xref: /llvm-project/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp (revision 6bc7c9df7f45642071f2b59a222ba009dc81eb99)
1 //===- SparseTensorRewriting.cpp - Sparse tensor rewriting rules ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements rewriting rules that are specific to sparse tensors.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "Utils/CodegenUtils.h"
14 #include "Utils/LoopEmitter.h"
15 
16 #include "mlir/Dialect/Affine/IR/AffineOps.h"
17 #include "mlir/Dialect/Arith/IR/Arith.h"
18 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
19 #include "mlir/Dialect/Linalg/IR/Linalg.h"
20 #include "mlir/Dialect/Linalg/Utils/Utils.h"
21 #include "mlir/Dialect/MemRef/IR/MemRef.h"
22 #include "mlir/Dialect/SCF/IR/SCF.h"
23 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
24 #include "mlir/Dialect/SparseTensor/IR/SparseTensorStorageLayout.h"
25 #include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
26 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
27 #include "mlir/Dialect/Tensor/IR/Tensor.h"
28 #include "mlir/Dialect/Vector/IR/VectorOps.h"
29 #include "mlir/IR/AffineMap.h"
30 #include "mlir/IR/Matchers.h"
31 #include "mlir/Support/LLVM.h"
32 
33 using namespace mlir;
34 using namespace mlir::bufferization;
35 using namespace mlir::linalg;
36 using namespace mlir::sparse_tensor;
37 
38 //===---------------------------------------------------------------------===//
39 // Helper methods for the actual rewriting rules.
40 //===---------------------------------------------------------------------===//
41 
42 // Helper method to match any typed zero.
43 static bool isZeroValue(Value val) {
44   return matchPattern(val, m_Zero()) || matchPattern(val, m_AnyZeroFloat());
45 }
46 
47 // Helper to detect a sparse tensor type operand.
48 static bool isSparseTensor(Value v) {
49   auto enc = getSparseTensorEncoding(v.getType());
50   return enc && !llvm::all_of(enc.getLvlTypes(),
51                               [](auto lt) { return lt == LevelFormat::Dense; });
52 }
53 static bool isSparseTensor(OpOperand *op) { return isSparseTensor(op->get()); }
54 
55 // Helper method to find zero/uninitialized tensor materialization.
56 static bool isMaterializing(OpOperand *op, bool isZero) {
57   Value val = op->get();
58   // Check allocation, with zero alloc when required.
59   if (auto alloc = val.getDefiningOp<AllocTensorOp>()) {
60     Value copy = alloc.getCopy();
61     if (isZero)
62       return copy && isZeroValue(copy);
63     return !copy;
64   }
65   // Check for empty tensor materialization.
66   if (auto empty = val.getDefiningOp<tensor::EmptyOp>())
67     return !isZero;
68   // Last resort for zero alloc: the whole value is zero.
69   return isZero && isZeroValue(val);
70 }
71 
72 // Helper to detect sampling operation.
73 static bool isSampling(GenericOp op) {
74   auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator());
75   if (auto *def = yieldOp.getOperand(0).getDefiningOp()) {
76     if (isa<arith::MulFOp>(def) || isa<arith::MulIOp>(def)) {
77       // Both scalar input arguments used exactly once.
78       Value s1 = op.getBlock()->getArgument(0);
79       Value s2 = op.getBlock()->getArgument(1);
80       return (def->getOperand(0) == s1 && def->getOperand(1) == s2) ||
81              (def->getOperand(1) == s1 && def->getOperand(0) == s2);
82     }
83   }
84   return false;
85 }
86 
87 // Helper to detect chain of multiplications that do not involve x.
88 static bool isMulChain(Value val, Value x) {
89   if (auto arg = dyn_cast<BlockArgument>(val))
90     return arg != x;
91   if (auto *def = val.getDefiningOp()) {
92     if (isa<arith::MulFOp>(def) || isa<arith::MulIOp>(def))
93       return isMulChain(def->getOperand(0), x) &&
94              isMulChain(def->getOperand(1), x);
95   }
96   return false;
97 }
98 
99 // Helper to detect x = x + <multiplications>.
100 static bool isSumOfMul(GenericOp op) {
101   auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator());
102   if (auto *def = yieldOp.getOperand(0).getDefiningOp()) {
103     if (isa<arith::AddFOp>(def) || isa<arith::AddIOp>(def)) {
104       Value x = op.getBlock()->getArguments().back();
105       return (def->getOperand(0) == x && isMulChain(def->getOperand(1), x)) ||
106              (def->getOperand(1) == x && isMulChain(def->getOperand(0), x));
107     }
108   }
109   return false;
110 }
111 
112 // Helper to detect direct yield of a zero value.
113 static bool isZeroYield(GenericOp op) {
114   auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator());
115   if (auto arg = dyn_cast<BlockArgument>(yieldOp.getOperand(0))) {
116     if (arg.getOwner()->getParentOp() == op) {
117       return isZeroValue(op->getOperand(arg.getArgNumber()));
118     }
119   }
120   return isZeroValue(yieldOp.getOperand(0));
121 }
122 
123 /// Populates given sizes array from type (for static sizes) and from
124 /// the tensor (for dynamic sizes).
125 static void sizesForTensor(OpBuilder &builder, SmallVectorImpl<Value> &sizes,
126                            Location loc, ShapedType stp, Value tensor) {
127   for (const auto &d : enumerate(stp.getShape())) {
128     Value dim;
129     if (d.value() == ShapedType::kDynamic)
130       dim = builder.create<tensor::DimOp>(loc, tensor, d.index());
131     else
132       dim = constantIndex(builder, loc, d.value());
133     sizes.push_back(dim);
134   }
135 }
136 
137 static RankedTensorType getBufferType(const SparseTensorType &stt,
138                                       bool needTmpCOO) {
139   return needTmpCOO ? stt.getCOOType(/*ordered=*/false)
140                     : stt.getRankedTensorType();
141 }
142 
143 /// Collects the dynamic dimension sizes for `tp` with the assumption that
144 /// `sizes` are the dimension sizes for the type. Stores the dynamic dimension
145 /// sizes to dynSizes.
146 static void getDynamicSizes(RankedTensorType tp, ValueRange sizes,
147                             SmallVectorImpl<Value> &dynSizes) {
148   for (const auto &d : enumerate(tp.getShape())) {
149     if (d.value() == ShapedType::kDynamic)
150       dynSizes.push_back(sizes[d.index()]);
151   }
152 }
153 
154 static LogicalResult genForeachOnSparseConstant(ForeachOp op,
155                                                 RewriterBase &rewriter,
156                                                 SparseElementsAttr attr) {
157   auto loc = op.getLoc();
158   SmallVector<Value> reduc = op.getInitArgs();
159 
160   // Foreach on constant.
161   foreachInSparseConstant(
162       rewriter, loc, attr, op.getOrder().value_or(AffineMap()),
163       [&reduc, &rewriter, op](ArrayRef<Value> cvs, Value v) mutable {
164         SmallVector<Value> args;
165         args.append(cvs.begin(), cvs.end());
166         args.push_back(v);
167         args.append(reduc);
168         // Clones the foreach op to get a copy of the loop body.
169         auto cloned = cast<ForeachOp>(rewriter.clone(*op.getOperation()));
170         assert(args.size() == cloned.getBody()->getNumArguments());
171         Operation *yield = cloned.getBody()->getTerminator();
172         rewriter.inlineBlockBefore(cloned.getBody(), op, args);
173         // clean up
174         rewriter.eraseOp(cloned);
175         reduc = yield->getOperands();
176         rewriter.eraseOp(yield);
177       });
178 
179   rewriter.replaceOp(op, reduc);
180   return success();
181 }
182 
183 /// Populates the given sizes array for concatenation from types (for static
184 /// sizes) and from the source tensors (for dynamic sizes).
185 static void concatSizesFromInputs(OpBuilder &builder,
186                                   SmallVectorImpl<Value> &sizes, Location loc,
187                                   ShapedType dstTp, ValueRange srcs,
188                                   unsigned dim) {
189   auto dstShape = dstTp.getShape();
190   sizesFromSrc(builder, sizes, loc, srcs[0]);
191 
192   // Sum up on the `dim` if the dimension is dynamic.
193   if (dstShape[dim] != ShapedType::kDynamic) {
194     // Faithfully take the static size.
