xref: /llvm-project/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp (revision 6f03a10e4fdb4f22651a9dcc5d6ab318724235e8)
1 //===- Tiling.cpp - Implementation of tiling using TilingInterface -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the tiling using TilingInterface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/SCF/Transforms/TileUsingInterface.h"
14 
15 #include "mlir/Dialect/Affine/IR/AffineOps.h"
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Arithmetic/Utils/Utils.h"
18 #include "mlir/Dialect/Func/IR/FuncOps.h"
19 #include "mlir/Dialect/SCF/Utils/Utils.h"
20 #include "mlir/Dialect/Tensor/IR/Tensor.h"
21 #include "mlir/IR/Matchers.h"
22 #include "mlir/IR/PatternMatch.h"
23 #include "mlir/Interfaces/TilingInterface.h"
24 #include "llvm/Support/Debug.h"
25 
26 #define DEBUG_TYPE "tile-using-interface"
27 
28 using namespace mlir;
29 
30 scf::SCFTilingOptions &
31 scf::SCFTilingOptions::setTileSizes(ArrayRef<int64_t> ts) {
32   assert(!tileSizeComputationFunction && "tile sizes already set");
33   SmallVector<int64_t> tileSizes(ts.begin(), ts.end());
34   tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
35     OpBuilder::InsertionGuard guard(b);
36     b.setInsertionPointToStart(
37         &op->getParentOfType<func::FuncOp>().getBody().front());
38     return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) {
39       Value v = b.create<arith::ConstantIndexOp>(op->getLoc(), s);
40       return v;
41     }));
42   };
43   return *this;
44 }
45 
46 /// Helper method to adjust the interchange vector to match the iteration
47 /// domain.
48 static SmallVector<unsigned>
49 fillInterchangeVector(ArrayRef<unsigned> interchangeVector,
50                       size_t iterationDomainSize) {
51   SmallVector<unsigned> filledVector = llvm::to_vector(interchangeVector);
52   if (filledVector.size() < iterationDomainSize) {
53     auto range = llvm::seq<unsigned>(filledVector.size(), iterationDomainSize);
54     filledVector.append(range.begin(), range.end());
55   }
56   if (filledVector.size() > iterationDomainSize)
57     filledVector.resize(iterationDomainSize);
58   return filledVector;
59 }
60 
61 /// Helper method to apply permutation to a vector
62 template <typename T>
63 static SmallVector<T> applyPermutationToVector(const SmallVector<T> &vector,
64                                                ArrayRef<unsigned> interchange) {
65   assert(interchange.size() == vector.size());
66   return llvm::to_vector(
67       llvm::map_range(interchange, [&](unsigned val) { return vector[val]; }));
68 }
69 /// Helper method to apply to invert a permutation.
70 static SmallVector<unsigned>
71 invertPermutationVector(ArrayRef<unsigned> interchange) {
72   SmallVector<unsigned> inversion(interchange.size());
73   for (auto pos : llvm::enumerate(interchange)) {
74     inversion[pos.value()] = pos.index();
75   }
76   return inversion;
77 }
78 /// Method to check if an interchange vector is a permutation.
79 static bool isPermutation(ArrayRef<unsigned> interchange) {
80   llvm::SmallDenseSet<unsigned, 4> seenVals;
81   for (auto val : interchange) {
82     if (seenVals.count(val))
83       return false;
84     seenVals.insert(val);
85   }
86   return seenVals.size() == interchange.size();
87 }
88 
89 //===----------------------------------------------------------------------===//
90 // TileUsingSCFForOp pattern implementation.
91 //===----------------------------------------------------------------------===//
92 
93 /// Generate an empty loop nest that represents the tiled loop nest shell.
94 /// - `loopRanges` specifies the lb, ub and step of the untiled iteration space.
95 /// - `tileSizeVals` is the tile sizes to use. Zero represent untiled loops.
96 /// - In `offsets` and `sizes` return the multi-dimensional offset and size of
97 /// the
98 ///   tile processed within the inner most loop.
