1 //===- SparseTensorRewriting.cpp - Sparse tensor rewriting rules ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements rewriting rules that are specific to sparse tensors. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "Utils/CodegenUtils.h" 14 #include "Utils/LoopEmitter.h" 15 16 #include "mlir/Dialect/Affine/IR/AffineOps.h" 17 #include "mlir/Dialect/Arith/IR/Arith.h" 18 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 19 #include "mlir/Dialect/Linalg/IR/Linalg.h" 20 #include "mlir/Dialect/Linalg/Utils/Utils.h" 21 #include "mlir/Dialect/MemRef/IR/MemRef.h" 22 #include "mlir/Dialect/SCF/IR/SCF.h" 23 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 24 #include "mlir/Dialect/SparseTensor/IR/SparseTensorStorageLayout.h" 25 #include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h" 26 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 27 #include "mlir/Dialect/Tensor/IR/Tensor.h" 28 #include "mlir/Dialect/Vector/IR/VectorOps.h" 29 #include "mlir/IR/AffineMap.h" 30 #include "mlir/IR/Matchers.h" 31 #include "mlir/Support/LLVM.h" 32 33 using namespace mlir; 34 using namespace mlir::bufferization; 35 using namespace mlir::linalg; 36 using namespace mlir::sparse_tensor; 37 38 //===---------------------------------------------------------------------===// 39 // Helper methods for the actual rewriting rules. 40 //===---------------------------------------------------------------------===// 41 42 // Helper method to match any typed zero. 43 static bool isZeroValue(Value val) { 44 return matchPattern(val, m_Zero()) || matchPattern(val, m_AnyZeroFloat()); 45 } 46 47 // Helper to detect a sparse tensor type operand. 48 static bool isSparseTensor(Value v) { 49 auto enc = getSparseTensorEncoding(v.getType()); 50 return enc && !llvm::all_of(enc.getLvlTypes(), 51 [](auto lt) { return lt == LevelFormat::Dense; }); 52 } 53 static bool isSparseTensor(OpOperand *op) { return isSparseTensor(op->get()); } 54 55 // Helper method to find zero/uninitialized tensor materialization. 56 static bool isMaterializing(OpOperand *op, bool isZero) { 57 Value val = op->get(); 58 // Check allocation, with zero alloc when required. 59 if (auto alloc = val.getDefiningOp<AllocTensorOp>()) { 60 Value copy = alloc.getCopy(); 61 if (isZero) 62 return copy && isZeroValue(copy); 63 return !copy; 64 } 65 // Check for empty tensor materialization. 66 if (auto empty = val.getDefiningOp<tensor::EmptyOp>()) 67 return !isZero; 68 // Last resort for zero alloc: the whole value is zero. 69 return isZero && isZeroValue(val); 70 } 71 72 // Helper to detect sampling operation. 73 static bool isSampling(GenericOp op) { 74 auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator()); 75 if (auto *def = yieldOp.getOperand(0).getDefiningOp()) { 76 if (isa<arith::MulFOp>(def) || isa<arith::MulIOp>(def)) { 77 // Both scalar input arguments used exactly once. 78 Value s1 = op.getBlock()->getArgument(0); 79 Value s2 = op.getBlock()->getArgument(1); 80 return (def->getOperand(0) == s1 && def->getOperand(1) == s2) || 81 (def->getOperand(1) == s1 && def->getOperand(0) == s2); 82 } 83 } 84 return false; 85 } 86 87 // Helper to detect chain of multiplications that do not involve x. 88 static bool isMulChain(Value val, Value x) { 89 if (auto arg = dyn_cast<BlockArgument>(val)) 90 return arg != x; 91 if (auto *def = val.getDefiningOp()) { 92 if (isa<arith::MulFOp>(def) || isa<arith::MulIOp>(def)) 93 return isMulChain(def->getOperand(0), x) && 94 isMulChain(def->getOperand(1), x); 95 } 96 return false; 97 } 98 99 // Helper to detect x = x + <multiplications>. 100 static bool isSumOfMul(GenericOp op) { 101 auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator()); 102 if (auto *def = yieldOp.getOperand(0).getDefiningOp()) { 103 if (isa<arith::AddFOp>(def) || isa<arith::AddIOp>(def)) { 104 Value x = op.getBlock()->getArguments().back(); 105 return (def->getOperand(0) == x && isMulChain(def->getOperand(1), x)) || 106 (def->getOperand(1) == x && isMulChain(def->getOperand(0), x)); 107 } 108 } 109 return false; 110 } 111 112 // Helper to detect direct yield of a zero value. 113 static bool isZeroYield(GenericOp op) { 114 auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator()); 115 if (auto arg = dyn_cast<BlockArgument>(yieldOp.getOperand(0))) { 116 if (arg.getOwner()->getParentOp() == op) { 117 return isZeroValue(op->getOperand(arg.getArgNumber())); 118 } 119 } 120 return isZeroValue(yieldOp.getOperand(0)); 121 } 122 123 /// Populates given sizes array from type (for static sizes) and from 124 /// the tensor (for dynamic sizes). 125 static void sizesForTensor(OpBuilder &builder, SmallVectorImpl<Value> &sizes, 126 Location loc, ShapedType stp, Value tensor) { 127 for (const auto &d : enumerate(stp.getShape())) { 128 Value dim; 129 if (d.value() == ShapedType::kDynamic) 130 dim = builder.create<tensor::DimOp>(loc, tensor, d.index()); 131 else 132 dim = constantIndex(builder, loc, d.value()); 133 sizes.push_back(dim); 134 } 135 } 136 137 static RankedTensorType getBufferType(const SparseTensorType &stt, 138 bool needTmpCOO) { 139 return needTmpCOO ? stt.getCOOType(/*ordered=*/false) 140 : stt.getRankedTensorType(); 141 } 142 143 /// Collects the dynamic dimension sizes for `tp` with the assumption that 144 /// `sizes` are the dimension sizes for the type. Stores the dynamic dimension 145 /// sizes to dynSizes. 146 static void getDynamicSizes(RankedTensorType tp, ValueRange sizes, 147 SmallVectorImpl<Value> &dynSizes) { 148 for (const auto &d : enumerate(tp.getShape())) { 149 if (d.value() == ShapedType::kDynamic) 150 dynSizes.push_back(sizes[d.index()]); 151 } 152 } 153 154 static LogicalResult genForeachOnSparseConstant(ForeachOp op, 155 RewriterBase &rewriter, 156 SparseElementsAttr attr) { 157 auto loc = op.getLoc(); 158 SmallVector<Value> reduc = op.getInitArgs(); 159 160 // Foreach on constant. 161 foreachInSparseConstant( 162 rewriter, loc, attr, op.getOrder().value_or(AffineMap()), 163 [&reduc, &rewriter, op](ArrayRef<Value> cvs, Value v) mutable { 164 SmallVector<Value> args; 165 args.append(cvs.begin(), cvs.end()); 166 args.push_back(v); 167 args.append(reduc); 168 // Clones the foreach op to get a copy of the loop body. 169 auto cloned = cast<ForeachOp>(rewriter.clone(*op.getOperation())); 170 assert(args.size() == cloned.getBody()->getNumArguments()); 171 Operation *yield = cloned.getBody()->getTerminator(); 172 rewriter.inlineBlockBefore(cloned.getBody(), op, args); 173 // clean up 174 rewriter.eraseOp(cloned); 175 reduc = yield->getOperands(); 176 rewriter.eraseOp(yield); 177 }); 178 179 rewriter.replaceOp(op, reduc); 180 return success(); 181 } 182 183 /// Populates the given sizes array for concatenation from types (for static 184 /// sizes) and from the source tensors (for dynamic sizes). 185 static void concatSizesFromInputs(OpBuilder &builder, 186 SmallVectorImpl<Value> &sizes, Location loc, 187 ShapedType dstTp, ValueRange srcs, 188 unsigned dim) { 189 auto dstShape = dstTp.getShape(); 190 sizesFromSrc(builder, sizes, loc, srcs[0]); 191 192 // Sum up on the `dim` if the dimension is dynamic. 193 if (dstShape[dim] != ShapedType::kDynamic) { 194 // Faithfully take the static size. 195 sizes[dim] = constantIndex(builder, loc, dstShape[dim]); 196 } else { 197 // Else, compute the shape dynamically. 198 for (const auto &src : srcs.drop_front()) { 199 Value srcSz = linalg::createOrFoldDimOp(builder, loc, src, dim); 200 // Sum up all the sizes. 201 sizes[dim] = builder.create<arith::AddIOp>(loc, sizes[dim], srcSz); 202 } 203 } 204 } 205 206 //===---------------------------------------------------------------------===// 207 // The actual sparse tensor rewriting rules. 208 //===---------------------------------------------------------------------===// 209 210 namespace { 211 212 /// TODO: move it to tensor dialect instead. 