1 //===- SparseTensorRewriting.cpp - Sparse tensor rewriting rules ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements rewriting rules that are specific to sparse tensors. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "Utils/CodegenUtils.h" 14 #include "Utils/LoopEmitter.h" 15 16 #include "mlir/Dialect/Affine/IR/AffineOps.h" 17 #include "mlir/Dialect/Arith/IR/Arith.h" 18 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 19 #include "mlir/Dialect/Linalg/IR/Linalg.h" 20 #include "mlir/Dialect/Linalg/Utils/Utils.h" 21 #include "mlir/Dialect/MemRef/IR/MemRef.h" 22 #include "mlir/Dialect/SCF/IR/SCF.h" 23 #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" 24 #include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h" 25 #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" 26 #include "mlir/Dialect/Tensor/IR/Tensor.h" 27 #include "mlir/IR/AffineMap.h" 28 #include "mlir/IR/Matchers.h" 29 #include "mlir/Support/LLVM.h" 30 31 using namespace mlir; 32 using namespace mlir::bufferization; 33 using namespace mlir::linalg; 34 using namespace mlir::sparse_tensor; 35 36 //===---------------------------------------------------------------------===// 37 // Helper methods for the actual rewriting rules. 38 //===---------------------------------------------------------------------===// 39 40 // Helper method to match any typed zero. 41 static bool isZeroValue(Value val) { 42 return matchPattern(val, m_Zero()) || matchPattern(val, m_AnyZeroFloat()); 43 } 44 45 // Helper to detect a sparse tensor type operand. 46 static bool isSparseTensor(Value v) { 47 auto enc = getSparseTensorEncoding(v.getType()); 48 return enc && !llvm::all_of(enc.getLvlTypes(), 49 [](auto lt) { return lt == LevelType::Dense; }); 50 } 51 static bool isSparseTensor(OpOperand *op) { return isSparseTensor(op->get()); } 52 53 // Helper method to find zero/uninitialized tensor materialization. 54 static bool isMaterializing(OpOperand *op, bool isZero) { 55 Value val = op->get(); 56 // Check allocation, with zero alloc when required. 57 if (auto alloc = val.getDefiningOp<AllocTensorOp>()) { 58 Value copy = alloc.getCopy(); 59 if (isZero) 60 return copy && isZeroValue(copy); 61 return !copy; 62 } 63 // Check for empty tensor materialization. 64 if (auto empty = val.getDefiningOp<tensor::EmptyOp>()) 65 return !isZero; 66 // Last resort for zero alloc: the whole value is zero. 67 return isZero && isZeroValue(val); 68 } 69 70 // Helper to detect sampling operation. 71 static bool isSampling(GenericOp op) { 72 auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator()); 73 if (auto *def = yieldOp.getOperand(0).getDefiningOp()) { 74 if (isa<arith::MulFOp>(def) || isa<arith::MulIOp>(def)) { 75 // Both scalar input arguments used exactly once. 76 Value s1 = op.getBlock()->getArgument(0); 77 Value s2 = op.getBlock()->getArgument(1); 78 return (def->getOperand(0) == s1 && def->getOperand(1) == s2) || 79 (def->getOperand(1) == s1 && def->getOperand(0) == s2); 80 } 81 } 82 return false; 83 } 84 85 // Helper to detect chain of multiplications that do not involve x. 86 static bool isMulChain(Value val, Value x) { 87 if (auto arg = dyn_cast<BlockArgument>(val)) 88 return arg != x; 89 if (auto *def = val.getDefiningOp()) { 90 if (isa<arith::MulFOp>(def) || isa<arith::MulIOp>(def)) 91 return isMulChain(def->getOperand(0), x) && 92 isMulChain(def->getOperand(1), x); 93 } 94 return false; 95 } 96 97 // Helper to detect x = x + <multiplications>. 98 static bool isSumOfMul(GenericOp op) { 99 auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator()); 100 if (auto *def = yieldOp.getOperand(0).getDefiningOp()) { 101 if (isa<arith::AddFOp>(def) || isa<arith::AddIOp>(def)) { 102 Value x = op.getBlock()->getArguments().back(); 103 return (def->getOperand(0) == x && isMulChain(def->getOperand(1), x)) || 104 (def->getOperand(1) == x && isMulChain(def->getOperand(0), x)); 105 } 106 } 107 return false; 108 } 109 110 // Helper to detect direct yield of a zero value. 111 static bool isZeroYield(GenericOp op) { 112 auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator()); 113 if (auto arg = dyn_cast<BlockArgument>(yieldOp.getOperand(0))) { 114 if (arg.getOwner()->getParentOp() == op) { 115 return isZeroValue(op->getOperand(arg.getArgNumber())); 116 } 117 } 118 return isZeroValue(yieldOp.getOperand(0)); 119 } 120 121 /// Populates given sizes array from type (for static sizes) and from 122 /// the tensor (for dynamic sizes). 123 static void sizesForTensor(OpBuilder &builder, SmallVectorImpl<Value> &sizes, 124 Location loc, ShapedType stp, Value tensor) { 125 for (const auto &d : enumerate(stp.getShape())) { 126 Value dim; 127 if (d.value() == ShapedType::kDynamic) 128 dim = builder.create<tensor::DimOp>(loc, tensor, d.index()); 129 else 130 dim = constantIndex(builder, loc, d.value()); 131 sizes.push_back(dim); 132 } 133 } 134 135 static RankedTensorType getBufferType(const SparseTensorType &stt, 136 bool needTmpCOO) { 137 return needTmpCOO ? stt.getCOOType(/*ordered=*/false) 138 : stt.getRankedTensorType(); 139 } 140 141 /// Collects the dynamic dimension sizes for `tp` with the assumption that 142 /// `sizes` are the dimension sizes for the type. Stores the dynamic dimension 143 /// sizes to dynSizes. 144 static void getDynamicSizes(RankedTensorType tp, ValueRange sizes, 145 SmallVectorImpl<Value> &dynSizes) { 146 for (const auto &d : enumerate(tp.getShape())) { 147 if (d.value() == ShapedType::kDynamic) 148 dynSizes.push_back(sizes[d.index()]); 149 } 150 } 151 152 static LogicalResult genForeachOnSparseConstant(ForeachOp op, 153 RewriterBase &rewriter, 154 SparseElementsAttr attr) { 155 auto loc = op.getLoc(); 156 SmallVector<Value> reduc = op.getInitArgs(); 157 158 // Foreach on constant. 159 foreachInSparseConstant( 160 rewriter, loc, attr, op.getOrder().value_or(AffineMap()), 161 [&reduc, &rewriter, op](ArrayRef<Value> cvs, Value v) mutable { 162 SmallVector<Value> args; 163 args.append(cvs.begin(), cvs.end()); 164 args.push_back(v); 165 args.append(reduc); 166 // Clones the foreach op to get a copy of the loop body. 167 auto cloned = cast<ForeachOp>(rewriter.clone(*op.getOperation())); 168 assert(args.size() == cloned.getBody()->getNumArguments()); 169 Operation *yield = cloned.getBody()->getTerminator(); 170 rewriter.inlineBlockBefore(cloned.getBody(), op, args); 171 // clean up 172 rewriter.eraseOp(cloned); 173 reduc = yield->getOperands(); 174 rewriter.eraseOp(yield); 175 }); 176 177 rewriter.replaceOp(op, reduc); 178 return success(); 179 } 180 181 /// Populates the given sizes array for concatenation from types (for static 182 /// sizes) and from the source tensors (for dynamic sizes). 