99 static SmallVector<scf::ForOp>
100 generateTileLoopNest(OpBuilder &builder, Location loc,
101                      ArrayRef<Range> loopRanges, ArrayRef<Value> tileSizeVals,
102                      SmallVector<OpFoldResult> &offsets,
103                      SmallVector<OpFoldResult> &sizes) {
104   assert(!loopRanges.empty() && "expected at least one loop range");
105   assert(loopRanges.size() == tileSizeVals.size() &&
106          "expected as many tile sizes as loop ranges");
107   OpBuilder::InsertionGuard guard(builder);
108   SmallVector<scf::ForOp> loops;
109   offsets.resize(loopRanges.size());
110   sizes.resize(loopRanges.size());
111 
112   // The tile size to use (to avoid out of bounds access) is  minimum of
113   // `tileSize` and `ub - iv`, where `iv` is the induction variable
114   // of the tiled loop.
115   AffineExpr s0, s1, d0;
116   bindDims(builder.getContext(), d0);
117   bindSymbols(builder.getContext(), s0, s1);
118   AffineMap minMap = AffineMap::get(1, 2, {s0, s1 - d0}, builder.getContext());
119 
120   for (auto loopRange : llvm::enumerate(loopRanges)) {
121     Value offset =
122         getValueOrCreateConstantIndexOp(builder, loc, loopRange.value().offset);
123     Value size =
124         getValueOrCreateConstantIndexOp(builder, loc, loopRange.value().size);
125     // No loops if tile size is zero. Set offset and size to the loop
126     // offset and size.
127     if (matchPattern(tileSizeVals[loopRange.index()], m_Zero())) {
128       offsets[loopRange.index()] = offset;
129       sizes[loopRange.index()] = size;
130       continue;
131     }
132 
133     auto loop = builder.create<scf::ForOp>(
134         loc, offset, size, tileSizeVals[loopRange.index()], ValueRange{},
135         [&](OpBuilder &bodyBuilder, Location bodyLoc, Value iv,
136             ValueRange /*iterArgs*/) {
137           Value boundedTileSize = builder.create<AffineMinOp>(
138               bodyLoc, minMap,
139               ValueRange{iv, tileSizeVals[loopRange.index()], size});
140           sizes[loopRange.index()] = boundedTileSize;
141           builder.create<scf::YieldOp>(loc);
142         });
143     offsets[loopRange.index()] = loop.getInductionVar();
144     loops.push_back(loop);
145     builder.setInsertionPoint(loop.getBody()->getTerminator());
146   }
147   return loops;
148 }
149 
150 scf::TileUsingSCFForOp::TileUsingSCFForOp(MLIRContext *context,
151                                           scf::SCFTilingOptions options,
152                                           PatternBenefit benefit)
153     : OpInterfaceRewritePattern<TilingInterface>(context, benefit),
154       options(std::move(options)) {}
155 
156 scf::TileUsingSCFForOp::TileUsingSCFForOp(StringRef opName,
157                                           MLIRContext *context,
158                                           scf::SCFTilingOptions options,
159                                           PatternBenefit benefit)
160     : OpInterfaceRewritePattern<TilingInterface>(context, benefit),
161       options(std::move(options)) {}
162 
163 FailureOr<scf::SCFTilingResult>
164 scf::TileUsingSCFForOp::returningMatchAndRewrite(
165     TilingInterface op, PatternRewriter &rewriter) const {
166   OpBuilder::InsertionGuard guard(rewriter);
167   rewriter.setInsertionPointAfter(op);
168 
169   if (!options.tileSizeComputationFunction) {
170     return rewriter.notifyMatchFailure(
171         op, "missing tile size computation function");
172   }
173 
174   // 1. Get the range of the loops that are represented by the operation.
