xref: /llvm-project/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp (revision 3aeb28b93fb740f531bc66a33b1b4ce520663582)
1 //===- SparseTensorRewriting.cpp - Sparse tensor rewriting rules ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements rewriting rules that are specific to sparse tensors.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "Utils/CodegenUtils.h"
14 #include "Utils/LoopEmitter.h"
15 
16 #include "mlir/Dialect/Affine/IR/AffineOps.h"
17 #include "mlir/Dialect/Arith/IR/Arith.h"
18 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
19 #include "mlir/Dialect/Linalg/IR/Linalg.h"
20 #include "mlir/Dialect/Linalg/Utils/Utils.h"
21 #include "mlir/Dialect/MemRef/IR/MemRef.h"
22 #include "mlir/Dialect/SCF/IR/SCF.h"
23 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
24 #include "mlir/Dialect/SparseTensor/IR/SparseTensorStorageLayout.h"
25 #include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
26 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
27 #include "mlir/Dialect/Tensor/IR/Tensor.h"
28 #include "mlir/Dialect/Vector/IR/VectorOps.h"
29 #include "mlir/IR/AffineMap.h"
30 #include "mlir/IR/Matchers.h"
31 #include "mlir/Support/LLVM.h"
32 
33 using namespace mlir;
34 using namespace mlir::bufferization;
35 using namespace mlir::linalg;
36 using namespace mlir::sparse_tensor;
37 
38 //===---------------------------------------------------------------------===//
39 // Helper methods for the actual rewriting rules.
40 //===---------------------------------------------------------------------===//
41 
42 // Helper method to match any typed zero.
43 static bool isZeroValue(Value val) {
44   return matchPattern(val, m_Zero()) || matchPattern(val, m_AnyZeroFloat());
45 }
46 
47 // Helper to detect a sparse tensor type operand.
48 static bool isSparseTensor(Value v) {
49   auto enc = getSparseTensorEncoding(v.getType());
50   return enc && !llvm::all_of(enc.getLvlTypes(),
51                               [](auto lt) { return lt == LevelFormat::Dense; });
52 }
53 static bool isSparseTensor(OpOperand *op) { return isSparseTensor(op->get()); }
54 
55 // Helper method to find zero/uninitialized tensor materialization.
56 static bool isMaterializing(OpOperand *op, bool isZero) {
57   Value val = op->get();
58   // Check allocation, with zero alloc when required.
59   if (auto alloc = val.getDefiningOp<AllocTensorOp>()) {
60     Value copy = alloc.getCopy();
61     if (isZero)
62       return copy && isZeroValue(copy);
63     return !copy;
64   }
65   // Check for empty tensor materialization.
66   if (auto empty = val.getDefiningOp<tensor::EmptyOp>())
67     return !isZero;
68   // Last resort for zero alloc: the whole value is zero.
69   return isZero && isZeroValue(val);
70 }
71 
72 // Helper to detect sampling operation.
73 static bool isSampling(GenericOp op) {
74   auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator());
75   if (auto *def = yieldOp.getOperand(0).getDefiningOp()) {
76     if (isa<arith::MulFOp>(def) || isa<arith::MulIOp>(def)) {
77       // Both scalar input arguments used exactly once.
78       Value s1 = op.getBlock()->getArgument(0);
79       Value s2 = op.getBlock()->getArgument(1);
80       return (def->getOperand(0) == s1 && def->getOperand(1) == s2) ||
81              (def->getOperand(1) == s1 && def->getOperand(0) == s2);
82     }
83   }
84   return false;
85 }
86 
87 // Helper to detect chain of multiplications that do not involve x.
88 static bool isMulChain(Value val, Value x) {
89   if (auto arg = dyn_cast<BlockArgument>(val))
90     return arg != x;
91   if (auto *def = val.getDefiningOp()) {
92     if (isa<arith::MulFOp>(def) || isa<arith::MulIOp>(def))
93       return isMulChain(def->getOperand(0), x) &&
94              isMulChain(def->getOperand(1), x);
95   }
96   return false;
97 }
98 
99 // Helper to detect x = x + <multiplications>.
100 static bool isSumOfMul(GenericOp op) {
101   auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator());
102   if (auto *def = yieldOp.getOperand(0).getDefiningOp()) {
103     if (isa<arith::AddFOp>(def) || isa<arith::AddIOp>(def)) {
104       Value x = op.getBlock()->getArguments().back();
105       return (def->getOperand(0) == x && isMulChain(def->getOperand(1), x)) ||
106              (def->getOperand(1) == x && isMulChain(def->getOperand(0), x));
107     }
108   }
109   return false;
110 }
111 
112 // Helper to detect direct yield of a zero value.
113 static bool isZeroYield(GenericOp op) {
114   auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator());
115   if (auto arg = dyn_cast<BlockArgument>(yieldOp.getOperand(0))) {
116     if (arg.getOwner()->getParentOp() == op) {
117       return isZeroValue(op->getOperand(arg.getArgNumber()));
118     }
119   }
120   return isZeroValue(yieldOp.getOperand(0));
121 }
122 
123 /// Populates given sizes array from type (for static sizes) and from
124 /// the tensor (for dynamic sizes).
125 static void sizesForTensor(OpBuilder &builder, SmallVectorImpl<Value> &sizes,
126                            Location loc, ShapedType stp, Value tensor) {
127   for (const auto &d : enumerate(stp.getShape())) {
128     Value dim;
129     if (d.value() == ShapedType::kDynamic)
130       dim = builder.create<tensor::DimOp>(loc, tensor, d.index());
131     else
132       dim = constantIndex(builder, loc, d.value());
133     sizes.push_back(dim);
134   }
135 }
136 
137 static RankedTensorType getBufferType(const SparseTensorType &stt,
138                                       bool needTmpCOO) {
139   return needTmpCOO ? stt.getCOOType(/*ordered=*/false)
140                     : stt.getRankedTensorType();
141 }
142 
143 /// Collects the dynamic dimension sizes for `tp` with the assumption that
144 /// `sizes` are the dimension sizes for the type. Stores the dynamic dimension
145 /// sizes to dynSizes.
146 static void getDynamicSizes(RankedTensorType tp, ValueRange sizes,
147                             SmallVectorImpl<Value> &dynSizes) {
148   for (const auto &d : enumerate(tp.getShape())) {
149     if (d.value() == ShapedType::kDynamic)
150       dynSizes.push_back(sizes[d.index()]);
151   }
152 }
153 
154 static LogicalResult genForeachOnSparseConstant(ForeachOp op,
155                                                 RewriterBase &rewriter,
156                                                 SparseElementsAttr attr) {
157   auto loc = op.getLoc();
158   SmallVector<Value> reduc = op.getInitArgs();
159 
160   // Foreach on constant.
161   foreachInSparseConstant(
162       rewriter, loc, attr, op.getOrder().value_or(AffineMap()),
163       [&reduc, &rewriter, op](ArrayRef<Value> cvs, Value v) mutable {
164         SmallVector<Value> args;
165         args.append(cvs.begin(), cvs.end());
166         args.push_back(v);
167         args.append(reduc);
168         // Clones the foreach op to get a copy of the loop body.
169         auto cloned = cast<ForeachOp>(rewriter.clone(*op.getOperation()));
170         assert(args.size() == cloned.getBody()->getNumArguments());
171         Operation *yield = cloned.getBody()->getTerminator();
172         rewriter.inlineBlockBefore(cloned.getBody(), op, args);
173         // clean up
174         rewriter.eraseOp(cloned);
175         reduc = yield->getOperands();
176         rewriter.eraseOp(yield);
177       });
178 
179   rewriter.replaceOp(op, reduc);
180   return success();
181 }
182 
183 /// Populates the given sizes array for concatenation from types (for static
184 /// sizes) and from the source tensors (for dynamic sizes).
185 static void concatSizesFromInputs(OpBuilder &builder,
186                                   SmallVectorImpl<Value> &sizes, Location loc,
187                                   ShapedType dstTp, ValueRange srcs,
188                                   unsigned dim) {
189   auto dstShape = dstTp.getShape();
190   sizesFromSrc(builder, sizes, loc, srcs[0]);
191 
192   // Sum up on the `dim` if the dimension is dynamic.
193   if (dstShape[dim] != ShapedType::kDynamic) {
194     // Faithfully take the static size.
195     sizes[dim] = constantIndex(builder, loc, dstShape[dim]);
196   } else {
197     // Else, compute the shape dynamically.
198     for (const auto &src : srcs.drop_front()) {
199       Value srcSz = linalg::createOrFoldDimOp(builder, loc, src, dim);
200       // Sum up all the sizes.
201       sizes[dim] = builder.create<arith::AddIOp>(loc, sizes[dim], srcSz);
202     }
203   }
204 }
205 
206 //===---------------------------------------------------------------------===//
207 // The actual sparse tensor rewriting rules.
208 //===---------------------------------------------------------------------===//
209 
210 namespace {
211 
212 /// TODO: move it to tensor dialect instead.