183 static void concatSizesFromInputs(OpBuilder &builder, 184 SmallVectorImpl<Value> &sizes, Location loc, 185 ShapedType dstTp, ValueRange srcs, 186 unsigned dim) { 187 auto dstShape = dstTp.getShape(); 188 sizesFromSrc(builder, sizes, loc, srcs[0]); 189 190 // Sum up on the `dim` if the dimension is dynamic. 191 if (dstShape[dim] != ShapedType::kDynamic) { 192 // Faithfully take the static size. 193 sizes[dim] = constantIndex(builder, loc, dstShape[dim]); 194 } else { 195 // Else, compute the shape dynamically. 196 for (const auto &src : srcs.drop_front()) { 197 Value srcSz = linalg::createOrFoldDimOp(builder, loc, src, dim); 198 // Sum up all the sizes. 199 sizes[dim] = builder.create<arith::AddIOp>(loc, sizes[dim], srcSz); 200 } 201 } 202 } 203 204 //===---------------------------------------------------------------------===// 205 // The actual sparse tensor rewriting rules. 206 //===---------------------------------------------------------------------===// 207 208 namespace { 209 210 /// Rewriting rule that converts direct yield of zero with initial allocation. 211 struct FoldInvariantYield : public OpRewritePattern<GenericOp> { 212 public: 213 using OpRewritePattern<GenericOp>::OpRewritePattern; 214 215 LogicalResult matchAndRewrite(GenericOp op, 216 PatternRewriter &rewriter) const override { 217 if (!op.hasPureTensorSemantics() || op.getNumResults() != 1 || 218 !isMaterializing(op.getDpsInitOperand(0), /*isZero=*/false) || 219 !isZeroYield(op) || !op.getDpsInitOperand(0)->get().hasOneUse()) 220 return failure(); 221 auto outputType = getRankedTensorType(op.getResult(0)); 222 // Yielding zero on newly materialized sparse tensor can be 223 // optimized directly (regardless of dynamic or static size). 224 if (getSparseTensorEncoding(outputType)) { 225 rewriter.replaceOp(op, op.getDpsInitOperand(0)->get()); 226 return success(); 227 } 228 // Use static zero value directly instead of materialization. 229 if (!outputType.hasStaticShape()) 230 return failure(); 231 Operation *def = op.getDpsInitOperand(0)->get().getDefiningOp(); 232 rewriter.replaceOp(op, constantZero(rewriter, op.getLoc(), outputType)); 233 rewriter.eraseOp(def); 234 return success(); 235 } 236 }; 237 238 /// Rewriting rule that converts two kernels: 239 /// 240 /// T(i,j) = SUM(k, A(i,j,k) * B(i,j,k) * ... ) 241 /// X(i,j) = S(i,j) * T(i,j) 242 /// 243 /// into a single kernel, using distributive law: 244 /// 245 /// X(i,j) = SUM(k, S(i,j) * A(i,j,k) * B(i,j,k) * ... ) 246 /// 247 /// This kind of fusion (merging two ops into one but using arithmetic 248 /// equalities that may not hold for floating-point computations) would 249 /// be undesirable in the dense case, since we distribute the multiplication 250 /// into the reduction loop. However, for sparse sampling tensor S, such 251 /// a fusion may actually reduce the asymptotic complexity of the kernel, 252 /// since intermediate results may be nullified. 253 struct FuseSparseMultiplyOverAdd : public OpRewritePattern<GenericOp> { 254 public: 255 using OpRewritePattern<GenericOp>::OpRewritePattern; 256 257 LogicalResult matchAndRewrite(GenericOp op, 258 PatternRewriter &rewriter) const override { 259 // Check consumer. 260 if (!op.hasPureTensorSemantics() || op.getNumDpsInputs() != 2 || 261 op.getNumResults() != 1 || 262 op.getNumParallelLoops() != op.getNumLoops() || 263 !op.getMatchingIndexingMap(op.getDpsInitOperand(0)).isIdentity() || 264 !op.getMatchingIndexingMap(op.getDpsInputOperand(0)).isIdentity() || 265 !op.getMatchingIndexingMap(op.getDpsInputOperand(1)).isIdentity()) 266 return failure(); 267 // Find consuming OP2(sparse, other) or OP2(other, sparse). The other 268 // operand can be sparse or dense, since the point of this rewriting rule 269 // is detecting a situation in which *more* sparsity is introduced into 270 // a computation, be it already sparse or still dense. 271 unsigned other = 0; 272 if (isSparseTensor(op.getDpsInputOperand(0))) 273 other = 1; 274 else if (!isSparseTensor(op.getDpsInputOperand(1))) 275 return failure(); 276 // Check producer. 277 auto prod = dyn_cast_or_null<GenericOp>( 278 op.getDpsInputOperand(other)->get().getDefiningOp()); 279 if (!prod || !prod.hasPureTensorSemantics() || prod.getNumResults() != 1 || 280 !prod.getResult(0).hasOneUse()) 281 return failure(); 282 // Sampling consumer and sum of multiplication chain producer. 283 if (!isMaterializing(op.getDpsInitOperand(0), /*isZero=*/false) || 284 !isMaterializing(prod.getDpsInitOperand(0), /*isZero=*/true) || 285 !isSampling(op) || !isSumOfMul(prod)) 286 return failure(); 287 // Modify operand structure of producer and consumer. 288 Location loc = prod.getLoc(); 289 SmallVector<Value> inputOps = prod.getInputs(); 290 SmallVector<Value> outputOps = op.getOutputs(); 291 SmallVector<AffineMap> fusedIndexMaps = prod.getIndexingMapsArray(); 292 inputOps.push_back(op.getDpsInputOperand(1 - other)->get()); 293 fusedIndexMaps.push_back(fusedIndexMaps.back()); // mimic other 294 // Fuse producer and consumer into a new generic op. 295 auto fusedOp = rewriter.create<GenericOp>( 296 loc, op.getResult(0).getType(), inputOps, outputOps, 297 rewriter.getAffineMapArrayAttr(fusedIndexMaps), prod.getIteratorTypes(), 298 /*doc=*/nullptr, /*library_call=*/nullptr); 299 Block &prodBlock = prod.getRegion().front(); 300 Block &consBlock = op.getRegion().front(); 301 IRMapping mapper; 302 Block *fusedBlock = new Block(); 303 fusedOp.getRegion().push_back(fusedBlock); 304 unsigned num = prodBlock.getNumArguments(); 305 for (unsigned i = 0; i < num - 1; i++) 306 addArg(mapper, fusedBlock, prodBlock.getArgument(i)); 307 addArg(mapper, fusedBlock, consBlock.getArgument(1 - other)); 308 addArg(mapper, fusedBlock, prodBlock.getArgument(num - 1)); 309 // Clone bodies of the producer and consumer in new evaluation order. 310 auto *acc = prodBlock.getTerminator()->getOperand(0).getDefiningOp(); 311 auto *sampler = consBlock.getTerminator()->getOperand(0).getDefiningOp(); 312 rewriter.setInsertionPointToStart(fusedBlock); 313 Value last; 314 for (auto &op : prodBlock.without_terminator()) 315 if (&op != acc) { 316 last = op.getResult(0); 317 rewriter.clone(op, mapper); 318 } 319 mapper.map(consBlock.getArgument(other), fusedBlock->back().getResult(0)); 320 mapper.map(last, rewriter.clone(*sampler, mapper)->getResult(0)); 321 last = rewriter.clone(*acc, mapper)->getResult(0); 322 rewriter.create<linalg::YieldOp>(loc, last); 323 // Force initial value on merged allocation for dense outputs. 