argument and record the mapping. 342 static void addArg(IRMapping &mapper, Block *b, BlockArgument a) { 343 mapper.map(a, b->addArgument(a.getType(), a.getLoc())); 344 } 345 }; 346 347 // Fuse a tensor cast into producing operation. Note that a tensor.cast 348 // should really not be used to convert between sparse encodings. Since 349 // the pattern currently appears as a result of some prior rewriting 350 // we make an attempt to repair very obvious cases. 351 // TODO: audit the pure tensor dialect rewriting rules 352 struct FuseTensorCast : public OpRewritePattern<tensor::CastOp> { 353 public: 354 using OpRewritePattern<tensor::CastOp>::OpRewritePattern; 355 356 LogicalResult matchAndRewrite(tensor::CastOp op, 357 PatternRewriter &rewriter) const override { 358 Type srcType = op.getSource().getType(); 359 Type dstType = op.getDest().getType(); 360 // A nop cast simply folds away. 361 if (srcType == dstType) { 362 rewriter.replaceOp(op, op->getResults()); 363 return success(); 364 } 365 // See if a sparsity changing cast can be fused into producer. 366 if (tensor::isSameTypeWithoutEncoding(srcType, dstType)) { 367 if (Operation *def = op.getSource().getDefiningOp()) { 368 if (def->hasOneUse() && isa<tensor::ExtractSliceOp>(def)) { 369 rewriter.modifyOpInPlace(def, [&]() { 370 def->getResult(0).setType(op->getResultTypes()[0]); 371 }); 372 rewriter.replaceOp(op, def->getResult(0)); 373 return success(); 374 } 375 } 376 } 377 // Repair tensor casts with at least one sparse operand into the 378 // the properly supported sparse_tensor.convert. 379 if (getSparseTensorEncoding(srcType) || getSparseTensorEncoding(dstType)) { 380 rewriter.replaceOpWithNewOp<ConvertOp>(op, dstType, op.getSource()); 381 return success(); 382 } 383 // Fail otherwise. 384 return failure(); 385 } 386 }; 387 388 /// Rewrites a sequence of operations for sparse tensor selections in to 389 /// semi-ring operations such that they can be compiled correctly by the 390 /// sparsifier. E.g., transforming the following sequence 391 /// 392 /// %sel = arith.select %cond, %sp1, %sp2 393 /// 394 /// to 395 /// 396 /// %sel = binary %sp1, %sp2: 397 /// both (%l, %r) {yield select %cond, %l, %r} 398 /// left (%l) {yield select %cond, %l, 0} 399 /// right (%r) {yield select %cond, 0, %r} 400 /// 401 /// TODO: We require that the tensor used for extracting conditions to be dense 402 /// to sparsify the code. To support a sparse condition tensor, we need a 403 /// tri-nary operation. 404 struct GenSemiRingSelect : public OpRewritePattern<GenericOp> { 405 public: 406 using OpRewritePattern<GenericOp>::OpRewritePattern; 407 LogicalResult matchAndRewrite(GenericOp op, 408 PatternRewriter &rewriter) const override { 409 // Rejects non sparse kernels. 410 if (!op.hasPureTensorSemantics() || !hasAnySparseOperand(op)) 411 return failure(); 412 413 Location loc = op.getLoc(); 414 SmallVector<std::pair<Operation *, sparse_tensor::BinaryOp>> semiRings; 415 for (Operation &inst : *op.getBody()) { 416 // Matches pattern. 417 auto matched = isRewritablePattern(op, &inst); 418 if (!matched.has_value()) 419 continue; 420 421 rewriter.setInsertionPoint(&inst); 422 auto [c, t, f] = matched.value(); 423 assert(t.getType() == f.getType()); 424 auto selTp = t.getType(); 425 auto c0 = constantZero(rewriter, loc, selTp); 426 auto binOp = rewriter.create<sparse_tensor::BinaryOp>(loc, selTp, t, f); 427 // Initializes all the blocks. 428 rewriter.createBlock(&binOp.getOverlapRegion(), {}, {selTp, selTp}, 429 {t.getLoc(), f.getLoc()}); 430 rewriter.createBlock(&binOp.getRightRegion(), {}, selTp, f.getLoc()); 431 rewriter.createBlock(&binOp.getLeftRegion(), {}, selTp, t.getLoc()); 432 433 for (auto *r : binOp.getRegions()) { 434 Block *b = &r->front(); 435 rewriter.setInsertionPointToStart(b); 436 437 IRMapping irMap; 438 // Clones the cmp operations into the region to make the binary op 439 // admissible. 440 Value newC = c; 441 if (auto *def = c.getDefiningOp()) 442 newC = rewriter.clone(*def, irMap)->getResult(0); 443 444 irMap.map(c, newC); 445 if (r == &binOp.getLeftRegion()) { 446 irMap.map(t, b->getArgument(0)); 447 irMap.map(f, c0); 448 } else if (r == &binOp.getRightRegion()) { 449 irMap.map(t, c0); 450 irMap.map(f, b->getArgument(0)); 451 } else { 452 irMap.map(t, b->getArgument(0)); 453 irMap.map(f, b->getArgument(1)); 454 } 455 auto y = rewriter.clone(inst, irMap)->getResult(0); 456 rewriter.create<sparse_tensor::YieldOp>(loc, y); 457 } 458 459 // We successfully rewrited a operation. We can not do replacement here 460 // becuase it invalidate the iterator for the current loop to traverse 461 // the instructions. 462 semiRings.emplace_back(&inst, binOp); 463 } 464 465 // Finalizes the replacement. 466 for (auto [sel, semi] : semiRings) 467 rewriter.replaceOp(sel, semi->getResults()); 468 469 return success(!semiRings.empty()); 470 } 471 472 private: 473 static std::optional<std::tuple<Value, BlockArgument, BlockArgument>> 474 isRewritablePattern(GenericOp op, Operation *v) { 475 auto sel = dyn_cast<arith::SelectOp>(v); 476 if (!sel) 477 return std::nullopt; 478 479 auto tVal = sel.getTrueValue().dyn_cast<BlockArgument>(); 480 auto fVal = sel.getFalseValue().dyn_cast<BlockArgument>(); 481 // TODO: For simplicity, we only handle cases where both true/false value 482 // are directly loaded the input tensor. We can probably admit more cases 483 // in theory. 