213 ///
214 /// Fold `tensor.concat` and `tensor.extract_slice`
215 ///
216 /// %concat = tensor.concat dim(2) %t0, %t1
217 ///   : (tensor<1x64x1xf32>, tensor<1x64x1xf32>) -> tensor<1x64x2xf32>
218 /// %extracted0 = tensor.extract_slice %concat[0, 0, 0][1, 64, 1][1, 1, 1]
219 ///   : tensor<1x64x2xf32> to tensor<1x64x1xf32>
220 /// %extracted1 = tensor.extract_slice %concat[0, 0, 1][1, 64, 1][1, 1, 1]
221 ///   : tensor<1x64x2xf32> to tensor<1x64x1xf32>
222 ///
223 /// Becomes
224 ///
225 /// %extract0, %extract1 = %t0, %t1
226 struct FuseExtractSliceWithConcat
227     : public OpRewritePattern<tensor::ExtractSliceOp> {
228   using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern;
229 
230   LogicalResult matchAndRewrite(tensor::ExtractSliceOp extractOp,
231                                 PatternRewriter &rewriter) const override {
232     auto concatOp = extractOp.getSource().getDefiningOp<tensor::ConcatOp>();
233     if (!concatOp)
234       return failure();
235 
236     Location loc = extractOp.getLoc();
237     int64_t dim = concatOp.getDim();
238     int64_t rank = extractOp.getResultType().getRank();
239 
240     SmallVector<OpFoldResult> srcStrides(rank, rewriter.getIndexAttr(1));
241     SmallVector<OpFoldResult> srcOffsets(rank, rewriter.getIndexAttr(0));
242 
243     // Compute the partial sums for the slice offsets.
244     AffineExpr sum = rewriter.getAffineDimExpr(0);
245     SmallVector<AffineExpr> partialSums = {sum};
246     SmallVector<OpFoldResult> offsetStrides = {rewriter.getIndexAttr(0)};
247     for (auto [idx, input] :
248          llvm::enumerate(concatOp.getInputs().drop_back())) {
249       sum = sum + rewriter.getAffineDimExpr(idx + 1);
250       partialSums.push_back(sum);
251       offsetStrides.push_back(
252           rewriter.createOrFold<tensor::DimOp>(loc, input, dim));
253     }
254     auto partialSumMap = AffineMap::get(concatOp.getInputs().size(), 0,
255                                         partialSums, rewriter.getContext());
256     SmallVector<OpFoldResult> dimOffsets =
257         affine::makeComposedFoldedMultiResultAffineApply(
258             rewriter, loc, partialSumMap, offsetStrides);
259 
260     auto allEqual = [](ArrayRef<OpFoldResult> lhs, ArrayRef<OpFoldResult> rhs) {
261       for (auto [l, r] : llvm::zip(lhs, rhs)) {
262         std::optional<int64_t> staticVal = getConstantIntValue(l);
263         if (!staticVal.has_value() || staticVal != getConstantIntValue(r))
264           return false;
265       }
266       return lhs.size() == rhs.size();
267     };
268 
269     for (auto [i, input, offset] :
270          llvm::enumerate(concatOp.getInputs(), dimOffsets)) {
271       SmallVector<OpFoldResult> srcSizes =
272           tensor::getMixedSizes(rewriter, loc, input);
273       srcOffsets[dim] = offset;
274 
275       SmallVector<OpFoldResult> dstSizes = extractOp.getMixedSizes();
276       SmallVector<OpFoldResult> dstOffsets = extractOp.getMixedOffsets();
277       SmallVector<OpFoldResult> dstStrides = extractOp.getMixedStrides();
278 
279       if (allEqual(srcSizes, dstSizes) && allEqual(srcOffsets, dstOffsets) &&
280           allEqual(srcStrides, dstStrides)) {
281         Value operand = concatOp.getOperand(i);
282         if (operand.getType() == extractOp.getResultType())
283           rewriter.replaceOp(extractOp, operand);
284         break;
285       }
286     }
287 
288     return success();
289   }
290 };
291 
292 /// Rewriting rule that fuses sparse_tensor.convert into producer.
293 struct FoldConvertIntoProducer : public OpRewritePattern<ConvertOp> {
294 public:
295   using OpRewritePattern::OpRewritePattern;
296 
297   LogicalResult matchAndRewrite(ConvertOp op,
298                                 PatternRewriter &rewriter) const override {
299     auto producer = op.getSource().getDefiningOp<GenericOp>();
300     if (!producer || producer.getDpsInits().size() != 1 ||
301         !isMaterializing(producer.getDpsInitOperand(0), false) ||
302         !producer.getResult(0).hasOneUse()) {
303       return failure();
304     }
305     rewriter.modifyOpInPlace(producer, [&]() {
306       producer.getResult(0).setType(op.getResult().getType());
307     });
308 
309     Operation *materializeOp =
310         producer.getDpsInitOperand(0)->get().getDefiningOp();
311 
312     rewriter.modifyOpInPlace(materializeOp, [&]() {
313       materializeOp->getResult(0).setType(op.getResult().getType());
314     });
315 
316     rewriter.replaceAllOpUsesWith(op, producer);
317     op->erase();
318 
319     return success();
320   }
321 };
322 
323 /// Rewriting rule that converts direct yield of zero with initial allocation.
324 struct FoldInvariantYield : public OpRewritePattern<GenericOp> {
325 public:
326   using OpRewritePattern<GenericOp>::OpRewritePattern;
327 
328   LogicalResult matchAndRewrite(GenericOp op,
329                                 PatternRewriter &rewriter) const override {
330     if (!op.hasPureTensorSemantics() || op.getNumResults() != 1 ||
331         !isMaterializing(op.getDpsInitOperand(0), /*isZero=*/false) ||
332         !isZeroYield(op) || !op.getDpsInitOperand(0)->get().hasOneUse())
333       return failure();
334     auto outputType = getRankedTensorType(op.getResult(0));
335     // Yielding zero on newly materialized sparse tensor can be
336     // optimized directly (regardless of dynamic or static size).
337     if (getSparseTensorEncoding(outputType)) {
338       rewriter.replaceOp(op, op.getDpsInitOperand(0)->get());
339       return success();
340     }
341     // Use static zero value directly instead of materialization.
342     if (!outputType.hasStaticShape())
343       return failure();
344     Operation *def = op.getDpsInitOperand(0)->get().getDefiningOp();
345     rewriter.replaceOp(op, constantZero(rewriter, op.getLoc(), outputType));
346     rewriter.eraseOp(def);
347     return success();
348   }
349 };
350 
351 /// Rewriting rule that converts two kernels:
352 ///
353 ///      T(i,j) = SUM(k, A(i,j,k) * B(i,j,k) * ... )
354 ///      X(i,j) = S(i,j) * T(i,j)
355 ///
356 /// into a single kernel, using distributive law:
357 ///
358 ///      X(i,j) = SUM(k, S(i,j) * A(i,j,k) * B(i,j,k) * ... )
359 ///
360 /// This kind of fusion (merging two ops into one but using arithmetic
361 /// equalities that may not hold for floating-point computations) would
362 /// be undesirable in the dense case, since we distribute the multiplication
363 /// into the reduction loop. However, for sparse sampling tensor S, such
364 /// a fusion may actually reduce the asymptotic complexity of the kernel,
365 /// since intermediate results may be nullified.
366 struct FuseSparseMultiplyOverAdd : public OpRewritePattern<GenericOp> {
367 public:
368   using OpRewritePattern<GenericOp>::OpRewritePattern;
369 
370   LogicalResult matchAndRewrite(GenericOp op,
371                                 PatternRewriter &rewriter) const override {
372     // Check consumer.
373     if (!op.hasPureTensorSemantics() || op.getNumDpsInputs() != 2 ||
374         op.getNumResults() != 1 ||
375         op.getNumParallelLoops() != op.getNumLoops() ||
376         !op.getMatchingIndexingMap(op.getDpsInitOperand(0)).isIdentity() ||
377         !op.getMatchingIndexingMap(op.getDpsInputOperand(0)).isIdentity() ||
378         !op.getMatchingIndexingMap(op.getDpsInputOperand(1)).isIdentity())
379       return failure();
380     // Find consuming OP2(sparse, other) or OP2(other, sparse). The other
381     // operand can be sparse or dense, since the point of this rewriting rule
382     // is detecting a situation in which *more* sparsity is introduced into
383     // a computation, be it already sparse or still dense.
384     unsigned other = 0;
385     if (isSparseTensor(op.getDpsInputOperand(0)))
386       other = 1;
387     else if (!isSparseTensor(op.getDpsInputOperand(1)))
388       return failure();
389     // Check producer.
390     auto prod = dyn_cast_or_null<GenericOp>(
391         op.getDpsInputOperand(other)->get().getDefiningOp());
392     if (!prod || !prod.hasPureTensorSemantics() || prod.getNumResults() != 1 ||
393         !prod.getResult(0).hasOneUse())
394       return failure();
395     // Sampling consumer and sum of multiplication chain producer.
396     if (!isMaterializing(op.getDpsInitOperand(0), /*isZero=*/false) ||
397         !isMaterializing(prod.getDpsInitOperand(0), /*isZero=*/true) ||
398         !isSampling(op) || !isSumOfMul(prod))
399       return failure();
400     // Modify operand structure of producer and consumer.
401     Location loc = prod.getLoc();
402     SmallVector<Value> inputOps = prod.getInputs();
403     SmallVector<Value> outputOps = op.getOutputs();
404     SmallVector<AffineMap> fusedIndexMaps = prod.getIndexingMapsArray();
405     inputOps.push_back(op.getDpsInputOperand(1 - other)->get());
406     fusedIndexMaps.push_back(fusedIndexMaps.back()); // mimic other
407     // Fuse producer and consumer into a new generic op.