324 // TODO: deal with non alloc tensor here one day 325 if (!getSparseTensorEncoding(op.getResult(0).getType())) { 326 Value init = prod.getDpsInitOperand(0) 327 ->get() 328 .getDefiningOp<AllocTensorOp>() 329 .getCopy(); 330 AllocTensorOp a = 331 op.getDpsInitOperand(0)->get().getDefiningOp<AllocTensorOp>(); 332 rewriter.modifyOpInPlace(a, [&]() { a.getCopyMutable().assign(init); }); 333 } 334 // Replace consumer with fused operation. Old producer 335 // and consumer ops will be removed by DCE. 336 rewriter.replaceOp(op, fusedOp->getResults()); 337 return success(); 338 } 339 340 private: 341 // Helper to add argument and record the mapping. 342 static void addArg(IRMapping &mapper, Block *b, BlockArgument a) { 343 mapper.map(a, b->addArgument(a.getType(), a.getLoc())); 344 } 345 }; 346 347 // Fuse a tensor cast into producing operation. Note that a tensor.cast 348 // should really not be used to convert between sparse encodings. Since 349 // the pattern currently appears as a result of some prior rewriting 350 // we make an attempt to repair very obvious cases. 351 // TODO: audit the pure tensor dialect rewriting rules 352 struct FuseTensorCast : public OpRewritePattern<tensor::CastOp> { 353 public: 354 using OpRewritePattern<tensor::CastOp>::OpRewritePattern; 355 356 LogicalResult matchAndRewrite(tensor::CastOp op, 357 PatternRewriter &rewriter) const override { 358 Type srcType = op.getSource().getType(); 359 Type dstType = op.getDest().getType(); 360 // A nop cast simply folds away. 361 if (srcType == dstType) { 362 rewriter.replaceOp(op, op->getResults()); 363 return success(); 364 } 365 // See if a sparsity changing cast can be fused into producer. 366 if (tensor::isSameTypeWithoutEncoding(srcType, dstType)) { 367 if (Operation *def = op.getSource().getDefiningOp()) { 368 if (def->hasOneUse() && isa<tensor::ExtractSliceOp>(def)) { 369 rewriter.modifyOpInPlace(def, [&]() { 370 def->getResult(0).setType(op->getResultTypes()[0]); 371 }); 372 rewriter.replaceOp(op, def->getResult(0)); 373 return success(); 374 } 375 } 376 } 377 // Repair tensor casts with at least one sparse operand into the 378 // the properly supported sparse_tensor.convert. 379 if (getSparseTensorEncoding(srcType) || getSparseTensorEncoding(dstType)) { 380 rewriter.replaceOpWithNewOp<ConvertOp>(op, dstType, op.getSource()); 381 return success(); 382 } 383 // Fail otherwise. 384 return failure(); 385 } 386 }; 387 388 /// Rewrites a sequence of operations for sparse tensor selections in to 389 /// semi-ring operations such that they can be compiled correctly by the 390 /// sparsifier. E.g., transforming the following sequence 391 /// 392 /// %sel = arith.select %cond, %sp1, %sp2 393 /// 394 /// to 395 /// 396 /// %sel = binary %sp1, %sp2: 397 /// both (%l, %r) {yield select %cond, %l, %r} 398 /// left (%l) {yield select %cond, %l, 0} 399 /// right (%r) {yield select %cond, 0, %r} 400 /// 401 /// TODO: We require that the tensor used for extracting conditions to be dense 402 /// to sparsify the code. To support a sparse condition tensor, we need a 403 /// tri-nary operation. 404 struct GenSemiRingSelect : public OpRewritePattern<GenericOp> { 405 public: 406 using OpRewritePattern<GenericOp>::OpRewritePattern; 407 LogicalResult matchAndRewrite(GenericOp op, 408 PatternRewriter &rewriter) const override { 409 // Rejects non sparse kernels. 410 if (!op.hasPureTensorSemantics() || !hasAnySparseOperand(op)) 411 return failure(); 412 413 Location loc = op.getLoc(); 414 SmallVector<std::pair<Operation *, sparse_tensor::BinaryOp>> semiRings; 415 for (Operation &inst : *op.getBody()) { 416 // Matches pattern. 417 auto matched = isRewritablePattern(op, &inst); 418 if (!matched.has_value()) 419 continue; 420 421 rewriter.setInsertionPoint(&inst); 422 auto [c, t, f] = matched.value(); 423 assert(t.getType() == f.getType()); 424 auto selTp = t.getType(); 425 auto c0 = constantZero(rewriter, loc, selTp); 426 auto binOp = rewriter.create<sparse_tensor::BinaryOp>(loc, selTp, t, f); 427 // Initializes all the blocks. 428 rewriter.createBlock(&binOp.getOverlapRegion(), {}, {selTp, selTp}, 429 {t.getLoc(), f.getLoc()}); 430 rewriter.createBlock(&binOp.getRightRegion(), {}, selTp, f.getLoc()); 431 rewriter.createBlock(&binOp.getLeftRegion(), {}, selTp, t.getLoc()); 432 433 for (auto *r : binOp.getRegions()) { 434 Block *b = &r->front(); 435 rewriter.setInsertionPointToStart(b); 436 437 IRMapping irMap; 438 // Clones the cmp operations into the region to make the binary op 439 // admissible. 440 Value newC = c; 441 if (auto *def = c.getDefiningOp()) 442 newC = rewriter.clone(*def, irMap)->getResult(0); 443 444 irMap.map(c, newC); 445 if (r == &binOp.getLeftRegion()) { 446 irMap.map(t, b->getArgument(0)); 447 irMap.map(f, c0); 448 } else if (r == &binOp.getRightRegion()) { 449 irMap.map(t, c0); 450 irMap.map(f, b->getArgument(0)); 451 } else { 452 irMap.map(t, b->getArgument(0)); 453 irMap.map(f, b->getArgument(1)); 454 } 455 auto y = rewriter.clone(inst, irMap)->getResult(0); 456 rewriter.create<sparse_tensor::YieldOp>(loc, y); 457 } 458 459 // We successfully rewrited a operation. We can not do replacement here 460 // becuase it invalidate the iterator for the current loop to traverse 461 // the instructions. 462 semiRings.emplace_back(&inst, binOp); 463 } 464 465 // Finalizes the replacement. 466 for (auto [sel, semi] : semiRings) 467 rewriter.replaceOp(sel, semi->getResults()); 468 469 return success(!semiRings.empty()); 470 } 471 472 private: 473 static std::optional<std::tuple<Value, BlockArgument, BlockArgument>> 474 isRewritablePattern(GenericOp op, Operation *v) { 475 auto sel = dyn_cast<arith::SelectOp>(v); 476 if (!sel) 477 return std::nullopt; 478 479 auto tVal = sel.getTrueValue().dyn_cast<BlockArgument>(); 480 auto fVal = sel.getFalseValue().dyn_cast<BlockArgument>(); 481 // TODO: For simplicity, we only handle cases where both true/false value 482 // are directly loaded the input tensor. We can probably admit more cases 483 // in theory. 484 if (!tVal || !fVal) 485 return std::nullopt; 486 487 // Helper lambda to determine whether the value is loaded from a dense input 488 // or is a loop invariant. 