484 if (!tVal || !fVal) 485 return std::nullopt; 486 487 // Helper lambda to determine whether the value is loaded from a dense input 488 // or is a loop invariant. 489 auto isValFromDenseInputOrInvariant = [&op](Value v) -> bool { 490 if (auto bArg = v.dyn_cast<BlockArgument>(); 491 bArg && !isSparseTensor(op.getDpsInputOperand(bArg.getArgNumber()))) 492 return true; 493 // If the value is defined outside the loop, it is a loop invariant. 494 return v.getDefiningOp() && v.getDefiningOp()->getBlock() != op.getBody(); 495 }; 496 497 // If the condition value is load directly from a dense tensor or 498 // loop-invariants, we can sparsify the kernel. 499 auto cond = sel.getCondition(); 500 if (isValFromDenseInputOrInvariant(cond)) 501 return std::make_tuple(cond, tVal, fVal); 502 503 Value cmpL, cmpR; 504 if (matchPattern(cond, m_Op<arith::CmpIOp>(matchers::m_Any(&cmpL), 505 matchers::m_Any(&cmpR))) || 506 matchPattern(cond, m_Op<arith::CmpFOp>(matchers::m_Any(&cmpL), 507 matchers::m_Any(&cmpR)))) { 508 // TODO: we can do it recursively to check whether all the leaf values are 509 // loaded from dense tensors or are loop invariants. 510 if (isValFromDenseInputOrInvariant(cmpL) || 511 isValFromDenseInputOrInvariant(cmpR)) 512 return std::make_tuple(cond, tVal, fVal); 513 } 514 515 return std::nullopt; 516 }; 517 }; 518 519 /// Rewrites a sparse reduction that would not sparsify directly since 520 /// doing so would only iterate over the stored elements, ignoring the 521 /// implicit zeros, into a semi-ring. Applies to all prod/and/min/max 522 /// (note that reductions like add/sub/or/xor can directly be sparsified 523 /// since the implicit zeros do not contribute to the final result). 524 /// Note that prod/and are still included since, even though they often 525 /// are nullified in sparse data, they may still occur for special 526 /// situations in which e.g. some rows in a sparse matrix are fully 527 /// dense. For min/max, including the implicit zeros is a much more 528 /// common situation. 529 /// 530 /// TODO: this essentially "densifies" the operation; we want to implement 531 /// this much more efficiently by performing the reduction over the 532 /// stored values, and feed in the zero once if there were *any* 533 /// implicit zeros as well; but for now, at least we provide 534 /// the functionality 535 /// 536 struct GenSemiRingReduction : public OpRewritePattern<GenericOp> { 537 public: 538 using OpRewritePattern<GenericOp>::OpRewritePattern; 539 540 LogicalResult matchAndRewrite(GenericOp op, 541 PatternRewriter &rewriter) const override { 542 // Reject non-reductions. 543 if (!op.hasPureTensorSemantics() || op.getNumDpsInputs() != 1 || 544 op.getNumReductionLoops() == 0 || op.getNumResults() != 1) 545 return failure(); 546 auto *inp = op.getDpsInputOperand(0); 547 auto *init = op.getDpsInitOperand(0); 548 if (!isSparseTensor(inp)) 549 return failure(); 550 // Look for direct x = x OP y for semi-ring ready reductions. 551 auto *red = cast<linalg::YieldOp>(op.getRegion().front().getTerminator()) 552 .getOperand(0) 553 .getDefiningOp(); 554 if (!isa<arith::AndIOp, arith::MulIOp, arith::MulFOp, arith::MinimumFOp, 555 arith::MinSIOp, arith::MinUIOp, arith::MaximumFOp, arith::MaxSIOp, 556 arith::MaxUIOp>(red)) 557 return failure(); 558 Value s0 = op.getBlock()->getArgument(0); 559 Value s1 = op.getBlock()->getArgument(1); 560 if ((red->getOperand(0) != s0 || red->getOperand(1) != s1) && 561 (red->getOperand(0) != s1 || red->getOperand(1) != s0)) 562 return failure(); 563 // Identity. 564 Location loc = op.getLoc(); 565 Value identity = 566 rewriter.create<tensor::ExtractOp>(loc, init->get(), ValueRange()); 567 // Unary { 568 // present -> value 569 // absent -> zero. 570 // } 571 Type rtp = s0.getType(); 572 rewriter.setInsertionPointToStart(&op.getRegion().front()); 573 auto semiring = rewriter.create<sparse_tensor::UnaryOp>(loc, rtp, s0); 574 Block *present = 575 rewriter.createBlock(&semiring.getPresentRegion(), {}, rtp, loc); 576 rewriter.setInsertionPointToStart(&semiring.getPresentRegion().front()); 577 rewriter.create<sparse_tensor::YieldOp>(loc, present->getArgument(0)); 578 rewriter.createBlock(&semiring.getAbsentRegion(), {}, {}, {}); 579 rewriter.setInsertionPointToStart(&semiring.getAbsentRegion().front()); 580 auto zero = 581 rewriter.create<arith::ConstantOp>(loc, rewriter.getZeroAttr(rtp)); 582 rewriter.create<sparse_tensor::YieldOp>(loc, zero); 583 rewriter.setInsertionPointAfter(semiring); 584 // CustomReduce { 585 // x = x REDUC y, identity 586 // } 587 auto custom = rewriter.create<sparse_tensor::ReduceOp>( 588 loc, rtp, semiring.getResult(), s1, identity); 589 Block *region = 590 rewriter.createBlock(&custom.getRegion(), {}, {rtp, rtp}, {loc, loc}); 591 rewriter.setInsertionPointToStart(&custom.getRegion().front()); 592 IRMapping irMap; 593 irMap.map(red->getOperand(0), region->getArgument(0)); 594 irMap.map(red->getOperand(1), region->getArgument(1)); 595 auto *cloned = rewriter.clone(*red, irMap); 596 rewriter.create<sparse_tensor::YieldOp>(loc, cloned->getResult(0)); 597 rewriter.setInsertionPointAfter(custom); 598 rewriter.replaceOp(red, custom.getResult()); 599 return success(); 600 } 601 }; 602 603 /// Sparse rewriting rule for the print operator. This operation is mainly used 604 /// for debugging and testing. As such, it lowers to the vector.print operation 605 /// which only require very light-weight runtime support. 