195     sizes[dim] = constantIndex(builder, loc, dstShape[dim]);
196   } else {
197     // Else, compute the shape dynamically.
198     for (const auto &src : srcs.drop_front()) {
199       Value srcSz = linalg::createOrFoldDimOp(builder, loc, src, dim);
200       // Sum up all the sizes.
201       sizes[dim] = builder.create<arith::AddIOp>(loc, sizes[dim], srcSz);
202     }
203   }
204 }
205 
206 //===---------------------------------------------------------------------===//
207 // The actual sparse tensor rewriting rules.
208 //===---------------------------------------------------------------------===//
209 
210 namespace {
211 
212 /// Rewriting rule that converts direct yield of zero with initial allocation.
213 struct FoldInvariantYield : public OpRewritePattern<GenericOp> {
214 public:
215   using OpRewritePattern<GenericOp>::OpRewritePattern;
216 
217   LogicalResult matchAndRewrite(GenericOp op,
218                                 PatternRewriter &rewriter) const override {
219     if (!op.hasPureTensorSemantics() || op.getNumResults() != 1 ||
220         !isMaterializing(op.getDpsInitOperand(0), /*isZero=*/false) ||
221         !isZeroYield(op) || !op.getDpsInitOperand(0)->get().hasOneUse())
222       return failure();
223     auto outputType = getRankedTensorType(op.getResult(0));
224     // Yielding zero on newly materialized sparse tensor can be
225     // optimized directly (regardless of dynamic or static size).
226     if (getSparseTensorEncoding(outputType)) {
227       rewriter.replaceOp(op, op.getDpsInitOperand(0)->get());
228       return success();
229     }
230     // Use static zero value directly instead of materialization.
231     if (!outputType.hasStaticShape())
232       return failure();
233     Operation *def = op.getDpsInitOperand(0)->get().getDefiningOp();
234     rewriter.replaceOp(op, constantZero(rewriter, op.getLoc(), outputType));
235     rewriter.eraseOp(def);
236     return success();
237   }
238 };
239 
240 /// Rewriting rule that converts two kernels:
241 ///
242 ///      T(i,j) = SUM(k, A(i,j,k) * B(i,j,k) * ... )
243 ///      X(i,j) = S(i,j) * T(i,j)
244 ///
245 /// into a single kernel, using distributive law:
246 ///
247 ///      X(i,j) = SUM(k, S(i,j) * A(i,j,k) * B(i,j,k) * ... )
248 ///
249 /// This kind of fusion (merging two ops into one but using arithmetic
250 /// equalities that may not hold for floating-point computations) would
251 /// be undesirable in the dense case, since we distribute the multiplication
252 /// into the reduction loop. However, for sparse sampling tensor S, such
253 /// a fusion may actually reduce the asymptotic complexity of the kernel,
254 /// since intermediate results may be nullified.
255 struct FuseSparseMultiplyOverAdd : public OpRewritePattern<GenericOp> {
256 public:
257   using OpRewritePattern<GenericOp>::OpRewritePattern;
258 
259   LogicalResult matchAndRewrite(GenericOp op,
260                                 PatternRewriter &rewriter) const override {
261     // Check consumer.
262     if (!op.hasPureTensorSemantics() || op.getNumDpsInputs() != 2 ||
263         op.getNumResults() != 1 ||
264         op.getNumParallelLoops() != op.getNumLoops() ||
265         !op.getMatchingIndexingMap(op.getDpsInitOperand(0)).isIdentity() ||
266         !op.getMatchingIndexingMap(op.getDpsInputOperand(0)).isIdentity() ||
267         !op.getMatchingIndexingMap(op.getDpsInputOperand(1)).isIdentity())
268       return failure();
269     // Find consuming OP2(sparse, other) or OP2(other, sparse). The other
270     // operand can be sparse or dense, since the point of this rewriting rule
271     // is detecting a situation in which *more* sparsity is introduced into
272     // a computation, be it already sparse or still dense.
273     unsigned other = 0;
274     if (isSparseTensor(op.getDpsInputOperand(0)))
275       other = 1;
276     else if (!isSparseTensor(op.getDpsInputOperand(1)))
277       return failure();
278     // Check producer.
279     auto prod = dyn_cast_or_null<GenericOp>(
280         op.getDpsInputOperand(other)->get().getDefiningOp());
281     if (!prod || !prod.hasPureTensorSemantics() || prod.getNumResults() != 1 ||
282         !prod.getResult(0).hasOneUse())
283       return failure();
284     // Sampling consumer and sum of multiplication chain producer.
285     if (!isMaterializing(op.getDpsInitOperand(0), /*isZero=*/false) ||
286         !isMaterializing(prod.getDpsInitOperand(0), /*isZero=*/true) ||
287         !isSampling(op) || !isSumOfMul(prod))
288       return failure();
289     // Modify operand structure of producer and consumer.
290     Location loc = prod.getLoc();
291     SmallVector<Value> inputOps = prod.getInputs();
292     SmallVector<Value> outputOps = op.getOutputs();
293     SmallVector<AffineMap> fusedIndexMaps = prod.getIndexingMapsArray();
294     inputOps.push_back(op.getDpsInputOperand(1 - other)->get());
295     fusedIndexMaps.push_back(fusedIndexMaps.back()); // mimic other
296     // Fuse producer and consumer into a new generic op.
297     auto fusedOp = rewriter.create<GenericOp>(
298         loc, op.getResult(0).getType(), inputOps, outputOps,
299         rewriter.getAffineMapArrayAttr(fusedIndexMaps), prod.getIteratorTypes(),
300         /*doc=*/nullptr, /*library_call=*/nullptr);
301     Block &prodBlock = prod.getRegion().front();
302     Block &consBlock = op.getRegion().front();
303     IRMapping mapper;
304     Block *fusedBlock = rewriter.createBlock(&fusedOp.getRegion());
305     unsigned num = prodBlock.getNumArguments();
306     for (unsigned i = 0; i < num - 1; i++)
307       addArg(mapper, fusedBlock, prodBlock.getArgument(i));
308     addArg(mapper, fusedBlock, consBlock.getArgument(1 - other));
309     addArg(mapper, fusedBlock, prodBlock.getArgument(num - 1));
310     // Clone bodies of the producer and consumer in new evaluation order.
311     auto *acc = prodBlock.getTerminator()->getOperand(0).getDefiningOp();
312     auto *sampler = consBlock.getTerminator()->getOperand(0).getDefiningOp();
313     Value last;
314     for (auto &op : prodBlock.without_terminator())
315       if (&op != acc) {
316         last = op.getResult(0);
317         rewriter.clone(op, mapper);
318       }
319     mapper.map(consBlock.getArgument(other), fusedBlock->back().getResult(0));
320     mapper.map(last, rewriter.clone(*sampler, mapper)->getResult(0));
321     last = rewriter.clone(*acc, mapper)->getResult(0);
322     rewriter.create<linalg::YieldOp>(loc, last);
323     // Force initial value on merged allocation for dense outputs.
324     // TODO: deal with non alloc tensor here one day
325     if (!getSparseTensorEncoding(op.getResult(0).getType())) {
326       Value init = prod.getDpsInitOperand(0)
327                        ->get()
328                        .getDefiningOp<AllocTensorOp>()
329                        .getCopy();
330       AllocTensorOp a =
331           op.getDpsInitOperand(0)->get().getDefiningOp<AllocTensorOp>();
332       rewriter.modifyOpInPlace(a, [&]() { a.getCopyMutable().assign(init); });
333     }
334     // Replace consumer with fused operation. Old producer
335     // and consumer ops will be removed by DCE.
336     rewriter.replaceOp(op, fusedOp->getResults());
337     return success();
338   }
339 
340 private:
341   // Helper to add argument and record the mapping.
342   static void addArg(IRMapping &mapper, Block *b, BlockArgument a) {
343     mapper.map(a, b->addArgument(a.getType(), a.getLoc()));
344   }
345 };
346 
347 // Fuse a tensor cast into producing operation. Note that a tensor.cast
348 // should really not be used to convert between sparse encodings. Since
349 // the pattern currently appears as a result of some prior rewriting
350 // we make an attempt to repair very obvious cases.