489 auto isValFromDenseInputOrInvariant = [&op](Value v) -> bool { 490 if (auto bArg = v.dyn_cast<BlockArgument>(); 491 bArg && !isSparseTensor(op.getDpsInputOperand(bArg.getArgNumber()))) 492 return true; 493 // If the value is defined outside the loop, it is a loop invariant. 494 return v.getDefiningOp() && v.getDefiningOp()->getBlock() != op.getBody(); 495 }; 496 497 // If the condition value is load directly from a dense tensor or 498 // loop-invariants, we can sparsify the kernel. 499 auto cond = sel.getCondition(); 500 if (isValFromDenseInputOrInvariant(cond)) 501 return std::make_tuple(cond, tVal, fVal); 502 503 Value cmpL, cmpR; 504 if (matchPattern(cond, m_Op<arith::CmpIOp>(matchers::m_Any(&cmpL), 505 matchers::m_Any(&cmpR))) || 506 matchPattern(cond, m_Op<arith::CmpFOp>(matchers::m_Any(&cmpL), 507 matchers::m_Any(&cmpR)))) { 508 // TODO: we can do it recursively to check whether all the leaf values are 509 // loaded from dense tensors or are loop invariants. 510 if (isValFromDenseInputOrInvariant(cmpL) || 511 isValFromDenseInputOrInvariant(cmpR)) 512 return std::make_tuple(cond, tVal, fVal); 513 } 514 515 return std::nullopt; 516 }; 517 }; 518 519 /// Rewrites a sparse reduction that would not sparsify directly since 520 /// doing so would only iterate over the stored elements, ignoring the 521 /// implicit zeros, into a semi-ring. Applies to all prod/and/min/max 522 /// (note that reductions like add/sub/or/xor can directly be sparsified 523 /// since the implicit zeros do not contribute to the final result). 524 /// Note that prod/and are still included since, even though they often 525 /// are nullified in sparse data, they may still occur for special 526 /// situations in which e.g. some rows in a sparse matrix are fully 527 /// dense. For min/max, including the implicit zeros is a much more 528 /// common situation. 529 /// 530 /// TODO: this essentially "densifies" the operation; we want to implement 531 /// this much more efficiently by performing the reduction over the 532 /// stored values, and feed in the zero once if there were *any* 533 /// implicit zeros as well; but for now, at least we provide 534 /// the functionality 535 /// 536 struct GenSemiRingReduction : public OpRewritePattern<GenericOp> { 537 public: 538 using OpRewritePattern<GenericOp>::OpRewritePattern; 539 540 LogicalResult matchAndRewrite(GenericOp op, 541 PatternRewriter &rewriter) const override { 542 // Reject non-reductions. 543 if (!op.hasPureTensorSemantics() || op.getNumDpsInputs() != 1 || 544 op.getNumReductionLoops() == 0 || op.getNumResults() != 1) 545 return failure(); 546 auto inp = op.getDpsInputOperand(0); 547 auto init = op.getDpsInitOperand(0); 548 if (!isSparseTensor(inp)) 549 return failure(); 550 // Look for direct x = x OP y for semi-ring ready reductions. 551 auto red = cast<linalg::YieldOp>(op.getRegion().front().getTerminator()) 552 .getOperand(0) 553 .getDefiningOp(); 554 if (!isa<arith::AndIOp, arith::MulIOp, arith::MulFOp, arith::MinimumFOp, 555 arith::MinSIOp, arith::MinUIOp, arith::MaximumFOp, arith::MaxSIOp, 556 arith::MaxUIOp>(red)) 557 return failure(); 558 Value s0 = op.getBlock()->getArgument(0); 559 Value s1 = op.getBlock()->getArgument(1); 560 if ((red->getOperand(0) != s0 || red->getOperand(1) != s1) && 561 (red->getOperand(0) != s1 || red->getOperand(1) != s0)) 562 return failure(); 563 // Identity. 564 Location loc = op.getLoc(); 565 Value identity = 566 rewriter.create<tensor::ExtractOp>(loc, init->get(), ValueRange()); 567 // Unary { 568 // present -> value 569 // absent -> zero. 570 // } 571 Type rtp = s0.getType(); 572 rewriter.setInsertionPointToStart(&op.getRegion().front()); 573 auto semiring = rewriter.create<sparse_tensor::UnaryOp>(loc, rtp, s0); 574 Block *present = 575 rewriter.createBlock(&semiring.getPresentRegion(), {}, rtp, loc); 576 rewriter.setInsertionPointToStart(&semiring.getPresentRegion().front()); 577 rewriter.create<sparse_tensor::YieldOp>(loc, present->getArgument(0)); 578 rewriter.createBlock(&semiring.getAbsentRegion(), {}, {}, {}); 579 rewriter.setInsertionPointToStart(&semiring.getAbsentRegion().front()); 580 auto zero = 581 rewriter.create<arith::ConstantOp>(loc, rewriter.getZeroAttr(rtp)); 582 rewriter.create<sparse_tensor::YieldOp>(loc, zero); 583 rewriter.setInsertionPointAfter(semiring); 584 // CustomReduce { 585 // x = x REDUC y, identity 586 // } 587 auto custom = rewriter.create<sparse_tensor::ReduceOp>( 588 loc, rtp, semiring.getResult(), s1, identity); 589 Block *region = 590 rewriter.createBlock(&custom.getRegion(), {}, {rtp, rtp}, {loc, loc}); 591 rewriter.setInsertionPointToStart(&custom.getRegion().front()); 592 IRMapping irMap; 593 irMap.map(red->getOperand(0), region->getArgument(0)); 594 irMap.map(red->getOperand(1), region->getArgument(1)); 595 auto cloned = rewriter.clone(*red, irMap); 596 rewriter.create<sparse_tensor::YieldOp>(loc, cloned->getResult(0)); 597 rewriter.setInsertionPointAfter(custom); 598 rewriter.replaceOp(red, custom.getResult()); 599 return success(); 600 } 601 }; 602 603 /// Sparse rewriting rule for sparse-to-sparse reshape operator. 604 struct TensorReshapeRewriter : public OpRewritePattern<tensor::ReshapeOp> { 605 public: 606 using OpRewritePattern<tensor::ReshapeOp>::OpRewritePattern; 607 608 LogicalResult matchAndRewrite(tensor::ReshapeOp op, 609 PatternRewriter &rewriter) const override { 610 Location loc = op.getLoc(); 611 Value srcTensor = op.getSource(); 612 const auto srcTp = getSparseTensorType(srcTensor); 613 const auto dstTp = getSparseTensorType(op.getResult()); 614 615 if (!srcTp.hasEncoding() || !dstTp.hasEncoding() || 616 !dstTp.hasStaticDimShape()) 617 return failure(); 618 619 SmallVector<Value> srcSizes; 620 sizesForTensor(rewriter, srcSizes, loc, srcTp, srcTensor); 621 SmallVector<Value> dstSizes; 622 for (Dimension d : dstTp.getDimShape()) 623 dstSizes.push_back(constantIndex(rewriter, loc, d)); 624 625 Value nnz = rewriter.create<NumberOfEntriesOp>(loc, srcTensor); 626 // Only need an unordered COO buffer if input and output are not sorted 627 // in the same way. 628 Type bufferTp = getBufferType( 629 dstTp.withoutDimToLvl(), 630 !srcTp.isAllOrdered() || !srcTp.isIdentity() || !dstTp.isIdentity()); 631 SmallVector<Value> dynSizes; 632 Value buffer = rewriter 633 .create<AllocTensorOp>(loc, bufferTp, dynSizes, Value(), 634 nnz, Attribute()) 635 .getResult(); 636 637 // Convert src coordinates to dst coordinates by first collapsing it to 1D 638 // and then expand it to the match the rank of the destination tensor. 