408     auto fusedOp = rewriter.create<GenericOp>(
409         loc, op.getResult(0).getType(), inputOps, outputOps,
410         rewriter.getAffineMapArrayAttr(fusedIndexMaps), prod.getIteratorTypes(),
411         /*doc=*/nullptr, /*library_call=*/nullptr);
412     Block &prodBlock = prod.getRegion().front();
413     Block &consBlock = op.getRegion().front();
414     IRMapping mapper;
415     Block *fusedBlock = rewriter.createBlock(&fusedOp.getRegion());
416     unsigned num = prodBlock.getNumArguments();
417     for (unsigned i = 0; i < num - 1; i++)
418       addArg(mapper, fusedBlock, prodBlock.getArgument(i));
419     addArg(mapper, fusedBlock, consBlock.getArgument(1 - other));
420     addArg(mapper, fusedBlock, prodBlock.getArgument(num - 1));
421     // Clone bodies of the producer and consumer in new evaluation order.
422     auto *acc = prodBlock.getTerminator()->getOperand(0).getDefiningOp();
423     auto *sampler = consBlock.getTerminator()->getOperand(0).getDefiningOp();
424     Value last;
425     for (auto &op : prodBlock.without_terminator())
426       if (&op != acc) {
427         last = op.getResult(0);
428         rewriter.clone(op, mapper);
429       }
430     mapper.map(consBlock.getArgument(other), fusedBlock->back().getResult(0));
431     mapper.map(last, rewriter.clone(*sampler, mapper)->getResult(0));
432     last = rewriter.clone(*acc, mapper)->getResult(0);
433     rewriter.create<linalg::YieldOp>(loc, last);
434     // Force initial value on merged allocation for dense outputs.
435     // TODO: deal with non alloc tensor here one day
436     if (!getSparseTensorEncoding(op.getResult(0).getType())) {
437       Value init = prod.getDpsInitOperand(0)
438                        ->get()
439                        .getDefiningOp<AllocTensorOp>()
440                        .getCopy();
441       AllocTensorOp a =
442           op.getDpsInitOperand(0)->get().getDefiningOp<AllocTensorOp>();
443       rewriter.modifyOpInPlace(a, [&]() { a.getCopyMutable().assign(init); });
444     }
445     // Replace consumer with fused operation. Old producer
446     // and consumer ops will be removed by DCE.
447     rewriter.replaceOp(op, fusedOp->getResults());
448     return success();
449   }
450 
451 private:
452   // Helper to add argument and record the mapping.
453   static void addArg(IRMapping &mapper, Block *b, BlockArgument a) {
454     mapper.map(a, b->addArgument(a.getType(), a.getLoc()));
455   }
456 };
457 
458 // Fuse a tensor cast into producing operation. Note that a tensor.cast
459 // should really not be used to convert between sparse encodings. Since
460 // the pattern currently appears as a result of some prior rewriting
461 // we make an attempt to repair very obvious cases.
462 // TODO: audit the pure tensor dialect rewriting rules
463 struct FuseTensorCast : public OpRewritePattern<tensor::CastOp> {
464 public:
465   using OpRewritePattern<tensor::CastOp>::OpRewritePattern;
466 
467   LogicalResult matchAndRewrite(tensor::CastOp op,
468                                 PatternRewriter &rewriter) const override {
469     Type srcType = op.getSource().getType();
470     Type dstType = op.getDest().getType();
471     // A nop cast simply folds away.
472     if (srcType == dstType) {
473       rewriter.replaceOp(op, op->getResults());
474       return success();
475     }
476     // See if a sparsity changing cast can be fused into producer.
477     if (tensor::isSameTypeWithoutEncoding(srcType, dstType)) {
478       if (Operation *def = op.getSource().getDefiningOp()) {
479         if (def->hasOneUse() && isa<tensor::ExtractSliceOp>(def)) {
480           rewriter.modifyOpInPlace(def, [&]() {
481             def->getResult(0).setType(op->getResultTypes()[0]);
482           });
483           rewriter.replaceOp(op, def->getResult(0));
484           return success();
485         }
486       }
487     }
488     // Repair tensor casts with at least one sparse operand into the
489     // the properly supported sparse_tensor.convert.
490     if (getSparseTensorEncoding(srcType) || getSparseTensorEncoding(dstType)) {
491       rewriter.replaceOpWithNewOp<ConvertOp>(op, dstType, op.getSource());
492       return success();
493     }
494     // Fail otherwise.
495     return failure();
496   }
497 };
498 
499 /// Rewrites a sequence of operations for sparse tensor selections in to
500 /// semi-ring operations such that they can be compiled correctly by the
501 /// sparsifier. E.g., transforming the following sequence
502 ///
503 /// %sel = arith.select %cond, %sp1, %sp2
504 ///
505 /// to
506 ///
507 /// %sel = binary %sp1, %sp2:
508 ///         both  (%l, %r) {yield select %cond, %l, %r}
509 ///         left  (%l)     {yield select %cond, %l,  0}
510 ///         right (%r)     {yield select %cond,  0, %r}
511 ///
512 /// TODO: We require that the tensor used for extracting conditions to be dense
513 /// to sparsify the code. To support a sparse condition tensor, we need a
514 /// tri-nary operation.
515 struct GenSemiRingSelect : public OpRewritePattern<GenericOp> {
516 public:
517   using OpRewritePattern<GenericOp>::OpRewritePattern;
518   LogicalResult matchAndRewrite(GenericOp op,
519                                 PatternRewriter &rewriter) const override {
520     // Rejects non sparse kernels.
521     if (!op.hasPureTensorSemantics() || !hasAnySparseOperand(op))
522       return failure();
523 
524     Location loc = op.getLoc();
525     SmallVector<std::pair<Operation *, sparse_tensor::BinaryOp>> semiRings;
526     for (Operation &inst : *op.getBody()) {
527       // Matches pattern.
528       auto matched = isRewritablePattern(op, &inst);
529       if (!matched.has_value())
530         continue;
531 
532       rewriter.setInsertionPoint(&inst);
533       auto [c, t, f] = matched.value();
534       assert(t.getType() == f.getType());
535       auto selTp = t.getType();
536       auto c0 = constantZero(rewriter, loc, selTp);
537       auto binOp = rewriter.create<sparse_tensor::BinaryOp>(loc, selTp, t, f);
538       // Initializes all the blocks.
539       rewriter.createBlock(&binOp.getOverlapRegion(), {}, {selTp, selTp},
540                            {t.getLoc(), f.getLoc()});
541       rewriter.createBlock(&binOp.getRightRegion(), {}, selTp, f.getLoc());
542       rewriter.createBlock(&binOp.getLeftRegion(), {}, selTp, t.getLoc());
543 
544       for (auto *r : binOp.getRegions()) {
545         Block *b = &r->front();
546         rewriter.setInsertionPointToStart(b);
547 
548         IRMapping irMap;
549         // Clones the cmp operations into the region to make the binary op
550         // admissible.
551         Value newC = c;
552         if (auto *def = c.getDefiningOp())
553           newC = rewriter.clone(*def, irMap)->getResult(0);
554 
555         irMap.map(c, newC);
556         if (r == &binOp.getLeftRegion()) {
557           irMap.map(t, b->getArgument(0));
558           irMap.map(f, c0);
559         } else if (r == &binOp.getRightRegion()) {
560           irMap.map(t, c0);
561           irMap.map(f, b->getArgument(0));
562         } else {
563           irMap.map(t, b->getArgument(0));
564           irMap.map(f, b->getArgument(1));
565         }
566         auto y = rewriter.clone(inst, irMap)->getResult(0);
567         rewriter.create<sparse_tensor::YieldOp>(loc, y);
568       }
569 
570       // We successfully rewrited a operation. We can not do replacement here
571       // becuase it invalidate the iterator for the current loop to traverse
572       // the instructions.
573       semiRings.emplace_back(&inst, binOp);
574     }
575 
576     // Finalizes the replacement.
577     for (auto [sel, semi] : semiRings)
578       rewriter.replaceOp(sel, semi->getResults());
579 
580     return success(!semiRings.empty());
581   }
582 
583 private:
584   static std::optional<std::tuple<Value, BlockArgument, BlockArgument>>
585   isRewritablePattern(GenericOp op, Operation *v) {
586     auto sel = dyn_cast<arith::SelectOp>(v);
587     if (!sel)
588       return std::nullopt;
589 
590     auto tVal = dyn_cast<BlockArgument>(sel.getTrueValue());
591     auto fVal = dyn_cast<BlockArgument>(sel.getFalseValue());
592     // TODO: For simplicity, we only handle cases where both true/false value
593     // are directly loaded the input tensor. We can probably admit more cases
594     // in theory.
595     if (!tVal || !fVal)
596       return std::nullopt;
597 
598     // Helper lambda to determine whether the value is loaded from a dense input
599     // or is a loop invariant.
600     auto isValFromDenseInputOrInvariant = [&op](Value v) -> bool {
601       if (auto bArg = dyn_cast<BlockArgument>(v);
602           bArg && !isSparseTensor(op.getDpsInputOperand(bArg.getArgNumber())))
603         return true;
604       // If the value is defined outside the loop, it is a loop invariant.