213 /// 214 /// Fold `tensor.concat` and `tensor.extract_slice` 215 /// 216 /// %concat = tensor.concat dim(2) %t0, %t1 217 /// : (tensor<1x64x1xf32>, tensor<1x64x1xf32>) -> tensor<1x64x2xf32> 218 /// %extracted0 = tensor.extract_slice %concat[0, 0, 0][1, 64, 1][1, 1, 1] 219 /// : tensor<1x64x2xf32> to tensor<1x64x1xf32> 220 /// %extracted1 = tensor.extract_slice %concat[0, 0, 1][1, 64, 1][1, 1, 1] 221 /// : tensor<1x64x2xf32> to tensor<1x64x1xf32> 222 /// 223 /// Becomes 224 /// 225 /// %extract0, %extract1 = %t0, %t1 226 struct FuseExtractSliceWithConcat 227 : public OpRewritePattern<tensor::ExtractSliceOp> { 228 using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern; 229 230 LogicalResult matchAndRewrite(tensor::ExtractSliceOp extractOp, 231 PatternRewriter &rewriter) const override { 232 auto concatOp = extractOp.getSource().getDefiningOp<tensor::ConcatOp>(); 233 if (!concatOp) 234 return failure(); 235 236 Location loc = extractOp.getLoc(); 237 int64_t dim = concatOp.getDim(); 238 int64_t rank = extractOp.getResultType().getRank(); 239 240 SmallVector<OpFoldResult> srcStrides(rank, rewriter.getIndexAttr(1)); 241 SmallVector<OpFoldResult> srcOffsets(rank, rewriter.getIndexAttr(0)); 242 243 // Compute the partial sums for the slice offsets. 244 AffineExpr sum = rewriter.getAffineDimExpr(0); 245 SmallVector<AffineExpr> partialSums = {sum}; 246 SmallVector<OpFoldResult> offsetStrides = {rewriter.getIndexAttr(0)}; 247 for (auto [idx, input] : 248 llvm::enumerate(concatOp.getInputs().drop_back())) { 249 sum = sum + rewriter.getAffineDimExpr(idx + 1); 250 partialSums.push_back(sum); 251 offsetStrides.push_back( 252 rewriter.createOrFold<tensor::DimOp>(loc, input, dim)); 253 } 254 auto partialSumMap = AffineMap::get(concatOp.getInputs().size(), 0, 255 partialSums, rewriter.getContext()); 256 SmallVector<OpFoldResult> dimOffsets = 257 affine::makeComposedFoldedMultiResultAffineApply( 258 rewriter, loc, partialSumMap, offsetStrides); 259 260 auto allEqual = [](ArrayRef<OpFoldResult> lhs, ArrayRef<OpFoldResult> rhs) { 261 for (auto [l, r] : llvm::zip(lhs, rhs)) { 262 std::optional<int64_t> staticVal = getConstantIntValue(l); 263 if (!staticVal.has_value() || staticVal != getConstantIntValue(r)) 264 return false; 265 } 266 return lhs.size() == rhs.size(); 267 }; 268 269 for (auto [i, input, offset] : 270 llvm::enumerate(concatOp.getInputs(), dimOffsets)) { 271 SmallVector<OpFoldResult> srcSizes = 272 tensor::getMixedSizes(rewriter, loc, input); 273 srcOffsets[dim] = offset; 274 275 SmallVector<OpFoldResult> dstSizes = extractOp.getMixedSizes(); 276 SmallVector<OpFoldResult> dstOffsets = extractOp.getMixedOffsets(); 277 SmallVector<OpFoldResult> dstStrides = extractOp.getMixedStrides(); 278 279 if (allEqual(srcSizes, dstSizes) && allEqual(srcOffsets, dstOffsets) && 280 allEqual(srcStrides, dstStrides)) { 281 Value operand = concatOp.getOperand(i); 282 if (operand.getType() == extractOp.getResultType()) 283 rewriter.replaceOp(extractOp, operand); 284 break; 285 } 286 } 287 288 return success(); 289 } 290 }; 291 292 /// Rewriting rule that fuses sparse_tensor.convert into producer. 293 struct FoldConvertIntoProducer : public OpRewritePattern<ConvertOp> { 294 public: 295 using OpRewritePattern::OpRewritePattern; 296 297 LogicalResult matchAndRewrite(ConvertOp op, 298 PatternRewriter &rewriter) const override { 299 auto producer = op.getSource().getDefiningOp<GenericOp>(); 300 if (!producer || producer.getDpsInits().size() != 1 || 301 !isMaterializing(producer.getDpsInitOperand(0), false) || 302 !producer.getResult(0).hasOneUse()) { 303 return failure(); 304 } 305 rewriter.modifyOpInPlace(producer, [&]() { 306 producer.getResult(0).setType(op.getResult().getType()); 307 }); 308 309 Operation *materializeOp = 310 producer.getDpsInitOperand(0)->get().getDefiningOp(); 311 312 rewriter.modifyOpInPlace(materializeOp, [&]() { 313 materializeOp->getResult(0).setType(op.getResult().getType()); 314 }); 315 316 rewriter.replaceAllOpUsesWith(op, producer); 317 op->erase(); 318 319 return success(); 320 } 321 }; 322 323 /// Rewriting rule that converts direct yield of zero with initial allocation. 324 struct FoldInvariantYield : public OpRewritePattern<GenericOp> { 325 public: 326 using OpRewritePattern<GenericOp>::OpRewritePattern; 327 328 LogicalResult matchAndRewrite(GenericOp op, 329 PatternRewriter &rewriter) const override { 330 if (!op.hasPureTensorSemantics() || op.getNumResults() != 1 || 331 !isMaterializing(op.getDpsInitOperand(0), /*isZero=*/false) || 332 !isZeroYield(op) || !op.getDpsInitOperand(0)->get().hasOneUse()) 333 return failure(); 334 auto outputType = getRankedTensorType(op.getResult(0)); 335 // Yielding zero on newly materialized sparse tensor can be 336 // optimized directly (regardless of dynamic or static size). 337 if (getSparseTensorEncoding(outputType)) { 338 rewriter.replaceOp(op, op.getDpsInitOperand(0)->get()); 339 return success(); 340 } 341 // Use static zero value directly instead of materialization. 342 if (!outputType.hasStaticShape()) 343 return failure(); 344 Operation *def = op.getDpsInitOperand(0)->get().getDefiningOp(); 345 rewriter.replaceOp(op, constantZero(rewriter, op.getLoc(), outputType)); 346 rewriter.eraseOp(def); 347 return success(); 348 } 349 }; 350 351 /// Rewriting rule that converts two kernels: 352 /// 353 /// T(i,j) = SUM(k, A(i,j,k) * B(i,j,k) * ... ) 354 /// X(i,j) = S(i,j) * T(i,j) 355 /// 356 /// into a single kernel, using distributive law: 357 /// 358 /// X(i,j) = SUM(k, S(i,j) * A(i,j,k) * B(i,j,k) * ... ) 359 /// 360 /// This kind of fusion (merging two ops into one but using arithmetic 361 /// equalities that may not hold for floating-point computations) would 362 /// be undesirable in the dense case, since we distribute the multiplication 363 /// into the reduction loop. However, for sparse sampling tensor S, such 364 /// a fusion may actually reduce the asymptotic complexity of the kernel, 365 /// since intermediate results may be nullified. 366 struct FuseSparseMultiplyOverAdd : public OpRewritePattern<GenericOp> { 367 public: 368 using OpRewritePattern<GenericOp>::OpRewritePattern; 369 370 LogicalResult matchAndRewrite(GenericOp op, 371 PatternRewriter &rewriter) const override { 372 // Check consumer. 373 if (!op.hasPureTensorSemantics() || op.getNumDpsInputs() != 2 || 374 op.getNumResults() != 1 || 375 op.getNumParallelLoops() != op.getNumLoops() || 376 !op.getMatchingIndexingMap(op.getDpsInitOperand(0)).isIdentity() || 377 !op.getMatchingIndexingMap(op.getDpsInputOperand(0)).isIdentity() || 378 !op.getMatchingIndexingMap(op.getDpsInputOperand(1)).isIdentity()) 379 return failure(); 380 // Find consuming OP2(sparse, other) or OP2(other, sparse). The other 381 // operand can be sparse or dense, since the point of this rewriting rule 382 // is detecting a situation in which *more* sparsity is introduced into 383 // a computation, be it already sparse or still dense. 384 unsigned other = 0; 385 if (isSparseTensor(op.getDpsInputOperand(0))) 386 other = 1; 387 else if (!isSparseTensor(op.getDpsInputOperand(1))) 388 return failure(); 389 // Check producer. 390 auto prod = dyn_cast_or_null<GenericOp>( 391 op.getDpsInputOperand(other)->get().getDefiningOp()); 392 if (!prod || !prod.hasPureTensorSemantics() || prod.getNumResults() != 1 || 393 !prod.getResult(0).hasOneUse()) 394 return failure(); 395 // Sampling consumer and sum of multiplication chain producer. 396 if (!isMaterializing(op.getDpsInitOperand(0), /*isZero=*/false) || 397 !isMaterializing(prod.getDpsInitOperand(0), /*isZero=*/true) || 398 !isSampling(op) || !isSumOfMul(prod)) 399 return failure(); 400 // Modify operand structure of producer and consumer. 