351 // TODO: audit the pure tensor dialect rewriting rules
352 struct FuseTensorCast : public OpRewritePattern<tensor::CastOp> {
353 public:
354   using OpRewritePattern<tensor::CastOp>::OpRewritePattern;
355 
356   LogicalResult matchAndRewrite(tensor::CastOp op,
357                                 PatternRewriter &rewriter) const override {
358     Type srcType = op.getSource().getType();
359     Type dstType = op.getDest().getType();
360     // A nop cast simply folds away.
361     if (srcType == dstType) {
362       rewriter.replaceOp(op, op->getResults());
363       return success();
364     }
365     // See if a sparsity changing cast can be fused into producer.
366     if (tensor::isSameTypeWithoutEncoding(srcType, dstType)) {
367       if (Operation *def = op.getSource().getDefiningOp()) {
368         if (def->hasOneUse() && isa<tensor::ExtractSliceOp>(def)) {
369           rewriter.modifyOpInPlace(def, [&]() {
370             def->getResult(0).setType(op->getResultTypes()[0]);
371           });
372           rewriter.replaceOp(op, def->getResult(0));
373           return success();
374         }
375       }
376     }
377     // Repair tensor casts with at least one sparse operand into the
378     // the properly supported sparse_tensor.convert.
379     if (getSparseTensorEncoding(srcType) || getSparseTensorEncoding(dstType)) {
380       rewriter.replaceOpWithNewOp<ConvertOp>(op, dstType, op.getSource());
381       return success();
382     }
383     // Fail otherwise.
384     return failure();
385   }
386 };
387 
388 /// Rewrites a sequence of operations for sparse tensor selections in to
389 /// semi-ring operations such that they can be compiled correctly by the
390 /// sparsifier. E.g., transforming the following sequence
391 ///
392 /// %sel = arith.select %cond, %sp1, %sp2
393 ///
394 /// to
395 ///
396 /// %sel = binary %sp1, %sp2:
397 ///         both  (%l, %r) {yield select %cond, %l, %r}
398 ///         left  (%l)     {yield select %cond, %l,  0}
399 ///         right (%r)     {yield select %cond,  0, %r}
400 ///
401 /// TODO: We require that the tensor used for extracting conditions to be dense
402 /// to sparsify the code. To support a sparse condition tensor, we need a
403 /// tri-nary operation.
404 struct GenSemiRingSelect : public OpRewritePattern<GenericOp> {
405 public:
406   using OpRewritePattern<GenericOp>::OpRewritePattern;
407   LogicalResult matchAndRewrite(GenericOp op,
408                                 PatternRewriter &rewriter) const override {
409     // Rejects non sparse kernels.
410     if (!op.hasPureTensorSemantics() || !hasAnySparseOperand(op))
411       return failure();
412 
413     Location loc = op.getLoc();
414     SmallVector<std::pair<Operation *, sparse_tensor::BinaryOp>> semiRings;
415     for (Operation &inst : *op.getBody()) {
416       // Matches pattern.
417       auto matched = isRewritablePattern(op, &inst);
418       if (!matched.has_value())
419         continue;
420 
421       rewriter.setInsertionPoint(&inst);
422       auto [c, t, f] = matched.value();
423       assert(t.getType() == f.getType());
424       auto selTp = t.getType();
425       auto c0 = constantZero(rewriter, loc, selTp);
426       auto binOp = rewriter.create<sparse_tensor::BinaryOp>(loc, selTp, t, f);
427       // Initializes all the blocks.
428       rewriter.createBlock(&binOp.getOverlapRegion(), {}, {selTp, selTp},
429                            {t.getLoc(), f.getLoc()});
430       rewriter.createBlock(&binOp.getRightRegion(), {}, selTp, f.getLoc());
431       rewriter.createBlock(&binOp.getLeftRegion(), {}, selTp, t.getLoc());
432 
433       for (auto *r : binOp.getRegions()) {
434         Block *b = &r->front();
435         rewriter.setInsertionPointToStart(b);
436 
437         IRMapping irMap;
438         // Clones the cmp operations into the region to make the binary op
439         // admissible.
440         Value newC = c;
441         if (auto *def = c.getDefiningOp())
442           newC = rewriter.clone(*def, irMap)->getResult(0);
443 
444         irMap.map(c, newC);
445         if (r == &binOp.getLeftRegion()) {
446           irMap.map(t, b->getArgument(0));
447           irMap.map(f, c0);
448         } else if (r == &binOp.getRightRegion()) {
449           irMap.map(t, c0);
450           irMap.map(f, b->getArgument(0));
451         } else {
452           irMap.map(t, b->getArgument(0));
453           irMap.map(f, b->getArgument(1));
454         }
455         auto y = rewriter.clone(inst, irMap)->getResult(0);
456         rewriter.create<sparse_tensor::YieldOp>(loc, y);
457       }
458 
459       // We successfully rewrited a operation. We can not do replacement here
460       // becuase it invalidate the iterator for the current loop to traverse
461       // the instructions.
462       semiRings.emplace_back(&inst, binOp);
463     }
464 
465     // Finalizes the replacement.
466     for (auto [sel, semi] : semiRings)
467       rewriter.replaceOp(sel, semi->getResults());
468 
469     return success(!semiRings.empty());
470   }
471 
472 private:
473   static std::optional<std::tuple<Value, BlockArgument, BlockArgument>>
474   isRewritablePattern(GenericOp op, Operation *v) {
475     auto sel = dyn_cast<arith::SelectOp>(v);
476     if (!sel)
477       return std::nullopt;
478 
479     auto tVal = sel.getTrueValue().dyn_cast<BlockArgument>();
480     auto fVal = sel.getFalseValue().dyn_cast<BlockArgument>();
481     // TODO: For simplicity, we only handle cases where both true/false value
482     // are directly loaded the input tensor. We can probably admit more cases
483     // in theory.
484     if (!tVal || !fVal)
485       return std::nullopt;
486 
487     // Helper lambda to determine whether the value is loaded from a dense input
488     // or is a loop invariant.
489     auto isValFromDenseInputOrInvariant = [&op](Value v) -> bool {
490       if (auto bArg = v.dyn_cast<BlockArgument>();
491           bArg && !isSparseTensor(op.getDpsInputOperand(bArg.getArgNumber())))
492         return true;
493       // If the value is defined outside the loop, it is a loop invariant.
494       return v.getDefiningOp() && v.getDefiningOp()->getBlock() != op.getBody();
495     };
496 
497     // If the condition value is load directly from a dense tensor or
498     // loop-invariants, we can sparsify the kernel.
499     auto cond = sel.getCondition();
500     if (isValFromDenseInputOrInvariant(cond))
501       return std::make_tuple(cond, tVal, fVal);
502 
503     Value cmpL, cmpR;
504     if (matchPattern(cond, m_Op<arith::CmpIOp>(matchers::m_Any(&cmpL),
505                                                matchers::m_Any(&cmpR))) ||
506         matchPattern(cond, m_Op<arith::CmpFOp>(matchers::m_Any(&cmpL),
507                                                matchers::m_Any(&cmpR)))) {
508       // TODO: we can do it recursively to check whether all the leaf values are
509       // loaded from dense tensors or are loop invariants.
510       if (isValFromDenseInputOrInvariant(cmpL) ||
511           isValFromDenseInputOrInvariant(cmpR))
512         return std::make_tuple(cond, tVal, fVal);
513     }
514 
515     return std::nullopt;
516   };
517 };
518 
519 /// Rewrites a sparse reduction that would not sparsify directly since
520 /// doing so would only iterate over the stored elements, ignoring the
521 /// implicit zeros, into a semi-ring. Applies to all prod/and/min/max
522 /// (note that reductions like add/sub/or/xor can directly be sparsified
523 /// since the implicit zeros do not contribute to the final result).
524 /// Note that prod/and are still included since, even though they often
525 /// are nullified in sparse data, they may still occur for special
526 /// situations in which e.g. some rows in a sparse matrix are fully
527 /// dense. For min/max, including the implicit zeros is a much more
528 /// common situation.
529 ///
530 /// TODO: this essentially "densifies" the operation; we want to implement
531 ///       this much more efficiently by performing the reduction over the
532 ///       stored values, and feed in the zero once if there were *any*
533 ///       implicit zeros as well; but for now, at least we provide
534 ///       the functionality
535 ///
536 struct GenSemiRingReduction : public OpRewritePattern<GenericOp> {
537 public:
538   using OpRewritePattern<GenericOp>::OpRewritePattern;
539 
540   LogicalResult matchAndRewrite(GenericOp op,
541                                 PatternRewriter &rewriter) const override {
542     // Reject non-reductions.