605       return v.getDefiningOp() && v.getDefiningOp()->getBlock() != op.getBody();
606     };
607 
608     // If the condition value is load directly from a dense tensor or
609     // loop-invariants, we can sparsify the kernel.
610     auto cond = sel.getCondition();
611     if (isValFromDenseInputOrInvariant(cond))
612       return std::make_tuple(cond, tVal, fVal);
613 
614     Value cmpL, cmpR;
615     if (matchPattern(cond, m_Op<arith::CmpIOp>(matchers::m_Any(&cmpL),
616                                                matchers::m_Any(&cmpR))) ||
617         matchPattern(cond, m_Op<arith::CmpFOp>(matchers::m_Any(&cmpL),
618                                                matchers::m_Any(&cmpR)))) {
619       // TODO: we can do it recursively to check whether all the leaf values are
620       // loaded from dense tensors or are loop invariants.
621       if (isValFromDenseInputOrInvariant(cmpL) ||
622           isValFromDenseInputOrInvariant(cmpR))
623         return std::make_tuple(cond, tVal, fVal);
624     }
625 
626     return std::nullopt;
627   };
628 };
629 
630 /// Rewrites a sparse reduction that would not sparsify directly since
631 /// doing so would only iterate over the stored elements, ignoring the
632 /// implicit zeros, into a semi-ring. Applies to all prod/and/min/max
633 /// (note that reductions like add/sub/or/xor can directly be sparsified
634 /// since the implicit zeros do not contribute to the final result).
635 /// Note that prod/and are still included since, even though they often
636 /// are nullified in sparse data, they may still occur for special
637 /// situations in which e.g. some rows in a sparse matrix are fully
638 /// dense. For min/max, including the implicit zeros is a much more
639 /// common situation.
640 ///
641 /// TODO: this essentially "densifies" the operation; we want to implement
642 ///       this much more efficiently by performing the reduction over the
643 ///       stored values, and feed in the zero once if there were *any*
644 ///       implicit zeros as well; but for now, at least we provide
645 ///       the functionality
646 ///
647 struct GenSemiRingReduction : public OpRewritePattern<GenericOp> {
648 public:
649   using OpRewritePattern<GenericOp>::OpRewritePattern;
650 
651   LogicalResult matchAndRewrite(GenericOp op,
652                                 PatternRewriter &rewriter) const override {
653     // Reject non-reductions.
654     if (!op.hasPureTensorSemantics() || op.getNumDpsInputs() != 1 ||
655         op.getNumReductionLoops() == 0 || op.getNumResults() != 1)
656       return failure();
657     auto *inp = op.getDpsInputOperand(0);
658     auto *init = op.getDpsInitOperand(0);
659     if (!isSparseTensor(inp))
660       return failure();
661     // Look for direct x = x OP y for semi-ring ready reductions.
662     auto *red = cast<linalg::YieldOp>(op.getRegion().front().getTerminator())
663                     .getOperand(0)
664                     .getDefiningOp();
665     if (!isa<arith::AndIOp, arith::MulIOp, arith::MulFOp, arith::MinimumFOp,
666              arith::MinSIOp, arith::MinUIOp, arith::MaximumFOp, arith::MaxSIOp,
667              arith::MaxUIOp>(red))
668       return failure();
669     Value s0 = op.getBlock()->getArgument(0);
670     Value s1 = op.getBlock()->getArgument(1);
671     if ((red->getOperand(0) != s0 || red->getOperand(1) != s1) &&
672         (red->getOperand(0) != s1 || red->getOperand(1) != s0))
673       return failure();
674     // Identity.
675     Location loc = op.getLoc();
676     Value identity =
677         rewriter.create<tensor::ExtractOp>(loc, init->get(), ValueRange());
678     // Unary {
679     //    present -> value
680     //    absent  -> zero.
681     // }
682     Type rtp = s0.getType();
683     rewriter.setInsertionPointToStart(&op.getRegion().front());
684     auto semiring = rewriter.create<sparse_tensor::UnaryOp>(loc, rtp, s0);
685     Block *present =
686         rewriter.createBlock(&semiring.getPresentRegion(), {}, rtp, loc);
687     rewriter.setInsertionPointToStart(&semiring.getPresentRegion().front());
688     rewriter.create<sparse_tensor::YieldOp>(loc, present->getArgument(0));
689     rewriter.createBlock(&semiring.getAbsentRegion(), {}, {}, {});
690     rewriter.setInsertionPointToStart(&semiring.getAbsentRegion().front());
691     auto zero =
692         rewriter.create<arith::ConstantOp>(loc, rewriter.getZeroAttr(rtp));
693     rewriter.create<sparse_tensor::YieldOp>(loc, zero);
694     rewriter.setInsertionPointAfter(semiring);
695     // CustomReduce {
696     //    x = x REDUC y, identity
697     // }
698     auto custom = rewriter.create<sparse_tensor::ReduceOp>(
699         loc, rtp, semiring.getResult(), s1, identity);
700     Block *region =
701         rewriter.createBlock(&custom.getRegion(), {}, {rtp, rtp}, {loc, loc});
702     rewriter.setInsertionPointToStart(&custom.getRegion().front());
703     IRMapping irMap;
704     irMap.map(red->getOperand(0), region->getArgument(0));
705     irMap.map(red->getOperand(1), region->getArgument(1));
706     auto *cloned = rewriter.clone(*red, irMap);
707     rewriter.create<sparse_tensor::YieldOp>(loc, cloned->getResult(0));
708     rewriter.setInsertionPointAfter(custom);
709     rewriter.replaceOp(red, custom.getResult());
710     return success();
711   }
712 };
713 
714 /// Sparse rewriting rule for the print operator. This operation is mainly used
715 /// for debugging and testing. As such, it lowers to the vector.print operation
716 /// which only require very light-weight runtime support.
717 struct PrintRewriter : public OpRewritePattern<PrintOp> {
718 public:
719   using OpRewritePattern::OpRewritePattern;
720   LogicalResult matchAndRewrite(PrintOp op,
721                                 PatternRewriter &rewriter) const override {
722     Location loc = op.getLoc();
723     auto tensor = op.getTensor();
724     auto stt = getSparseTensorType(tensor);
725     // Header with NSE.
726     auto nse = rewriter.create<NumberOfEntriesOp>(loc, tensor);
727     rewriter.create<vector::PrintOp>(
728         loc, rewriter.getStringAttr("---- Sparse Tensor ----\nnse = "));
729     rewriter.create<vector::PrintOp>(loc, nse);
730     // Print run-time contents for dim/lvl sizes.
731     rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("dim = "));
732     printSizes(rewriter, loc, tensor, stt.getDimRank(), /*isDim=*/true);
733     rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("lvl = "));
734     printSizes(rewriter, loc, tensor, stt.getLvlRank(), /*isDim=*/false);
735     // Use the "codegen" foreach loop construct to iterate over
736     // all typical sparse tensor components for printing.
737     foreachFieldAndTypeInSparseTensor(stt, [&rewriter, &loc, &tensor,
738                                             &stt](Type, FieldIndex,
739                                                   SparseTensorFieldKind kind,
740                                                   Level l, LevelType) {
741       switch (kind) {
742       case SparseTensorFieldKind::StorageSpec: {
743         break;
744       }
745       case SparseTensorFieldKind::PosMemRef: {
746         auto lvl = constantIndex(rewriter, loc, l);
747         rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("pos["));
748         rewriter.create<vector::PrintOp>(
749             loc, lvl, vector::PrintPunctuation::NoPunctuation);
750         rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("] : "));
751         auto pos = rewriter.create<ToPositionsOp>(loc, tensor, l);
752         printContents(rewriter, loc, pos);
753         break;
754       }
755       case SparseTensorFieldKind::CrdMemRef: {
756         auto lvl = constantIndex(rewriter, loc, l);
757         rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("crd["));
758         rewriter.create<vector::PrintOp>(
759             loc, lvl, vector::PrintPunctuation::NoPunctuation);
760         rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("] : "));
761         Value crd = nullptr;
762         // For COO AoS storage, we want to print a single, linear view of
763         // the full coordinate storage at this level. For any other storage,
764         // we show the coordinate storage for every indivual level.
765         if (stt.getAoSCOOStart() == l)
766           crd = rewriter.create<ToCoordinatesBufferOp>(loc, tensor);
767         else
768           crd = rewriter.create<ToCoordinatesOp>(loc, tensor, l);
769         printContents(rewriter, loc, crd);
770         break;
771       }
772       case SparseTensorFieldKind::ValMemRef: {
773         rewriter.create<vector::PrintOp>(loc,
774                                          rewriter.getStringAttr("values : "));
775         auto val = rewriter.create<ToValuesOp>(loc, tensor);
776         printContents(rewriter, loc, val);
777         break;
778       }
779       }
780       return true;
781     });
782     rewriter.create<vector::PrintOp>(loc, rewriter.getStringAttr("----\n"));
783     rewriter.eraseOp(op);
784     return success();
785   }
786 
787 private:
788   // Helper to print contents of a single memref. Note that for the "push_back"
789   // vectors, this prints the full capacity, not just the size. This is done
790   // on purpose, so that clients see how much storage has been allocated in
791   // total. Contents of the extra capacity in the buffer may be uninitialized
792   // (unless the flag enable-buffer-initialization is set to true).