606 struct PrintRewriter : public OpRewritePattern<PrintOp> { 607 public: 608 using OpRewritePattern::OpRewritePattern; 609 LogicalResult matchAndRewrite(PrintOp op, 610 PatternRewriter &rewriter) const override { 611 Location loc = op.getLoc(); 612 auto tensor = op.getTensor(); 613 auto stt = getSparseTensorType(tensor); 614 // Header with NSE. 615 auto nse = rewriter.create<NumberOfEntriesOp>(loc, tensor); 616 rewriter.create<vector::PrintOp>( 617 loc, rewriter.getStringAttr("---- Sparse Tensor ----\nnse = ")); 618 rewriter.create<vector::PrintOp>(loc, nse); 619 // Use the "codegen" foreach loop construct to iterate over 620 // all typical sparse tensor components for printing. 621 foreachFieldAndTypeInSparseTensor(stt, [&rewriter, &loc, 622 &tensor](Type tp, FieldIndex, 623 SparseTensorFieldKind kind, 624 Level l, LevelType) { 625 switch (kind) { 626 case SparseTensorFieldKind::StorageSpec: { 627 break; 628 } 629 case SparseTensorFieldKind::PosMemRef: { 630 auto lvl = constantIndex(rewriter, loc, l); 631 rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("pos[")); 632 rewriter.create<vector::PrintOp>( 633 loc, lvl, vector::PrintPunctuation::NoPunctuation); 634 rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("] : ")); 635 auto pos = rewriter.create<ToPositionsOp>(loc, tp, tensor, l); 636 printContents(rewriter, loc, tp, pos); 637 break; 638 } 639 case SparseTensorFieldKind::CrdMemRef: { 640 auto lvl = constantIndex(rewriter, loc, l); 641 rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("crd[")); 642 rewriter.create<vector::PrintOp>( 643 loc, lvl, vector::PrintPunctuation::NoPunctuation); 644 rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("] : ")); 645 auto crd = rewriter.create<ToCoordinatesOp>(loc, tp, tensor, l); 646 printContents(rewriter, loc, tp, crd); 647 break; 648 } 649 case SparseTensorFieldKind::ValMemRef: { 650 rewriter.create<vector::PrintOp>(loc, 651 rewriter.getStringAttr("values : ")); 652 auto val = rewriter.create<ToValuesOp>(loc, tp, tensor); 653 printContents(rewriter, loc, tp, val); 654 break; 655 } 656 } 657 return true; 658 }); 659 rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("----\n")); 660 rewriter.eraseOp(op); 661 return success(); 662 } 663 664 private: 665 // Helper to print contents of a single memref. Note that for the "push_back" 666 // vectors, this prints the full capacity, not just the size. This is done 667 // on purpose, so that clients see how much storage has been allocated in 668 // total. Contents of the extra capacity in the buffer may be uninitialized 669 // (unless the flag enable-buffer-initialization is set to true). 670 // 671 // Generates code to print: 672 // ( a0, a1, ... ) 673 static void printContents(PatternRewriter &rewriter, Location loc, Type tp, 674 Value vec) { 675 // Open bracket. 676 rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Open); 677 // For loop over elements. 678 auto zero = constantIndex(rewriter, loc, 0); 679 auto size = rewriter.create<memref::DimOp>(loc, vec, zero); 680 auto step = constantIndex(rewriter, loc, 1); 681 auto forOp = rewriter.create<scf::ForOp>(loc, zero, size, step); 682 rewriter.setInsertionPointToStart(forOp.getBody()); 683 auto idx = forOp.getInductionVar(); 684 auto val = rewriter.create<memref::LoadOp>(loc, vec, idx); 685 rewriter.create<vector::PrintOp>(loc, val, vector::PrintPunctuation::Comma); 686 rewriter.setInsertionPointAfter(forOp); 687 // Close bracket and end of line. 688 rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Close); 689 rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::NewLine); 690 } 691 }; 692 693 /// Sparse rewriting rule for sparse-to-sparse reshape operator. 694 struct TensorReshapeRewriter : public OpRewritePattern<tensor::ReshapeOp> { 695 public: 696 using OpRewritePattern<tensor::ReshapeOp>::OpRewritePattern; 697 698 LogicalResult matchAndRewrite(tensor::ReshapeOp op, 699 PatternRewriter &rewriter) const override { 700 Location loc = op.getLoc(); 701 Value srcTensor = op.getSource(); 702 const auto srcTp = getSparseTensorType(srcTensor); 703 const auto dstTp = getSparseTensorType(op.getResult()); 704 705 if (!srcTp.hasEncoding() || !dstTp.hasEncoding() || 706 !dstTp.hasStaticDimShape()) 707 return failure(); 708 709 SmallVector<Value> srcSizes; 710 sizesForTensor(rewriter, srcSizes, loc, srcTp, srcTensor); 711 SmallVector<Value> dstSizes; 712 for (Dimension d : dstTp.getDimShape()) 713 dstSizes.push_back(constantIndex(rewriter, loc, d)); 714 715 Value nnz = rewriter.create<NumberOfEntriesOp>(loc, srcTensor); 716 // Only need an unordered COO buffer if input and output are not sorted 717 // in the same way. 718 Type bufferTp = getBufferType( 719 dstTp.withoutDimToLvl(), 720 !srcTp.isAllOrdered() || !srcTp.isIdentity() || !dstTp.isIdentity()); 721 SmallVector<Value> dynSizes; 722 Value buffer = rewriter 723 .create<AllocTensorOp>(loc, bufferTp, dynSizes, Value(), 724 nnz, Attribute()) 725 .getResult(); 726 727 // Convert src coordinates to dst coordinates by first collapsing it to 1D 728 // and then expand it to the match the rank of the destination tensor. 