639 // Implemented as follows: 640 // foreach srcCoords %srcTensor 641 // collapsedCoords = reshapeCvs(srcCoords, [1, ..., srcRank]) 642 // expandedCoords = reshapeCvs(collapsedCoords, [1, ..., dstRank]) 643 // insert expandedCoords, %buffer 644 // 645 // followed by an optional 646 // %t = sparse_tensor.cast %tmp 647 // depending on whether the input/output are sorted in the same way. 648 const auto encSrc = srcTp.getEncoding(); 649 ForeachOp foreachOp = rewriter.create<ForeachOp>( 650 loc, srcTensor, buffer, 651 [&](OpBuilder &builder, Location loc, ValueRange srcLcvs, Value v, 652 ValueRange reduc) { 653 const Dimension srcRank = srcTp.getDimRank(); 654 SmallVector<Value> srcDcvs; 655 srcDcvs.reserve(srcRank); 656 for (Dimension d = 0; d < srcRank; d++) { 657 Level lvl = toLvl(encSrc, d); 658 srcDcvs.push_back(srcLcvs[lvl]); 659 } 660 661 Value collapseSize = constantIndex(builder, loc, 1); 662 for (Dimension d = 0; d < srcRank; d++) 663 collapseSize = 664 builder.create<arith::MulIOp>(loc, collapseSize, srcSizes[d]); 665 SmallVector<Value, 1> collapsedSizes = {collapseSize}; 666 667 ReassociationIndices collapseIdx; 668 for (Dimension i = 0; i < srcRank; i++) 669 collapseIdx.push_back(i); 670 SmallVector<ReassociationIndices, 1> collapseReass = {collapseIdx}; 671 SmallVector<Value, 1> collapsedDcvs; 672 reshapeCvs(builder, loc, collapseReass, srcSizes, srcDcvs, 673 collapsedSizes, collapsedDcvs); 674 675 ReassociationIndices expandIdx; 676 for (Dimension i = 0; i < dstTp.getDimRank(); i++) 677 expandIdx.push_back(i); 678 SmallVector<ReassociationIndices, 1> expandReass = {expandIdx}; 679 SmallVector<Value> dstDcvs; 680 reshapeCvs(builder, loc, expandReass, collapsedSizes, collapsedDcvs, 681 dstSizes, dstDcvs); 682 683 auto t = builder.create<InsertOp>(loc, v, reduc.front(), dstDcvs); 684 builder.create<sparse_tensor::YieldOp>(loc, t); 685 }); 686 687 Value t = rewriter.create<LoadOp>(loc, foreachOp.getResult(0), true); 688 if (bufferTp != dstTp) { 689 auto dstRTT = dstTp.getRankedTensorType(); 690 Value converted = rewriter.create<ConvertOp>(loc, dstRTT, t).getResult(); 691 rewriter.create<DeallocTensorOp>(loc, t); 692 t = converted; 693 } 694 rewriter.replaceOp(op, t); 695 return success(); 696 } 697 }; 698 699 /// Sparse rewriting rule for sparse-to-sparse reshape operator. 700 template <typename ReshapeOp> 701 struct Sparse2SparseReshapeRewriter : public OpRewritePattern<ReshapeOp> { 702 public: 703 using OpRewritePattern<ReshapeOp>::OpRewritePattern; 704 705 LogicalResult matchAndRewrite(ReshapeOp op, 706 PatternRewriter &rewriter) const override { 707 Location loc = op.getLoc(); 708 Value srcTensor = op.getSrc(); 709 const auto srcTp = getSparseTensorType(srcTensor); 710 const auto dstTp = getSparseTensorType(op.getResult()); 711 if (!srcTp.hasEncoding() || !dstTp.hasEncoding()) 712 return failure(); 713 714 // Generate code to represent the static dimension constants or compute 715 // the dynamic dimension values. 716 SmallVector<Value> srcSizes; 717 sizesForTensor(rewriter, srcSizes, loc, srcTp, srcTensor); 718 SmallVector<Value> dstSizes; 719 SmallVector<Value> dstDynSizes; 720 if (dstTp.hasStaticDimShape()) { 721 for (Dimension d : dstTp.getDimShape()) 722 dstSizes.push_back(constantIndex(rewriter, loc, d)); 723 } else { 724 ArrayRef<Size> dstShape = dstTp.getDimShape(); 725 genReshapeDstShape(rewriter, loc, dstSizes, srcSizes, dstShape, 726 op.getReassociationIndices()); 727 for (auto [idx, shape] : llvm::enumerate(dstShape)) { 728 if (shape == ShapedType::kDynamic) 729 dstDynSizes.push_back(dstSizes[idx]); 730 } 731 } 732 Value nnz = rewriter.create<NumberOfEntriesOp>(loc, srcTensor); 733 // Only need a unordered COO buffer if input and output are not sorted 734 // in the same way. 735 Type bufferTp = getBufferType( 736 dstTp.withoutDimToLvl(), 737 !srcTp.isAllOrdered() || !srcTp.isIdentity() || !dstTp.isIdentity()); 738 739 Value buffer = 740 rewriter 741 .create<AllocTensorOp>(loc, bufferTp, dstDynSizes, Value(), 742 /*sizeHint=*/nnz, Attribute()) 743 .getResult(); 744 745 // Implement the sparse2sparse reshape as follows: 746 // foreach srcCoords %srcTensor 747 // insert reshapeCvs(srcCoords), %buffer 748 // 749 // followed by an optional 750 // %t = sparse_tensor.cast %tmp 751 // depending on whether the input/output are sorted in the same way. 752 const auto encSrc = srcTp.getEncoding(); 753 ForeachOp foreachOp = rewriter.create<ForeachOp>( 754 loc, srcTensor, buffer, 755 [&](OpBuilder &builder, Location loc, ValueRange srcLcvs, Value v, 756 ValueRange reduc) { 757 const Dimension dimRank = srcTp.getDimRank(); 758 SmallVector<Value> srcDcvs; 759 srcDcvs.reserve(dimRank); 760 for (Dimension d = 0; d < dimRank; d++) { 761 Level lvl = toLvl(encSrc, d); 762 srcDcvs.push_back(srcLcvs[lvl]); 763 } 764 SmallVector<Value> dstDcvs; 765 reshapeCvs(builder, loc, op.getReassociationIndices(), srcSizes, 766 srcDcvs, dstSizes, dstDcvs); 767 auto t = builder.create<InsertOp>(loc, v, reduc.front(), dstDcvs); 768 builder.create<sparse_tensor::YieldOp>(loc, t); 769 }); 770 771 Value t = rewriter.create<LoadOp>(loc, foreachOp.getResult(0), true); 772 if (bufferTp != dstTp) { 773 auto dstRTT = dstTp.getRankedTensorType(); 774 Value converted = rewriter.create<ConvertOp>(loc, dstRTT, t).getResult(); 775 rewriter.create<DeallocTensorOp>(loc, t); 776 t = converted; 777 } 778 rewriter.replaceOp(op, t); 779 return success(); 780 } 781 }; 782 783 /// Sparse rewriting rule for sparse-to-dense and dense-to-sparse reshape 784 /// operator. 785 template <typename ReshapeOp> 786 struct ReshapeRewriter : public OpRewritePattern<ReshapeOp> { 787 public: 788 using OpRewritePattern<ReshapeOp>::OpRewritePattern; 789 790 LogicalResult matchAndRewrite(ReshapeOp op, 791 PatternRewriter &rewriter) const override { 792 Location loc = op->getLoc(); 793 auto encDst = getSparseTensorEncoding(op.getResult().getType()); 794 auto encSrc = getSparseTensorEncoding(op.getSrc().getType()); 795 // Since a pure dense expansion is very cheap (change of view), for 796 // a sparse2dense or dense2sparse, we can simply unfuse a sparse 797 // conversion from the reshape operation itself. 798 // All other cases are handled elsewhere. 