543     if (!op.hasPureTensorSemantics() || op.getNumDpsInputs() != 1 ||
544         op.getNumReductionLoops() == 0 || op.getNumResults() != 1)
545       return failure();
546     auto *inp = op.getDpsInputOperand(0);
547     auto *init = op.getDpsInitOperand(0);
548     if (!isSparseTensor(inp))
549       return failure();
550     // Look for direct x = x OP y for semi-ring ready reductions.
551     auto *red = cast<linalg::YieldOp>(op.getRegion().front().getTerminator())
552                     .getOperand(0)
553                     .getDefiningOp();
554     if (!isa<arith::AndIOp, arith::MulIOp, arith::MulFOp, arith::MinimumFOp,
555              arith::MinSIOp, arith::MinUIOp, arith::MaximumFOp, arith::MaxSIOp,
556              arith::MaxUIOp>(red))
557       return failure();
558     Value s0 = op.getBlock()->getArgument(0);
559     Value s1 = op.getBlock()->getArgument(1);
560     if ((red->getOperand(0) != s0 || red->getOperand(1) != s1) &&
561         (red->getOperand(0) != s1 || red->getOperand(1) != s0))
562       return failure();
563     // Identity.
564     Location loc = op.getLoc();
565     Value identity =
566         rewriter.create<tensor::ExtractOp>(loc, init->get(), ValueRange());
567     // Unary {
568     //    present -> value
569     //    absent  -> zero.
570     // }
571     Type rtp = s0.getType();
572     rewriter.setInsertionPointToStart(&op.getRegion().front());
573     auto semiring = rewriter.create<sparse_tensor::UnaryOp>(loc, rtp, s0);
574     Block *present =
575         rewriter.createBlock(&semiring.getPresentRegion(), {}, rtp, loc);
576     rewriter.setInsertionPointToStart(&semiring.getPresentRegion().front());
577     rewriter.create<sparse_tensor::YieldOp>(loc, present->getArgument(0));
578     rewriter.createBlock(&semiring.getAbsentRegion(), {}, {}, {});
579     rewriter.setInsertionPointToStart(&semiring.getAbsentRegion().front());
580     auto zero =
581         rewriter.create<arith::ConstantOp>(loc, rewriter.getZeroAttr(rtp));
582     rewriter.create<sparse_tensor::YieldOp>(loc, zero);
583     rewriter.setInsertionPointAfter(semiring);
584     // CustomReduce {
585     //    x = x REDUC y, identity
586     // }
587     auto custom = rewriter.create<sparse_tensor::ReduceOp>(
588         loc, rtp, semiring.getResult(), s1, identity);
589     Block *region =
590         rewriter.createBlock(&custom.getRegion(), {}, {rtp, rtp}, {loc, loc});
591     rewriter.setInsertionPointToStart(&custom.getRegion().front());
592     IRMapping irMap;
593     irMap.map(red->getOperand(0), region->getArgument(0));
594     irMap.map(red->getOperand(1), region->getArgument(1));
595     auto *cloned = rewriter.clone(*red, irMap);
596     rewriter.create<sparse_tensor::YieldOp>(loc, cloned->getResult(0));
597     rewriter.setInsertionPointAfter(custom);
598     rewriter.replaceOp(red, custom.getResult());
599     return success();
600   }
601 };
602 
603 /// Sparse rewriting rule for the print operator. This operation is mainly used
604 /// for debugging and testing. As such, it lowers to the vector.print operation
605 /// which only require very light-weight runtime support.
606 struct PrintRewriter : public OpRewritePattern<PrintOp> {
607 public:
608   using OpRewritePattern::OpRewritePattern;
609   LogicalResult matchAndRewrite(PrintOp op,
610                                 PatternRewriter &rewriter) const override {
611     Location loc = op.getLoc();
612     auto tensor = op.getTensor();
613     auto stt = getSparseTensorType(tensor);
614     // Header with NSE.
615     auto nse = rewriter.create<NumberOfEntriesOp>(loc, tensor);
616     rewriter.create<vector::PrintOp>(
617         loc, rewriter.getStringAttr("---- Sparse Tensor ----\nnse = "));
618     rewriter.create<vector::PrintOp>(loc, nse);
619     // Use the "codegen" foreach loop construct to iterate over
620     // all typical sparse tensor components for printing.
621     foreachFieldAndTypeInSparseTensor(stt, [&rewriter, &loc, &tensor,
622                                             &stt](Type, FieldIndex,
623                                                   SparseTensorFieldKind kind,
624                                                   Level l, LevelType) {
625       switch (kind) {
626       case SparseTensorFieldKind::StorageSpec: {
627         break;
628       }
629       case SparseTensorFieldKind::PosMemRef: {
630         auto lvl = constantIndex(rewriter, loc, l);
631         rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("pos["));
632         rewriter.create<vector::PrintOp>(
633             loc, lvl, vector::PrintPunctuation::NoPunctuation);
634         rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("] : "));
635         auto pos = rewriter.create<ToPositionsOp>(loc, tensor, l);
636         printContents(rewriter, loc, pos);
637         break;
638       }
639       case SparseTensorFieldKind::CrdMemRef: {
640         auto lvl = constantIndex(rewriter, loc, l);
641         rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("crd["));
642         rewriter.create<vector::PrintOp>(
643             loc, lvl, vector::PrintPunctuation::NoPunctuation);
644         rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("] : "));
645         Value crd = nullptr;
646         // TODO: eliminates ToCoordinateBufferOp!
647         if (stt.getAoSCOOStart() == l)
648           crd = rewriter.create<ToCoordinatesBufferOp>(loc, tensor);
649         else
650           crd = rewriter.create<ToCoordinatesOp>(loc, tensor, l);
651         printContents(rewriter, loc, crd);
652         break;
653       }
654       case SparseTensorFieldKind::ValMemRef: {
655         rewriter.create<vector::PrintOp>(loc,
656                                          rewriter.getStringAttr("values : "));
657         auto val = rewriter.create<ToValuesOp>(loc, tensor);
658         printContents(rewriter, loc, val);
659         break;
660       }
661       }
662       return true;
663     });
664     rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("----\n"));
665     rewriter.eraseOp(op);
666     return success();
667   }
668 
669 private:
670   // Helper to print contents of a single memref. Note that for the "push_back"
671   // vectors, this prints the full capacity, not just the size. This is done
672   // on purpose, so that clients see how much storage has been allocated in
673   // total. Contents of the extra capacity in the buffer may be uninitialized
674   // (unless the flag enable-buffer-initialization is set to true).
675   //
676   // Generates code to print:
677   //    ( a0, a1, ... )
678   static void printContents(PatternRewriter &rewriter, Location loc,
679                             Value vec) {
680     // Open bracket.
681     rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Open);
682     // For loop over elements.
683     auto zero = constantIndex(rewriter, loc, 0);
684     auto size = rewriter.create<memref::DimOp>(loc, vec, zero);
685     auto step = constantIndex(rewriter, loc, 1);
686     auto forOp = rewriter.create<scf::ForOp>(loc, zero, size, step);
687     rewriter.setInsertionPointToStart(forOp.getBody());
688     auto idx = forOp.getInductionVar();
689     auto val = rewriter.create<memref::LoadOp>(loc, vec, idx);
690     rewriter.create<vector::PrintOp>(loc, val, vector::PrintPunctuation::Comma);
691     rewriter.setInsertionPointAfter(forOp);
692     // Close bracket and end of line.
693     rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Close);
694     rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::NewLine);
695   }
696 };
697 
698 /// Sparse rewriting rule for sparse-to-sparse reshape operator.
699 struct TensorReshapeRewriter : public OpRewritePattern<tensor::ReshapeOp> {
700 public:
701   using OpRewritePattern<tensor::ReshapeOp>::OpRewritePattern;
702 
703   LogicalResult matchAndRewrite(tensor::ReshapeOp op,
704                                 PatternRewriter &rewriter) const override {
705     Location loc = op.getLoc();
706     Value srcTensor = op.getSource();
707     const auto srcTp = getSparseTensorType(srcTensor);
708     const auto dstTp = getSparseTensorType(op.getResult());
709 
710     if (!srcTp.hasEncoding() || !dstTp.hasEncoding() ||
711         !dstTp.hasStaticDimShape())
712       return failure();
713 
714     SmallVector<Value> srcSizes;
715     sizesForTensor(rewriter, srcSizes, loc, srcTp, srcTensor);
716     SmallVector<Value> dstSizes;
717     for (Dimension d : dstTp.getDimShape())
718       dstSizes.push_back(constantIndex(rewriter, loc, d));
719 
720     Value nnz = rewriter.create<NumberOfEntriesOp>(loc, srcTensor);
721     // Only need an unordered COO buffer if input and output are not sorted
722     // in the same way.
