xref: /llvm-project/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp (revision faac8989871197492b7454cd1b259951a26b2f7a)
1 //===- Tiling.cpp - Implementation of tiling using TilingInterface -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the tiling using TilingInterface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/SCF/Transforms/TileUsingInterface.h"
14 
15 #include "mlir/Dialect/Affine/IR/AffineOps.h"
16 #include "mlir/Dialect/Arith/IR/Arith.h"
17 #include "mlir/Dialect/Arith/Utils/Utils.h"
18 #include "mlir/Dialect/Func/IR/FuncOps.h"
19 #include "mlir/Dialect/SCF/Utils/Utils.h"
20 #include "mlir/Dialect/Tensor/IR/Tensor.h"
21 #include "mlir/Dialect/Utils/IndexingUtils.h"
22 #include "mlir/IR/Matchers.h"
23 #include "mlir/IR/PatternMatch.h"
24 #include "mlir/Interfaces/DestinationStyleOpInterface.h"
25 #include "mlir/Interfaces/TilingInterface.h"
26 #include "llvm/Support/Debug.h"
27 
28 #define DEBUG_TYPE "tile-using-interface"
29 
30 using namespace mlir;
31 
32 scf::SCFTilingOptions &
33 scf::SCFTilingOptions::setTileSizes(ArrayRef<int64_t> ts) {
34   assert(!tileSizeComputationFunction && "tile sizes already set");
35   SmallVector<int64_t> tileSizes(ts.begin(), ts.end());
36   tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
37     OpBuilder::InsertionGuard guard(b);
38     b.setInsertionPointToStart(
39         &op->getParentOfType<func::FuncOp>().getBody().front());
40     return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) {
41       Value v = b.create<arith::ConstantIndexOp>(op->getLoc(), s);
42       return v;
43     }));
44   };
45   return *this;
46 }
47 
48 /// Helper method to adjust the interchange vector to match the iteration
49 /// domain.
50 static SmallVector<int64_t>
51 fillInterchangeVector(ArrayRef<int64_t> interchangeVector,
52                       size_t iterationDomainSize) {
53   SmallVector<int64_t> filledVector = llvm::to_vector(interchangeVector);
54   if (filledVector.size() < iterationDomainSize) {
55     auto range = llvm::seq<int64_t>(filledVector.size(), iterationDomainSize);
56     filledVector.append(range.begin(), range.end());
57   }
58   if (filledVector.size() > iterationDomainSize)
59     filledVector.resize(iterationDomainSize);
60   return filledVector;
61 }
62 
63 //===----------------------------------------------------------------------===//
64 // tileUsingSCFForOp implementation.
65 //===----------------------------------------------------------------------===//
66 
67 // Check if `stride` evenly divides the trip count `size - offset`.
68 static bool tileDividesIterationDomain(Range loopRange) {
69   std::optional<int64_t> offsetAsInt = getConstantIntValue(loopRange.offset);
70   if (!offsetAsInt)
71     return false;
72   std::optional<int64_t> sizeAsInt = getConstantIntValue(loopRange.size);
73   if (!sizeAsInt)
74     return false;
75   std::optional<int64_t> strideAsInt = getConstantIntValue(loopRange.stride);
76   if (!strideAsInt)
77     return false;
78   return ((sizeAsInt.value() - offsetAsInt.value()) % strideAsInt.value() == 0);
79 }
80 
81 /// Returns the bounded tile size given the current `iv`, `loopRange` and
82 /// `tileSize`, i.e., `min(tileSize, range.end() - iv)`.
83 static OpFoldResult getBoundedTileSize(OpBuilder &b, Location loc,
84                                        Range loopRange, Value iv,
85                                        Value tileSize) {
86   std::optional<int64_t> ts = getConstantIntValue(tileSize);
87   if (ts && ts.value() == 1)
88     return getAsOpFoldResult(tileSize);
89 
90   if (tileDividesIterationDomain(
91           Range{loopRange.offset, loopRange.size, tileSize}))
92     return tileSize;
93 
94   // The tile size to use (to avoid out of bounds access) is  minimum of
95   // `tileSize` and `ub - iv`, where `iv` is the induction variable of the tiled
96   // loop.