793   //
794   // Generates code to print:
795   //    ( a0, a1, ... )
796   static void printContents(PatternRewriter &rewriter, Location loc,
797                             Value vec) {
798     // Open bracket.
799     rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Open);
800     // For loop over elements.
801     auto zero = constantIndex(rewriter, loc, 0);
802     auto size = rewriter.create<memref::DimOp>(loc, vec, zero);
803     auto step = constantIndex(rewriter, loc, 1);
804     auto forOp = rewriter.create<scf::ForOp>(loc, zero, size, step);
805     rewriter.setInsertionPointToStart(forOp.getBody());
806     auto idx = forOp.getInductionVar();
807     auto val = rewriter.create<memref::LoadOp>(loc, vec, idx);
808     if (llvm::isa<ComplexType>(val.getType())) {
809       // Since the vector dialect does not support complex types in any op,
810       // we split those into (real, imag) pairs here.
811       Value real = rewriter.create<complex::ReOp>(loc, val);
812       Value imag = rewriter.create<complex::ImOp>(loc, val);
813       rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Open);
814       rewriter.create<vector::PrintOp>(loc, real,
815                                        vector::PrintPunctuation::Comma);
816       rewriter.create<vector::PrintOp>(loc, imag,
817                                        vector::PrintPunctuation::Close);
818       rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Comma);
819     } else {
820       rewriter.create<vector::PrintOp>(loc, val,
821                                        vector::PrintPunctuation::Comma);
822     }
823     rewriter.setInsertionPointAfter(forOp);
824     // Close bracket and end of line.
825     rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Close);
826     rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::NewLine);
827   }
828 
829   // Helper method to print run-time lvl/dim sizes.
830   static void printSizes(PatternRewriter &rewriter, Location loc, Value tensor,
831                          unsigned size, bool isDim) {
832     // Open bracket.
833     rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Open);
834     // Print unrolled contents (dimop requires constant value).
835     for (unsigned i = 0; i < size; i++) {
836       auto idx = constantIndex(rewriter, loc, i);
837       Value val;
838       if (isDim)
839         val = rewriter.create<tensor::DimOp>(loc, tensor, idx);
840       else
841         val = rewriter.create<LvlOp>(loc, tensor, idx);
842       rewriter.create<vector::PrintOp>(
843           loc, val,
844           i != size - 1 ? vector::PrintPunctuation::Comma
845                         : vector::PrintPunctuation::NoPunctuation);
846     }
847     // Close bracket and end of line.
848     rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::Close);
849     rewriter.create<vector::PrintOp>(loc, vector::PrintPunctuation::NewLine);
850   }
851 };
852 
853 /// Sparse rewriting rule for sparse-to-sparse reshape operator.
854 struct TensorReshapeRewriter : public OpRewritePattern<tensor::ReshapeOp> {
855 public:
856   using OpRewritePattern<tensor::ReshapeOp>::OpRewritePattern;
857 
858   LogicalResult matchAndRewrite(tensor::ReshapeOp op,
859                                 PatternRewriter &rewriter) const override {
860     Location loc = op.getLoc();
861     Value srcTensor = op.getSource();
862     const auto srcTp = getSparseTensorType(srcTensor);
863     const auto dstTp = getSparseTensorType(op.getResult());
864 
865     if (!srcTp.hasEncoding() || !dstTp.hasEncoding() ||
866         !dstTp.hasStaticDimShape())
867       return failure();
868 
869     SmallVector<Value> srcSizes;
870     sizesForTensor(rewriter, srcSizes, loc, srcTp, srcTensor);
871     SmallVector<Value> dstSizes;
872     for (Dimension d : dstTp.getDimShape())
873       dstSizes.push_back(constantIndex(rewriter, loc, d));
874 
875     Value nnz = rewriter.create<NumberOfEntriesOp>(loc, srcTensor);
876     // Only need an unordered COO buffer if input and output are not sorted
877     // in the same way.
878     Type bufferTp = getBufferType(
879         dstTp.withoutDimToLvl(),
880         !srcTp.isAllOrdered() || !srcTp.isIdentity() || !dstTp.isIdentity());
881     SmallVector<Value> dynSizes;
882     Value buffer = rewriter
883                        .create<AllocTensorOp>(loc, bufferTp, dynSizes, Value(),
884                                               nnz, Attribute())
885                        .getResult();
886 
887     // Convert src coordinates to dst coordinates by first collapsing it to 1D
888     // and then expand it to the match the rank of the destination tensor.
889     // Implemented as follows:
890     //   foreach srcCoords %srcTensor
891     //     collapsedCoords = reshapeCvs(srcCoords, [1, ..., srcRank])
892     //     expandedCoords = reshapeCvs(collapsedCoords, [1, ..., dstRank])
893     //     insert expandedCoords, %buffer
894     //
895     // followed by an optional
896     //   %t = sparse_tensor.cast %tmp
897     // depending on whether the input/output are sorted in the same way.
898     const auto encSrc = srcTp.getEncoding();
899     ForeachOp foreachOp = rewriter.create<ForeachOp>(
900         loc, srcTensor, buffer,
901         [&](OpBuilder &builder, Location loc, ValueRange srcLcvs, Value v,
902             ValueRange reduc) {
903           const Dimension srcRank = srcTp.getDimRank();
904           SmallVector<Value> srcDcvs;
905           srcDcvs.reserve(srcRank);
906           for (Dimension d = 0; d < srcRank; d++) {
907             Level lvl = toLvl(encSrc, d);
908             srcDcvs.push_back(srcLcvs[lvl]);
909           }
910 
911           Value collapseSize = constantIndex(builder, loc, 1);
912           for (Dimension d = 0; d < srcRank; d++)
913             collapseSize =
914                 builder.create<arith::MulIOp>(loc, collapseSize, srcSizes[d]);
915           SmallVector<Value, 1> collapsedSizes = {collapseSize};
916 
917           ReassociationIndices collapseIdx;
918           for (Dimension i = 0; i < srcRank; i++)
919             collapseIdx.push_back(i);
920           SmallVector<ReassociationIndices, 1> collapseReass = {collapseIdx};
921           SmallVector<Value, 1> collapsedDcvs;
922           reshapeCvs(builder, loc, collapseReass, srcSizes, srcDcvs,
923                      collapsedSizes, collapsedDcvs);
924 
925           ReassociationIndices expandIdx;
926           for (Dimension i = 0; i < dstTp.getDimRank(); i++)
927             expandIdx.push_back(i);
928           SmallVector<ReassociationIndices, 1> expandReass = {expandIdx};
929           SmallVector<Value> dstDcvs;
930           reshapeCvs(builder, loc, expandReass, collapsedSizes, collapsedDcvs,
931                      dstSizes, dstDcvs);
932 
933           auto t =
934               builder.create<tensor::InsertOp>(loc, v, reduc.front(), dstDcvs);
935           builder.create<sparse_tensor::YieldOp>(loc, t);
936         });
937 
938     Value t = rewriter.create<LoadOp>(loc, foreachOp.getResult(0), true);
939     if (bufferTp != dstTp) {
940       auto dstRTT = dstTp.getRankedTensorType();
941       Value converted = rewriter.create<ConvertOp>(loc, dstRTT, t).getResult();
942       rewriter.create<DeallocTensorOp>(loc, t);
943       t = converted;
944     }
945     rewriter.replaceOp(op, t);
946     return success();
947   }
948 };
949 
950 /// Sparse rewriting rule for sparse-to-sparse reshape operator.
951 template <typename ReshapeOp>
952 struct Sparse2SparseReshapeRewriter : public OpRewritePattern<ReshapeOp> {
953 public:
954   using OpRewritePattern<ReshapeOp>::OpRewritePattern;
955 
956   LogicalResult matchAndRewrite(ReshapeOp op,
957                                 PatternRewriter &rewriter) const override {
958     Location loc = op.getLoc();
959     Value srcTensor = op.getSrc();
960     const auto srcTp = getSparseTensorType(srcTensor);
961     const auto dstTp = getSparseTensorType(op.getResult());
962     if (!srcTp.hasEncoding() || !dstTp.hasEncoding())
963       return failure();
964 
965     // Generate code to represent the static dimension constants or compute
966     // the dynamic dimension values.
967     SmallVector<Value> srcSizes;
968     sizesForTensor(rewriter, srcSizes, loc, srcTp, srcTensor);
969     SmallVector<Value> dstSizes;
970     SmallVector<Value> dstDynSizes;
971     if (dstTp.hasStaticDimShape()) {
972       for (Dimension d : dstTp.getDimShape())
973         dstSizes.push_back(constantIndex(rewriter, loc, d));
974     } else {
975       ArrayRef<Size> dstShape = dstTp.getDimShape();
976       genReshapeDstShape(rewriter, loc, dstSizes, srcSizes, dstShape,
977                          op.getReassociationIndices());
978       for (auto [idx, shape] : llvm::enumerate(dstShape)) {
979         if (shape == ShapedType::kDynamic)
980           dstDynSizes.push_back(dstSizes[idx]);
981       }
982     }
983     Value nnz = rewriter.create<NumberOfEntriesOp>(loc, srcTensor);
984     // Only need a unordered COO buffer if input and output are not sorted
985     // in the same way.