723     Type bufferTp = getBufferType(
724         dstTp.withoutDimToLvl(),
725         !srcTp.isAllOrdered() || !srcTp.isIdentity() || !dstTp.isIdentity());
726     SmallVector<Value> dynSizes;
727     Value buffer = rewriter
728                        .create<AllocTensorOp>(loc, bufferTp, dynSizes, Value(),
729                                               nnz, Attribute())
730                        .getResult();
731 
732     // Convert src coordinates to dst coordinates by first collapsing it to 1D
733     // and then expand it to the match the rank of the destination tensor.
734     // Implemented as follows:
735     //   foreach srcCoords %srcTensor
736     //     collapsedCoords = reshapeCvs(srcCoords, [1, ..., srcRank])
737     //     expandedCoords = reshapeCvs(collapsedCoords, [1, ..., dstRank])
738     //     insert expandedCoords, %buffer
739     //
740     // followed by an optional
741     //   %t = sparse_tensor.cast %tmp
742     // depending on whether the input/output are sorted in the same way.
743     const auto encSrc = srcTp.getEncoding();
744     ForeachOp foreachOp = rewriter.create<ForeachOp>(
745         loc, srcTensor, buffer,
746         [&](OpBuilder &builder, Location loc, ValueRange srcLcvs, Value v,
747             ValueRange reduc) {
748           const Dimension srcRank = srcTp.getDimRank();
749           SmallVector<Value> srcDcvs;
750           srcDcvs.reserve(srcRank);
751           for (Dimension d = 0; d < srcRank; d++) {
752             Level lvl = toLvl(encSrc, d);
753             srcDcvs.push_back(srcLcvs[lvl]);
754           }
755 
756           Value collapseSize = constantIndex(builder, loc, 1);
757           for (Dimension d = 0; d < srcRank; d++)
758             collapseSize =
759                 builder.create<arith::MulIOp>(loc, collapseSize, srcSizes[d]);
760           SmallVector<Value, 1> collapsedSizes = {collapseSize};
761 
762           ReassociationIndices collapseIdx;
763           for (Dimension i = 0; i < srcRank; i++)
764             collapseIdx.push_back(i);
765           SmallVector<ReassociationIndices, 1> collapseReass = {collapseIdx};
766           SmallVector<Value, 1> collapsedDcvs;
767           reshapeCvs(builder, loc, collapseReass, srcSizes, srcDcvs,
768                      collapsedSizes, collapsedDcvs);
769 
770           ReassociationIndices expandIdx;
771           for (Dimension i = 0; i < dstTp.getDimRank(); i++)
772             expandIdx.push_back(i);
773           SmallVector<ReassociationIndices, 1> expandReass = {expandIdx};
774           SmallVector<Value> dstDcvs;
775           reshapeCvs(builder, loc, expandReass, collapsedSizes, collapsedDcvs,
776                      dstSizes, dstDcvs);
777 
778           auto t = builder.create<InsertOp>(loc, v, reduc.front(), dstDcvs);
779           builder.create<sparse_tensor::YieldOp>(loc, t);
780         });
781 
782     Value t = rewriter.create<LoadOp>(loc, foreachOp.getResult(0), true);
783     if (bufferTp != dstTp) {
784       auto dstRTT = dstTp.getRankedTensorType();
785       Value converted = rewriter.create<ConvertOp>(loc, dstRTT, t).getResult();
786       rewriter.create<DeallocTensorOp>(loc, t);
787       t = converted;
788     }
789     rewriter.replaceOp(op, t);
790     return success();
791   }
792 };
793 
794 /// Sparse rewriting rule for sparse-to-sparse reshape operator.
795 template <typename ReshapeOp>
796 struct Sparse2SparseReshapeRewriter : public OpRewritePattern<ReshapeOp> {
797 public:
798   using OpRewritePattern<ReshapeOp>::OpRewritePattern;
799 
800   LogicalResult matchAndRewrite(ReshapeOp op,
801                                 PatternRewriter &rewriter) const override {
802     Location loc = op.getLoc();
803     Value srcTensor = op.getSrc();
804     const auto srcTp = getSparseTensorType(srcTensor);
805     const auto dstTp = getSparseTensorType(op.getResult());
806     if (!srcTp.hasEncoding() || !dstTp.hasEncoding())
807       return failure();
808 
809     // Generate code to represent the static dimension constants or compute
810     // the dynamic dimension values.
811     SmallVector<Value> srcSizes;
812     sizesForTensor(rewriter, srcSizes, loc, srcTp, srcTensor);
813     SmallVector<Value> dstSizes;
814     SmallVector<Value> dstDynSizes;
815     if (dstTp.hasStaticDimShape()) {
816       for (Dimension d : dstTp.getDimShape())
817         dstSizes.push_back(constantIndex(rewriter, loc, d));
818     } else {
819       ArrayRef<Size> dstShape = dstTp.getDimShape();
820       genReshapeDstShape(rewriter, loc, dstSizes, srcSizes, dstShape,
821                          op.getReassociationIndices());
822       for (auto [idx, shape] : llvm::enumerate(dstShape)) {
823         if (shape == ShapedType::kDynamic)
824           dstDynSizes.push_back(dstSizes[idx]);
825       }
826     }
827     Value nnz = rewriter.create<NumberOfEntriesOp>(loc, srcTensor);
828     // Only need a unordered COO buffer if input and output are not sorted
829     // in the same way.
830     Type bufferTp = getBufferType(
831         dstTp.withoutDimToLvl(),
832         !srcTp.isAllOrdered() || !srcTp.isIdentity() || !dstTp.isIdentity());
833 
834     Value buffer =
835         rewriter
836             .create<AllocTensorOp>(loc, bufferTp, dstDynSizes, Value(),
837                                    /*sizeHint=*/nnz, Attribute())
838             .getResult();
839 
840     // Implement the sparse2sparse reshape as follows:
841     //   foreach srcCoords %srcTensor
842     //     insert reshapeCvs(srcCoords), %buffer
843     //
844     // followed by an optional
845     //   %t = sparse_tensor.cast %tmp
846     // depending on whether the input/output are sorted in the same way.
847     const auto encSrc = srcTp.getEncoding();
848     ForeachOp foreachOp = rewriter.create<ForeachOp>(
849         loc, srcTensor, buffer,
850         [&](OpBuilder &builder, Location loc, ValueRange srcLcvs, Value v,
851             ValueRange reduc) {
852           const Dimension dimRank = srcTp.getDimRank();
853           SmallVector<Value> srcDcvs;
854           srcDcvs.reserve(dimRank);
855           for (Dimension d = 0; d < dimRank; d++) {
856             Level lvl = toLvl(encSrc, d);
857             srcDcvs.push_back(srcLcvs[lvl]);
858           }
859           SmallVector<Value> dstDcvs;
860           reshapeCvs(builder, loc, op.getReassociationIndices(), srcSizes,
861                      srcDcvs, dstSizes, dstDcvs);
862           auto t = builder.create<InsertOp>(loc, v, reduc.front(), dstDcvs);
863           builder.create<sparse_tensor::YieldOp>(loc, t);
864         });
865 
866     Value t = rewriter.create<LoadOp>(loc, foreachOp.getResult(0), true);
867     if (bufferTp != dstTp) {
868       auto dstRTT = dstTp.getRankedTensorType();
869       Value converted = rewriter.create<ConvertOp>(loc, dstRTT, t).getResult();
870       rewriter.create<DeallocTensorOp>(loc, t);
871       t = converted;
872     }
873     rewriter.replaceOp(op, t);
874     return success();
875   }
876 };
877 
878 /// Sparse rewriting rule for sparse-to-dense and dense-to-sparse reshape
879 /// operator.