401 Location loc = prod.getLoc(); 402 SmallVector<Value> inputOps = prod.getInputs(); 403 SmallVector<Value> outputOps = op.getOutputs(); 404 SmallVector<AffineMap> fusedIndexMaps = prod.getIndexingMapsArray(); 405 inputOps.push_back(op.getDpsInputOperand(1 - other)->get()); 406 fusedIndexMaps.push_back(fusedIndexMaps.back()); // mimic other 407 // Fuse producer and consumer into a new generic op. 408 auto fusedOp = rewriter.create<GenericOp>( 409 loc, op.getResult(0).getType(), inputOps, outputOps, 410 rewriter.getAffineMapArrayAttr(fusedIndexMaps), prod.getIteratorTypes(), 411 /*doc=*/nullptr, /*library_call=*/nullptr); 412 Block &prodBlock = prod.getRegion().front(); 413 Block &consBlock = op.getRegion().front(); 414 IRMapping mapper; 415 Block *fusedBlock = rewriter.createBlock(&fusedOp.getRegion()); 416 unsigned num = prodBlock.getNumArguments(); 417 for (unsigned i = 0; i < num - 1; i++) 418 addArg(mapper, fusedBlock, prodBlock.getArgument(i)); 419 addArg(mapper, fusedBlock, consBlock.getArgument(1 - other)); 420 addArg(mapper, fusedBlock, prodBlock.getArgument(num - 1)); 421 // Clone bodies of the producer and consumer in new evaluation order. 422 auto *acc = prodBlock.getTerminator()->getOperand(0).getDefiningOp(); 423 auto *sampler = consBlock.getTerminator()->getOperand(0).getDefiningOp(); 424 Value last; 425 for (auto &op : prodBlock.without_terminator()) 426 if (&op != acc) { 427 last = op.getResult(0); 428 rewriter.clone(op, mapper); 429 } 430 mapper.map(consBlock.getArgument(other), fusedBlock->back().getResult(0)); 431 mapper.map(last, rewriter.clone(*sampler, mapper)->getResult(0)); 432 last = rewriter.clone(*acc, mapper)->getResult(0); 433 rewriter.create<linalg::YieldOp>(loc, last); 434 // Force initial value on merged allocation for dense outputs. 435 // TODO: deal with non alloc tensor here one day 436 if (!getSparseTensorEncoding(op.getResult(0).getType())) { 437 Value init = prod.getDpsInitOperand(0) 438 ->get() 439 .getDefiningOp<AllocTensorOp>() 440 .getCopy(); 441 AllocTensorOp a = 442 op.getDpsInitOperand(0)->get().getDefiningOp<AllocTensorOp>(); 443 rewriter.modifyOpInPlace(a, [&]() { a.getCopyMutable().assign(init); }); 444 } 445 // Replace consumer with fused operation. Old producer 446 // and consumer ops will be removed by DCE. 447 rewriter.replaceOp(op, fusedOp->getResults()); 448 return success(); 449 } 450 451 private: 452 // Helper to add argument and record the mapping. 453 static void addArg(IRMapping &mapper, Block *b, BlockArgument a) { 454 mapper.map(a, b->addArgument(a.getType(), a.getLoc())); 455 } 456 }; 457 458 // Fuse a tensor cast into producing operation. Note that a tensor.cast 459 // should really not be used to convert between sparse encodings. Since 460 // the pattern currently appears as a result of some prior rewriting 461 // we make an attempt to repair very obvious cases. 462 // TODO: audit the pure tensor dialect rewriting rules 463 struct FuseTensorCast : public OpRewritePattern<tensor::CastOp> { 464 public: 465 using OpRewritePattern<tensor::CastOp>::OpRewritePattern; 466 467 LogicalResult matchAndRewrite(tensor::CastOp op, 468 PatternRewriter &rewriter) const override { 469 Type srcType = op.getSource().getType(); 470 Type dstType = op.getDest().getType(); 471 // A nop cast simply folds away. 472 if (srcType == dstType) { 473 rewriter.replaceOp(op, op->getResults()); 474 return success(); 475 } 476 // See if a sparsity changing cast can be fused into producer. 477 if (tensor::isSameTypeWithoutEncoding(srcType, dstType)) { 478 if (Operation *def = op.getSource().getDefiningOp()) { 479 if (def->hasOneUse() && isa<tensor::ExtractSliceOp>(def)) { 480 rewriter.modifyOpInPlace(def, [&]() { 481 def->getResult(0).setType(op->getResultTypes()[0]); 482 }); 483 rewriter.replaceOp(op, def->getResult(0)); 484 return success(); 485 } 486 } 487 } 488 // Repair tensor casts with at least one sparse operand into the 489 // the properly supported sparse_tensor.convert. 490 if (getSparseTensorEncoding(srcType) || getSparseTensorEncoding(dstType)) { 491 rewriter.replaceOpWithNewOp<ConvertOp>(op, dstType, op.getSource()); 492 return success(); 493 } 494 // Fail otherwise. 495 return failure(); 496 } 497 }; 498 499 /// Rewrites a sequence of operations for sparse tensor selections in to 500 /// semi-ring operations such that they can be compiled correctly by the 501 /// sparsifier. E.g., transforming the following sequence 502 /// 503 /// %sel = arith.select %cond, %sp1, %sp2 504 /// 505 /// to 506 /// 507 /// %sel = binary %sp1, %sp2: 508 /// both (%l, %r) {yield select %cond, %l, %r} 509 /// left (%l) {yield select %cond, %l, 0} 510 /// right (%r) {yield select %cond, 0, %r} 511 /// 512 /// TODO: We require that the tensor used for extracting conditions to be dense 513 /// to sparsify the code. To support a sparse condition tensor, we need a 514 /// tri-nary operation. 515 struct GenSemiRingSelect : public OpRewritePattern<GenericOp> { 516 public: 517 using OpRewritePattern<GenericOp>::OpRewritePattern; 518 LogicalResult matchAndRewrite(GenericOp op, 519 PatternRewriter &rewriter) const override { 520 // Rejects non sparse kernels. 521 if (!op.hasPureTensorSemantics() || !hasAnySparseOperand(op)) 522 return failure(); 523 524 Location loc = op.getLoc(); 525 SmallVector<std::pair<Operation *, sparse_tensor::BinaryOp>> semiRings; 526 for (Operation &inst : *op.getBody()) { 527 // Matches pattern. 528 auto matched = isRewritablePattern(op, &inst); 529 if (!matched.has_value()) 530 continue; 531 532 rewriter.setInsertionPoint(&inst); 533 auto [c, t, f] = matched.value(); 534 assert(t.getType() == f.getType()); 535 auto selTp = t.getType(); 536 auto c0 = constantZero(rewriter, loc, selTp); 537 auto binOp = rewriter.create<sparse_tensor::BinaryOp>(loc, selTp, t, f); 538 // Initializes all the blocks. 539 rewriter.createBlock(&binOp.getOverlapRegion(), {}, {selTp, selTp}, 540 {t.getLoc(), f.getLoc()}); 541 rewriter.createBlock(&binOp.getRightRegion(), {}, selTp, f.getLoc()); 542 rewriter.createBlock(&binOp.getLeftRegion(), {}, selTp, t.getLoc()); 543 544 for (auto *r : binOp.getRegions()) { 545 Block *b = &r->front(); 546 rewriter.setInsertionPointToStart(b); 547 548 IRMapping irMap; 549 // Clones the cmp operations into the region to make the binary op 550 // admissible. 551 Value newC = c; 552 if (auto *def = c.getDefiningOp()) 553 newC = rewriter.clone(*def, irMap)->getResult(0); 554 555 irMap.map(c, newC); 556 if (r == &binOp.getLeftRegion()) { 557 irMap.map(t, b->getArgument(0)); 558 irMap.map(f, c0); 559 } else if (r == &binOp.getRightRegion()) { 560 irMap.map(t, c0); 561 irMap.map(f, b->getArgument(0)); 562 } else { 563 irMap.map(t, b->getArgument(0)); 564 irMap.map(f, b->getArgument(1)); 565 } 566 auto y = rewriter.clone(inst, irMap)->getResult(0); 567 rewriter.create<sparse_tensor::YieldOp>(loc, y); 568 } 569 570 // We successfully rewrited a operation. We can not do replacement here 571 // becuase it invalidate the iterator for the current loop to traverse 572 // the instructions. 573 semiRings.emplace_back(&inst, binOp); 574 } 575 576 // Finalizes the replacement. 577 for (auto [sel, semi] : semiRings) 578 rewriter.replaceOp(sel, semi->getResults()); 579 580 return success(!semiRings.empty()); 581 } 582 583 private: 584 static std::optional<std::tuple<Value, BlockArgument, BlockArgument>> 585 isRewritablePattern(GenericOp op, Operation *v) { 586 auto sel = dyn_cast<arith::SelectOp>(v); 587 if (!sel) 588 return std::nullopt; 589 590 auto tVal = dyn_cast<BlockArgument>(sel.getTrueValue()); 591 auto fVal = dyn_cast<BlockArgument>(sel.getFalseValue()); 592 // TODO: For simplicity, we only handle cases where both true/false value 593 // are directly loaded the input tensor. We can probably admit more cases 594 // in theory. 595 if (!tVal || !fVal) 596 return std::nullopt; 597 598 // Helper lambda to determine whether the value is loaded from a dense input 599 // or is a loop invariant. 600 auto isValFromDenseInputOrInvariant = [&op](Value v) -> bool { 601 if (auto bArg = dyn_cast<BlockArgument>(v); 602 bArg && !isSparseTensor(op.getDpsInputOperand(bArg.getArgNumber()))) 603 return true; 604 // If the value is defined outside the loop, it is a loop invariant. 