97   AffineExpr s0, s1, d0;
98   bindDims(b.getContext(), d0);
99   bindSymbols(b.getContext(), s0, s1);
100   AffineMap minMap = AffineMap::get(1, 2, {s0, s1 - d0}, b.getContext());
101   Value size = getValueOrCreateConstantIndexOp(b, loc, loopRange.size);
102   return makeComposedFoldedAffineMin(
103       b, loc, minMap, SmallVector<OpFoldResult>{iv, tileSize, size});
104 }
105 
106 /// Generate an empty loop nest that represents the tiled loop nest shell.
107 /// - `loopRanges` specifies the lb, ub and step of the untiled iteration space.
108 /// - `tileSizeVals` is the tile sizes to use. Zero represent untiled loops.
109 /// - In `offsets` and `sizes` return the multi-dimensional offset and size of
110 /// the
111 ///   tile processed within the inner most loop.
112 static SmallVector<scf::ForOp>
113 generateTileLoopNest(OpBuilder &builder, Location loc,
114                      ArrayRef<Range> loopRanges, ArrayRef<Value> tileSizeVals,
115                      SmallVector<OpFoldResult> &offsets,
116                      SmallVector<OpFoldResult> &sizes) {
117   assert(!loopRanges.empty() && "expected at least one loop range");
118   assert(loopRanges.size() == tileSizeVals.size() &&
119          "expected as many tile sizes as loop ranges");
120   OpBuilder::InsertionGuard guard(builder);
121   SmallVector<scf::ForOp> loops;
122   offsets.resize(loopRanges.size());
123   sizes.resize(loopRanges.size());
124 
125   for (auto loopRange : llvm::enumerate(loopRanges)) {
126     Value offset =
127         getValueOrCreateConstantIndexOp(builder, loc, loopRange.value().offset);
128     Value size =
129         getValueOrCreateConstantIndexOp(builder, loc, loopRange.value().size);
130     Value tileSize = tileSizeVals[loopRange.index()];
131     // No loops if tile size is zero. Set offset and size to the loop
132     // offset and size.
133     if (matchPattern(tileSize, m_Zero())) {
134       offsets[loopRange.index()] = offset;
135       sizes[loopRange.index()] = size;
136       continue;
137     }
138 
139     auto loop = builder.create<scf::ForOp>(
140         loc, offset, size, tileSize, ValueRange{},
141         [&](OpBuilder &bodyBuilder, Location bodyLoc, Value iv,
142             ValueRange /*iterArgs*/) {
143           sizes[loopRange.index()] = getBoundedTileSize(
144               bodyBuilder, bodyLoc, loopRange.value(), iv, tileSize);
145           builder.create<scf::YieldOp>(loc);
146         });
147     offsets[loopRange.index()] = loop.getInductionVar();
148     loops.push_back(loop);
149     builder.setInsertionPoint(loop.getBody()->getTerminator());
150   }
151   return loops;
152 }
153 
154 /// For a value to be yielded (`yieldedValue`) from within a loop nest `loops`,
155 /// construct the destructive update pattern that inserts the yielded
156 /// value into a destination tensor provided by `initValue` at offset
157 /// `tileOffsets` and size `tileSizes`. For example,
158 ///
159 /// ```mlir
160 /// scf.for %iv0 = ... {
161 ///   %0 = tiled_op
162 /// }
163 /// ```
164 ///
165 /// is transformed to
166 ///
167 /// ```mlir
168 /// scf.for %iv0 = ... iter_args(%arg = %0) {
169 ///   %1 = tensor.extract_slice %arg
170 ///   %2 = tiled_op
171 ///   %3 = tensor.insert_slice %2 into %arg
172 ///   scf.yield %3
173 /// }
174 /// ```
175 /// TODO: This API can be cleaned up by using `SubsetExtractOpInterface`.