880 template <typename ReshapeOp>
881 struct ReshapeRewriter : public OpRewritePattern<ReshapeOp> {
882 public:
883   using OpRewritePattern<ReshapeOp>::OpRewritePattern;
884 
885   LogicalResult matchAndRewrite(ReshapeOp op,
886                                 PatternRewriter &rewriter) const override {
887     Location loc = op->getLoc();
888     auto encDst = getSparseTensorEncoding(op.getResult().getType());
889     auto encSrc = getSparseTensorEncoding(op.getSrc().getType());
890     // Since a pure dense expansion is very cheap (change of view), for
891     // a sparse2dense or dense2sparse, we can simply unfuse a sparse
892     // conversion from the reshape operation itself.
893     // All other cases are handled elsewhere.
894     if (encDst && encSrc) {
895       return failure();
896     }
897     if (encSrc) {
898       auto rtp = getRankedTensorType(op.getSrc());
899       auto denseTp =
900           RankedTensorType::get(rtp.getShape(), rtp.getElementType());
901       auto convert = rewriter.create<ConvertOp>(loc, denseTp, op.getSrc());
902       rewriter.modifyOpInPlace(op, [&]() { op->setOperand(0, convert); });
903       return success();
904     }
905     if (encDst) {
906       auto rtp = getRankedTensorType(op.getResult());
907       auto denseTp =
908           RankedTensorType::get(rtp.getShape(), rtp.getElementType());
909       auto reshape = rewriter.create<ReshapeOp>(loc, denseTp, op.getSrc(),
910                                                 op.getReassociation());
911       Value convert = rewriter.create<ConvertOp>(loc, rtp, reshape);
912       rewriter.replaceOp(op, convert);
913       return success();
914     }
915     return failure();
916   }
917 };
918 
919 // A trivial wrapper to help generate different operations for dense/sparse
920 // tensors.
921 struct TensorLike {
922   TensorLike(OpBuilder &builder, Location loc, RankedTensorType rtt,
923              ValueRange sizes) {
924     SmallVector<Value> dynSzs;
925     getDynamicSizes(rtt, sizes, dynSzs);
926 
927     val = builder.create<AllocTensorOp>(loc, rtt, dynSzs);
928     if (!isSparse()) {
929       Value c0 = constantZero(builder, loc, rtt.getElementType());
930       val = builder.create<linalg::FillOp>(loc, c0, val).getResult(0);
931     }
932   }
933 
934   void insert(OpBuilder &builder, Location loc, Value v, ValueRange crds) {
935     val = builder.create<tensor::InsertOp>(loc, v, val, crds);
936   }
937 
938   Value finalize(OpBuilder &builder, Location loc, RankedTensorType rtp) const {
939     if (isSparse())
940       return builder.create<LoadOp>(loc, val, true);
941     return val;
942   }
943 
944   bool isSparse() const {
945     return getSparseTensorEncoding(val.getType()) != nullptr;
946   }
947 
948   Value val;
949 };
950 
951 struct SparseTensorDimOpRewriter : public OpRewritePattern<tensor::DimOp> {
952   using OpRewritePattern::OpRewritePattern;
953   LogicalResult matchAndRewrite(tensor::DimOp op,
954                                 PatternRewriter &rewriter) const override {
955     std::optional<int64_t> dim = op.getConstantIndex();
956     auto stt = getSparseTensorType(op.getSource());
957     if (!dim || !stt.hasEncoding())
958       return failure();
959 
960     if (stt.isPermutation()) {
961       rewriter.replaceOpWithNewOp<LvlOp>(op, op.getSource(),
962                                          toLvl(stt.getEncoding(), *dim));
963       return success();
964     }
965 
966     // Non-permutation dim2lvl/lvl2dim maps.
967     // Compute as follows:
968     // affine.apply #map (l0 - 1, l1 - 1, ...) + 1
969     // Note that it is not the most efficient way (but a more general one) for
970     // the lvl to dim translation, e.g., for BSR, the dimension size for can be
971     // computed simply by lvl_size * block_size.
972     Location loc = op.getLoc();
973     SmallVector<Value> maxLvlCrds;
974     for (Level l = 0; l < stt.getLvlRank(); l++) {
975       Value lvlSz = rewriter.create<LvlOp>(loc, op.getSource(), l);
976       Value maxLvlCrd = rewriter.create<arith::SubIOp>(
977           loc, lvlSz, constantOne(rewriter, loc, rewriter.getIndexType()));
978       maxLvlCrds.push_back(maxLvlCrd);
979     }
980 
981     AffineExpr lvl2DimExp = stt.getLvlToDim().getResult(*dim);
982     Value maxDimCrd = rewriter.create<affine::AffineApplyOp>(
983         op.getLoc(), AffineMap::get(stt.getLvlRank(), 0, lvl2DimExp),
984         maxLvlCrds);
985 
986     Value dimSz = rewriter.create<arith::AddIOp>(
987         loc, maxDimCrd, constantOne(rewriter, loc, rewriter.getIndexType()));
988     rewriter.replaceOp(op, dimSz);
989     return success();
990   }
991 };
992 
993 struct ConcatenateRewriter : public OpRewritePattern<ConcatenateOp> {
994   using OpRewritePattern::OpRewritePattern;
995   LogicalResult matchAndRewrite(ConcatenateOp op,
996                                 PatternRewriter &rewriter) const override {
997     if (op.needsExtraSort())
998       op.emitError("ConcatenateOp not staged");
999 
1000     const Location loc = op.getLoc();
1001     const auto dstTp = getSparseTensorType(op);
1002     const Dimension conDim = op.getDimension();
1003     SmallVector<Value> sizes;
1004     concatSizesFromInputs(rewriter, sizes, loc, dstTp, op.getInputs(), conDim);
1005 
1006     // %t = concatenate %s1, %s2, %s3 {dim = 1}
1007     // ==>
1008     // if (isSparseDst)
1009     //   if (allDense)
1010     //     %tmp = bufferization.alloc_tensor dstTp
1011     //   else
1012     //     %tmp = bufferization.alloc_tensor : unordered COO
1013     // else
1014     //   %tmp = memref.alloc : dense tensor
1015     // foreach in %s1 : insert d0, d1, %tmp
1016     // foreach in %s2 : insert d0, d1 + size(s1), %tmp
1017     // foreach in %s3 : insert d0, d1 + size(s1) + size(s2), %tmp
1018 
1019     TensorLike dstBuf(rewriter, loc, dstTp.getRankedTensorType(), sizes);
1020     Value offset = constantIndex(rewriter, loc, 0);
1021     Value iterArg = dstBuf.val;
1022 
1023     ForeachOp foreachOp;
1024     for (Value input : op.getInputs()) {
1025       // Builds a for op for each input tensor to append new values into the
1026       // output tensor.
1027       foreachOp = rewriter.create<ForeachOp>(
1028           loc, input, iterArg,
1029           [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v,
1030               ValueRange reduc) {
1031             SmallVector<Value> offDimCrd(dcvs);
1032             offDimCrd[conDim] =
1033                 builder.create<arith::AddIOp>(loc, offDimCrd[conDim], offset);
1034 
1035             // Enters foreach, updates the SSA chain.
1036             dstBuf.val = reduc.front();
1037             if (!dstTp.isAllDense()) {
1038               Value cond = genIsNonzero(builder, loc, v);
1039               auto ifOp = builder.create<scf::IfOp>(loc, reduc.getTypes(), cond,
1040                                                     /*else*/ true);
1041               builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
1042               builder.create<scf::YieldOp>(loc, dstBuf.val);
1043 
1044               builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
1045               dstBuf.insert(builder, loc, v, offDimCrd);
1046               builder.create<scf::YieldOp>(loc, dstBuf.val);
1047 
1048               // Exits the ifOp, update the sparse tensor SSA value.
1049               builder.setInsertionPointAfter(ifOp);
1050               dstBuf.val = ifOp.getResult(0);
1051             } else {
1052               dstBuf.insert(builder, loc, v, offDimCrd);
1053             }
1054             builder.create<sparse_tensor::YieldOp>(loc, dstBuf.val);
1055           });
1056       // Accumulates the offset. Note that only static-shaped inputs are allowed
1057       // by concatenate op verifier, which saves us from computing the offset
1058       // dynamically.