605 return v.getDefiningOp() && v.getDefiningOp()->getBlock() != op.getBody(); 606 }; 607 608 // If the condition value is load directly from a dense tensor or 609 // loop-invariants, we can sparsify the kernel. 610 auto cond = sel.getCondition(); 611 if (isValFromDenseInputOrInvariant(cond)) 612 return std::make_tuple(cond, tVal, fVal); 613 614 Value cmpL, cmpR; 615 if (matchPattern(cond, m_Op<arith::CmpIOp>(matchers::m_Any(&cmpL), 616 matchers::m_Any(&cmpR))) || 617 matchPattern(cond, m_Op<arith::CmpFOp>(matchers::m_Any(&cmpL), 618 matchers::m_Any(&cmpR)))) { 619 // TODO: we can do it recursively to check whether all the leaf values are 620 // loaded from dense tensors or are loop invariants. 621 if (isValFromDenseInputOrInvariant(cmpL) || 622 isValFromDenseInputOrInvariant(cmpR)) 623 return std::make_tuple(cond, tVal, fVal); 624 } 625 626 return std::nullopt; 627 }; 628 }; 629 630 /// Rewrites a sparse reduction that would not sparsify directly since 631 /// doing so would only iterate over the stored elements, ignoring the 632 /// implicit zeros, into a semi-ring. Applies to all prod/and/min/max 633 /// (note that reductions like add/sub/or/xor can directly be sparsified 634 /// since the implicit zeros do not contribute to the final result). 635 /// Note that prod/and are still included since, even though they often 636 /// are nullified in sparse data, they may still occur for special 637 /// situations in which e.g. some rows in a sparse matrix are fully 638 /// dense. For min/max, including the implicit zeros is a much more 639 /// common situation. 640 /// 641 /// TODO: this essentially "densifies" the operation; we want to implement 642 /// this much more efficiently by performing the reduction over the 643 /// stored values, and feed in the zero once if there were *any* 644 /// implicit zeros as well; but for now, at least we provide 645 /// the functionality 646 /// 647 struct GenSemiRingReduction : public OpRewritePattern<GenericOp> { 648 public: 649 using OpRewritePattern<GenericOp>::OpRewritePattern; 650 651 LogicalResult matchAndRewrite(GenericOp op, 652 PatternRewriter &rewriter) const override { 653 // Reject non-reductions. 654 if (!op.hasPureTensorSemantics() || op.getNumDpsInputs() != 1 || 655 op.getNumReductionLoops() == 0 || op.getNumResults() != 1) 656 return failure(); 657 auto *inp = op.getDpsInputOperand(0); 658 auto *init = op.getDpsInitOperand(0); 659 if (!isSparseTensor(inp)) 660 return failure(); 661 // Look for direct x = x OP y for semi-ring ready reductions. 662 auto *red = cast<linalg::YieldOp>(op.getRegion().front().getTerminator()) 663 .getOperand(0) 664 .getDefiningOp(); 665 if (!isa<arith::AndIOp, arith::MulIOp, arith::MulFOp, arith::MinimumFOp, 666 arith::MinSIOp, arith::MinUIOp, arith::MaximumFOp, arith::MaxSIOp, 667 arith::MaxUIOp>(red)) 668 return failure(); 669 Value s0 = op.getBlock()->getArgument(0); 670 Value s1 = op.getBlock()->getArgument(1); 671 if ((red->getOperand(0) != s0 || red->getOperand(1) != s1) && 672 (red->getOperand(0) != s1 || red->getOperand(1) != s0)) 673 return failure(); 674 // Identity. 675 Location loc = op.getLoc(); 676 Value identity = 677 rewriter.create<tensor::ExtractOp>(loc, init->get(), ValueRange()); 678 // Unary { 679 // present -> value 680 // absent -> zero. 681 // } 682 Type rtp = s0.getType(); 683 rewriter.setInsertionPointToStart(&op.getRegion().front()); 684 auto semiring = rewriter.create<sparse_tensor::UnaryOp>(loc, rtp, s0); 685 Block *present = 686 rewriter.createBlock(&semiring.getPresentRegion(), {}, rtp, loc); 687 rewriter.setInsertionPointToStart(&semiring.getPresentRegion().front()); 688 rewriter.create<sparse_tensor::YieldOp>(loc, present->getArgument(0)); 689 rewriter.createBlock(&semiring.getAbsentRegion(), {}, {}, {}); 690 rewriter.setInsertionPointToStart(&semiring.getAbsentRegion().front()); 691 auto zero = 692 rewriter.create<arith::ConstantOp>(loc, rewriter.getZeroAttr(rtp)); 693 rewriter.create<sparse_tensor::YieldOp>(loc, zero); 694 rewriter.setInsertionPointAfter(semiring); 695 // CustomReduce { 696 // x = x REDUC y, identity 697 // } 698 auto custom = rewriter.create<sparse_tensor::ReduceOp>( 699 loc, rtp, semiring.getResult(), s1, identity); 700 Block *region = 701 rewriter.createBlock(&custom.getRegion(), {}, {rtp, rtp}, {loc, loc}); 702 rewriter.setInsertionPointToStart(&custom.getRegion().front()); 703 IRMapping irMap; 704 irMap.map(red->getOperand(0), region->getArgument(0)); 705 irMap.map(red->getOperand(1), region->getArgument(1)); 706 auto *cloned = rewriter.clone(*red, irMap); 707 rewriter.create<sparse_tensor::YieldOp>(loc, cloned->getResult(0)); 708 rewriter.setInsertionPointAfter(custom); 709 rewriter.replaceOp(red, custom.getResult()); 710 return success(); 711 } 712 }; 713 714 /// Sparse rewriting rule for the print operator. This operation is mainly used 715 /// for debugging and testing. As such, it lowers to the vector.print operation 716 /// which only require very light-weight runtime support. 717 struct PrintRewriter : public OpRewritePattern<PrintOp> { 718 public: 719 using OpRewritePattern::OpRewritePattern; 720 LogicalResult matchAndRewrite(PrintOp op, 721 PatternRewriter &rewriter) const override { 722 Location loc = op.getLoc(); 723 auto tensor = op.getTensor(); 724 auto stt = getSparseTensorType(tensor); 725 // Header with NSE. 726 auto nse = rewriter.create<NumberOfEntriesOp>(loc, tensor); 727 rewriter.create<vector::PrintOp>( 728 loc, rewriter.getStringAttr("---- Sparse Tensor ----\nnse = ")); 729 rewriter.create<vector::PrintOp>(loc, nse); 730 // Print run-time contents for dim/lvl sizes. 731 rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("dim = ")); 732 printSizes(rewriter, loc, tensor, stt.getDimRank(), /*isDim=*/true); 733 rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("lvl = ")); 734 printSizes(rewriter, loc, tensor, stt.getLvlRank(), /*isDim=*/false); 735 // Use the "codegen" foreach loop construct to iterate over 736 // all typical sparse tensor components for printing. 737 foreachFieldAndTypeInSparseTensor(stt, [&rewriter, &loc, &tensor, 738 &stt](Type, FieldIndex, 739 SparseTensorFieldKind kind, 740 Level l, LevelType) { 741 switch (kind) { 742 case SparseTensorFieldKind::StorageSpec: { 743 break; 744 } 745 case SparseTensorFieldKind::PosMemRef: { 746 auto lvl = constantIndex(rewriter, loc, l); 747 rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("pos[")); 748 rewriter.create<vector::PrintOp>( 749 loc, lvl, vector::PrintPunctuation::NoPunctuation); 750 rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("] : ")); 751 auto pos = rewriter.create<ToPositionsOp>(loc, tensor, l); 752 printContents(rewriter, loc, pos); 753 break; 754 } 755 case SparseTensorFieldKind::CrdMemRef: { 756 auto lvl = constantIndex(rewriter, loc, l); 757 rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("crd[")); 758 rewriter.create<vector::PrintOp>( 759 loc, lvl, vector::PrintPunctuation::NoPunctuation); 760 rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("] : ")); 761 Value crd = nullptr; 762 // For COO AoS storage, we want to print a single, linear view of 763 // the full coordinate storage at this level. For any other storage, 764 // we show the coordinate storage for every indivual level. 765 if (stt.getAoSCOOStart() == l) 766 crd = rewriter.create<ToCoordinatesBufferOp>(loc, tensor); 767 else 768 crd = rewriter.create<ToCoordinatesOp>(loc, tensor, l); 769 printContents(rewriter, loc, crd); 770 break; 771 } 772 case SparseTensorFieldKind::ValMemRef: { 773 rewriter.create<vector::PrintOp>(loc, 774 rewriter.getStringAttr("values : ")); 775 auto val = rewriter.create<ToValuesOp>(loc, tensor); 776 printContents(rewriter, loc, val); 777 break; 778 } 779 } 780 return true; 781 }); 782 rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("----\n")); 783 rewriter.eraseOp(op); 784 return success(); 785 } 786 787 private: 788 // Helper to print contents of a single memref. For "push_back" vectors, 789 // we assume that the previous getters for pos/crd/val have added a 790 // slice-to-size view to make sure we just print the size and not the 791 // full capacity. 