175   SmallVector<Range> iterationDomain = op.getIterationDomain(rewriter);
176   size_t numLoops = iterationDomain.size();
177   if (numLoops == 0) {
178     return rewriter.notifyMatchFailure(
179         op, "unable to tile op with no iteration domain");
180   }
181 
182   // 2. Materialize the tile sizes. Enforce the convention that "tiling by zero"
183   // skips tiling a particular dimension. This convention is significantly
184   // simpler to handle instead of adjusting affine maps to account for missing
185   // dimensions.
186   SmallVector<Value> tileSizeVector =
187       options.tileSizeComputationFunction(rewriter, op);
188   if (tileSizeVector.size() < iterationDomain.size()) {
189     auto zero = rewriter.create<arith::ConstantIndexOp>(op.getLoc(), 0);
190     tileSizeVector.append(numLoops - tileSizeVector.size(), zero);
191   }
192 
193   scf::SCFTilingResult tilingResult;
194   SmallVector<OpFoldResult> offsets, sizes;
195   {
196     // If there is an interchange specified, permute the iteration domain and
197     // the tile sizes.
198     SmallVector<unsigned> interchangeVector;
199     if (!options.interchangeVector.empty()) {
200       interchangeVector = fillInterchangeVector(options.interchangeVector,
201                                                 iterationDomain.size());
202     }
203     if (!interchangeVector.empty()) {
204       if (!isPermutation(interchangeVector)) {
205         return rewriter.notifyMatchFailure(
206             op, "invalid intechange vector, not a permutation of the entire "
207                 "iteration space");
208       }
209 
210       iterationDomain =
211           applyPermutationToVector(iterationDomain, interchangeVector);
212       tileSizeVector =
213           applyPermutationToVector(tileSizeVector, interchangeVector);
214     }
215 
216     // 3. Materialize an empty loop nest that iterates over the tiles. These
217     // loops for now do not return any values even if the original operation has
218     // results.
219     tilingResult.loops = generateTileLoopNest(
220         rewriter, op.getLoc(), iterationDomain, tileSizeVector, offsets, sizes);
221 
222     if (!interchangeVector.empty()) {
223       auto inversePermutation = invertPermutationVector(interchangeVector);
224       offsets = applyPermutationToVector(offsets, inversePermutation);
225       sizes = applyPermutationToVector(sizes, inversePermutation);
226     }
227 
228     LLVM_DEBUG({
229       if (!tilingResult.loops.empty()) {
230         llvm::errs() << "LoopNest shell :\n";
231         tilingResult.loops.front().dump();
232         llvm::errs() << "\n";
233       }
234     });
235 
236     // 4. Generate the tiled implementation within the inner most loop.
237     if (!tilingResult.loops.empty())
238       rewriter.setInsertionPoint(
239           tilingResult.loops.back().getBody()->getTerminator());
240     SmallVector<Operation *> tiledImplementation = op.getTiledImplementation(
241         rewriter, op.getDestinationOperands(rewriter), offsets, sizes, true);
242     if (tiledImplementation.size() != 1) {
243       return rewriter.notifyMatchFailure(
244           op, "expected tiled implementation to return a single op");
245     }
246     tilingResult.tiledOp = tiledImplementation[0];
247 
248     LLVM_DEBUG({
249       if (!tilingResult.loops.empty()) {
250         llvm::errs() << "After tiled implementation :\n";
251         tilingResult.loops.front().dump();
252         llvm::errs() << "\n";
253       }
254     });
255   }
256 
257   if (op->getNumResults() == 0) {
258     rewriter.eraseOp(op);
259     return tilingResult;
260   }
261 
262   // 5. If the original operations has results, modify the loop nest to yield
263   // the replacement values.
264   SmallVector<Value> replacements;
265   if (tilingResult.loops.empty()) {
266     // 5a. If there were no loops, the tiled implementation results are the
267     // replacements.