799 if (encDst && encSrc) { 800 return failure(); 801 } 802 if (encSrc) { 803 auto rtp = getRankedTensorType(op.getSrc()); 804 auto denseTp = 805 RankedTensorType::get(rtp.getShape(), rtp.getElementType()); 806 auto convert = rewriter.create<ConvertOp>(loc, denseTp, op.getSrc()); 807 rewriter.modifyOpInPlace(op, [&]() { op->setOperand(0, convert); }); 808 return success(); 809 } 810 if (encDst) { 811 auto rtp = getRankedTensorType(op.getResult()); 812 auto denseTp = 813 RankedTensorType::get(rtp.getShape(), rtp.getElementType()); 814 auto reshape = rewriter.create<ReshapeOp>(loc, denseTp, op.getSrc(), 815 op.getReassociation()); 816 Value convert = rewriter.create<ConvertOp>(loc, rtp, reshape); 817 rewriter.replaceOp(op, convert); 818 return success(); 819 } 820 return failure(); 821 } 822 }; 823 824 // A trivial wrapper to help generate different operations for dense/sparse 825 // tensors. 826 struct TensorLike { 827 TensorLike(OpBuilder &builder, Location loc, RankedTensorType rtt, 828 ValueRange sizes) { 829 SmallVector<Value> dynSzs; 830 getDynamicSizes(rtt, sizes, dynSzs); 831 832 val = builder.create<AllocTensorOp>(loc, rtt, dynSzs); 833 if (!isSparse()) { 834 Value c0 = constantZero(builder, loc, rtt.getElementType()); 835 val = builder.create<linalg::FillOp>(loc, c0, val).getResult(0); 836 } 837 } 838 839 void insert(OpBuilder &builder, Location loc, Value v, ValueRange crds) { 840 val = builder.create<tensor::InsertOp>(loc, v, val, crds); 841 } 842 843 Value finalize(OpBuilder &builder, Location loc, RankedTensorType rtp) const { 844 if (isSparse()) 845 return builder.create<LoadOp>(loc, val, true); 846 return val; 847 } 848 849 bool isSparse() const { 850 return getSparseTensorEncoding(val.getType()) != nullptr; 851 } 852 853 Value val; 854 }; 855 856 struct SparseTensorDimOpRewriter : public OpRewritePattern<tensor::DimOp> { 857 using OpRewritePattern::OpRewritePattern; 858 LogicalResult matchAndRewrite(tensor::DimOp op, 859 PatternRewriter &rewriter) const override { 860 std::optional<int64_t> dim = op.getConstantIndex(); 861 auto stt = getSparseTensorType(op.getSource()); 862 if (!dim || !stt.hasEncoding()) 863 return failure(); 864 865 if (stt.isPermutation()) { 866 rewriter.replaceOpWithNewOp<LvlOp>(op, op.getSource(), 867 toLvl(stt.getEncoding(), *dim)); 868 return success(); 869 } 870 871 // Non-permutation dim2lvl/lvl2dim maps. 872 // Compute as follows: 873 // affine.apply #map (l0 - 1, l1 - 1, ...) + 1 874 // Note that it is not the most efficient way (but a more general one) for 875 // the lvl to dim translation, e.g., for BSR, the dimension size for can be 876 // computed simply by lvl_size * block_size. 877 Location loc = op.getLoc(); 878 SmallVector<Value> maxLvlCrds; 879 for (Level l = 0; l < stt.getLvlRank(); l++) { 880 Value lvlSz = rewriter.create<LvlOp>(loc, op.getSource(), l); 881 Value maxLvlCrd = rewriter.create<arith::SubIOp>( 882 loc, lvlSz, constantOne(rewriter, loc, rewriter.getIndexType())); 883 maxLvlCrds.push_back(maxLvlCrd); 884 } 885 886 AffineExpr lvl2DimExp = stt.getLvlToDim().getResult(*dim); 887 Value maxDimCrd = rewriter.create<affine::AffineApplyOp>( 888 op.getLoc(), AffineMap::get(stt.getLvlRank(), 0, lvl2DimExp), 889 maxLvlCrds); 890 891 Value dimSz = rewriter.create<arith::AddIOp>( 892 loc, maxDimCrd, constantOne(rewriter, loc, rewriter.getIndexType())); 893 rewriter.replaceOp(op, dimSz); 894 return success(); 895 } 896 }; 897 898 struct ConcatenateRewriter : public OpRewritePattern<ConcatenateOp> { 899 using OpRewritePattern::OpRewritePattern; 900 LogicalResult matchAndRewrite(ConcatenateOp op, 901 PatternRewriter &rewriter) const override { 902 if (op.needsExtraSort()) 903 op.emitError("ConcatenateOp not staged"); 904 905 const Location loc = op.getLoc(); 906 const auto dstTp = getSparseTensorType(op); 907 const Dimension conDim = op.getDimension(); 908 SmallVector<Value> sizes; 909 concatSizesFromInputs(rewriter, sizes, loc, dstTp, op.getInputs(), conDim); 910 911 // %t = concatenate %s1, %s2, %s3 {dim = 1} 912 // ==> 913 // if (isSparseDst) 914 // if (allDense) 915 // %tmp = bufferization.alloc_tensor dstTp 916 // else 917 // %tmp = bufferization.alloc_tensor : unordered COO 918 // else 919 // %tmp = memref.alloc : dense tensor 920 // foreach in %s1 : insert d0, d1, %tmp 921 // foreach in %s2 : insert d0, d1 + size(s1), %tmp 922 // foreach in %s3 : insert d0, d1 + size(s1) + size(s2), %tmp 923 924 TensorLike dstBuf(rewriter, loc, dstTp.getRankedTensorType(), sizes); 925 Value offset = constantIndex(rewriter, loc, 0); 926 Value iterArg = dstBuf.val; 927 928 ForeachOp foreachOp; 929 for (Value input : op.getInputs()) { 930 // Builds a for op for each input tensor to append new values into the 931 // output tensor. 932 foreachOp = rewriter.create<ForeachOp>( 933 loc, input, iterArg, 934 [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v, 935 ValueRange reduc) { 936 SmallVector<Value> offDimCrd(dcvs); 937 offDimCrd[conDim] = 938 builder.create<arith::AddIOp>(loc, offDimCrd[conDim], offset); 939 940 // Enters foreach, updates the SSA chain. 941 dstBuf.val = reduc.front(); 942 if (!dstTp.isAllDense()) { 943 Value cond = genIsNonzero(builder, loc, v); 944 auto ifOp = builder.create<scf::IfOp>(loc, reduc.getTypes(), cond, 945 /*else*/ true); 946 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 947 builder.create<scf::YieldOp>(loc, dstBuf.val); 948 949 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 950 dstBuf.insert(builder, loc, v, offDimCrd); 951 builder.create<scf::YieldOp>(loc, dstBuf.val); 952 953 // Exits the ifOp, update the sparse tensor SSA value. 954 builder.setInsertionPointAfter(ifOp); 955 dstBuf.val = ifOp.getResult(0); 956 } else { 957 dstBuf.insert(builder, loc, v, offDimCrd); 958 } 959 builder.create<sparse_tensor::YieldOp>(loc, dstBuf.val); 960 }); 961 // Accumulates the offset. Note that only static-shaped inputs are allowed 962 // by concatenate op verifier, which saves us from computing the offset 963 // dynamically. 964 const Size sz = getSparseTensorType(input).getDynamicDimSize(conDim); 965 assert(!ShapedType::isDynamic(sz)); 966 offset = rewriter.create<arith::AddIOp>(loc, offset, 967 constantIndex(rewriter, loc, sz)); 968 iterArg = foreachOp.getResult(0); 969 dstBuf.val = iterArg; 970 } 971 972 dstBuf.val = iterArg; 973 Value ret = dstBuf.finalize(rewriter, loc, dstTp.getRankedTensorType()); 974 rewriter.replaceOp(op, ret); 975 return success(); 976 } 977 }; 978 979 struct DirectConvertRewriter : public OpRewritePattern<ConvertOp> { 980 using OpRewritePattern::OpRewritePattern; 981 LogicalResult matchAndRewrite(ConvertOp op, 982 PatternRewriter &rewriter) const override { 983 if (op.needsExtraSort()) 984 return op.emitError("ConvertOp not staged."); 985 986 // TODO: Maybe we want a different operation for this too. 987 auto encDst = getSparseTensorEncoding(op.getType()); 988 auto encSrc = getSparseTensorEncoding(op.getSource().getType()); 989 if (encDst && encSrc && !encSrc.isSlice() && 990 encSrc.withoutBitWidths() == encDst.withoutBitWidths()) { 991 // Trivial tensor conversion and simple element type conversion is handled 992 // in codegen. 