792 // 793 // Generates code to print (1-dim or higher): 794 // ( a0, a1, ... ) 795 static void printContents(PatternRewriter &rewriter, Location loc, 796 Value vec) { 797 auto shape = cast<ShapedType>(vec.getType()).getShape(); 798 SmallVector<Value> idxs; 799 printContentsLevel(rewriter, loc, vec, 0, shape, idxs); 800 rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::NewLine); 801 } 802 803 // Helper to the helper. 804 static void printContentsLevel(PatternRewriter &rewriter, Location loc, 805 Value vec, unsigned i, ArrayRef<int64_t> shape, 806 SmallVectorImpl<Value> &idxs) { 807 // Open bracket. 808 rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Open); 809 // Generate for loop. 810 auto zero = constantIndex(rewriter, loc, 0); 811 auto index = constantIndex(rewriter, loc, i); 812 auto size = rewriter.create<memref::DimOp>(loc, vec, index); 813 auto step = constantIndex(rewriter, loc, 1); 814 auto forOp = rewriter.create<scf::ForOp>(loc, zero, size, step); 815 idxs.push_back(forOp.getInductionVar()); 816 rewriter.setInsertionPointToStart(forOp.getBody()); 817 if (i < shape.size() - 1) { 818 // Enter deeper loop nest. 819 printContentsLevel(rewriter, loc, vec, i + 1, shape, idxs); 820 } else { 821 // Actual contents printing. 822 auto val = rewriter.create<memref::LoadOp>(loc, vec, idxs); 823 if (llvm::isa<ComplexType>(val.getType())) { 824 // Since the vector dialect does not support complex types in any op, 825 // we split those into (real, imag) pairs here. 826 Value real = rewriter.create<complex::ReOp>(loc, val); 827 Value imag = rewriter.create<complex::ImOp>(loc, val); 828 rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Open); 829 rewriter.create<vector::PrintOp>(loc, real, 830 vector::PrintPunctuation::Comma); 831 rewriter.create<vector::PrintOp>(loc, imag, 832 vector::PrintPunctuation::Close); 833 rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Comma); 834 } else { 835 rewriter.create<vector::PrintOp>(loc, val, 836 vector::PrintPunctuation::Comma); 837 } 838 } 839 idxs.pop_back(); 840 rewriter.setInsertionPointAfter(forOp); 841 // Close bracket. 842 rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Close); 843 } 844 845 // Helper method to print run-time lvl/dim sizes. 846 static void printSizes(PatternRewriter &rewriter, Location loc, Value tensor, 847 unsigned size, bool isDim) { 848 // Open bracket. 849 rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Open); 850 // Print unrolled contents (dimop requires constant value). 851 for (unsigned i = 0; i < size; i++) { 852 auto idx = constantIndex(rewriter, loc, i); 853 Value val; 854 if (isDim) 855 val = rewriter.create<tensor::DimOp>(loc, tensor, idx); 856 else 857 val = rewriter.create<LvlOp>(loc, tensor, idx); 858 rewriter.create<vector::PrintOp>( 859 loc, val, 860 i != size - 1 ? vector::PrintPunctuation::Comma 861 : vector::PrintPunctuation::NoPunctuation); 862 } 863 // Close bracket and end of line. 864 rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Close); 865 rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::NewLine); 866 } 867 }; 868 869 /// Sparse rewriting rule for sparse-to-sparse reshape operator. 870 struct TensorReshapeRewriter : public OpRewritePattern<tensor::ReshapeOp> { 871 public: 872 using OpRewritePattern<tensor::ReshapeOp>::OpRewritePattern; 873 874 LogicalResult matchAndRewrite(tensor::ReshapeOp op, 875 PatternRewriter &rewriter) const override { 876 Location loc = op.getLoc(); 877 Value srcTensor = op.getSource(); 878 const auto srcTp = getSparseTensorType(srcTensor); 879 const auto dstTp = getSparseTensorType(op.getResult()); 880 881 if (!srcTp.hasEncoding() || !dstTp.hasEncoding() || 882 !dstTp.hasStaticDimShape()) 883 return failure(); 884 885 SmallVector<Value> srcSizes; 886 sizesForTensor(rewriter, srcSizes, loc, srcTp, srcTensor); 887 SmallVector<Value> dstSizes; 888 for (Dimension d : dstTp.getDimShape()) 889 dstSizes.push_back(constantIndex(rewriter, loc, d)); 890 891 Value nnz = rewriter.create<NumberOfEntriesOp>(loc, srcTensor); 892 // Only need an unordered COO buffer if input and output are not sorted 893 // in the same way. 894 Type bufferTp = getBufferType( 895 dstTp.withoutDimToLvl(), 896 !srcTp.isAllOrdered() || !srcTp.isIdentity() || !dstTp.isIdentity()); 897 SmallVector<Value> dynSizes; 898 Value buffer = rewriter 899 .create<AllocTensorOp>(loc, bufferTp, dynSizes, Value(), 900 nnz, Attribute()) 901 .getResult(); 902 903 // Convert src coordinates to dst coordinates by first collapsing it to 1D 904 // and then expand it to the match the rank of the destination tensor. 905 // Implemented as follows: 906 // foreach srcCoords %srcTensor 907 // collapsedCoords = reshapeCvs(srcCoords, [1, ..., srcRank]) 908 // expandedCoords = reshapeCvs(collapsedCoords, [1, ..., dstRank]) 909 // insert expandedCoords, %buffer 910 // 911 // followed by an optional 912 // %t = sparse_tensor.cast %tmp 913 // depending on whether the input/output are sorted in the same way. 914 const auto encSrc = srcTp.getEncoding(); 915 ForeachOp foreachOp = rewriter.create<ForeachOp>( 916 loc, srcTensor, buffer, 917 [&](OpBuilder &builder, Location loc, ValueRange srcLcvs, Value v, 918 ValueRange reduc) { 919 const Dimension srcRank = srcTp.getDimRank(); 920 SmallVector<Value> srcDcvs; 921 srcDcvs.reserve(srcRank); 922 for (Dimension d = 0; d < srcRank; d++) { 923 Level lvl = toLvl(encSrc, d); 924 srcDcvs.push_back(srcLcvs[lvl]); 925 } 926 927 Value collapseSize = constantIndex(builder, loc, 1); 928 for (Dimension d = 0; d < srcRank; d++) 929 collapseSize = 930 builder.create<arith::MulIOp>(loc, collapseSize, srcSizes[d]); 931 SmallVector<Value, 1> collapsedSizes = {collapseSize}; 932 933 ReassociationIndices collapseIdx; 934 for (Dimension i = 0; i < srcRank; i++) 935 collapseIdx.push_back(i); 936 SmallVector<ReassociationIndices, 1> collapseReass = {collapseIdx}; 937 SmallVector<Value, 1> collapsedDcvs; 938 reshapeCvs(builder, loc, collapseReass, srcSizes, srcDcvs, 939 collapsedSizes, collapsedDcvs); 940 941 ReassociationIndices expandIdx; 942 for (Dimension i = 0; i < dstTp.getDimRank(); i++) 943 expandIdx.push_back(i); 944 SmallVector<ReassociationIndices, 1> expandReass = {expandIdx}; 945 SmallVector<Value> dstDcvs; 946 reshapeCvs(builder, loc, expandReass, collapsedSizes, collapsedDcvs, 947 dstSizes, dstDcvs); 948 949 auto t = 950 builder.create<tensor::InsertOp>(loc, v, reduc.front(), dstDcvs); 951 builder.create<sparse_tensor::YieldOp>(loc, t); 952 }); 953 954 Value t = rewriter.create<LoadOp>(loc, foreachOp.getResult(0), true); 955 if (bufferTp != dstTp) { 956 auto dstRTT = dstTp.getRankedTensorType(); 957 Value converted = rewriter.create<ConvertOp>(loc, dstRTT, t).getResult(); 958 rewriter.create<DeallocTensorOp>(loc, t); 959 t = converted; 960 } 961 rewriter.replaceOp(op, t); 962 return success(); 963 } 964 }; 965 966 /// Sparse rewriting rule for sparse-to-sparse reshape operator. 967 template <typename ReshapeOp> 968 struct Sparse2SparseReshapeRewriter : public OpRewritePattern<ReshapeOp> { 969 public: 970 using OpRewritePattern<ReshapeOp>::OpRewritePattern; 971 972 LogicalResult matchAndRewrite(ReshapeOp op, 973 PatternRewriter &rewriter) const override { 974 Location loc = op.getLoc(); 975 Value srcTensor = op.getSrc(); 976 const auto srcTp = getSparseTensorType(srcTensor); 977 const auto dstTp = getSparseTensorType(op.getResult()); 978 if (!srcTp.hasEncoding() || !dstTp.hasEncoding()) 979 return failure(); 980 981 // Generate code to represent the static dimension constants or compute 982 // the dynamic dimension values. 