268     rewriter.replaceOp(op, tilingResult.tiledOp->getResults());
269     return tilingResult;
270   }
271 
272   // 5b. `scf.for` with tensor semantics requires the loop nest to yield the
273   // replacement values using destructive updates. Use the `TilingInterface`
274   // to get the position of the result tiles and use that to generate the
275   // destructive update pattern, i.e.,
276   //
277   // ```mlir
278   // scf.for %iv0 = ... {
279   //   %0 = tiled_op
280   // }
281   // ```
282   //
283   // is transformed to
284   //
285   // ```mlir
286   // %result = scf.for %iv0 = ... iter_args(%arg = %init) -> .. {
287   //   %0 = tiled_op
288   //   %1 = tensor.insert_slice %0 into %arg[..] [..] [..]
289   //   scf.yield %1
290   // }
291   // ```
292   NewYieldValueFn yieldValueFn =
293       [&](OpBuilder &b, Location loc,
294           ArrayRef<BlockArgument> newBBArgs) -> SmallVector<Value> {
295     SmallVector<Value> yieldedValues;
296     Attribute one = b.getIndexAttr(1);
297     for (auto resultNum : llvm::seq<unsigned>(0, op->getNumResults())) {
298       SmallVector<OpFoldResult> resultTileOffsets, resultTileSizes;
299       if (failed(op.getResultTilePosition(b, resultNum, offsets, sizes,
300                                           resultTileOffsets,
301                                           resultTileSizes))) {
302         op.emitOpError("unable to get position of result ")
303             << resultNum << " of the tiled implementation";
304         return {};
305       }
306       SmallVector<OpFoldResult> resultTileStrides(resultTileOffsets.size(),
307                                                   one);
308       Value yieldedValue = b.create<tensor::InsertSliceOp>(
309           op->getLoc(), tilingResult.tiledOp->getResult(resultNum),
310           newBBArgs[resultNum], resultTileOffsets, resultTileSizes,
311           resultTileStrides);
312       yieldedValues.push_back(yieldedValue);
313     }
314     return yieldedValues;
315   };
316   SmallVector<scf::ForOp> newLoops = replaceLoopNestWithNewYields(
317       rewriter, tilingResult.loops, op.getDestinationOperands(rewriter),
318       yieldValueFn);
319   for (const auto &loop : llvm::enumerate(tilingResult.loops)) {
320     rewriter.eraseOp(loop.value());
321     tilingResult.loops[loop.index()] = newLoops[loop.index()];
322   }
323   rewriter.replaceOp(op, tilingResult.loops.front().getResults());
324   return tilingResult;
325 }
326 
327 //===----------------------------------------------------------------------===//
328 // TileConsumerAndFuseProducersUsingSCFForOp pattern implementation.
329 //===----------------------------------------------------------------------===//
330 
331 scf::TileConsumerAndFuseProducersUsingSCFForOp::
332     TileConsumerAndFuseProducersUsingSCFForOp(MLIRContext *context,
333                                               scf::SCFTilingOptions options,
334                                               PatternBenefit benefit)
335     : OpInterfaceRewritePattern<TilingInterface>(context, benefit),
336       tilingPattern(context, std::move(options)) {}
337 
338 scf::TileConsumerAndFuseProducersUsingSCFForOp::
339     TileConsumerAndFuseProducersUsingSCFForOp(StringRef opName,
340                                               MLIRContext *context,
341                                               scf::SCFTilingOptions options,
342                                               PatternBenefit benefit)
343     : OpInterfaceRewritePattern<TilingInterface>(context, benefit),
344       tilingPattern(context, std::move(options)) {}
345 
346 /// Return the `Value` that is defined by an operation that implements
347 /// the `TilingInterface`. Looks through `iter_args` of scf.for nest
348 /// if required.
349 static Optional<OpResult> getFusableProducer(Value v) {
350   while (auto blockArg = v.dyn_cast<BlockArgument>()) {
351     auto loopOp = dyn_cast<scf::ForOp>(blockArg.getOwner()->getParentOp());
352     if (!loopOp)
353       return llvm::None;
354     v = loopOp.getOpOperandForRegionIterArg(blockArg).get();
355   }
356   if (!isa_and_nonnull<TilingInterface>(v.getDefiningOp()))
357     return llvm::None;
358   return v.cast<OpResult>();
359 }
360 
361 // Replace iter args of the outer most loop with region args of the inner most
362 // one.