986     Type bufferTp = getBufferType(
987         dstTp.withoutDimToLvl(),
988         !srcTp.isAllOrdered() || !srcTp.isIdentity() || !dstTp.isIdentity());
989 
990     Value buffer =
991         rewriter
992             .create<AllocTensorOp>(loc, bufferTp, dstDynSizes, Value(),
993                                    /*sizeHint=*/nnz, Attribute())
994             .getResult();
995 
996     // Implement the sparse2sparse reshape as follows:
997     //   foreach srcCoords %srcTensor
998     //     insert reshapeCvs(srcCoords), %buffer
999     //
1000     // followed by an optional
1001     //   %t = sparse_tensor.cast %tmp
1002     // depending on whether the input/output are sorted in the same way.
1003     const auto encSrc = srcTp.getEncoding();
1004     ForeachOp foreachOp = rewriter.create<ForeachOp>(
1005         loc, srcTensor, buffer,
1006         [&](OpBuilder &builder, Location loc, ValueRange srcLcvs, Value v,
1007             ValueRange reduc) {
1008           const Dimension dimRank = srcTp.getDimRank();
1009           SmallVector<Value> srcDcvs;
1010           srcDcvs.reserve(dimRank);
1011           for (Dimension d = 0; d < dimRank; d++) {
1012             Level lvl = toLvl(encSrc, d);
1013             srcDcvs.push_back(srcLcvs[lvl]);
1014           }
1015           SmallVector<Value> dstDcvs;
1016           reshapeCvs(builder, loc, op.getReassociationIndices(), srcSizes,
1017                      srcDcvs, dstSizes, dstDcvs);
1018           auto t =
1019               builder.create<tensor::InsertOp>(loc, v, reduc.front(), dstDcvs);
1020           builder.create<sparse_tensor::YieldOp>(loc, t);
1021         });
1022 
1023     Value t = rewriter.create<LoadOp>(loc, foreachOp.getResult(0), true);
1024     if (bufferTp != dstTp) {
1025       auto dstRTT = dstTp.getRankedTensorType();
1026       Value converted = rewriter.create<ConvertOp>(loc, dstRTT, t).getResult();
1027       rewriter.create<DeallocTensorOp>(loc, t);
1028       t = converted;
1029     }
1030     rewriter.replaceOp(op, t);
1031     return success();
1032   }
1033 };
1034 
1035 /// Sparse rewriting rule for sparse-to-dense and dense-to-sparse reshape
1036 /// operator.
1037 template <typename ReshapeOp>
1038 struct ReshapeRewriter : public OpRewritePattern<ReshapeOp> {
1039 public:
1040   using OpRewritePattern<ReshapeOp>::OpRewritePattern;
1041 
1042   LogicalResult matchAndRewrite(ReshapeOp op,
1043                                 PatternRewriter &rewriter) const override {
1044     Location loc = op->getLoc();
1045     auto encDst = getSparseTensorEncoding(op.getResult().getType());
1046     auto encSrc = getSparseTensorEncoding(op.getSrc().getType());
1047     // Since a pure dense expansion is very cheap (change of view), for
1048     // a sparse2dense or dense2sparse, we can simply unfuse a sparse
1049     // conversion from the reshape operation itself.
1050     // All other cases are handled elsewhere.
1051     if (encDst && encSrc) {
1052       return failure();
1053     }
1054     if (encSrc) {
1055       auto rtp = getRankedTensorType(op.getSrc());
1056       auto denseTp =
1057           RankedTensorType::get(rtp.getShape(), rtp.getElementType());
1058       auto convert = rewriter.create<ConvertOp>(loc, denseTp, op.getSrc());
1059       rewriter.modifyOpInPlace(op, [&]() { op->setOperand(0, convert); });
1060       return success();
1061     }
1062     if (encDst) {
1063       auto rtp = getRankedTensorType(op.getResult());
1064       auto denseTp =
1065           RankedTensorType::get(rtp.getShape(), rtp.getElementType());
1066       auto reshape = rewriter.create<ReshapeOp>(loc, denseTp, op.getSrc(),
1067                                                 op.getReassociation());
1068       Value convert = rewriter.create<ConvertOp>(loc, rtp, reshape);
1069       rewriter.replaceOp(op, convert);
1070       return success();
1071     }
1072     return failure();
1073   }
1074 };
1075 
1076 // A trivial wrapper to help generate different operations for dense/sparse
1077 // tensors.
1078 struct TensorLike {
1079   TensorLike(OpBuilder &builder, Location loc, RankedTensorType rtt,
1080              ValueRange sizes) {
1081     SmallVector<Value> dynSzs;
1082     getDynamicSizes(rtt, sizes, dynSzs);
1083 
1084     val = builder.create<AllocTensorOp>(loc, rtt, dynSzs);
1085     if (!isSparse()) {
1086       Value c0 = constantZero(builder, loc, rtt.getElementType());
1087       val = builder.create<linalg::FillOp>(loc, c0, val).getResult(0);
1088     }
1089   }
1090 
1091   void insert(OpBuilder &builder, Location loc, Value v, ValueRange crds) {
1092     val = builder.create<tensor::InsertOp>(loc, v, val, crds);
1093   }
1094 
1095   Value finalize(OpBuilder &builder, Location loc, RankedTensorType rtp) const {
1096     if (isSparse())
1097       return builder.create<LoadOp>(loc, val, true);
1098     return val;
1099   }
1100 
1101   bool isSparse() const {
1102     return getSparseTensorEncoding(val.getType()) != nullptr;
1103   }
1104 
1105   Value val;
1106 };
1107 
1108 struct SparseTensorDimOpRewriter : public OpRewritePattern<tensor::DimOp> {
1109   using OpRewritePattern::OpRewritePattern;
1110   LogicalResult matchAndRewrite(tensor::DimOp op,
1111                                 PatternRewriter &rewriter) const override {
1112     std::optional<int64_t> dim = op.getConstantIndex();
1113     auto stt = getSparseTensorType(op.getSource());
1114     if (!dim || !stt.hasEncoding())
1115       return failure();
1116 
1117     if (stt.isPermutation()) {
1118       rewriter.replaceOpWithNewOp<LvlOp>(op, op.getSource(),
1119                                          toLvl(stt.getEncoding(), *dim));
1120       return success();
1121     }
1122 
1123     // Non-permutation dim2lvl/lvl2dim maps.
1124     // Compute as follows:
1125     // affine.apply #map (l0 - 1, l1 - 1, ...) + 1
1126     // Note that it is not the most efficient way (but a more general one) for
1127     // the lvl to dim translation, e.g., for BSR, the dimension size for can be
1128     // computed simply by lvl_size * block_size.
1129     Location loc = op.getLoc();
1130     SmallVector<Value> maxLvlCrds;
1131     for (Level l = 0; l < stt.getLvlRank(); l++) {
1132       Value lvlSz = rewriter.create<LvlOp>(loc, op.getSource(), l);
1133       Value maxLvlCrd = rewriter.create<arith::SubIOp>(
1134           loc, lvlSz, constantOne(rewriter, loc, rewriter.getIndexType()));
1135       maxLvlCrds.push_back(maxLvlCrd);
1136     }
1137 
1138     AffineExpr lvl2DimExp = stt.getLvlToDim().getResult(*dim);
1139     Value maxDimCrd = rewriter.create<affine::AffineApplyOp>(
1140         op.getLoc(), AffineMap::get(stt.getLvlRank(), 0, lvl2DimExp),
1141         maxLvlCrds);
1142 
1143     Value dimSz = rewriter.create<arith::AddIOp>(
1144         loc, maxDimCrd, constantOne(rewriter, loc, rewriter.getIndexType()));
1145     rewriter.replaceOp(op, dimSz);
1146     return success();
1147   }
1148 };
1149 
1150 struct ConcatenateRewriter : public OpRewritePattern<ConcatenateOp> {
1151   using OpRewritePattern::OpRewritePattern;
1152   LogicalResult matchAndRewrite(ConcatenateOp op,
1153                                 PatternRewriter &rewriter) const override {
1154     if (op.needsExtraSort())
1155       op.emitError("ConcatenateOp not staged");
1156 
1157     const Location loc = op.getLoc();
1158     const auto dstTp = getSparseTensorType(op);
1159     const Dimension conDim = op.getDimension();
1160     SmallVector<Value> sizes;
1161     concatSizesFromInputs(rewriter, sizes, loc, dstTp, op.getInputs(), conDim);
1162 
1163     // %t = concatenate %s1, %s2, %s3 {dim = 1}
1164     // ==>
1165     // if (isSparseDst)
1166     //   if (allDense)
1167     //     %tmp = bufferization.alloc_tensor dstTp
1168     //   else
1169     //     %tmp = bufferization.alloc_tensor : unordered COO
1170     // else
1171     //   %tmp = memref.alloc : dense tensor
1172     // foreach in %s1 : insert d0, d1, %tmp
1173     // foreach in %s2 : insert d0, d1 + size(s1), %tmp
1174     // foreach in %s3 : insert d0, d1 + size(s1) + size(s2), %tmp
1175 
1176     TensorLike dstBuf(rewriter, loc, dstTp.getRankedTensorType(), sizes);
1177     Value offset = constantIndex(rewriter, loc, 0);
1178     Value iterArg = dstBuf.val;
1179 
1180     ForeachOp foreachOp;
1181     for (Value input : op.getInputs()) {
1182       // Builds a for op for each input tensor to append new values into the
1183       // output tensor.