983 SmallVector<Value> srcSizes; 984 sizesForTensor(rewriter, srcSizes, loc, srcTp, srcTensor); 985 SmallVector<Value> dstSizes; 986 SmallVector<Value> dstDynSizes; 987 if (dstTp.hasStaticDimShape()) { 988 for (Dimension d : dstTp.getDimShape()) 989 dstSizes.push_back(constantIndex(rewriter, loc, d)); 990 } else { 991 ArrayRef<Size> dstShape = dstTp.getDimShape(); 992 genReshapeDstShape(rewriter, loc, dstSizes, srcSizes, dstShape, 993 op.getReassociationIndices()); 994 for (auto [idx, shape] : llvm::enumerate(dstShape)) { 995 if (shape == ShapedType::kDynamic) 996 dstDynSizes.push_back(dstSizes[idx]); 997 } 998 } 999 Value nnz = rewriter.create<NumberOfEntriesOp>(loc, srcTensor); 1000 // Only need a unordered COO buffer if input and output are not sorted 1001 // in the same way. 1002 Type bufferTp = getBufferType( 1003 dstTp.withoutDimToLvl(), 1004 !srcTp.isAllOrdered() || !srcTp.isIdentity() || !dstTp.isIdentity()); 1005 1006 Value buffer = 1007 rewriter 1008 .create<AllocTensorOp>(loc, bufferTp, dstDynSizes, Value(), 1009 /*sizeHint=*/nnz, Attribute()) 1010 .getResult(); 1011 1012 // Implement the sparse2sparse reshape as follows: 1013 // foreach srcCoords %srcTensor 1014 // insert reshapeCvs(srcCoords), %buffer 1015 // 1016 // followed by an optional 1017 // %t = sparse_tensor.cast %tmp 1018 // depending on whether the input/output are sorted in the same way. 1019 const auto encSrc = srcTp.getEncoding(); 1020 ForeachOp foreachOp = rewriter.create<ForeachOp>( 1021 loc, srcTensor, buffer, 1022 [&](OpBuilder &builder, Location loc, ValueRange srcLcvs, Value v, 1023 ValueRange reduc) { 1024 const Dimension dimRank = srcTp.getDimRank(); 1025 SmallVector<Value> srcDcvs; 1026 srcDcvs.reserve(dimRank); 1027 for (Dimension d = 0; d < dimRank; d++) { 1028 Level lvl = toLvl(encSrc, d); 1029 srcDcvs.push_back(srcLcvs[lvl]); 1030 } 1031 SmallVector<Value> dstDcvs; 1032 reshapeCvs(builder, loc, op.getReassociationIndices(), srcSizes, 1033 srcDcvs, dstSizes, dstDcvs); 1034 auto t = 1035 builder.create<tensor::InsertOp>(loc, v, reduc.front(), dstDcvs); 1036 builder.create<sparse_tensor::YieldOp>(loc, t); 1037 }); 1038 1039 Value t = rewriter.create<LoadOp>(loc, foreachOp.getResult(0), true); 1040 if (bufferTp != dstTp) { 1041 auto dstRTT = dstTp.getRankedTensorType(); 1042 Value converted = rewriter.create<ConvertOp>(loc, dstRTT, t).getResult(); 1043 rewriter.create<DeallocTensorOp>(loc, t); 1044 t = converted; 1045 } 1046 rewriter.replaceOp(op, t); 1047 return success(); 1048 } 1049 }; 1050 1051 /// Sparse rewriting rule for sparse-to-dense and dense-to-sparse reshape 1052 /// operator. 1053 template <typename ReshapeOp> 1054 struct ReshapeRewriter : public OpRewritePattern<ReshapeOp> { 1055 public: 1056 using OpRewritePattern<ReshapeOp>::OpRewritePattern; 1057 1058 LogicalResult matchAndRewrite(ReshapeOp op, 1059 PatternRewriter &rewriter) const override { 1060 Location loc = op->getLoc(); 1061 auto encDst = getSparseTensorEncoding(op.getResult().getType()); 1062 auto encSrc = getSparseTensorEncoding(op.getSrc().getType()); 1063 // Since a pure dense expansion is very cheap (change of view), for 1064 // a sparse2dense or dense2sparse, we can simply unfuse a sparse 1065 // conversion from the reshape operation itself. 1066 // All other cases are handled elsewhere. 1067 if (encDst && encSrc) { 1068 return failure(); 1069 } 1070 if (encSrc) { 1071 auto rtp = getRankedTensorType(op.getSrc()); 1072 auto denseTp = 1073 RankedTensorType::get(rtp.getShape(), rtp.getElementType()); 1074 auto convert = rewriter.create<ConvertOp>(loc, denseTp, op.getSrc()); 1075 rewriter.modifyOpInPlace(op, [&]() { op->setOperand(0, convert); }); 1076 return success(); 1077 } 1078 if (encDst) { 1079 auto rtp = getRankedTensorType(op.getResult()); 1080 auto denseTp = 1081 RankedTensorType::get(rtp.getShape(), rtp.getElementType()); 1082 ReshapeOp reshape; 1083 if constexpr (std::is_same<ReshapeOp, tensor::ExpandShapeOp>::value) { 1084 reshape = rewriter.create<ReshapeOp>( 1085 loc, denseTp, op.getSrc(), op.getReassociation(), 1086 op.getOutputShape(), op.getStaticOutputShape()); 1087 } else { 1088 reshape = rewriter.create<ReshapeOp>(loc, denseTp, op.getSrc(), 1089 op.getReassociation()); 1090 } 1091 Value convert = rewriter.create<ConvertOp>(loc, rtp, reshape); 1092 rewriter.replaceOp(op, convert); 1093 return success(); 1094 } 1095 return failure(); 1096 } 1097 }; 1098 1099 // A trivial wrapper to help generate different operations for dense/sparse 1100 // tensors. 1101 struct TensorLike { 1102 TensorLike(OpBuilder &builder, Location loc, RankedTensorType rtt, 1103 ValueRange sizes) { 1104 SmallVector<Value> dynSzs; 1105 getDynamicSizes(rtt, sizes, dynSzs); 1106 1107 val = builder.create<AllocTensorOp>(loc, rtt, dynSzs); 1108 if (!isSparse()) { 1109 Value c0 = constantZero(builder, loc, rtt.getElementType()); 1110 val = builder.create<linalg::FillOp>(loc, c0, val).getResult(0); 1111 } 1112 } 1113 1114 void insert(OpBuilder &builder, Location loc, Value v, ValueRange crds) { 1115 val = builder.create<tensor::InsertOp>(loc, v, val, crds); 1116 } 1117 1118 Value finalize(OpBuilder &builder, Location loc, RankedTensorType rtp) const { 1119 if (isSparse()) 1120 return builder.create<LoadOp>(loc, val, true); 1121 return val; 1122 } 1123 1124 bool isSparse() const { 1125 return getSparseTensorEncoding(val.getType()) != nullptr; 1126 } 1127 1128 Value val; 1129 }; 1130 1131 struct SparseTensorDimOpRewriter : public OpRewritePattern<tensor::DimOp> { 1132 using OpRewritePattern::OpRewritePattern; 1133 LogicalResult matchAndRewrite(tensor::DimOp op, 1134 PatternRewriter &rewriter) const override { 1135 std::optional<int64_t> dim = op.getConstantIndex(); 1136 auto stt = getSparseTensorType(op.getSource()); 1137 if (!dim || !stt.hasEncoding()) 1138 return failure(); 1139 1140 if (stt.isPermutation()) { 1141 rewriter.replaceOpWithNewOp<LvlOp>(op, op.getSource(), 1142 toLvl(stt.getEncoding(), *dim)); 1143 return success(); 1144 } 1145 1146 // Non-permutation dim2lvl/lvl2dim maps. 1147 // Compute as follows: 1148 // affine.apply #map (l0 - 1, l1 - 1, ...) + 1 1149 // Note that it is not the most efficient way (but a more general one) for 1150 // the lvl to dim translation, e.g., for BSR, the dimension size for can be 1151 // computed simply by lvl_size * block_size. 1152 Location loc = op.getLoc(); 1153 SmallVector<Value> maxLvlCrds; 1154 for (Level l = 0; l < stt.getLvlRank(); l++) { 1155 Value lvlSz = rewriter.create<LvlOp>(loc, op.getSource(), l); 1156 Value maxLvlCrd = rewriter.create<arith::SubIOp>( 1157 loc, lvlSz, constantOne(rewriter, loc, rewriter.getIndexType())); 1158 maxLvlCrds.push_back(maxLvlCrd); 1159 } 1160 1161 AffineExpr lvl2DimExp = stt.getLvlToDim().getResult(*dim); 1162 Value maxDimCrd = rewriter.create<affine::AffineApplyOp>( 1163 op.getLoc(), AffineMap::get(stt.getLvlRank(), 0, lvl2DimExp), 1164 maxLvlCrds); 1165 1166 Value dimSz = rewriter.create<arith::AddIOp>( 1167 loc, maxDimCrd, constantOne(rewriter, loc, rewriter.getIndexType())); 1168 rewriter.replaceOp(op, dimSz); 1169 return success(); 1170 } 1171 }; 1172 1173 struct ConcatenateRewriter : public OpRewritePattern<ConcatenateOp> { 1174 using OpRewritePattern::OpRewritePattern; 1175 LogicalResult matchAndRewrite(ConcatenateOp op, 1176 PatternRewriter &rewriter) const override { 1177 if (op.needsExtraSort()) 1178 op.emitError("ConcatenateOp not staged"); 1179 1180 const Location loc = op.getLoc(); 1181 const auto dstTp = getSparseTensorType(op); 1182 const Dimension conDim = op.getDimension(); 1183 SmallVector<Value> sizes; 1184 concatSizesFromInputs(rewriter, sizes, loc, dstTp, op.getInputs(), conDim); 1185 1186 // %t = concatenate %s1, %s2, %s3 {dim = 1} 1187 // ==> 1188 // if (isSparseDst) 1189 // if (allDense) 1190 // %tmp = bufferization.alloc_tensor dstTp 1191 // else 1192 // %tmp = bufferization.alloc_tensor : unordered COO 1193 // else 1194 // %tmp = memref.alloc : dense tensor 1195 // foreach in %s1 : insert d0, d1, %tmp 1196 // foreach in %s2 : insert d0, d1 + size(s1), %tmp 1197 // foreach in %s3 : insert d0, d1 + size(s1) + size(s2), %tmp 1198 1199 TensorLike dstBuf(rewriter, loc, dstTp.getRankedTensorType(), sizes); 1200 Value offset = constantIndex(rewriter, loc, 0); 1201 Value iterArg = dstBuf.val; 1202 1203 ForeachOp foreachOp; 1204 for (Value input : op.getInputs()) { 1205 // Builds a for op for each input tensor to append new values into the 1206 // output tensor. 