363 static void replaceIterArgs(scf::ForOp outerFor, scf::ForOp innerFor,
364                             PatternRewriter &rewriter) {
365   assert(outerFor.getNumIterOperands() == innerFor.getNumIterOperands() &&
366          "expect same number of iter args");
367   Block *block = &(*innerFor.getRegion().begin());
368   for (auto it :
369        llvm::zip(outerFor.getIterOperands(), innerFor.getRegionIterArgs())) {
370     Value source = std::get<0>(it);
371     Value target = std::get<1>(it);
372     source.replaceUsesWithIf(target, [&](OpOperand &use) {
373       return use.getOwner()->getBlock() == block;
374     });
375   }
376 }
377 
378 FailureOr<scf::SCFTileAndFuseResult>
379 scf::TileConsumerAndFuseProducersUsingSCFForOp::returningMatchAndRewrite(
380     TilingInterface op, PatternRewriter &rewriter) const {
381   // This transformation is only valid for ops that return values (i.e. not
382   // valid to use with operations that have memref operands).
383   if (!op->getNumResults()) {
384     return rewriter.notifyMatchFailure(
385         op, "invalid pattern for op with no results");
386   }
387 
388   // 1. First tile the consumer.
389   SCFTileAndFuseResult tileAndFuseResult;
390   {
391     FailureOr<SCFTilingResult> tilingResult =
392         tilingPattern.returningMatchAndRewrite(op, rewriter);
393     if (failed(tilingResult)) {
394       return failure();
395     }
396     tileAndFuseResult.tiledAndFusedOps.push_back(tilingResult->tiledOp);
397     tileAndFuseResult.loops = std::move(tilingResult->loops);
398   }
399 
400   // 2. Typically, the operands of the tiled operation are slices of the
401   //    operands of the untiled operation. These are expressed in IR using
402   //    `tensor.extract_slice` operations with source being the operands of the
403   //    untiled operation. Create a worklist of these `tensor.extract_slice`
404   //    operations. If the producers of the source of the `tensor.extract_slice`
405   //    can be tiled such that the tiled value is generated in-place, that
406   //    effectively tiles + fuses the operations.
407   auto addCandidateSlices = [](Operation *fusedOp,
408                                std::deque<tensor::ExtractSliceOp> &candidates) {
409     for (Value operand : fusedOp->getOperands())
410       if (auto sliceOp = operand.getDefiningOp<tensor::ExtractSliceOp>())
411         candidates.push_back(sliceOp);
412   };
413 
414   std::deque<tensor::ExtractSliceOp> candidates;
415   addCandidateSlices(tileAndFuseResult.tiledAndFusedOps.back(), candidates);
416   OpBuilder::InsertionGuard g(rewriter);
417   while (!candidates.empty()) {
418     // 2a. Traverse the slices in BFS fashion.
419     tensor::ExtractSliceOp candidateSliceOp = candidates.front();
420     candidates.pop_front();
421 
422     // 2b. Get the producer of the source (potentially walking through
423     // `iter_args` of nested `scf.for`)
424     Optional<OpResult> fusableProducer =
425         getFusableProducer(candidateSliceOp.getSource());
426     if (!fusableProducer)
427       continue;
428 
429     // 2c. Generate the tiled implementation of the producer of the source
430     rewriter.setInsertionPoint(candidateSliceOp);
431     FailureOr<Value> fusedProducerValue =
432         tensor::replaceExtractSliceWithTiledProducer(rewriter, candidateSliceOp,
433                                                      fusableProducer.value());
434     if (failed(fusedProducerValue))
435       continue;
436     rewriter.replaceOp(candidateSliceOp, fusedProducerValue.value());
437 
438     // 2d. The operands of the fused producer might themselved be slices of
439     //     values produced by operations that implement the `TilingInterface`.
440     //     Add these operations to the worklist.