176 static FailureOr<SmallVector<Value>>
177 yieldTiledValues(RewriterBase &rewriter, ValueRange initValues,
178                  ValueRange yieldedValues,
179                  ArrayRef<SmallVector<OpFoldResult>> tileOffsetsList,
180                  ArrayRef<SmallVector<OpFoldResult>> tileSizesList,
181                  MutableArrayRef<scf::ForOp> loops) {
182   NewYieldValueFn yieldValueFn =
183       [&](OpBuilder &b, Location loc,
184           ArrayRef<BlockArgument> newBBArgs) -> SmallVector<Value> {
185     SmallVector<Value> inserts;
186     for (const auto &yieldedValue : llvm::enumerate(yieldedValues)) {
187       ArrayRef<OpFoldResult> tileOffsets =
188           tileOffsetsList[yieldedValue.index()];
189       ArrayRef<OpFoldResult> tileSizes = tileSizesList[yieldedValue.index()];
190       SmallVector<OpFoldResult> tileStrides(tileOffsets.size(),
191                                             b.getIndexAttr(1));
192       Value insert = b.create<tensor::InsertSliceOp>(
193           loc, yieldedValue.value(), newBBArgs[yieldedValue.index()],
194           tileOffsets, tileSizes, tileStrides);
195       inserts.push_back(insert);
196     }
197     return inserts;
198   };
199 
200   SmallVector<scf::ForOp> newLoops =
201       replaceLoopNestWithNewYields(rewriter, loops, initValues, yieldValueFn,
202                                    /*replaceIterOperandsUsesInLoop =*/false);
203   for (const auto &loop : llvm::enumerate(loops)) {
204     rewriter.eraseOp(loop.value());
205     loops[loop.index()] = newLoops[loop.index()];
206   }
207   return llvm::to_vector(llvm::map_range(
208       loops.front().getResults().take_back(yieldedValues.size()),
209       [](OpResult r) -> Value { return r; }));
210 }
211 
212 /// If the tiled operation is destination passing style, update the
213 /// slice of the destination used (which refers to the untiled destination)
214 /// to use the corresponding region argument of the innermost loop.
215 ///
216 /// ```mlir
217 /// %0 =
218 /// scf.for %iv0 = ... iter_args(%arg = %0) {
219 ///   %1 = tensor.extract_slice %0
220 ///   %2 = tiled_op
221 ///   %3 = tensor.insert_slice %2 into %arg
222 ///   scf.yield %3
223 /// }
224 /// ```
225 ///
226 /// is transformed to
227 ///
228 /// ```mlir
229 /// scf.for %iv0 = ... iter_args(%arg = %0) {
230 ///   %1 = tensor.extract_slice %arg
231 ///   %2 = tiled_op
232 ///   %3 = tensor.insert_slice %2 into %arg
233 ///   scf.yield %3
234 /// }
235 /// ```
236 static void
237 updateDestinationOperandsForTiledOp(OpBuilder &builder,
238                                     ValueRange tiledOpDestinationValues,
239                                     ValueRange bbArgsList) {
240   for (const auto &destValue : llvm::enumerate(tiledOpDestinationValues)) {
241     auto sliceOp = destValue.value().getDefiningOp<tensor::ExtractSliceOp>();
242     if (!sliceOp)
243       continue;
244     sliceOp.setOperand(0, bbArgsList[destValue.index()]);
245   }
246 }
247 
248 /// Implementation of tiling transformation of `op` that implements the
249 /// `TilingInterface` using `scf.for` to iterate over the tiles.
250 FailureOr<scf::SCFTilingResult>
251 mlir::scf::tileUsingSCFForOp(RewriterBase &rewriter, TilingInterface op,
252                              const scf::SCFTilingOptions &options) {
253   OpBuilder::InsertionGuard guard(rewriter);
254   rewriter.setInsertionPointAfter(op);
255 
256   if (!options.tileSizeComputationFunction) {
257     return rewriter.notifyMatchFailure(
258         op, "missing tile size computation function");
259   }
260 
261   // Get destination tensors.
262   SmallVector<Value> destinationTensors;
263   if (failed(tensor::getOrCreateDestinations(rewriter, op.getLoc(), op,
264                                              destinationTensors)))
265     return rewriter.notifyMatchFailure(op, "failed to get destinations");
266 
267   // 1. Get the range of the loops that are represented by the operation.