1059       const Size sz = getSparseTensorType(input).getDynamicDimSize(conDim);
1060       assert(!ShapedType::isDynamic(sz));
1061       offset = rewriter.create<arith::AddIOp>(loc, offset,
1062                                               constantIndex(rewriter, loc, sz));
1063       iterArg = foreachOp.getResult(0);
1064       dstBuf.val = iterArg;
1065     }
1066 
1067     dstBuf.val = iterArg;
1068     Value ret = dstBuf.finalize(rewriter, loc, dstTp.getRankedTensorType());
1069     rewriter.replaceOp(op, ret);
1070     return success();
1071   }
1072 };
1073 
1074 struct DirectConvertRewriter : public OpRewritePattern<ConvertOp> {
1075   using OpRewritePattern::OpRewritePattern;
1076   LogicalResult matchAndRewrite(ConvertOp op,
1077                                 PatternRewriter &rewriter) const override {
1078     if (op.needsExtraSort())
1079       return op.emitError("ConvertOp not staged.");
1080 
1081     // TODO: Maybe we want a different operation for this too.
1082     auto encDst = getSparseTensorEncoding(op.getType());
1083     auto encSrc = getSparseTensorEncoding(op.getSource().getType());
1084     if (encDst && encSrc && !encSrc.isSlice() &&
1085         encSrc.withoutBitWidths() == encDst.withoutBitWidths()) {
1086       // Trivial tensor conversion and simple element type conversion is handled
1087       // in codegen.
1088       return failure();
1089     }
1090 
1091     Location loc = op.getLoc();
1092     Value src = op.getSource();
1093 
1094     SparseTensorType srcStt = getSparseTensorType(op.getSource());
1095     SparseTensorType dstStt = getSparseTensorType(op.getDest());
1096 
1097     bool fromSparseConst = false;
1098     if (auto constOp = op.getSource().getDefiningOp<arith::ConstantOp>())
1099       if (dyn_cast<SparseElementsAttr>(constOp.getValue()))
1100         fromSparseConst = true;
1101 
1102     const AffineMapAttr foreachOrder =
1103         (!dstStt.isIdentity() && fromSparseConst)
1104             ? AffineMapAttr::get(dstStt.getExpandedDimToLvl())
1105             : nullptr;
1106 
1107     bool skipZeroCheck = srcStt.hasEncoding() || fromSparseConst;
1108 
1109     SmallVector<Value> sizes;
1110     sizesFromSrc(rewriter, sizes, loc, src);
1111     ValueRange vs;
1112     TensorLike dstBuf(rewriter, loc, dstStt.getRankedTensorType(), sizes);
1113 
1114     auto foreachOp = rewriter.create<ForeachOp>(
1115         loc, src, dstBuf.val, foreachOrder,
1116         [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v,
1117             ValueRange reduc) {
1118           // Enters the loop, update the SSA value for insertion chain.
1119           dstBuf.val = reduc.front();
1120           if (!skipZeroCheck) {
1121             Value cond = genIsNonzero(builder, loc, v);
1122             auto ifOp = builder.create<scf::IfOp>(loc, reduc.getTypes(), cond,
1123                                                   /*else*/ true);
1124             builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
1125             builder.create<scf::YieldOp>(loc, dstBuf.val);
1126 
1127             builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
1128             dstBuf.insert(builder, loc, v, dcvs);
1129             builder.create<scf::YieldOp>(loc, dstBuf.val);
1130 
1131             // Exits the ifOp, update the sparse tensor SSA value.
1132             builder.setInsertionPointAfter(ifOp);
1133             dstBuf.val = ifOp.getResult(0);
1134           } else {
1135             dstBuf.insert(builder, loc, v, dcvs);
1136           }
1137           builder.create<sparse_tensor::YieldOp>(loc, dstBuf.val);
1138         });
1139 
1140     rewriter.setInsertionPointAfter(foreachOp);
1141 
1142     // Exits the for loop, links the SSA chain.
1143     dstBuf.val = foreachOp.getResult(0);
1144 
1145     Value ret = dstBuf.finalize(rewriter, loc, dstStt.getRankedTensorType());
1146     rewriter.replaceOp(op, ret);
1147     return success();
1148   }
1149 };
1150 
1151 struct CrdTranslateRewriter : public OpRewritePattern<CrdTranslateOp> {
1152   using OpRewritePattern::OpRewritePattern;
1153   LogicalResult matchAndRewrite(CrdTranslateOp op,
1154                                 PatternRewriter &rewriter) const override {
1155     AffineMap map = op.getDirection() == CrdTransDirectionKind::dim2lvl
1156                         ? op.getEncoder().getDimToLvl()
1157                         : op.getEncoder().getLvlToDim();
1158 
1159     SmallVector<Value> outCrds;
1160     for (AffineExpr result : map.getResults()) {
1161       // TODO: we should probably expand the affine map to IR using our own
1162       // rules, since affine.apply assume signed value, while the cooridinates
1163       // we provided must always be signless.
1164       Value trans = rewriter.create<affine::AffineApplyOp>(
1165           op.getLoc(), AffineMap::get(map.getNumDims(), 0, result),
1166           op.getInCrds());
1167       outCrds.push_back(trans);
1168     }
1169     rewriter.replaceOp(op, outCrds);
1170     return success();
1171   }
1172 };
1173 
1174 /// Sparse rewriting rule for the foreach operator.
1175 struct ForeachRewriter : public OpRewritePattern<ForeachOp> {
1176 public:
1177   using OpRewritePattern::OpRewritePattern;
1178 
1179   LogicalResult matchAndRewrite(ForeachOp op,
1180                                 PatternRewriter &rewriter) const override {
1181 
1182     auto loc = op.getLoc();
1183     Value input = op.getTensor();
1184     SmallVector<Value> reduc = op.getInitArgs();
1185     const auto stt = getSparseTensorType(input);
1186     const Level lvlRank = stt.getLvlRank();
1187 
1188     // Special-case: for each over a sparse constant uses its own rewriting
1189     // rule.
1190     if (auto constOp = input.getDefiningOp<arith::ConstantOp>()) {
1191       if (auto attr = dyn_cast<SparseElementsAttr>(constOp.getValue())) {
1192         return genForeachOnSparseConstant(op, rewriter, attr);
1193       }
1194     }
1195 
1196     // Otherwise, use loop emitter to generate loops.
1197     const auto enc = stt.getEncoding();
1198 
1199     // 1. Generates loop for the sparse input.
1200     LoopEmitter loopEmitter(
1201         ValueRange{input},
1202         StringAttr::get(getContext(), ForeachOp::getOperationName()));
1203     loopEmitter.initializeLoopEmit(rewriter, loc);
1204     for (Level l = 0; l < lvlRank; l++) {
1205       // TODO: provide utility function for loop sequences that only contains
1206       // one for loop?
1207       const SmallVector<TensorLevel, 1> tidLvls{
1208           loopEmitter.makeTensorLevel(0, l)};
1209       loopEmitter.enterNewLoopSeq(rewriter, loc, tidLvls);
1210       // Note that reduc will be taken care of by loop emitter and get updated
1211       // in place.
1212       loopEmitter.enterCoIterationOverTensorsAtLvls(rewriter, loc, tidLvls,
1213                                                     reduc);
1214     }
1215 
1216     SmallVector<Value> lcvs = loopEmitter.getLoopIVs();
1217     if (op.getOrder()) {
1218       // TODO: Support it so that we can do direct conversion from CSR->BSR.
1219       llvm_unreachable(
1220           "Level order not yet implemented on non-constant input tensors.");
1221     }
1222 
1223     Value vals = loopEmitter.getValBuffer()[0];
1224     Value pos = loopEmitter.getValPosits(0);
1225     // Loads the value from sparse tensor using position-index;
1226     // loads the value from dense tensor using coords.
1227     Value val = enc ? rewriter.create<memref::LoadOp>(loc, vals, pos)
1228                     : rewriter.create<memref::LoadOp>(loc, vals, lcvs);
1229 
1230     // 2. Inline the block in the foreach operator.
1231     Block *srcBlock = op.getBody();
1232 
1233     // Remap coordinates.
1234     SmallVector<Value> args =
1235         enc.translateCrds(rewriter, loc, lcvs, CrdTransDirectionKind::lvl2dim);
1236 
1237     // Remap value.
1238     args.push_back(val);
1239     // Remap reduction variables.
1240     args.append(reduc);
1241 
1242     // Remove sparse_tensor.yield.