441     Operation *fusedProducer = fusedProducerValue->getDefiningOp();
442     tileAndFuseResult.tiledAndFusedOps.push_back(fusedProducer);
443     addCandidateSlices(fusedProducer, candidates);
444 
445     // 2e. If the operation being fused creates a value that is used as `outs`
446     //     in the tiled operation, the result of the unfused operation will be
447     //     used in the `iter_args` of the tiled loop generated. When the
448     //     operation is fused, this use in `iter_args` needs to be modified to
449     //     use the destination of the fused operation. For example, starting
450     //     with
451     //
452     //     ```mlir
453     //     %0 = linalg.init_tensor ...
454     //     %1 = linalg.fill ... outs(%0:...)...
455     //     %2 = linalg.matmul ... outs(%1:...)....
456     //     ```
457     //
458     //     First the `linalg.matmul` gets tiled
459     //
460     //     ```mlir
461     //     %0 = linalg.init_tensor
462     //     %1 = linalg.fill
463     //     %2 = scf.for .... iter_args(%arg0 = %1)...
464     //        ...
465     //        ... = linalg.matmul ...
466     //
467     //     ```
468     //
469     //     When the `linalg.fill` gets fused, the `iter_args` needs to be
470     //     modified
471     //
472     //     ```mlir
473     //     %0 = linalg.init_tensor
474     //     %1 = scf.for ... iter_args(%arg0 = %0)...
475     //        ...
476     //        %2 = linalg.fill ...
477     //        %3 = linalg.matmul ... outs(%2: ...)...
478     //     ```
479     TilingInterface unfusedProducerOp =
480         cast<TilingInterface>(fusableProducer->getOwner());
481     scf::ForOp outerMostTiledLoop = tileAndFuseResult.loops.front();
482     SmallVector<Value> unfusedProducerOpDestValues =
483         unfusedProducerOp.getDestinationOperands(rewriter);
484     for (OpOperand &uses : unfusedProducerOp->getUses()) {
485       if (uses.getOwner() == outerMostTiledLoop.getOperation()) {
486         unsigned resultNumber = uses.get().cast<OpResult>().getResultNumber();
487         unsigned operandNumber = uses.getOperandNumber();
488         outerMostTiledLoop->setOperand(
489             operandNumber, unfusedProducerOpDestValues[resultNumber]);
490       }
491     }
492   }
493   replaceIterArgs(tileAndFuseResult.loops.front(),
494                   tileAndFuseResult.loops.back(), rewriter);
495   return tileAndFuseResult;
496 }
497 
498 //===----------------------------------------------------------------------===//
499 // LowerToLoopsUsingSCFForOp
500 //===----------------------------------------------------------------------===//
501 
502 FailureOr<SmallVector<scf::ForOp>>
503 scf::LowerToLoopsUsingSCFForOp::returningMatchAndRewrite(
504     TilingInterface op, PatternRewriter &rewriter) const {
505   SmallVector<Range> domain = op.getIterationDomain(rewriter);
506 
507   // TODO: Handle cases where the op has results if needed.
508   if (op->getNumResults() > 0) {
509     return rewriter.notifyMatchFailure(
510         op, "unable to lower to loops operations with return values");
511   }
512 
513   SmallVector<Value> ivs;
514   SmallVector<scf::ForOp> loops;
515   Location loc = op.getLoc();
516   for (auto loopRange : domain) {
517     Value offsetVal =
518         getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.offset);
519     Value sizeVal =
520         getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.size);
521     Value strideVal =
522         getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.stride);
523     auto loop = rewriter.create<scf::ForOp>(op.getLoc(), offsetVal, sizeVal,
524                                             strideVal, ValueRange{});
525     loops.push_back(loop);
526     ivs.push_back(loop.getInductionVar());
527     rewriter.setInsertionPoint(loop.getBody()->getTerminator());
528   }
529   if (failed(op.generateScalarImplementation(rewriter, op.getLoc(), ivs))) {
530     return failure();
531   }
532   rewriter.eraseOp(op);
533   return loops;
534 }
535