268   SmallVector<Range> iterationDomain = op.getIterationDomain(rewriter);
269   size_t numLoops = iterationDomain.size();
270   if (numLoops == 0) {
271     return rewriter.notifyMatchFailure(
272         op, "unable to tile op with no iteration domain");
273   }
274 
275   // 2. Materialize the tile sizes. Enforce the convention that "tiling by zero"
276   // skips tiling a particular dimension. This convention is significantly
277   // simpler to handle instead of adjusting affine maps to account for missing
278   // dimensions.
279   SmallVector<Value> tileSizeVector =
280       options.tileSizeComputationFunction(rewriter, op);
281   if (tileSizeVector.size() < iterationDomain.size()) {
282     auto zero = rewriter.create<arith::ConstantIndexOp>(op.getLoc(), 0);
283     tileSizeVector.append(numLoops - tileSizeVector.size(), zero);
284   }
285 
286   scf::SCFTilingResult tilingResult;
287   SmallVector<OpFoldResult> offsets, sizes;
288   {
289     // If there is an interchange specified, permute the iteration domain and
290     // the tile sizes.
291     SmallVector<int64_t> interchangeVector;
292     if (!options.interchangeVector.empty()) {
293       interchangeVector = fillInterchangeVector(options.interchangeVector,
294                                                 iterationDomain.size());
295     }
296     if (!interchangeVector.empty()) {
297       if (!isPermutationVector(interchangeVector)) {
298         return rewriter.notifyMatchFailure(
299             op, "invalid intechange vector, not a permutation of the entire "
300                 "iteration space");
301       }
302 
303       applyPermutationToVector(iterationDomain, interchangeVector);
304       applyPermutationToVector(tileSizeVector, interchangeVector);
305     }
306 
307     // 3. Materialize an empty loop nest that iterates over the tiles. These
308     // loops for now do not return any values even if the original operation has
309     // results.
310     tilingResult.loops = generateTileLoopNest(
311         rewriter, op.getLoc(), iterationDomain, tileSizeVector, offsets, sizes);
312 
313     if (!interchangeVector.empty()) {
314       auto inversePermutation = invertPermutationVector(interchangeVector);
315       applyPermutationToVector(offsets, inversePermutation);
316       applyPermutationToVector(sizes, inversePermutation);
317     }
318   }
319 
320   LLVM_DEBUG({
321     if (!tilingResult.loops.empty()) {
322       llvm::dbgs() << "LoopNest shell :\n";
323       tilingResult.loops.front().dump();
324       llvm::dbgs() << "\n";
325     }
326   });
327 
328   // 4. Generate the tiled implementation within the inner most loop.
329   if (!tilingResult.loops.empty())
330     rewriter.setInsertionPoint(
331         tilingResult.loops.back().getBody()->getTerminator());
332   SmallVector<Operation *> tiledImplementation =
333       op.getTiledImplementation(rewriter, offsets, sizes);
334   tilingResult.tiledOps.append(tiledImplementation);
335   if (op->getNumResults() == 0) {
336     // nothing more to do.
337     return tilingResult;
338   }
339 
340   // If loops are empty, the tiled op is used as the replacement for the untiled
341   // op.
342   if (tilingResult.loops.empty()) {
343     tilingResult.replacements = llvm::to_vector(
344         llvm::map_range(tiledImplementation[0]->getResults(),
345                         [](OpResult result) -> Value { return result; }));
346     return tilingResult;
347   }
348 
349   // 5. Yield all the results of the tiled operation. The surrounding loop
350   //    nest is modified to insert a destructive update pattern to yield
351   //    from the loop nest values to replace the untiled op with.