729 // Implemented as follows: 730 // foreach srcCoords %srcTensor 731 // collapsedCoords = reshapeCvs(srcCoords, [1, ..., srcRank]) 732 // expandedCoords = reshapeCvs(collapsedCoords, [1, ..., dstRank]) 733 // insert expandedCoords, %buffer 734 // 735 // followed by an optional 736 // %t = sparse_tensor.cast %tmp 737 // depending on whether the input/output are sorted in the same way. 738 const auto encSrc = srcTp.getEncoding(); 739 ForeachOp foreachOp = rewriter.create<ForeachOp>( 740 loc, srcTensor, buffer, 741 [&](OpBuilder &builder, Location loc, ValueRange srcLcvs, Value v, 742 ValueRange reduc) { 743 const Dimension srcRank = srcTp.getDimRank(); 744 SmallVector<Value> srcDcvs; 745 srcDcvs.reserve(srcRank); 746 for (Dimension d = 0; d < srcRank; d++) { 747 Level lvl = toLvl(encSrc, d); 748 srcDcvs.push_back(srcLcvs[lvl]); 749 } 750 751 Value collapseSize = constantIndex(builder, loc, 1); 752 for (Dimension d = 0; d < srcRank; d++) 753 collapseSize = 754 builder.create<arith::MulIOp>(loc, collapseSize, srcSizes[d]); 755 SmallVector<Value, 1> collapsedSizes = {collapseSize}; 756 757 ReassociationIndices collapseIdx; 758 for (Dimension i = 0; i < srcRank; i++) 759 collapseIdx.push_back(i); 760 SmallVector<ReassociationIndices, 1> collapseReass = {collapseIdx}; 761 SmallVector<Value, 1> collapsedDcvs; 762 reshapeCvs(builder, loc, collapseReass, srcSizes, srcDcvs, 763 collapsedSizes, collapsedDcvs); 764 765 ReassociationIndices expandIdx; 766 for (Dimension i = 0; i < dstTp.getDimRank(); i++) 767 expandIdx.push_back(i); 768 SmallVector<ReassociationIndices, 1> expandReass = {expandIdx}; 769 SmallVector<Value> dstDcvs; 770 reshapeCvs(builder, loc, expandReass, collapsedSizes, collapsedDcvs, 771 dstSizes, dstDcvs); 772 773 auto t = builder.create<InsertOp>(loc, v, reduc.front(), dstDcvs); 774 builder.create<sparse_tensor::YieldOp>(loc, t); 775 }); 776 777 Value t = rewriter.create<LoadOp>(loc, foreachOp.getResult(0), true); 778 if (bufferTp != dstTp) { 779 auto dstRTT = dstTp.getRankedTensorType(); 780 Value converted = rewriter.create<ConvertOp>(loc, dstRTT, t).getResult(); 781 rewriter.create<DeallocTensorOp>(loc, t); 782 t = converted; 783 } 784 rewriter.replaceOp(op, t); 785 return success(); 786 } 787 }; 788 789 /// Sparse rewriting rule for sparse-to-sparse reshape operator. 790 template <typename ReshapeOp> 791 struct Sparse2SparseReshapeRewriter : public OpRewritePattern<ReshapeOp> { 792 public: 793 using OpRewritePattern<ReshapeOp>::OpRewritePattern; 794 795 LogicalResult matchAndRewrite(ReshapeOp op, 796 PatternRewriter &rewriter) const override { 797 Location loc = op.getLoc(); 798 Value srcTensor = op.getSrc(); 799 const auto srcTp = getSparseTensorType(srcTensor); 800 const auto dstTp = getSparseTensorType(op.getResult()); 801 if (!srcTp.hasEncoding() || !dstTp.hasEncoding()) 802 return failure(); 803 804 // Generate code to represent the static dimension constants or compute 805 // the dynamic dimension values. 806 SmallVector<Value> srcSizes; 807 sizesForTensor(rewriter, srcSizes, loc, srcTp, srcTensor); 808 SmallVector<Value> dstSizes; 809 SmallVector<Value> dstDynSizes; 810 if (dstTp.hasStaticDimShape()) { 811 for (Dimension d : dstTp.getDimShape()) 812 dstSizes.push_back(constantIndex(rewriter, loc, d)); 813 } else { 814 ArrayRef<Size> dstShape = dstTp.getDimShape(); 815 genReshapeDstShape(rewriter, loc, dstSizes, srcSizes, dstShape, 816 op.getReassociationIndices()); 817 for (auto [idx, shape] : llvm::enumerate(dstShape)) { 818 if (shape == ShapedType::kDynamic) 819 dstDynSizes.push_back(dstSizes[idx]); 820 } 821 } 822 Value nnz = rewriter.create<NumberOfEntriesOp>(loc, srcTensor); 823 // Only need a unordered COO buffer if input and output are not sorted 824 // in the same way. 825 Type bufferTp = getBufferType( 826 dstTp.withoutDimToLvl(), 827 !srcTp.isAllOrdered() || !srcTp.isIdentity() || !dstTp.isIdentity()); 828 829 Value buffer = 830 rewriter 831 .create<AllocTensorOp>(loc, bufferTp, dstDynSizes, Value(), 832 /*sizeHint=*/nnz, Attribute()) 833 .getResult(); 834 835 // Implement the sparse2sparse reshape as follows: 836 // foreach srcCoords %srcTensor 837 // insert reshapeCvs(srcCoords), %buffer 838 // 839 // followed by an optional 840 // %t = sparse_tensor.cast %tmp 841 // depending on whether the input/output are sorted in the same way. 842 const auto encSrc = srcTp.getEncoding(); 843 ForeachOp foreachOp = rewriter.create<ForeachOp>( 844 loc, srcTensor, buffer, 845 [&](OpBuilder &builder, Location loc, ValueRange srcLcvs, Value v, 846 ValueRange reduc) { 847 const Dimension dimRank = srcTp.getDimRank(); 848 SmallVector<Value> srcDcvs; 849 srcDcvs.reserve(dimRank); 850 for (Dimension d = 0; d < dimRank; d++) { 851 Level lvl = toLvl(encSrc, d); 852 srcDcvs.push_back(srcLcvs[lvl]); 853 } 854 SmallVector<Value> dstDcvs; 855 reshapeCvs(builder, loc, op.getReassociationIndices(), srcSizes, 856 srcDcvs, dstSizes, dstDcvs); 857 auto t = builder.create<InsertOp>(loc, v, reduc.front(), dstDcvs); 858 builder.create<sparse_tensor::YieldOp>(loc, t); 859 }); 860 861 Value t = rewriter.create<LoadOp>(loc, foreachOp.getResult(0), true); 862 if (bufferTp != dstTp) { 863 auto dstRTT = dstTp.getRankedTensorType(); 864 Value converted = rewriter.create<ConvertOp>(loc, dstRTT, t).getResult(); 865 rewriter.create<DeallocTensorOp>(loc, t); 866 t = converted; 867 } 868 rewriter.replaceOp(op, t); 869 return success(); 870 } 871 }; 872 873 /// Sparse rewriting rule for sparse-to-dense and dense-to-sparse reshape 874 /// operator. 