1184       foreachOp = rewriter.create<ForeachOp>(
1185           loc, input, iterArg,
1186           [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v,
1187               ValueRange reduc) {
1188             SmallVector<Value> offDimCrd(dcvs);
1189             offDimCrd[conDim] =
1190                 builder.create<arith::AddIOp>(loc, offDimCrd[conDim], offset);
1191 
1192             // Enters foreach, updates the SSA chain.
1193             dstBuf.val = reduc.front();
1194             if (!dstTp.isAllDense()) {
1195               Value cond = genIsNonzero(builder, loc, v);
1196               auto ifOp = builder.create<scf::IfOp>(loc, reduc.getTypes(), cond,
1197                                                     /*else*/ true);
1198               builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
1199               builder.create<scf::YieldOp>(loc, dstBuf.val);
1200 
1201               builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
1202               dstBuf.insert(builder, loc, v, offDimCrd);
1203               builder.create<scf::YieldOp>(loc, dstBuf.val);
1204 
1205               // Exits the ifOp, update the sparse tensor SSA value.
1206               builder.setInsertionPointAfter(ifOp);
1207               dstBuf.val = ifOp.getResult(0);
1208             } else {
1209               dstBuf.insert(builder, loc, v, offDimCrd);
1210             }
1211             builder.create<sparse_tensor::YieldOp>(loc, dstBuf.val);
1212           });
1213       // Accumulates the offset. Note that only static-shaped inputs are allowed
1214       // by concatenate op verifier, which saves us from computing the offset
1215       // dynamically.
1216       const Size sz = getSparseTensorType(input).getDynamicDimSize(conDim);
1217       assert(!ShapedType::isDynamic(sz));
1218       offset = rewriter.create<arith::AddIOp>(loc, offset,
1219                                               constantIndex(rewriter, loc, sz));
1220       iterArg = foreachOp.getResult(0);
1221       dstBuf.val = iterArg;
1222     }
1223 
1224     dstBuf.val = iterArg;
1225     Value ret = dstBuf.finalize(rewriter, loc, dstTp.getRankedTensorType());
1226     rewriter.replaceOp(op, ret);
1227     return success();
1228   }
1229 };
1230 
1231 struct DirectConvertRewriter : public OpRewritePattern<ConvertOp> {
1232   using OpRewritePattern::OpRewritePattern;
1233   LogicalResult matchAndRewrite(ConvertOp op,
1234                                 PatternRewriter &rewriter) const override {
1235     if (op.needsExtraSort())
1236       return op.emitError("ConvertOp not staged.");
1237 
1238     // TODO: Maybe we want a different operation for this too.
1239     auto encDst = getSparseTensorEncoding(op.getType());
1240     auto encSrc = getSparseTensorEncoding(op.getSource().getType());
1241     if (encDst && encSrc && !encSrc.isSlice() &&
1242         encSrc.withoutBitWidths() == encDst.withoutBitWidths()) {
1243       // Trivial tensor conversion and simple element type conversion is handled
1244       // in codegen.
1245       return failure();
1246     }
1247 
1248     Location loc = op.getLoc();
1249     Value src = op.getSource();
1250 
1251     SparseTensorType srcStt = getSparseTensorType(op.getSource());
1252     SparseTensorType dstStt = getSparseTensorType(op.getDest());
1253 
1254     bool fromSparseConst = false;
1255     if (auto constOp = op.getSource().getDefiningOp<arith::ConstantOp>())
1256       if (dyn_cast<SparseElementsAttr>(constOp.getValue()))
1257         fromSparseConst = true;
1258 
1259     const AffineMapAttr foreachOrder =
1260         (!dstStt.isIdentity() && fromSparseConst)
1261             ? AffineMapAttr::get(dstStt.getExpandedDimToLvl())
1262             : nullptr;
1263 
1264     bool skipZeroCheck = srcStt.hasEncoding() || fromSparseConst;
1265 
1266     SmallVector<Value> sizes;
1267     sizesFromSrc(rewriter, sizes, loc, src);
1268     ValueRange vs;
1269     TensorLike dstBuf(rewriter, loc, dstStt.getRankedTensorType(), sizes);
1270 
1271     auto foreachOp = rewriter.create<ForeachOp>(
1272         loc, src, dstBuf.val, foreachOrder,
1273         [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v,
1274             ValueRange reduc) {
1275           // Enters the loop, update the SSA value for insertion chain.
1276           dstBuf.val = reduc.front();
1277           if (!skipZeroCheck) {
1278             Value cond = genIsNonzero(builder, loc, v);
1279             auto ifOp = builder.create<scf::IfOp>(loc, reduc.getTypes(), cond,
1280                                                   /*else*/ true);
1281             builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
1282             builder.create<scf::YieldOp>(loc, dstBuf.val);
1283 
1284             builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
1285             dstBuf.insert(builder, loc, v, dcvs);
1286             builder.create<scf::YieldOp>(loc, dstBuf.val);
1287 
1288             // Exits the ifOp, update the sparse tensor SSA value.
1289             builder.setInsertionPointAfter(ifOp);
1290             dstBuf.val = ifOp.getResult(0);
1291           } else {
1292             dstBuf.insert(builder, loc, v, dcvs);
1293           }
1294           builder.create<sparse_tensor::YieldOp>(loc, dstBuf.val);
1295         });
1296 
1297     rewriter.setInsertionPointAfter(foreachOp);
1298 
1299     // Exits the for loop, links the SSA chain.
1300     dstBuf.val = foreachOp.getResult(0);
1301 
1302     Value ret = dstBuf.finalize(rewriter, loc, dstStt.getRankedTensorType());
1303     rewriter.replaceOp(op, ret);
1304     return success();
1305   }
1306 };
1307 
1308 struct CrdTranslateRewriter : public OpRewritePattern<CrdTranslateOp> {
1309   using OpRewritePattern::OpRewritePattern;
1310   LogicalResult matchAndRewrite(CrdTranslateOp op,
1311                                 PatternRewriter &rewriter) const override {
1312     AffineMap map = op.getDirection() == CrdTransDirectionKind::dim2lvl
1313                         ? op.getEncoder().getDimToLvl()
1314                         : op.getEncoder().getLvlToDim();
1315 
1316     SmallVector<Value> outCrds;
1317     for (AffineExpr result : map.getResults()) {
1318       // TODO: we should probably expand the affine map to IR using our own
1319       // rules, since affine.apply assume signed value, while the cooridinates
1320       // we provided must always be signless.
1321       Value trans = rewriter.create<affine::AffineApplyOp>(
1322           op.getLoc(), AffineMap::get(map.getNumDims(), 0, result),
1323           op.getInCrds());
1324       outCrds.push_back(trans);
1325     }
1326     rewriter.replaceOp(op, outCrds);
1327     return success();
1328   }
1329 };
1330 
1331 /// Sparse rewriting rule for the foreach operator.
1332 struct ForeachRewriter : public OpRewritePattern<ForeachOp> {
1333 public:
1334   using OpRewritePattern::OpRewritePattern;
1335 
1336   LogicalResult matchAndRewrite(ForeachOp op,
1337                                 PatternRewriter &rewriter) const override {
1338 
1339     auto loc = op.getLoc();
1340     Value input = op.getTensor();
1341     SmallVector<Value> reduc = op.getInitArgs();
1342     const auto stt = getSparseTensorType(input);
1343     const Level lvlRank = stt.getLvlRank();
1344 
1345     // Special-case: for each over a sparse constant uses its own rewriting
1346     // rule.
1347     if (auto constOp = input.getDefiningOp<arith::ConstantOp>()) {
1348       if (auto attr = dyn_cast<SparseElementsAttr>(constOp.getValue())) {
1349         return genForeachOnSparseConstant(op, rewriter, attr);
1350       }
1351     }
1352 
1353     // Otherwise, use loop emitter to generate loops.
1354     const auto enc = stt.getEncoding();
1355 
1356     // 1. Generates loop for the sparse input.
1357     LoopEmitter loopEmitter(
1358         ValueRange{input},
1359         StringAttr::get(getContext(), ForeachOp::getOperationName()));
1360     loopEmitter.initializeLoopEmit(rewriter, loc);
1361     for (Level l = 0; l < lvlRank; l++) {
1362       // TODO: provide utility function for loop sequences that only contains
1363       // one for loop?
1364       const SmallVector<TensorLevel, 1> tidLvls{
1365           loopEmitter.makeTensorLevel(0, l)};
1366       loopEmitter.enterNewLoopSeq(rewriter, loc, tidLvls);
1367       // Note that reduc will be taken care of by loop emitter and get updated
1368       // in place.
1369       loopEmitter.enterCoIterationOverTensorsAtLvls(rewriter, loc, tidLvls,
1370                                                     reduc);
1371     }
1372 
1373     SmallVector<Value> lcvs = loopEmitter.getLoopIVs();
1374     if (op.getOrder()) {
1375       // TODO: Support it so that we can do direct conversion from CSR->BSR.
1376       llvm_unreachable(
1377           "Level order not yet implemented on non-constant input tensors.");
1378     }
1379 
1380     Value vals = loopEmitter.getValBuffer()[0];
1381     SmallVector<Value> pos = loopEmitter.getValPosits(0);
1382     // Loads the value from sparse tensor using position-index;
1383     // loads the value from dense tensor using coords.