352   int64_t numResults = op->getNumResults();
353   SmallVector<SmallVector<OpFoldResult>> resultOffsetsList(numResults),
354       resultSizesList(numResults);
355   for (const auto &result : llvm::enumerate(op->getResults())) {
356     if (failed(op.getResultTilePosition(rewriter, result.index(), offsets,
357                                         sizes,
358                                         resultOffsetsList[result.index()],
359                                         resultSizesList[result.index()]))) {
360       return rewriter.notifyMatchFailure(
361           op, "failed to get slice of result produced");
362     }
363   }
364 
365   FailureOr<SmallVector<Value>> replacementOr = yieldTiledValues(
366       rewriter, destinationTensors, tilingResult.tiledOps.back()->getResults(),
367       resultOffsetsList, resultSizesList, tilingResult.loops);
368   if (failed(replacementOr))
369     return rewriter.notifyMatchFailure(op, "failed to yield replacement");
370 
371   if (auto dstOp =
372           dyn_cast<DestinationStyleOpInterface>(tilingResult.tiledOps.back())) {
373     auto innerMostLoop = tilingResult.loops.back();
374     SmallVector<Value> destinationTensors = dstOp.getDpsInitOperands();
375     assert(destinationTensors.size() ==
376                innerMostLoop.getRegionIterArgs().size() &&
377            "unexpected number of outputs");
378     updateDestinationOperandsForTiledOp(rewriter, destinationTensors,
379                                         innerMostLoop.getRegionIterArgs());
380   }
381 
382   tilingResult.replacements = *replacementOr;
383 
384   LLVM_DEBUG({
385     if (!tilingResult.loops.empty()) {
386       llvm::dbgs() << "After tiled implementation :\n";
387       tilingResult.loops.front().dump();
388       llvm::dbgs() << "\n";
389     }
390   });
391   return tilingResult;
392 }
393 
394 FailureOr<scf::SCFReductionTilingResult>
395 mlir::scf::tileReductionUsingScf(PatternRewriter &b,
396                                  PartialReductionOpInterface op,
397                                  ArrayRef<OpFoldResult> tileSize) {
398   Location loc = op.getLoc();
399   // Ops implementing PartialReductionOpInterface are expected to implement
400   // TilingInterface.
401   auto tilingInterfaceOp = cast<TilingInterface>(op.getOperation());
402   SmallVector<Range> iterationDomain = tilingInterfaceOp.getIterationDomain(b);
403   SmallVector<Value> tileSizeVector =
404       getValueOrCreateConstantIndexOp(b, loc, tileSize);
405   if (tileSizeVector.size() < iterationDomain.size()) {
406     auto zero = b.create<arith::ConstantIndexOp>(loc, 0);
407     tileSizeVector.append(iterationDomain.size() - tileSizeVector.size(), zero);
408   }
409   if (op->getNumResults() != 1)
410     return b.notifyMatchFailure(
411         op, "don't support ops with multiple results for now");
412   SmallVector<utils::IteratorType> iterators =
413       tilingInterfaceOp.getLoopIteratorTypes();
414   int64_t numReductionDims = llvm::count(
415       tilingInterfaceOp.getLoopIteratorTypes(), utils::IteratorType::reduction);
416   if (numReductionDims != 1)
417     return b.notifyMatchFailure(
418         op, "only support ops with one reduction dimension.");
419   int reductionDim;
420   for (auto &[idx, iteratorType] :
421        llvm::enumerate(tilingInterfaceOp.getLoopIteratorTypes())) {
422     if (iteratorType == utils::IteratorType::reduction) {
423       reductionDim = idx;
424       break;
425     }
426   }
427   if (static_cast<size_t>(reductionDim) >= tileSize.size())
428     return b.notifyMatchFailure(op, "reduction dimension must be tiled");
429 
430   // 1. create the inital tensor value.
431   FailureOr<Operation *> identityTensor =
432       op.generateInitialTensorForPartialReduction(b, loc, tileSize,
433                                                   reductionDim);
434   if (failed(identityTensor))
435     return b.notifyMatchFailure(op,
436                                 "cannot create a tensor of identity value.");
437   // 2. Create the nested loops.
438   SmallVector<OpFoldResult> offsets, sizes;
439   SmallVector<scf::ForOp> loops = generateTileLoopNest(
440       b, loc, iterationDomain, tileSizeVector, offsets, sizes);
441 
442   // 3. Generate the tiled implementation within the inner most loop.