1207 foreachOp = rewriter.create<ForeachOp>( 1208 loc, input, iterArg, 1209 [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v, 1210 ValueRange reduc) { 1211 SmallVector<Value> offDimCrd(dcvs); 1212 offDimCrd[conDim] = 1213 builder.create<arith::AddIOp>(loc, offDimCrd[conDim], offset); 1214 1215 // Enters foreach, updates the SSA chain. 1216 dstBuf.val = reduc.front(); 1217 if (!dstTp.isAllDense()) { 1218 Value cond = genIsNonzero(builder, loc, v); 1219 auto ifOp = builder.create<scf::IfOp>(loc, reduc.getTypes(), cond, 1220 /*else*/ true); 1221 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 1222 builder.create<scf::YieldOp>(loc, dstBuf.val); 1223 1224 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 1225 dstBuf.insert(builder, loc, v, offDimCrd); 1226 builder.create<scf::YieldOp>(loc, dstBuf.val); 1227 1228 // Exits the ifOp, update the sparse tensor SSA value. 1229 builder.setInsertionPointAfter(ifOp); 1230 dstBuf.val = ifOp.getResult(0); 1231 } else { 1232 dstBuf.insert(builder, loc, v, offDimCrd); 1233 } 1234 builder.create<sparse_tensor::YieldOp>(loc, dstBuf.val); 1235 }); 1236 // Accumulates the offset. Note that only static-shaped inputs are allowed 1237 // by concatenate op verifier, which saves us from computing the offset 1238 // dynamically. 1239 const Size sz = getSparseTensorType(input).getDynamicDimSize(conDim); 1240 assert(!ShapedType::isDynamic(sz)); 1241 offset = rewriter.create<arith::AddIOp>(loc, offset, 1242 constantIndex(rewriter, loc, sz)); 1243 iterArg = foreachOp.getResult(0); 1244 dstBuf.val = iterArg; 1245 } 1246 1247 dstBuf.val = iterArg; 1248 Value ret = dstBuf.finalize(rewriter, loc, dstTp.getRankedTensorType()); 1249 rewriter.replaceOp(op, ret); 1250 return success(); 1251 } 1252 }; 1253 1254 struct DirectConvertRewriter : public OpRewritePattern<ConvertOp> { 1255 using OpRewritePattern::OpRewritePattern; 1256 LogicalResult matchAndRewrite(ConvertOp op, 1257 PatternRewriter &rewriter) const override { 1258 if (op.needsExtraSort()) 1259 return op.emitError("ConvertOp not staged."); 1260 1261 // TODO: Maybe we want a different operation for this too. 1262 auto encDst = getSparseTensorEncoding(op.getType()); 1263 auto encSrc = getSparseTensorEncoding(op.getSource().getType()); 1264 if (encDst && encSrc && !encSrc.isSlice() && 1265 encSrc.withoutBitWidths() == encDst.withoutBitWidths()) { 1266 // Trivial tensor conversion and simple element type conversion is handled 1267 // in codegen. 1268 return failure(); 1269 } 1270 1271 Location loc = op.getLoc(); 1272 Value src = op.getSource(); 1273 1274 SparseTensorType srcStt = getSparseTensorType(op.getSource()); 1275 SparseTensorType dstStt = getSparseTensorType(op.getDest()); 1276 1277 bool fromSparseConst = false; 1278 if (auto constOp = op.getSource().getDefiningOp<arith::ConstantOp>()) 1279 if (dyn_cast<SparseElementsAttr>(constOp.getValue())) 1280 fromSparseConst = true; 1281 1282 const AffineMapAttr foreachOrder = 1283 (!dstStt.isIdentity() && fromSparseConst) 1284 ? AffineMapAttr::get(dstStt.getExpandedDimToLvl()) 1285 : nullptr; 1286 1287 bool skipZeroCheck = srcStt.hasEncoding() || fromSparseConst; 1288 1289 SmallVector<Value> sizes; 1290 sizesFromSrc(rewriter, sizes, loc, src); 1291 ValueRange vs; 1292 TensorLike dstBuf(rewriter, loc, dstStt.getRankedTensorType(), sizes); 1293 1294 auto foreachOp = rewriter.create<ForeachOp>( 1295 loc, src, dstBuf.val, foreachOrder, 1296 [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v, 1297 ValueRange reduc) { 1298 // Enters the loop, update the SSA value for insertion chain. 1299 dstBuf.val = reduc.front(); 1300 if (!skipZeroCheck) { 1301 Value cond = genIsNonzero(builder, loc, v); 1302 auto ifOp = builder.create<scf::IfOp>(loc, reduc.getTypes(), cond, 1303 /*else*/ true); 1304 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 1305 builder.create<scf::YieldOp>(loc, dstBuf.val); 1306 1307 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 1308 dstBuf.insert(builder, loc, v, dcvs); 1309 builder.create<scf::YieldOp>(loc, dstBuf.val); 1310 1311 // Exits the ifOp, update the sparse tensor SSA value. 1312 builder.setInsertionPointAfter(ifOp); 1313 dstBuf.val = ifOp.getResult(0); 1314 } else { 1315 dstBuf.insert(builder, loc, v, dcvs); 1316 } 1317 builder.create<sparse_tensor::YieldOp>(loc, dstBuf.val); 1318 }); 1319 1320 rewriter.setInsertionPointAfter(foreachOp); 1321 1322 // Exits the for loop, links the SSA chain. 1323 dstBuf.val = foreachOp.getResult(0); 1324 1325 Value ret = dstBuf.finalize(rewriter, loc, dstStt.getRankedTensorType()); 1326 rewriter.replaceOp(op, ret); 1327 return success(); 1328 } 1329 }; 1330 1331 struct CrdTranslateRewriter : public OpRewritePattern<CrdTranslateOp> { 1332 using OpRewritePattern::OpRewritePattern; 1333 LogicalResult matchAndRewrite(CrdTranslateOp op, 1334 PatternRewriter &rewriter) const override { 1335 AffineMap map = op.getDirection() == CrdTransDirectionKind::dim2lvl 1336 ? op.getEncoder().getDimToLvl() 1337 : op.getEncoder().getLvlToDim(); 1338 1339 SmallVector<Value> outCrds; 1340 for (AffineExpr result : map.getResults()) { 1341 // TODO: we should probably expand the affine map to IR using our own 1342 // rules, since affine.apply assume signed value, while the cooridinates 1343 // we provided must always be signless. 1344 Value trans = rewriter.create<affine::AffineApplyOp>( 1345 op.getLoc(), AffineMap::get(map.getNumDims(), 0, result), 1346 op.getInCrds()); 1347 outCrds.push_back(trans); 1348 } 1349 rewriter.replaceOp(op, outCrds); 1350 return success(); 1351 } 1352 }; 1353 1354 /// Sparse rewriting rule for the foreach operator. 1355 struct ForeachRewriter : public OpRewritePattern<ForeachOp> { 1356 public: 1357 using OpRewritePattern::OpRewritePattern; 1358 1359 LogicalResult matchAndRewrite(ForeachOp op, 1360 PatternRewriter &rewriter) const override { 1361 1362 auto loc = op.getLoc(); 1363 Value input = op.getTensor(); 1364 SmallVector<Value> reduc = op.getInitArgs(); 1365 const auto stt = getSparseTensorType(input); 1366 const Level lvlRank = stt.getLvlRank(); 1367 1368 // Special-case: for each over a sparse constant uses its own rewriting 1369 // rule. 1370 if (auto constOp = input.getDefiningOp<arith::ConstantOp>()) { 1371 if (auto attr = dyn_cast<SparseElementsAttr>(constOp.getValue())) { 1372 return genForeachOnSparseConstant(op, rewriter, attr); 1373 } 1374 } 1375 1376 // Otherwise, use loop emitter to generate loops. 1377 const auto enc = stt.getEncoding(); 1378 1379 // 1. Generates loop for the sparse input. 1380 LoopEmitter loopEmitter( 1381 ValueRange{input}, 1382 StringAttr::get(getContext(), ForeachOp::getOperationName())); 1383 loopEmitter.initializeLoopEmit(rewriter, loc); 1384 for (Level l = 0; l < lvlRank; l++) { 1385 // TODO: provide utility function for loop sequences that only contains 1386 // one for loop? 1387 const SmallVector<TensorLevel, 1> tidLvls{ 1388 loopEmitter.makeTensorLevel(0, l)}; 1389 loopEmitter.enterNewLoopSeq(rewriter, loc, tidLvls); 1390 // Note that reduc will be taken care of by loop emitter and get updated 1391 // in place. 