875 template <typename ReshapeOp> 876 struct ReshapeRewriter : public OpRewritePattern<ReshapeOp> { 877 public: 878 using OpRewritePattern<ReshapeOp>::OpRewritePattern; 879 880 LogicalResult matchAndRewrite(ReshapeOp op, 881 PatternRewriter &rewriter) const override { 882 Location loc = op->getLoc(); 883 auto encDst = getSparseTensorEncoding(op.getResult().getType()); 884 auto encSrc = getSparseTensorEncoding(op.getSrc().getType()); 885 // Since a pure dense expansion is very cheap (change of view), for 886 // a sparse2dense or dense2sparse, we can simply unfuse a sparse 887 // conversion from the reshape operation itself. 888 // All other cases are handled elsewhere. 889 if (encDst && encSrc) { 890 return failure(); 891 } 892 if (encSrc) { 893 auto rtp = getRankedTensorType(op.getSrc()); 894 auto denseTp = 895 RankedTensorType::get(rtp.getShape(), rtp.getElementType()); 896 auto convert = rewriter.create<ConvertOp>(loc, denseTp, op.getSrc()); 897 rewriter.modifyOpInPlace(op, [&]() { op->setOperand(0, convert); }); 898 return success(); 899 } 900 if (encDst) { 901 auto rtp = getRankedTensorType(op.getResult()); 902 auto denseTp = 903 RankedTensorType::get(rtp.getShape(), rtp.getElementType()); 904 auto reshape = rewriter.create<ReshapeOp>(loc, denseTp, op.getSrc(), 905 op.getReassociation()); 906 Value convert = rewriter.create<ConvertOp>(loc, rtp, reshape); 907 rewriter.replaceOp(op, convert); 908 return success(); 909 } 910 return failure(); 911 } 912 }; 913 914 // A trivial wrapper to help generate different operations for dense/sparse 915 // tensors. 916 struct TensorLike { 917 TensorLike(OpBuilder &builder, Location loc, RankedTensorType rtt, 918 ValueRange sizes) { 919 SmallVector<Value> dynSzs; 920 getDynamicSizes(rtt, sizes, dynSzs); 921 922 val = builder.create<AllocTensorOp>(loc, rtt, dynSzs); 923 if (!isSparse()) { 924 Value c0 = constantZero(builder, loc, rtt.getElementType()); 925 val = builder.create<linalg::FillOp>(loc, c0, val).getResult(0); 926 } 927 } 928 929 void insert(OpBuilder &builder, Location loc, Value v, ValueRange crds) { 930 val = builder.create<tensor::InsertOp>(loc, v, val, crds); 931 } 932 933 Value finalize(OpBuilder &builder, Location loc, RankedTensorType rtp) const { 934 if (isSparse()) 935 return builder.create<LoadOp>(loc, val, true); 936 return val; 937 } 938 939 bool isSparse() const { 940 return getSparseTensorEncoding(val.getType()) != nullptr; 941 } 942 943 Value val; 944 }; 945 946 struct SparseTensorDimOpRewriter : public OpRewritePattern<tensor::DimOp> { 947 using OpRewritePattern::OpRewritePattern; 948 LogicalResult matchAndRewrite(tensor::DimOp op, 949 PatternRewriter &rewriter) const override { 950 std::optional<int64_t> dim = op.getConstantIndex(); 951 auto stt = getSparseTensorType(op.getSource()); 952 if (!dim || !stt.hasEncoding()) 953 return failure(); 954 955 if (stt.isPermutation()) { 956 rewriter.replaceOpWithNewOp<LvlOp>(op, op.getSource(), 957 toLvl(stt.getEncoding(), *dim)); 958 return success(); 959 } 960 961 // Non-permutation dim2lvl/lvl2dim maps. 962 // Compute as follows: 963 // affine.apply #map (l0 - 1, l1 - 1, ...) + 1 964 // Note that it is not the most efficient way (but a more general one) for 965 // the lvl to dim translation, e.g., for BSR, the dimension size for can be 966 // computed simply by lvl_size * block_size. 967 Location loc = op.getLoc(); 968 SmallVector<Value> maxLvlCrds; 969 for (Level l = 0; l < stt.getLvlRank(); l++) { 970 Value lvlSz = rewriter.create<LvlOp>(loc, op.getSource(), l); 971 Value maxLvlCrd = rewriter.create<arith::SubIOp>( 972 loc, lvlSz, constantOne(rewriter, loc, rewriter.getIndexType())); 973 maxLvlCrds.push_back(maxLvlCrd); 974 } 975 976 AffineExpr lvl2DimExp = stt.getLvlToDim().getResult(*dim); 977 Value maxDimCrd = rewriter.create<affine::AffineApplyOp>( 978 op.getLoc(), AffineMap::get(stt.getLvlRank(), 0, lvl2DimExp), 979 maxLvlCrds); 980 981 Value dimSz = rewriter.create<arith::AddIOp>( 982 loc, maxDimCrd, constantOne(rewriter, loc, rewriter.getIndexType())); 983 rewriter.replaceOp(op, dimSz); 984 return success(); 985 } 986 }; 987 988 struct ConcatenateRewriter : public OpRewritePattern<ConcatenateOp> { 989 using OpRewritePattern::OpRewritePattern; 990 LogicalResult matchAndRewrite(ConcatenateOp op, 991 PatternRewriter &rewriter) const override { 992 if (op.needsExtraSort()) 993 op.emitError("ConcatenateOp not staged"); 994 995 const Location loc = op.getLoc(); 996 const auto dstTp = getSparseTensorType(op); 997 const Dimension conDim = op.getDimension(); 998 SmallVector<Value> sizes; 999 concatSizesFromInputs(rewriter, sizes, loc, dstTp, op.getInputs(), conDim); 1000 1001 // %t = concatenate %s1, %s2, %s3 {dim = 1} 1002 // ==> 1003 // if (isSparseDst) 1004 // if (allDense) 1005 // %tmp = bufferization.alloc_tensor dstTp 1006 // else 1007 // %tmp = bufferization.alloc_tensor : unordered COO 1008 // else 1009 // %tmp = memref.alloc : dense tensor 1010 // foreach in %s1 : insert d0, d1, %tmp 1011 // foreach in %s2 : insert d0, d1 + size(s1), %tmp 1012 // foreach in %s3 : insert d0, d1 + size(s1) + size(s2), %tmp 1013 1014 TensorLike dstBuf(rewriter, loc, dstTp.getRankedTensorType(), sizes); 1015 Value offset = constantIndex(rewriter, loc, 0); 1016 Value iterArg = dstBuf.val; 1017 1018 ForeachOp foreachOp; 1019 for (Value input : op.getInputs()) { 1020 // Builds a for op for each input tensor to append new values into the 1021 // output tensor. 