443   b.setInsertionPoint(loops.back().getBody()->getTerminator());
444   Operation *parallelOp = op.tileToPartialReduction(
445       b, loc, (*identityTensor)->getResults(), offsets, sizes, reductionDim);
446 
447   SmallVector<OpFoldResult> resultSizesList;
448   for (size_t i = 0; i < offsets.size(); i++)
449     resultSizesList.push_back(
450         b.createOrFold<tensor::DimOp>(loc, parallelOp->getResult(0), i));
451   SmallVector<OpFoldResult> outOffsets(offsets.size(), b.getIndexAttr(0));
452   FailureOr<SmallVector<Value>> replacementOr = yieldTiledValues(
453       b, (*identityTensor)->getResults(), parallelOp->getResults(), outOffsets,
454       resultSizesList, loops);
455   if (failed(replacementOr))
456     return b.notifyMatchFailure(op, "failed to yield replacement");
457 
458   auto dstOp = cast<DestinationStyleOpInterface>(parallelOp);
459   auto innerMostLoop = loops.back();
460   SmallVector<Value> destinationTensors = dstOp.getDpsInitOperands();
461   assert(destinationTensors.size() ==
462              innerMostLoop.getRegionIterArgs().size() &&
463          "unexpected number of outputs");
464   updateDestinationOperandsForTiledOp(b, destinationTensors,
465                                       innerMostLoop.getRegionIterArgs());
466 
467   // 4. Apply the merge reduction to combine all the partial values.
468   b.setInsertionPointAfter(*loops.begin());
469   Operation *mergeOp = op.mergeReductions(b, loc, *replacementOr, reductionDim);
470   b.replaceOp(op, mergeOp->getResults());
471 
472   SCFReductionTilingResult results;
473   results.initialOp = *identityTensor;
474   results.loops = std::move(loops);
475   results.parallelTiledOp = parallelOp;
476   results.mergeOp = mergeOp;
477   return results;
478 }
479 //===----------------------------------------------------------------------===//
480 // tileConsumerAndFuseProducerGreedilyUsingSCFForOp implementation.
481 //===----------------------------------------------------------------------===//
482 
483 /// Return the untiled producer whose slice is used in a tiled consumer. The
484 /// method traverses the tile loop nest (`loops`) if needed, and returns the
485 /// `iter_args` of the outer most that is encountered. Traversing the iter_args
486 /// indicates that this is a destination operand of the consumer. If there was
487 /// no loop traversal needed, the second value of the returned tuple is empty.
488 static std::tuple<OpResult, std::optional<OpOperand *>>
489 getUntiledProducerFromSliceSource(OpOperand *source,
490                                   ArrayRef<scf::ForOp> loops) {
491   std::optional<OpOperand *> destinationIterArg;
492   auto loopIt = loops.rbegin();
493   while (auto iterArg = source->get().dyn_cast<BlockArgument>()) {
494     scf::ForOp loop = *loopIt;
495     if (iterArg.getOwner()->getParentOp() != loop)
496       break;
497     source = &loop.getOpOperandForRegionIterArg(iterArg);
498     loopIt++;
499   }
500   if (loopIt == loops.rend())
501     destinationIterArg = source;
502   return {source->get().dyn_cast<OpResult>(), destinationIterArg};
503 }
504 
505 /// Implementation of tile consumer and fuse producer greedily.
506 FailureOr<scf::SCFTileAndFuseResult>
507 mlir::scf::tileConsumerAndFuseProducerGreedilyUsingSCFForOp(
508     RewriterBase &rewriter, TilingInterface consumer,
509     const scf::SCFTileAndFuseOptions &options) {
510   // This transformation is only valid for ops that return values (i.e. not
511   // valid to use with operations that have memref operands).
512   if (!consumer->getNumResults()) {
513     return rewriter.notifyMatchFailure(
514         consumer, "invalid pattern for op with no results");
515   }
516 
517   // 1. First tile the consumer.