1243     SmallVector<Value> reducValue = srcBlock->getTerminator()->getOperands();
1244     rewriter.eraseOp(srcBlock->getTerminator());
1245 
1246     Operation &last = rewriter.getBlock()->back();
1247     if (llvm::isa<scf::YieldOp>(last)) {
1248       // Because `scf.for` inserts an implicit yield op when there is no
1249       // reduction variable upon creation, we reset the insertion point such
1250       // that the block is inlined before *before* the yield op.
1251       rewriter.setInsertionPoint(&last);
1252     }
1253 
1254     rewriter.inlineBlockBefore(srcBlock, rewriter.getBlock(),
1255                                rewriter.getInsertionPoint(), args);
1256     rewriter.setInsertionPointToEnd(rewriter.getBlock());
1257     for (Level l = 0; l < lvlRank; l++) {
1258       // Link the reduction chain. Note that loop emitter update the reducValue
1259       // in place.
1260       loopEmitter.exitCurrentLoop(rewriter, loc, reducValue);
1261       loopEmitter.exitCurrentLoopSeq(rewriter, loc);
1262     }
1263 
1264     // Replace the foreach operator with the value returned by the outtermost
1265     // for loop.
1266     rewriter.replaceOp(op, reducValue);
1267     return success();
1268   }
1269 };
1270 
1271 /// Sparse rewriting rule for the new operator.
1272 struct NewRewriter : public OpRewritePattern<NewOp> {
1273   using OpRewritePattern::OpRewritePattern;
1274   LogicalResult matchAndRewrite(NewOp op,
1275                                 PatternRewriter &rewriter) const override {
1276     Location loc = op.getLoc();
1277     auto stt = getSparseTensorType(op.getResult());
1278     if (!stt.hasEncoding() || stt.getAoSCOOStart() == 0)
1279       return failure();
1280 
1281     // Implement the NewOp as follows:
1282     //   %orderedCoo = sparse_tensor.new %filename
1283     //   %t = sparse_tensor.convert %orderedCoo
1284     // with enveloping reinterpreted_map ops for non-permutations.
1285     RankedTensorType dstTp = stt.getRankedTensorType();
1286     RankedTensorType cooTp = stt.getCOOType(/*ordered=*/true);
1287     Value cooTensor = rewriter.create<NewOp>(loc, cooTp, op.getSource());
1288     Value convert = cooTensor;
1289     auto enc = stt.getEncoding();
1290     if (!stt.isPermutation()) { // demap coo, demap dstTp
1291       auto coo = getSparseTensorType(cooTensor).getEncoding().withoutDimToLvl();
1292       convert = rewriter.create<ReinterpretMapOp>(loc, coo, convert);
1293       dstTp = getSparseTensorType(convert).withEncoding(enc.withoutDimToLvl());
1294     }
1295     convert = rewriter.create<ConvertOp>(loc, dstTp, convert);
1296     if (!stt.isPermutation()) // remap to original enc
1297       convert = rewriter.create<ReinterpretMapOp>(loc, enc, convert);
1298     rewriter.replaceOp(op, convert);
1299 
1300     // Release the temporary ordered COO tensor.
1301     rewriter.setInsertionPointAfterValue(convert);
1302     rewriter.create<DeallocTensorOp>(loc, cooTensor);
1303 
1304     return success();
1305   }
1306 };
1307 
1308 /// Sparse rewriting rule for the out operator.
1309 struct OutRewriter : public OpRewritePattern<OutOp> {
1310   using OpRewritePattern::OpRewritePattern;
1311   LogicalResult matchAndRewrite(OutOp op,
1312                                 PatternRewriter &rewriter) const override {
1313     Location loc = op.getLoc();
1314     // Calculate NNZ.
1315     Value src = op.getTensor();
1316     Value nnz = rewriter.create<NumberOfEntriesOp>(loc, src);
1317 
1318     // Allocate a temporary buffer for storing dimension-sizes/coordinates.
1319     const auto srcTp = getSparseTensorType(src);
1320     const Dimension dimRank = srcTp.getDimRank();
1321     Type indexTp = rewriter.getIndexType();
1322     Value dimSizes = genAlloca(rewriter, loc, dimRank, indexTp);
1323 
1324     // Generate code to calculate dimension size values and store the values to
1325     // the buffer.
1326     SmallVector<Value> dims;
1327     sizesForTensor(rewriter, dims, loc, srcTp, src);
1328     for (Dimension d = 0; d < dimRank; d++) {
1329       rewriter.create<memref::StoreOp>(loc, dims[d], dimSizes,
1330                                        constantIndex(rewriter, loc, d));
1331     }
1332 
1333     // Create a sparse tensor writer and output meta data.
1334     Type opaqueTp = getOpaquePointerType(rewriter);
1335     Value writer =
1336         createFuncCall(rewriter, loc, "createSparseTensorWriter", {opaqueTp},
1337                        {op.getDest()}, EmitCInterface::Off)
1338             .getResult(0);
1339     Value rankValue = constantIndex(rewriter, loc, dimRank);
1340     createFuncCall(rewriter, loc, "outSparseTensorWriterMetaData", {},
1341                    {writer, rankValue, nnz, dimSizes}, EmitCInterface::On);
1342 
1343     Value dimCoords = dimSizes; // Reuse the dimSizes buffer for dimCoords.
1344     Type eltTp = srcTp.getElementType();
1345     SmallString<29> outNextFuncName{"outSparseTensorWriterNext",
1346                                     primaryTypeFunctionSuffix(eltTp)};
1347     Value value = genAllocaScalar(rewriter, loc, eltTp);
1348     ModuleOp module = op->getParentOfType<ModuleOp>();
1349 
1350     // For each element in the source tensor, output the element.
1351     rewriter.create<ForeachOp>(
1352         loc, src, std::nullopt,
1353         [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v,
1354             ValueRange reduc) {
1355           for (Dimension d = 0; d < dimRank; d++) {
1356             rewriter.create<memref::StoreOp>(loc, dcvs[d], dimCoords,
1357                                              constantIndex(builder, loc, d));
1358           }
1359           rewriter.create<memref::StoreOp>(loc, v, value);
1360           SmallVector<Value> operands{writer, rankValue, dimCoords, value};
1361           FlatSymbolRefAttr fn = getFunc(module, outNextFuncName, {}, operands,
1362                                          EmitCInterface::On);
1363           builder.create<func::CallOp>(loc, TypeRange(), fn, operands);
1364           builder.create<sparse_tensor::YieldOp>(loc);
1365         });
1366 
1367     // Release the writer.
1368     createFuncCall(rewriter, loc, "delSparseTensorWriter", {}, {writer},
1369                    EmitCInterface::Off);
1370 
1371     rewriter.eraseOp(op);
1372     return success();
1373   }
1374 };
1375 
1376 } // namespace
1377 
1378 //===---------------------------------------------------------------------===//
1379 // Methods that add patterns described in this file to a pattern list.
1380 //===---------------------------------------------------------------------===//
1381 
1382 void mlir::populatePreSparsificationRewriting(RewritePatternSet &patterns) {
1383   patterns.add<FoldInvariantYield, FuseSparseMultiplyOverAdd, FuseTensorCast,
1384                GenSemiRingReduction, GenSemiRingSelect, PrintRewriter>(
1385       patterns.getContext());
1386 }
1387 
1388 void mlir::populateLowerSparseOpsToForeachPatterns(RewritePatternSet &patterns,
1389                                                    bool enableRT,
1390                                                    bool enableConvert) {
1391   patterns.add<ConcatenateRewriter, ReshapeRewriter<tensor::ExpandShapeOp>,
1392                ReshapeRewriter<tensor::CollapseShapeOp>,
1393                Sparse2SparseReshapeRewriter<tensor::ExpandShapeOp>,
1394                Sparse2SparseReshapeRewriter<tensor::CollapseShapeOp>,
1395                SparseTensorDimOpRewriter, TensorReshapeRewriter, OutRewriter>(
1396       patterns.getContext());
1397 
1398   if (enableConvert)
1399     patterns.add<DirectConvertRewriter>(patterns.getContext());
1400   if (!enableRT)
1401     patterns.add<NewRewriter>(patterns.getContext());
1402 }
1403 
1404 void mlir::populateLowerForeachToSCFPatterns(RewritePatternSet &patterns) {
1405   // Run CrdTranslateRewriter later in the pipeline so that operation can be
1406   // folded before lowering to affine.apply
1407   patterns.add<CrdTranslateRewriter, ForeachRewriter>(patterns.getContext());
1408 }
1409