1392 loopEmitter.enterCoIterationOverTensorsAtLvls(rewriter, loc, tidLvls, 1393 reduc); 1394 } 1395 1396 SmallVector<Value> lcvs = loopEmitter.getLoopIVs(); 1397 if (op.getOrder()) { 1398 // TODO: Support it so that we can do direct conversion from CSR->BSR. 1399 llvm_unreachable( 1400 "Level order not yet implemented on non-constant input tensors."); 1401 } 1402 1403 Value vals = loopEmitter.getValBuffer()[0]; 1404 SmallVector<Value> pos = loopEmitter.getValPosits(0); 1405 // Loads the value from sparse tensor using position-index; 1406 // loads the value from dense tensor using coords. 1407 Value val = enc ? rewriter.create<memref::LoadOp>(loc, vals, pos) 1408 : rewriter.create<memref::LoadOp>(loc, vals, lcvs); 1409 1410 // 2. Inline the block in the foreach operator. 1411 Block *srcBlock = op.getBody(); 1412 1413 // Remap coordinates. 1414 SmallVector<Value> args = 1415 enc.translateCrds(rewriter, loc, lcvs, CrdTransDirectionKind::lvl2dim); 1416 1417 // Remap value. 1418 args.push_back(val); 1419 // Remap reduction variables. 1420 args.append(reduc); 1421 1422 // Remove sparse_tensor.yield. 1423 SmallVector<Value> reducValue = srcBlock->getTerminator()->getOperands(); 1424 rewriter.eraseOp(srcBlock->getTerminator()); 1425 1426 Operation &last = rewriter.getBlock()->back(); 1427 if (llvm::isa<scf::YieldOp>(last)) { 1428 // Because `scf.for` inserts an implicit yield op when there is no 1429 // reduction variable upon creation, we reset the insertion point such 1430 // that the block is inlined before *before* the yield op. 1431 rewriter.setInsertionPoint(&last); 1432 } 1433 1434 rewriter.inlineBlockBefore(srcBlock, rewriter.getBlock(), 1435 rewriter.getInsertionPoint(), args); 1436 rewriter.setInsertionPointToEnd(rewriter.getBlock()); 1437 for (Level l = 0; l < lvlRank; l++) { 1438 // Link the reduction chain. Note that loop emitter update the reducValue 1439 // in place. 1440 loopEmitter.exitCurrentLoop(rewriter, loc, reducValue); 1441 loopEmitter.exitCurrentLoopSeq(rewriter, loc); 1442 } 1443 1444 // Replace the foreach operator with the value returned by the outtermost 1445 // for loop. 1446 rewriter.replaceOp(op, reducValue); 1447 return success(); 1448 } 1449 }; 1450 1451 /// Sparse rewriting rule for the new operator. 1452 struct NewRewriter : public OpRewritePattern<NewOp> { 1453 using OpRewritePattern::OpRewritePattern; 1454 LogicalResult matchAndRewrite(NewOp op, 1455 PatternRewriter &rewriter) const override { 1456 Location loc = op.getLoc(); 1457 auto stt = getSparseTensorType(op.getResult()); 1458 if (!stt.hasEncoding() || stt.getAoSCOOStart() == 0) 1459 return failure(); 1460 1461 // Implement the NewOp as follows: 1462 // %orderedCoo = sparse_tensor.new %filename 1463 // %t = sparse_tensor.convert %orderedCoo 1464 // with enveloping reinterpreted_map ops for non-permutations. 1465 RankedTensorType dstTp = stt.getRankedTensorType(); 1466 RankedTensorType cooTp = stt.getCOOType(/*ordered=*/true); 1467 Value cooTensor = rewriter.create<NewOp>(loc, cooTp, op.getSource()); 1468 Value convert = cooTensor; 1469 auto enc = stt.getEncoding(); 1470 if (!stt.isPermutation()) { // demap coo, demap dstTp 1471 auto coo = getSparseTensorType(cooTensor).getEncoding().withoutDimToLvl(); 1472 convert = rewriter.create<ReinterpretMapOp>(loc, coo, convert); 1473 dstTp = getSparseTensorType(convert).withEncoding(enc.withoutDimToLvl()); 1474 } 1475 convert = rewriter.create<ConvertOp>(loc, dstTp, convert); 1476 if (!stt.isPermutation()) // remap to original enc 1477 convert = rewriter.create<ReinterpretMapOp>(loc, enc, convert); 1478 rewriter.replaceOp(op, convert); 1479 1480 // Release the temporary ordered COO tensor. 1481 rewriter.setInsertionPointAfterValue(convert); 1482 rewriter.create<DeallocTensorOp>(loc, cooTensor); 1483 1484 return success(); 1485 } 1486 }; 1487 1488 /// Sparse rewriting rule for the out operator. 1489 struct OutRewriter : public OpRewritePattern<OutOp> { 1490 using OpRewritePattern::OpRewritePattern; 1491 LogicalResult matchAndRewrite(OutOp op, 1492 PatternRewriter &rewriter) const override { 1493 Location loc = op.getLoc(); 1494 // Calculate NNZ. 1495 Value src = op.getTensor(); 1496 Value nnz = rewriter.create<NumberOfEntriesOp>(loc, src); 1497 1498 // Allocate a temporary buffer for storing dimension-sizes/coordinates. 1499 const auto srcTp = getSparseTensorType(src); 1500 const Dimension dimRank = srcTp.getDimRank(); 1501 Type indexTp = rewriter.getIndexType(); 1502 Value dimSizes = genAlloca(rewriter, loc, dimRank, indexTp); 1503 1504 // Generate code to calculate dimension size values and store the values to 1505 // the buffer. 1506 SmallVector<Value> dims; 1507 sizesForTensor(rewriter, dims, loc, srcTp, src); 1508 for (Dimension d = 0; d < dimRank; d++) { 1509 rewriter.create<memref::StoreOp>(loc, dims[d], dimSizes, 1510 constantIndex(rewriter, loc, d)); 1511 } 1512 1513 // Create a sparse tensor writer and output meta data. 1514 Type opaqueTp = getOpaquePointerType(rewriter); 1515 Value writer = 1516 createFuncCall(rewriter, loc, "createSparseTensorWriter", {opaqueTp}, 1517 {op.getDest()}, EmitCInterface::Off) 1518 .getResult(0); 1519 Value rankValue = constantIndex(rewriter, loc, dimRank); 1520 createFuncCall(rewriter, loc, "outSparseTensorWriterMetaData", {}, 1521 {writer, rankValue, nnz, dimSizes}, EmitCInterface::On); 1522 1523 Value dimCoords = dimSizes; // Reuse the dimSizes buffer for dimCoords. 1524 Type eltTp = srcTp.getElementType(); 1525 SmallString<29> outNextFuncName{"outSparseTensorWriterNext", 1526 primaryTypeFunctionSuffix(eltTp)}; 1527 Value value = genAllocaScalar(rewriter, loc, eltTp); 1528 ModuleOp module = op->getParentOfType<ModuleOp>(); 1529 1530 // For each element in the source tensor, output the element. 1531 rewriter.create<ForeachOp>( 1532 loc, src, std::nullopt, 1533 [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v, 1534 ValueRange reduc) { 1535 for (Dimension d = 0; d < dimRank; d++) { 1536 rewriter.create<memref::StoreOp>(loc, dcvs[d], dimCoords, 1537 constantIndex(builder, loc, d)); 1538 } 1539 rewriter.create<memref::StoreOp>(loc, v, value); 1540 SmallVector<Value> operands{writer, rankValue, dimCoords, value}; 1541 FlatSymbolRefAttr fn = getFunc(module, outNextFuncName, {}, operands, 1542 EmitCInterface::On); 1543 builder.create<func::CallOp>(loc, TypeRange(), fn, operands); 1544 builder.create<sparse_tensor::YieldOp>(loc); 1545 }); 1546 1547 // Release the writer. 1548 createFuncCall(rewriter, loc, "delSparseTensorWriter", {}, {writer}, 1549 EmitCInterface::Off); 1550 1551 rewriter.eraseOp(op); 1552 return success(); 1553 } 1554 }; 1555 1556 } // namespace 1557 1558 //===---------------------------------------------------------------------===// 1559 // Methods that add patterns described in this file to a pattern list. 1560 //===---------------------------------------------------------------------===// 1561 1562 void mlir::populatePreSparsificationRewriting(RewritePatternSet &patterns) { 1563 patterns.add<FuseExtractSliceWithConcat, FoldConvertIntoProducer, 1564 FoldInvariantYield, FuseSparseMultiplyOverAdd, FuseTensorCast, 1565 GenSemiRingReduction, GenSemiRingSelect, PrintRewriter>( 1566 patterns.getContext()); 1567 } 1568 1569 void mlir::populateLowerSparseOpsToForeachPatterns(RewritePatternSet &patterns, 1570 bool enableRT, 1571 bool enableConvert) { 1572 patterns.add<ConcatenateRewriter, ReshapeRewriter<tensor::ExpandShapeOp>, 1573 ReshapeRewriter<tensor::CollapseShapeOp>, 1574 Sparse2SparseReshapeRewriter<tensor::ExpandShapeOp>, 1575 Sparse2SparseReshapeRewriter<tensor::CollapseShapeOp>, 1576 SparseTensorDimOpRewriter, TensorReshapeRewriter, OutRewriter>( 1577 patterns.getContext()); 1578 1579 if (enableConvert) 1580 patterns.add<DirectConvertRewriter>(patterns.getContext()); 1581 if (!enableRT) 1582 patterns.add<NewRewriter>(patterns.getContext()); 1583 } 1584 1585 void mlir::populateLowerForeachToSCFPatterns(RewritePatternSet &patterns) { 1586 // Run CrdTranslateRewriter later in the pipeline so that operation can be 1587 // folded before lowering to affine.apply 1588 patterns.add<CrdTranslateRewriter, ForeachRewriter>(patterns.getContext()); 1589 } 1590