1022 foreachOp = rewriter.create<ForeachOp>( 1023 loc, input, iterArg, 1024 [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v, 1025 ValueRange reduc) { 1026 SmallVector<Value> offDimCrd(dcvs); 1027 offDimCrd[conDim] = 1028 builder.create<arith::AddIOp>(loc, offDimCrd[conDim], offset); 1029 1030 // Enters foreach, updates the SSA chain. 1031 dstBuf.val = reduc.front(); 1032 if (!dstTp.isAllDense()) { 1033 Value cond = genIsNonzero(builder, loc, v); 1034 auto ifOp = builder.create<scf::IfOp>(loc, reduc.getTypes(), cond, 1035 /*else*/ true); 1036 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 1037 builder.create<scf::YieldOp>(loc, dstBuf.val); 1038 1039 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 1040 dstBuf.insert(builder, loc, v, offDimCrd); 1041 builder.create<scf::YieldOp>(loc, dstBuf.val); 1042 1043 // Exits the ifOp, update the sparse tensor SSA value. 1044 builder.setInsertionPointAfter(ifOp); 1045 dstBuf.val = ifOp.getResult(0); 1046 } else { 1047 dstBuf.insert(builder, loc, v, offDimCrd); 1048 } 1049 builder.create<sparse_tensor::YieldOp>(loc, dstBuf.val); 1050 }); 1051 // Accumulates the offset. Note that only static-shaped inputs are allowed 1052 // by concatenate op verifier, which saves us from computing the offset 1053 // dynamically. 1054 const Size sz = getSparseTensorType(input).getDynamicDimSize(conDim); 1055 assert(!ShapedType::isDynamic(sz)); 1056 offset = rewriter.create<arith::AddIOp>(loc, offset, 1057 constantIndex(rewriter, loc, sz)); 1058 iterArg = foreachOp.getResult(0); 1059 dstBuf.val = iterArg; 1060 } 1061 1062 dstBuf.val = iterArg; 1063 Value ret = dstBuf.finalize(rewriter, loc, dstTp.getRankedTensorType()); 1064 rewriter.replaceOp(op, ret); 1065 return success(); 1066 } 1067 }; 1068 1069 struct DirectConvertRewriter : public OpRewritePattern<ConvertOp> { 1070 using OpRewritePattern::OpRewritePattern; 1071 LogicalResult matchAndRewrite(ConvertOp op, 1072 PatternRewriter &rewriter) const override { 1073 if (op.needsExtraSort()) 1074 return op.emitError("ConvertOp not staged."); 1075 1076 // TODO: Maybe we want a different operation for this too. 1077 auto encDst = getSparseTensorEncoding(op.getType()); 1078 auto encSrc = getSparseTensorEncoding(op.getSource().getType()); 1079 if (encDst && encSrc && !encSrc.isSlice() && 1080 encSrc.withoutBitWidths() == encDst.withoutBitWidths()) { 1081 // Trivial tensor conversion and simple element type conversion is handled 1082 // in codegen. 1083 return failure(); 1084 } 1085 1086 Location loc = op.getLoc(); 1087 Value src = op.getSource(); 1088 1089 SparseTensorType srcStt = getSparseTensorType(op.getSource()); 1090 SparseTensorType dstStt = getSparseTensorType(op.getDest()); 1091 1092 bool fromSparseConst = false; 1093 if (auto constOp = op.getSource().getDefiningOp<arith::ConstantOp>()) 1094 if (dyn_cast<SparseElementsAttr>(constOp.getValue())) 1095 fromSparseConst = true; 1096 1097 const AffineMapAttr foreachOrder = 1098 (!dstStt.isIdentity() && fromSparseConst) 1099 ? AffineMapAttr::get(dstStt.getExpandedDimToLvl()) 1100 : nullptr; 1101 1102 bool skipZeroCheck = srcStt.hasEncoding() || fromSparseConst; 1103 1104 SmallVector<Value> sizes; 1105 sizesFromSrc(rewriter, sizes, loc, src); 1106 ValueRange vs; 1107 TensorLike dstBuf(rewriter, loc, dstStt.getRankedTensorType(), sizes); 1108 1109 auto foreachOp = rewriter.create<ForeachOp>( 1110 loc, src, dstBuf.val, foreachOrder, 1111 [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v, 1112 ValueRange reduc) { 1113 // Enters the loop, update the SSA value for insertion chain. 1114 dstBuf.val = reduc.front(); 1115 if (!skipZeroCheck) { 1116 Value cond = genIsNonzero(builder, loc, v); 1117 auto ifOp = builder.create<scf::IfOp>(loc, reduc.getTypes(), cond, 1118 /*else*/ true); 1119 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 1120 builder.create<scf::YieldOp>(loc, dstBuf.val); 1121 1122 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 1123 dstBuf.insert(builder, loc, v, dcvs); 1124 builder.create<scf::YieldOp>(loc, dstBuf.val); 1125 1126 // Exits the ifOp, update the sparse tensor SSA value. 1127 builder.setInsertionPointAfter(ifOp); 1128 dstBuf.val = ifOp.getResult(0); 1129 } else { 1130 dstBuf.insert(builder, loc, v, dcvs); 1131 } 1132 builder.create<sparse_tensor::YieldOp>(loc, dstBuf.val); 1133 }); 1134 1135 rewriter.setInsertionPointAfter(foreachOp); 1136 1137 // Exits the for loop, links the SSA chain. 