518   scf::SCFTileAndFuseResult tileAndFuseResult;
519   llvm::SmallDenseMap<Value, int64_t> yieldedValueToResultNumber;
520   {
521     FailureOr<scf::SCFTilingResult> tilingResult =
522         tileUsingSCFForOp(rewriter, consumer, options.tilingOptions);
523     if (failed(tilingResult))
524       return rewriter.notifyMatchFailure(consumer, "failed to tile consumer");
525     for (auto *tiledOp : tilingResult->tiledOps)
526       tileAndFuseResult.tiledAndFusedOps.insert(tiledOp);
527     tileAndFuseResult.loops = std::move(tilingResult->loops);
528     for (const auto &result : llvm::enumerate(
529              llvm::zip(consumer->getResults(), tilingResult->replacements))) {
530       tileAndFuseResult.replacements[std::get<0>(result.value())] =
531           std::get<1>(result.value());
532       yieldedValueToResultNumber[tilingResult->tiledOps.back()->getResult(
533           result.index())] = result.index();
534     }
535   }
536 
537   // If there are no loops generated, fusion is immaterial.
538   if (tileAndFuseResult.loops.empty())
539     return tileAndFuseResult;
540 
541   // 2. Typically, the operands of the tiled operation are slices of the
542   //    operands of the untiled operation. These are expressed in IR using
543   //    `tensor.extract_slice` operations with source being the operands of the
544   //    untiled operation. Create a worklist of these `tensor.extract_slice`
545   //    operations. If the producers of the source of the `tensor.extract_slice`
546   //    can be tiled such that the tiled value is generated in-place, that
547   //    effectively tiles + fuses the operations.
548   auto addCandidateSlices = [](Operation *fusedOp,
549                                std::deque<tensor::ExtractSliceOp> &candidates) {
550     for (Value operand : fusedOp->getOperands())
551       if (auto sliceOp = operand.getDefiningOp<tensor::ExtractSliceOp>())
552         candidates.push_back(sliceOp);
553   };
554 
555   std::deque<tensor::ExtractSliceOp> candidates;
556   addCandidateSlices(tileAndFuseResult.tiledAndFusedOps.back(), candidates);
557   OpBuilder::InsertionGuard g(rewriter);
558   while (!candidates.empty()) {
559     // 2a. Traverse the slices in BFS fashion.
560     tensor::ExtractSliceOp candidateSliceOp = candidates.front();
561     candidates.pop_front();
562 
563     // 2b. Get the producer of the source (potentially walking through
564     // `iter_args` of nested `scf.for`)
565     auto [fusableProducer, destinationIterArg] =
566         getUntiledProducerFromSliceSource(&candidateSliceOp->getOpOperand(0),
567                                           tileAndFuseResult.loops);
568     if (!fusableProducer)
569       continue;
570 
571     // 2c. Generate the tiled implementation of the producer of the source
572     rewriter.setInsertionPoint(candidateSliceOp);
573     FailureOr<Value> fusedProducerValue =
574         tensor::replaceExtractSliceWithTiledProducer(rewriter, candidateSliceOp,
575                                                      fusableProducer);
576     if (failed(fusedProducerValue))
577       continue;
578     rewriter.replaceOp(candidateSliceOp, *fusedProducerValue);
579 
580     // 2d. The operands of the fused producer might themselved be slices of
581     //     values produced by operations that implement the `TilingInterface`.
582     //     Add these operations to the worklist.
583     Operation *fusedProducer = fusedProducerValue->getDefiningOp();
584     tileAndFuseResult.tiledAndFusedOps.insert(fusedProducer);
585     addCandidateSlices(fusedProducer, candidates);
586 
587     // 2e. If the slice is for a destination operand, for example,
588     //
589     // ```mlir
590     // %0 = linalg.init
591     // %1 = linalg.fill .. outs(%0 : )
592     // %2 = scf.for .. iter_args(%arg0 = %1) {
593     //   %3 = scf.for .. iter_args(%arg1 = %arg0) {
594     //     %4 = tensor.extract_slice %arg1 [..]
595     //     .. = linalg.matmul .. outs(%4 : )
596     //   }
597     // }
598     // ```
599     //
600     // the IR is currently
601     //
602     // ```
603     // %0 = linalg.init
604     // %1 = linalg.fill
605     // %2 = scf.for .. iter_args(%arg0 = %1 /* incorrect value */ ) {
606     //   %3 = scf.for .. iter_args(%arg1 = %arg0) {
607     //     %4 = tensor.extract_slice %0 /*incorrect value */ [..]