1384     Value val = enc ? rewriter.create<memref::LoadOp>(loc, vals, pos)
1385                     : rewriter.create<memref::LoadOp>(loc, vals, lcvs);
1386 
1387     // 2. Inline the block in the foreach operator.
1388     Block *srcBlock = op.getBody();
1389 
1390     // Remap coordinates.
1391     SmallVector<Value> args =
1392         enc.translateCrds(rewriter, loc, lcvs, CrdTransDirectionKind::lvl2dim);
1393 
1394     // Remap value.
1395     args.push_back(val);
1396     // Remap reduction variables.
1397     args.append(reduc);
1398 
1399     // Remove sparse_tensor.yield.
1400     SmallVector<Value> reducValue = srcBlock->getTerminator()->getOperands();
1401     rewriter.eraseOp(srcBlock->getTerminator());
1402 
1403     Operation &last = rewriter.getBlock()->back();
1404     if (llvm::isa<scf::YieldOp>(last)) {
1405       // Because `scf.for` inserts an implicit yield op when there is no
1406       // reduction variable upon creation, we reset the insertion point such
1407       // that the block is inlined before *before* the yield op.
1408       rewriter.setInsertionPoint(&last);
1409     }
1410 
1411     rewriter.inlineBlockBefore(srcBlock, rewriter.getBlock(),
1412                                rewriter.getInsertionPoint(), args);
1413     rewriter.setInsertionPointToEnd(rewriter.getBlock());
1414     for (Level l = 0; l < lvlRank; l++) {
1415       // Link the reduction chain. Note that loop emitter update the reducValue
1416       // in place.
1417       loopEmitter.exitCurrentLoop(rewriter, loc, reducValue);
1418       loopEmitter.exitCurrentLoopSeq(rewriter, loc);
1419     }
1420 
1421     // Replace the foreach operator with the value returned by the outtermost
1422     // for loop.
1423     rewriter.replaceOp(op, reducValue);
1424     return success();
1425   }
1426 };
1427 
1428 /// Sparse rewriting rule for the new operator.
1429 struct NewRewriter : public OpRewritePattern<NewOp> {
1430   using OpRewritePattern::OpRewritePattern;
1431   LogicalResult matchAndRewrite(NewOp op,
1432                                 PatternRewriter &rewriter) const override {
1433     Location loc = op.getLoc();
1434     auto stt = getSparseTensorType(op.getResult());
1435     if (!stt.hasEncoding() || stt.getAoSCOOStart() == 0)
1436       return failure();
1437 
1438     // Implement the NewOp as follows:
1439     //   %orderedCoo = sparse_tensor.new %filename
1440     //   %t = sparse_tensor.convert %orderedCoo
1441     // with enveloping reinterpreted_map ops for non-permutations.
1442     RankedTensorType dstTp = stt.getRankedTensorType();
1443     RankedTensorType cooTp = stt.getCOOType(/*ordered=*/true);
1444     Value cooTensor = rewriter.create<NewOp>(loc, cooTp, op.getSource());
1445     Value convert = cooTensor;
1446     auto enc = stt.getEncoding();
1447     if (!stt.isPermutation()) { // demap coo, demap dstTp
1448       auto coo = getSparseTensorType(cooTensor).getEncoding().withoutDimToLvl();
1449       convert = rewriter.create<ReinterpretMapOp>(loc, coo, convert);
1450       dstTp = getSparseTensorType(convert).withEncoding(enc.withoutDimToLvl());
1451     }
1452     convert = rewriter.create<ConvertOp>(loc, dstTp, convert);
1453     if (!stt.isPermutation()) // remap to original enc
1454       convert = rewriter.create<ReinterpretMapOp>(loc, enc, convert);
1455     rewriter.replaceOp(op, convert);
1456 
1457     // Release the temporary ordered COO tensor.
1458     rewriter.setInsertionPointAfterValue(convert);
1459     rewriter.create<DeallocTensorOp>(loc, cooTensor);
1460 
1461     return success();
1462   }
1463 };
1464 
1465 /// Sparse rewriting rule for the out operator.
1466 struct OutRewriter : public OpRewritePattern<OutOp> {
1467   using OpRewritePattern::OpRewritePattern;
1468   LogicalResult matchAndRewrite(OutOp op,
1469                                 PatternRewriter &rewriter) const override {
1470     Location loc = op.getLoc();
1471     // Calculate NNZ.
1472     Value src = op.getTensor();
1473     Value nnz = rewriter.create<NumberOfEntriesOp>(loc, src);
1474 
1475     // Allocate a temporary buffer for storing dimension-sizes/coordinates.
1476     const auto srcTp = getSparseTensorType(src);
1477     const Dimension dimRank = srcTp.getDimRank();
1478     Type indexTp = rewriter.getIndexType();
1479     Value dimSizes = genAlloca(rewriter, loc, dimRank, indexTp);
1480 
1481     // Generate code to calculate dimension size values and store the values to
1482     // the buffer.
1483     SmallVector<Value> dims;
1484     sizesForTensor(rewriter, dims, loc, srcTp, src);
1485     for (Dimension d = 0; d < dimRank; d++) {
1486       rewriter.create<memref::StoreOp>(loc, dims[d], dimSizes,
1487                                        constantIndex(rewriter, loc, d));
1488     }
1489 
1490     // Create a sparse tensor writer and output meta data.
1491     Type opaqueTp = getOpaquePointerType(rewriter);
1492     Value writer =
1493         createFuncCall(rewriter, loc, "createSparseTensorWriter", {opaqueTp},
1494                        {op.getDest()}, EmitCInterface::Off)
1495             .getResult(0);
1496     Value rankValue = constantIndex(rewriter, loc, dimRank);
1497     createFuncCall(rewriter, loc, "outSparseTensorWriterMetaData", {},
1498                    {writer, rankValue, nnz, dimSizes}, EmitCInterface::On);
1499 
1500     Value dimCoords = dimSizes; // Reuse the dimSizes buffer for dimCoords.
1501     Type eltTp = srcTp.getElementType();
1502     SmallString<29> outNextFuncName{"outSparseTensorWriterNext",
1503                                     primaryTypeFunctionSuffix(eltTp)};
1504     Value value = genAllocaScalar(rewriter, loc, eltTp);
1505     ModuleOp module = op->getParentOfType<ModuleOp>();
1506 
1507     // For each element in the source tensor, output the element.
1508     rewriter.create<ForeachOp>(
1509         loc, src, std::nullopt,
1510         [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v,
1511             ValueRange reduc) {
1512           for (Dimension d = 0; d < dimRank; d++) {
1513             rewriter.create<memref::StoreOp>(loc, dcvs[d], dimCoords,
1514                                              constantIndex(builder, loc, d));
1515           }
1516           rewriter.create<memref::StoreOp>(loc, v, value);
1517           SmallVector<Value> operands{writer, rankValue, dimCoords, value};
1518           FlatSymbolRefAttr fn = getFunc(module, outNextFuncName, {}, operands,
1519                                          EmitCInterface::On);
1520           builder.create<func::CallOp>(loc, TypeRange(), fn, operands);
1521           builder.create<sparse_tensor::YieldOp>(loc);
1522         });
1523 
1524     // Release the writer.
1525     createFuncCall(rewriter, loc, "delSparseTensorWriter", {}, {writer},
1526                    EmitCInterface::Off);
1527 
1528     rewriter.eraseOp(op);
1529     return success();
1530   }
1531 };
1532 
1533 } // namespace
1534 
1535 //===---------------------------------------------------------------------===//
1536 // Methods that add patterns described in this file to a pattern list.
1537 //===---------------------------------------------------------------------===//
1538 
1539 void mlir::populatePreSparsificationRewriting(RewritePatternSet &patterns) {
1540   patterns.add<FuseExtractSliceWithConcat, FoldConvertIntoProducer,
1541                FoldInvariantYield, FuseSparseMultiplyOverAdd, FuseTensorCast,
1542                GenSemiRingReduction, GenSemiRingSelect, PrintRewriter>(
1543       patterns.getContext());
1544 }
1545 
1546 void mlir::populateLowerSparseOpsToForeachPatterns(RewritePatternSet &patterns,
1547                                                    bool enableRT,
1548                                                    bool enableConvert) {
1549   patterns.add<ConcatenateRewriter, ReshapeRewriter<tensor::ExpandShapeOp>,
1550                ReshapeRewriter<tensor::CollapseShapeOp>,
1551                Sparse2SparseReshapeRewriter<tensor::ExpandShapeOp>,
1552                Sparse2SparseReshapeRewriter<tensor::CollapseShapeOp>,
1553                SparseTensorDimOpRewriter, TensorReshapeRewriter, OutRewriter>(
1554       patterns.getContext());
1555 
1556   if (enableConvert)
1557     patterns.add<DirectConvertRewriter>(patterns.getContext());
1558   if (!enableRT)
1559     patterns.add<NewRewriter>(patterns.getContext());
1560 }
1561 
1562 void mlir::populateLowerForeachToSCFPatterns(RewritePatternSet &patterns) {
1563   // Run CrdTranslateRewriter later in the pipeline so that operation can be
1564   // folded before lowering to affine.apply
1565   patterns.add<CrdTranslateRewriter, ForeachRewriter>(patterns.getContext());
1566 }
1567