1138 dstBuf.val = foreachOp.getResult(0); 1139 1140 Value ret = dstBuf.finalize(rewriter, loc, dstStt.getRankedTensorType()); 1141 rewriter.replaceOp(op, ret); 1142 return success(); 1143 } 1144 }; 1145 1146 struct CrdTranslateRewriter : public OpRewritePattern<CrdTranslateOp> { 1147 using OpRewritePattern::OpRewritePattern; 1148 LogicalResult matchAndRewrite(CrdTranslateOp op, 1149 PatternRewriter &rewriter) const override { 1150 AffineMap map = op.getDirection() == CrdTransDirectionKind::dim2lvl 1151 ? op.getEncoder().getDimToLvl() 1152 : op.getEncoder().getLvlToDim(); 1153 1154 SmallVector<Value> outCrds; 1155 for (AffineExpr result : map.getResults()) { 1156 // TODO: we should probably expand the affine map to IR using our own 1157 // rules, since affine.apply assume signed value, while the cooridinates 1158 // we provided must always be signless. 1159 Value trans = rewriter.create<affine::AffineApplyOp>( 1160 op.getLoc(), AffineMap::get(map.getNumDims(), 0, result), 1161 op.getInCrds()); 1162 outCrds.push_back(trans); 1163 } 1164 rewriter.replaceOp(op, outCrds); 1165 return success(); 1166 } 1167 }; 1168 1169 /// Sparse rewriting rule for the foreach operator. 1170 struct ForeachRewriter : public OpRewritePattern<ForeachOp> { 1171 public: 1172 using OpRewritePattern::OpRewritePattern; 1173 1174 LogicalResult matchAndRewrite(ForeachOp op, 1175 PatternRewriter &rewriter) const override { 1176 1177 auto loc = op.getLoc(); 1178 Value input = op.getTensor(); 1179 SmallVector<Value> reduc = op.getInitArgs(); 1180 const auto stt = getSparseTensorType(input); 1181 const Level lvlRank = stt.getLvlRank(); 1182 1183 // Special-case: for each over a sparse constant uses its own rewriting 1184 // rule. 1185 if (auto constOp = input.getDefiningOp<arith::ConstantOp>()) { 1186 if (auto attr = dyn_cast<SparseElementsAttr>(constOp.getValue())) { 1187 return genForeachOnSparseConstant(op, rewriter, attr); 1188 } 1189 } 1190 1191 // Otherwise, use loop emitter to generate loops. 1192 const auto enc = stt.getEncoding(); 1193 1194 // 1. Generates loop for the sparse input. 1195 LoopEmitter loopEmitter( 1196 ValueRange{input}, 1197 StringAttr::get(getContext(), ForeachOp::getOperationName())); 1198 loopEmitter.initializeLoopEmit(rewriter, loc); 1199 for (Level l = 0; l < lvlRank; l++) { 1200 // TODO: provide utility function for loop sequences that only contains 1201 // one for loop? 1202 const SmallVector<TensorLevel, 1> tidLvls{ 1203 loopEmitter.makeTensorLevel(0, l)}; 1204 loopEmitter.enterNewLoopSeq(rewriter, loc, tidLvls); 1205 // Note that reduc will be taken care of by loop emitter and get updated 1206 // in place. 1207 loopEmitter.enterCoIterationOverTensorsAtLvls(rewriter, loc, tidLvls, 1208 reduc); 1209 } 1210 1211 SmallVector<Value> lcvs = loopEmitter.getLoopIVs(); 1212 if (op.getOrder()) { 1213 // TODO: Support it so that we can do direct conversion from CSR->BSR. 1214 llvm_unreachable( 1215 "Level order not yet implemented on non-constant input tensors."); 1216 } 1217 1218 Value vals = loopEmitter.getValBuffer()[0]; 1219 Value pos = loopEmitter.getValPosits(0); 1220 // Loads the value from sparse tensor using position-index; 1221 // loads the value from dense tensor using coords. 1222 Value val = enc ? rewriter.create<memref::LoadOp>(loc, vals, pos) 1223 : rewriter.create<memref::LoadOp>(loc, vals, lcvs); 1224 1225 // 2. Inline the block in the foreach operator. 1226 Block *srcBlock = op.getBody(); 1227 1228 // Remap coordinates. 1229 SmallVector<Value> args = 1230 enc.translateCrds(rewriter, loc, lcvs, CrdTransDirectionKind::lvl2dim); 1231 1232 // Remap value. 1233 args.push_back(val); 1234 // Remap reduction variables. 1235 args.append(reduc); 1236 1237 // Remove sparse_tensor.yield. 1238 SmallVector<Value> reducValue = srcBlock->getTerminator()->getOperands(); 1239 rewriter.eraseOp(srcBlock->getTerminator()); 1240 1241 Operation &last = rewriter.getBlock()->back(); 1242 if (llvm::isa<scf::YieldOp>(last)) { 1243 // Because `scf.for` inserts an implicit yield op when there is no 1244 // reduction variable upon creation, we reset the insertion point such 1245 // that the block is inlined before *before* the yield op. 1246 rewriter.setInsertionPoint(&last); 1247 } 1248 1249 rewriter.inlineBlockBefore(srcBlock, rewriter.getBlock(), 1250 rewriter.getInsertionPoint(), args); 1251 rewriter.setInsertionPointToEnd(rewriter.getBlock()); 1252 for (Level l = 0; l < lvlRank; l++) { 1253 // Link the reduction chain. Note that loop emitter update the reducValue 1254 // in place. 1255 loopEmitter.exitCurrentLoop(rewriter, loc, reducValue); 1256 loopEmitter.exitCurrentLoopSeq(rewriter, loc); 1257 } 1258 1259 // Replace the foreach operator with the value returned by the outtermost 1260 // for loop. 1261 rewriter.replaceOp(op, reducValue); 1262 return success(); 1263 } 1264 }; 1265 1266 /// Sparse rewriting rule for the new operator. 1267 struct NewRewriter : public OpRewritePattern<NewOp> { 1268 using OpRewritePattern::OpRewritePattern; 1269 LogicalResult matchAndRewrite(NewOp op, 1270 PatternRewriter &rewriter) const override { 1271 Location loc = op.getLoc(); 1272 auto stt = getSparseTensorType(op.getResult()); 1273 if (!stt.hasEncoding() || stt.getAoSCOOStart() == 0) 1274 return failure(); 1275 1276 // Implement the NewOp as follows: 1277 // %orderedCoo = sparse_tensor.new %filename 1278 // %t = sparse_tensor.convert %orderedCoo 1279 // with enveloping reinterpreted_map ops for non-permutations. 