993 return failure(); 994 } 995 996 Location loc = op.getLoc(); 997 Value src = op.getSource(); 998 999 SparseTensorType srcStt = getSparseTensorType(op.getSource()); 1000 SparseTensorType dstStt = getSparseTensorType(op.getDest()); 1001 1002 bool fromSparseConst = false; 1003 if (auto constOp = op.getSource().getDefiningOp<arith::ConstantOp>()) 1004 if (dyn_cast<SparseElementsAttr>(constOp.getValue())) 1005 fromSparseConst = true; 1006 1007 const AffineMapAttr foreachOrder = 1008 (!dstStt.isIdentity() && fromSparseConst) 1009 ? AffineMapAttr::get(dstStt.getExpandedDimToLvl()) 1010 : nullptr; 1011 1012 bool skipZeroCheck = srcStt.hasEncoding() || fromSparseConst; 1013 1014 SmallVector<Value> sizes; 1015 sizesFromSrc(rewriter, sizes, loc, src); 1016 ValueRange vs; 1017 TensorLike dstBuf(rewriter, loc, dstStt.getRankedTensorType(), sizes); 1018 1019 auto foreachOp = rewriter.create<ForeachOp>( 1020 loc, src, dstBuf.val, foreachOrder, 1021 [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v, 1022 ValueRange reduc) { 1023 // Enters the loop, update the SSA value for insertion chain. 1024 dstBuf.val = reduc.front(); 1025 if (!skipZeroCheck) { 1026 Value cond = genIsNonzero(builder, loc, v); 1027 auto ifOp = builder.create<scf::IfOp>(loc, reduc.getTypes(), cond, 1028 /*else*/ true); 1029 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 1030 builder.create<scf::YieldOp>(loc, dstBuf.val); 1031 1032 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 1033 dstBuf.insert(builder, loc, v, dcvs); 1034 builder.create<scf::YieldOp>(loc, dstBuf.val); 1035 1036 // Exits the ifOp, update the sparse tensor SSA value. 1037 builder.setInsertionPointAfter(ifOp); 1038 dstBuf.val = ifOp.getResult(0); 1039 } else { 1040 dstBuf.insert(builder, loc, v, dcvs); 1041 } 1042 builder.create<sparse_tensor::YieldOp>(loc, dstBuf.val); 1043 }); 1044 1045 rewriter.setInsertionPointAfter(foreachOp); 1046 1047 // Exits the for loop, links the SSA chain. 1048 dstBuf.val = foreachOp.getResult(0); 1049 1050 Value ret = dstBuf.finalize(rewriter, loc, dstStt.getRankedTensorType()); 1051 rewriter.replaceOp(op, ret); 1052 return success(); 1053 } 1054 }; 1055 1056 struct CrdTranslateRewriter : public OpRewritePattern<CrdTranslateOp> { 1057 using OpRewritePattern::OpRewritePattern; 1058 LogicalResult matchAndRewrite(CrdTranslateOp op, 1059 PatternRewriter &rewriter) const override { 1060 AffineMap map = op.getDirection() == CrdTransDirectionKind::dim2lvl 1061 ? op.getEncoder().getDimToLvl() 1062 : op.getEncoder().getLvlToDim(); 1063 1064 SmallVector<Value> outCrds; 1065 for (AffineExpr result : map.getResults()) { 1066 // TODO: we should probably expand the affine map to IR using our own 1067 // rules, since affine.apply assume signed value, while the cooridinates 1068 // we provided must always be signless. 1069 Value trans = rewriter.create<affine::AffineApplyOp>( 1070 op.getLoc(), AffineMap::get(map.getNumDims(), 0, result), 1071 op.getInCrds()); 1072 outCrds.push_back(trans); 1073 } 1074 rewriter.replaceOp(op, outCrds); 1075 return success(); 1076 } 1077 }; 1078 1079 /// Sparse rewriting rule for the foreach operator. 1080 struct ForeachRewriter : public OpRewritePattern<ForeachOp> { 1081 public: 1082 using OpRewritePattern::OpRewritePattern; 1083 1084 LogicalResult matchAndRewrite(ForeachOp op, 1085 PatternRewriter &rewriter) const override { 1086 1087 auto loc = op.getLoc(); 1088 Value input = op.getTensor(); 1089 SmallVector<Value> reduc = op.getInitArgs(); 1090 const auto stt = getSparseTensorType(input); 1091 const Level lvlRank = stt.getLvlRank(); 1092 1093 // Special-case: for each over a sparse constant uses its own rewriting 1094 // rule. 1095 if (auto constOp = input.getDefiningOp<arith::ConstantOp>()) { 1096 if (auto attr = dyn_cast<SparseElementsAttr>(constOp.getValue())) { 1097 return genForeachOnSparseConstant(op, rewriter, attr); 1098 } 1099 } 1100 1101 // Otherwise, use loop emitter to generate loops. 1102 const auto enc = stt.getEncoding(); 1103 1104 // 1. Generates loop for the sparse input. 1105 LoopEmitter loopEmitter( 1106 ValueRange{input}, 1107 StringAttr::get(getContext(), ForeachOp::getOperationName())); 1108 loopEmitter.initializeLoopEmit(rewriter, loc); 1109 for (Level l = 0; l < lvlRank; l++) { 1110 // TODO: provide utility function for loop sequences that only contains 1111 // one for loop? 1112 const SmallVector<TensorLevel, 1> tidLvls{ 1113 loopEmitter.makeTensorLevel(0, l)}; 1114 loopEmitter.enterNewLoopSeq(rewriter, loc, tidLvls); 1115 // Note that reduc will be taken care of by loop emitter and get updated 1116 // in place. 1117 loopEmitter.enterCoIterationOverTensorsAtLvls(rewriter, loc, tidLvls, 1118 reduc); 1119 } 1120 1121 SmallVector<Value> lcvs = loopEmitter.getLoopIVs(); 1122 if (op.getOrder()) { 1123 // TODO: Support it so that we can do direct conversion from CSR->BSR. 1124 llvm_unreachable( 1125 "Level order not yet implemented on non-constant input tensors."); 1126 } 1127 1128 Value vals = loopEmitter.getValBuffer()[0]; 1129 Value pos = loopEmitter.getValPosits(0); 1130 // Loads the value from sparse tensor using position-index; 1131 // loads the value from dense tensor using coords. 1132 Value val = enc ? rewriter.create<memref::LoadOp>(loc, vals, pos) 1133 : rewriter.create<memref::LoadOp>(loc, vals, lcvs); 1134 1135 // 2. Inline the block in the foreach operator. 1136 Block *srcBlock = op.getBody(); 1137 1138 // Remap coordinates. 1139 SmallVector<Value> args = 1140 enc.translateCrds(rewriter, loc, lcvs, CrdTransDirectionKind::lvl2dim); 1141 1142 // Remap value. 1143 args.push_back(val); 1144 // Remap reduction variables. 1145 args.append(reduc); 1146 1147 // Remove sparse_tensor.yield. 1148 SmallVector<Value> reducValue = srcBlock->getTerminator()->getOperands(); 1149 rewriter.eraseOp(srcBlock->getTerminator()); 1150 1151 Operation &last = rewriter.getBlock()->back(); 1152 if (llvm::isa<scf::YieldOp>(last)) { 1153 // Because `scf.for` inserts an implicit yield op when there is no 1154 // reduction variable upon creation, we reset the insertion point such 1155 // that the block is inlined before *before* the yield op. 1156 rewriter.setInsertionPoint(&last); 1157 } 1158 1159 rewriter.inlineBlockBefore(srcBlock, rewriter.getBlock(), 1160 rewriter.getInsertionPoint(), args); 1161 rewriter.setInsertionPointToEnd(rewriter.getBlock()); 1162 for (Level l = 0; l < lvlRank; l++) { 1163 // Link the reduction chain. Note that loop emitter update the reducValue 1164 // in place. 