608     //     %5 = linalg.fill .. outs(%4 : )
609     //     .. = linalg.matmul .. outs(%5 : )
610     //   }
611     // }
612     // ```
613     //
614     // The untiled `linalg.fill` is still used as the `init_value` since it
615     // was originally a destination operand of the untiled `linalg.matmul`.
616     // When fusing an operand that is a destination operand.
617     //   - Update the iter_arg of the outer most loop to use the destination
618     //     of the untiled producer.
619     //   - Update the destination of the slice of the tiled producer generated
620     //     to use the same basic block argument as the slice that was used to
621     //     generate inplace the tiled implementation of the producer.
622     // With this the IR will be.
623     //
624     // ```
625     // %0 = linalg.init
626     // %1 = scf.for .. iter_args(%arg0 = %0 /* corrected value */ ) {
627     //   %2 = scf.for .. iter_args(%arg1 = %arg0) {
628     //     %3 = tensor.extract_slice %arg1 /* corrected value */ [..]
629     //     %4 = linalg.fill .. outs(%3 : )
630     //     .. = linalg.matmul .. outs(%4 : )
631     //   }
632     // }
633     // ```
634     // TODO: This can be modeled better if the `DestinationStyleOpInterface`.
635     // Update to use that when it does become available.
636     scf::ForOp outerMostLoop = tileAndFuseResult.loops.front();
637     std::optional<unsigned> iterArgNumber;
638     if (destinationIterArg) {
639       iterArgNumber = outerMostLoop.getIterArgNumberForOpOperand(
640           *destinationIterArg.value());
641     }
642     if (iterArgNumber) {
643       int64_t resultNumber = fusableProducer.getResultNumber();
644       if (auto dstOp = dyn_cast<DestinationStyleOpInterface>(
645               fusableProducer.getOwner())) {
646         outerMostLoop.setIterArg(
647             iterArgNumber.value(),
648             dstOp.getTiedOpOperand(fusableProducer)->get());
649       }
650       if (auto dstOp = fusedProducerValue
651                            ->getDefiningOp<DestinationStyleOpInterface>()) {
652         scf::ForOp innerMostLoop = tileAndFuseResult.loops.back();
653         updateDestinationOperandsForTiledOp(
654             rewriter, dstOp.getDpsInitOperand(resultNumber)->get(),
655             innerMostLoop.getRegionIterArgs()[iterArgNumber.value()]);
656       }
657     }
658   }
659   return tileAndFuseResult;
660 }
661 
662 //===----------------------------------------------------------------------===//
663 // lowerToLoopsUsingSCFForOp implementation.
664 //===----------------------------------------------------------------------===//
665 
666 FailureOr<SmallVector<scf::ForOp>>
667 mlir::scf::lowerToLoopsUsingSCFForOp(RewriterBase &rewriter,
668                                      TilingInterface op) {
669   // TODO: Handle cases where the op has results if needed.
670   if (op->getNumResults() > 0) {
671     return rewriter.notifyMatchFailure(
672         op, "unable to lower to loops operations with return values");
673   }
674 
675   SmallVector<Range> domain = op.getIterationDomain(rewriter);
676   SmallVector<Value> ivs;
677   SmallVector<scf::ForOp> loops;
678   Location loc = op.getLoc();
679   for (auto loopRange : domain) {
680     Value offsetVal =
681         getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.offset);
682     Value sizeVal =
683         getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.size);
684     Value strideVal =
685         getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.stride);
686     auto loop = rewriter.create<scf::ForOp>(op.getLoc(), offsetVal, sizeVal,
687                                             strideVal, ValueRange{});
688     loops.push_back(loop);
689     ivs.push_back(loop.getInductionVar());
690     rewriter.setInsertionPoint(loop.getBody()->getTerminator());
691   }
692   if (failed(op.generateScalarImplementation(rewriter, op.getLoc(), ivs))) {
693     return failure();
694   }
695   return loops;
696 }
697