1280 RankedTensorType dstTp = stt.getRankedTensorType(); 1281 RankedTensorType cooTp = stt.getCOOType(/*ordered=*/true); 1282 Value cooTensor = rewriter.create<NewOp>(loc, cooTp, op.getSource()); 1283 Value convert = cooTensor; 1284 auto enc = stt.getEncoding(); 1285 if (!stt.isPermutation()) { // demap coo, demap dstTp 1286 auto coo = getSparseTensorType(cooTensor).getEncoding().withoutDimToLvl(); 1287 convert = rewriter.create<ReinterpretMapOp>(loc, coo, convert); 1288 dstTp = getSparseTensorType(convert).withEncoding(enc.withoutDimToLvl()); 1289 } 1290 convert = rewriter.create<ConvertOp>(loc, dstTp, convert); 1291 if (!stt.isPermutation()) // remap to original enc 1292 convert = rewriter.create<ReinterpretMapOp>(loc, enc, convert); 1293 rewriter.replaceOp(op, convert); 1294 1295 // Release the temporary ordered COO tensor. 1296 rewriter.setInsertionPointAfterValue(convert); 1297 rewriter.create<DeallocTensorOp>(loc, cooTensor); 1298 1299 return success(); 1300 } 1301 }; 1302 1303 /// Sparse rewriting rule for the out operator. 1304 struct OutRewriter : public OpRewritePattern<OutOp> { 1305 using OpRewritePattern::OpRewritePattern; 1306 LogicalResult matchAndRewrite(OutOp op, 1307 PatternRewriter &rewriter) const override { 1308 Location loc = op.getLoc(); 1309 // Calculate NNZ. 1310 Value src = op.getTensor(); 1311 Value nnz = rewriter.create<NumberOfEntriesOp>(loc, src); 1312 1313 // Allocate a temporary buffer for storing dimension-sizes/coordinates. 1314 const auto srcTp = getSparseTensorType(src); 1315 const Dimension dimRank = srcTp.getDimRank(); 1316 Type indexTp = rewriter.getIndexType(); 1317 Value dimSizes = genAlloca(rewriter, loc, dimRank, indexTp); 1318 1319 // Generate code to calculate dimension size values and store the values to 1320 // the buffer. 1321 SmallVector<Value> dims; 1322 sizesForTensor(rewriter, dims, loc, srcTp, src); 1323 for (Dimension d = 0; d < dimRank; d++) { 1324 rewriter.create<memref::StoreOp>(loc, dims[d], dimSizes, 1325 constantIndex(rewriter, loc, d)); 1326 } 1327 1328 // Create a sparse tensor writer and output meta data. 1329 Type opaqueTp = getOpaquePointerType(rewriter); 1330 Value writer = 1331 createFuncCall(rewriter, loc, "createSparseTensorWriter", {opaqueTp}, 1332 {op.getDest()}, EmitCInterface::Off) 1333 .getResult(0); 1334 Value rankValue = constantIndex(rewriter, loc, dimRank); 1335 createFuncCall(rewriter, loc, "outSparseTensorWriterMetaData", {}, 1336 {writer, rankValue, nnz, dimSizes}, EmitCInterface::On); 1337 1338 Value dimCoords = dimSizes; // Reuse the dimSizes buffer for dimCoords. 1339 Type eltTp = srcTp.getElementType(); 1340 SmallString<29> outNextFuncName{"outSparseTensorWriterNext", 1341 primaryTypeFunctionSuffix(eltTp)}; 1342 Value value = genAllocaScalar(rewriter, loc, eltTp); 1343 ModuleOp module = op->getParentOfType<ModuleOp>(); 1344 1345 // For each element in the source tensor, output the element. 1346 rewriter.create<ForeachOp>( 1347 loc, src, std::nullopt, 1348 [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v, 1349 ValueRange reduc) { 1350 for (Dimension d = 0; d < dimRank; d++) { 1351 rewriter.create<memref::StoreOp>(loc, dcvs[d], dimCoords, 1352 constantIndex(builder, loc, d)); 1353 } 1354 rewriter.create<memref::StoreOp>(loc, v, value); 1355 SmallVector<Value> operands{writer, rankValue, dimCoords, value}; 1356 FlatSymbolRefAttr fn = getFunc(module, outNextFuncName, {}, operands, 1357 EmitCInterface::On); 1358 builder.create<func::CallOp>(loc, TypeRange(), fn, operands); 1359 builder.create<sparse_tensor::YieldOp>(loc); 1360 }); 1361 1362 // Release the writer. 1363 createFuncCall(rewriter, loc, "delSparseTensorWriter", {}, {writer}, 1364 EmitCInterface::Off); 1365 1366 rewriter.eraseOp(op); 1367 return success(); 1368 } 1369 }; 1370 1371 } // namespace 1372 1373 //===---------------------------------------------------------------------===// 1374 // Methods that add patterns described in this file to a pattern list. 1375 //===---------------------------------------------------------------------===// 1376 1377 void mlir::populatePreSparsificationRewriting(RewritePatternSet &patterns) { 1378 patterns.add<FoldInvariantYield, FuseSparseMultiplyOverAdd, FuseTensorCast, 1379 GenSemiRingReduction, GenSemiRingSelect, PrintRewriter>( 1380 patterns.getContext()); 1381 } 1382 1383 void mlir::populateLowerSparseOpsToForeachPatterns(RewritePatternSet &patterns, 1384 bool enableRT, 1385 bool enableConvert) { 1386 patterns.add<ConcatenateRewriter, ReshapeRewriter<tensor::ExpandShapeOp>, 1387 ReshapeRewriter<tensor::CollapseShapeOp>, 1388 Sparse2SparseReshapeRewriter<tensor::ExpandShapeOp>, 1389 Sparse2SparseReshapeRewriter<tensor::CollapseShapeOp>, 1390 SparseTensorDimOpRewriter, TensorReshapeRewriter, OutRewriter>( 1391 patterns.getContext()); 1392 1393 if (enableConvert) 1394 patterns.add<DirectConvertRewriter>(patterns.getContext()); 1395 if (!enableRT) 1396 patterns.add<NewRewriter>(patterns.getContext()); 1397 } 1398 1399 void mlir::populateLowerForeachToSCFPatterns(RewritePatternSet &patterns) { 1400 // Run CrdTranslateRewriter later in the pipeline so that operation can be 1401 // folded before lowering to affine.apply 1402 patterns.add<CrdTranslateRewriter, ForeachRewriter>(patterns.getContext()); 1403 } 1404