1165 loopEmitter.exitCurrentLoop(rewriter, loc, reducValue); 1166 loopEmitter.exitCurrentLoopSeq(rewriter, loc); 1167 } 1168 1169 // Replace the foreach operator with the value returned by the outtermost 1170 // for loop. 1171 rewriter.replaceOp(op, reducValue); 1172 return success(); 1173 } 1174 }; 1175 1176 /// Sparse rewriting rule for the new operator. 1177 struct NewRewriter : public OpRewritePattern<NewOp> { 1178 using OpRewritePattern::OpRewritePattern; 1179 LogicalResult matchAndRewrite(NewOp op, 1180 PatternRewriter &rewriter) const override { 1181 Location loc = op.getLoc(); 1182 auto stt = getSparseTensorType(op.getResult()); 1183 if (!stt.hasEncoding() || stt.getCOOStart() == 0) 1184 return failure(); 1185 1186 // Implement the NewOp as follows: 1187 // %orderedCoo = sparse_tensor.new %filename 1188 // %t = sparse_tensor.convert %orderedCoo 1189 // with enveloping reinterpreted_map ops for non-permutations. 1190 RankedTensorType dstTp = stt.getRankedTensorType(); 1191 RankedTensorType cooTp = stt.getCOOType(/*ordered=*/true); 1192 Value cooTensor = rewriter.create<NewOp>(loc, cooTp, op.getSource()); 1193 Value convert = cooTensor; 1194 auto enc = stt.getEncoding(); 1195 if (!stt.isPermutation()) { // demap coo, demap dstTp 1196 auto coo = getSparseTensorType(cooTensor).getEncoding().withoutDimToLvl(); 1197 convert = rewriter.create<ReinterpretMapOp>(loc, coo, convert); 1198 dstTp = getSparseTensorType(convert).withEncoding(enc.withoutDimToLvl()); 1199 } 1200 convert = rewriter.create<ConvertOp>(loc, dstTp, convert); 1201 if (!stt.isPermutation()) // remap to original enc 1202 convert = rewriter.create<ReinterpretMapOp>(loc, enc, convert); 1203 rewriter.replaceOp(op, convert); 1204 1205 // Release the temporary ordered COO tensor. 1206 rewriter.setInsertionPointAfterValue(convert); 1207 rewriter.create<DeallocTensorOp>(loc, cooTensor); 1208 1209 return success(); 1210 } 1211 }; 1212 1213 /// Sparse rewriting rule for the out operator. 1214 struct OutRewriter : public OpRewritePattern<OutOp> { 1215 using OpRewritePattern::OpRewritePattern; 1216 LogicalResult matchAndRewrite(OutOp op, 1217 PatternRewriter &rewriter) const override { 1218 Location loc = op.getLoc(); 1219 // Calculate NNZ. 1220 Value src = op.getTensor(); 1221 Value nnz = rewriter.create<NumberOfEntriesOp>(loc, src); 1222 1223 // Allocate a temporary buffer for storing dimension-sizes/coordinates. 1224 const auto srcTp = getSparseTensorType(src); 1225 const Dimension dimRank = srcTp.getDimRank(); 1226 Type indexTp = rewriter.getIndexType(); 1227 Value dimSizes = genAlloca(rewriter, loc, dimRank, indexTp); 1228 1229 // Generate code to calculate dimension size values and store the values to 1230 // the buffer. 1231 SmallVector<Value> dims; 1232 sizesForTensor(rewriter, dims, loc, srcTp, src); 1233 for (Dimension d = 0; d < dimRank; d++) { 1234 rewriter.create<memref::StoreOp>(loc, dims[d], dimSizes, 1235 constantIndex(rewriter, loc, d)); 1236 } 1237 1238 // Create a sparse tensor writer and output meta data. 1239 Type opaqueTp = getOpaquePointerType(rewriter); 1240 Value writer = 1241 createFuncCall(rewriter, loc, "createSparseTensorWriter", {opaqueTp}, 1242 {op.getDest()}, EmitCInterface::Off) 1243 .getResult(0); 1244 Value rankValue = constantIndex(rewriter, loc, dimRank); 1245 createFuncCall(rewriter, loc, "outSparseTensorWriterMetaData", {}, 1246 {writer, rankValue, nnz, dimSizes}, EmitCInterface::On); 1247 1248 Value dimCoords = dimSizes; // Reuse the dimSizes buffer for dimCoords. 1249 Type eltTp = srcTp.getElementType(); 1250 SmallString<29> outNextFuncName{"outSparseTensorWriterNext", 1251 primaryTypeFunctionSuffix(eltTp)}; 1252 Value value = genAllocaScalar(rewriter, loc, eltTp); 1253 ModuleOp module = op->getParentOfType<ModuleOp>(); 1254 1255 // For each element in the source tensor, output the element. 1256 rewriter.create<ForeachOp>( 1257 loc, src, std::nullopt, 1258 [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v, 1259 ValueRange reduc) { 1260 for (Dimension d = 0; d < dimRank; d++) { 1261 rewriter.create<memref::StoreOp>(loc, dcvs[d], dimCoords, 1262 constantIndex(builder, loc, d)); 1263 } 1264 rewriter.create<memref::StoreOp>(loc, v, value); 1265 SmallVector<Value> operands{writer, rankValue, dimCoords, value}; 1266 FlatSymbolRefAttr fn = getFunc(module, outNextFuncName, {}, operands, 1267 EmitCInterface::On); 1268 builder.create<func::CallOp>(loc, TypeRange(), fn, operands); 1269 builder.create<sparse_tensor::YieldOp>(loc); 1270 }); 1271 1272 // Release the writer. 1273 createFuncCall(rewriter, loc, "delSparseTensorWriter", {}, {writer}, 1274 EmitCInterface::Off); 1275 1276 rewriter.eraseOp(op); 1277 return success(); 1278 } 1279 }; 1280 1281 } // namespace 1282 1283 //===---------------------------------------------------------------------===// 1284 // Methods that add patterns described in this file to a pattern list. 1285 //===---------------------------------------------------------------------===// 1286 1287 void mlir::populatePreSparsificationRewriting(RewritePatternSet &patterns) { 1288 patterns.add<FoldInvariantYield, FuseSparseMultiplyOverAdd, FuseTensorCast, 1289 GenSemiRingReduction, GenSemiRingSelect>(patterns.getContext()); 1290 } 1291 1292 void mlir::populateLowerSparseOpsToForeachPatterns(RewritePatternSet &patterns, 1293 bool enableRT, 1294 bool enableConvert) { 1295 patterns.add<ConcatenateRewriter, ReshapeRewriter<tensor::ExpandShapeOp>, 1296 ReshapeRewriter<tensor::CollapseShapeOp>, 1297 Sparse2SparseReshapeRewriter<tensor::ExpandShapeOp>, 1298 Sparse2SparseReshapeRewriter<tensor::CollapseShapeOp>, 1299 SparseTensorDimOpRewriter, TensorReshapeRewriter, OutRewriter>( 1300 patterns.getContext()); 1301 1302 if (enableConvert) 1303 patterns.add<DirectConvertRewriter>(patterns.getContext()); 1304 if (!enableRT) 1305 patterns.add<NewRewriter>(patterns.getContext()); 1306 } 1307 1308 void mlir::populateLowerForeachToSCFPatterns(RewritePatternSet &patterns) { 1309 // Run CrdTranslateRewriter later in the pipeline so that operation can be 1310 // folded before lowering to affine.apply 1311 patterns.add<CrdTranslateRewriter, ForeachRewriter>(patterns.getContext()); 1312 } 1313